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ABSTRACT | Quality is a key determinant in deploying new

processes, products, or services and influences the adoption

of emerging manufacturing technologies. The advent of addi-

tive manufacturing (AM) as a manufacturing process has the

potential to revolutionize a host of enterprise-related functions

from production to the supply chain. The unprecedented level

of design flexibility and expanded functionality offered by

AM, coupled with greatly reduced lead times, can potentially

pave the way for mass customization. However, widespread

application of AM is currently hampered by technical chal-

lenges in process repeatability and quality management. The

breakthrough effect of six sigma (6S) has been demonstrated

in traditional manufacturing industries (e.g., semiconductor

and automotive industries) in the context of quality planning,

control, and improvement through the intensive use of data,

statistics, and optimization. 6S entails a data-driven DMAIC

methodology of five steps—define, measure, analyze, improve,

and control. Notwithstanding the sustained successes of the

6S knowledge body in a variety of established industries
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ranging frommanufacturing, healthcare, logistics, and beyond,

there is a dearth of concentrated application of 6S quality

management approaches in the context of AM. In this article,

we propose to design, develop, and implement the new DMAIC

methodology for the 6S quality management of AM. First,

we define the specific quality challenges arising from AM lay-

erwise fabrication and mass customization (even one-of-a-kind

production). Second, we present a review of AM metrology and

sensing techniques, from materials through design, process,

and environment, to postbuild inspection. Third, we contextu-

alize a framework for realizing the full potential of data from

AM systems and emphasize the need for analytical methods

and tools. We propose and delineate the utility of new data-

driven analytical methods, including deep learning, machine

learning, and network science, to characterize and model

the interrelationships between engineering design, machine

setting, process variability, and final build quality. Fourth,

we present the methodologies of ontology analytics, design

of experiments (DOE), and simulation analysis for AM system

improvements. In closing, new process control approaches

are discussed to optimize the action plans, once an anom-

aly is detected, with specific consideration of lead time and

energy consumption. We posit that this work will catalyze more

in-depth investigations and multidisciplinary research efforts

to accelerate the application of 6S quality management in AM.

KEYWORDS | Additive manufacturing (AM); artificial

intelligence (AI); data analytics; engineering design; quality

management; sensor systems; simulation modeling.

I. I N T R O D U C T I O N
Additive manufacturing (AM), also known as 3-D printing,
is a collective term for processes in which a prod-
uct is made by layer-upon-layer deposition of materi-
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als. The advent of commercial AM systems has enabled
the fabrication of parts with complex geometry directly
from computer-aided design (CAD) models with minimal
intervening steps. Until recently, AM parts were primarily
restricted to prototype-demonstrator roles; the viability of
AM parts has now evolved to the extent that they are used
in production and final assemblies. AM provides significant
advantages over traditional subtractive (machining) and
formative (casting, welding, and molding) manufacturing
processes, such as eliminating specialized tooling costs,
reducing material waste, and life-cycle costs, enabling
the creation of intricate and free-form geometries, and
expanding product functionality for a variety of industrial
applications.

The powder bed fusion (PBF) process is commonly
used for the AM of products from the bed of powdered
materials. Examples of PBF printing techniques include
direct metal laser sintering (DMLS), electron beam melt-
ing (EBM), selective heat sintering (SHS), selective laser
melting (SLM), and selective laser sintering (SLS) that
use different types of energy sources (e.g., laser, electron
beams, or heat) to melt or sinter powders together to
fabricate the solid 3-D parts. Note that LPBF leverages the
laser source to sinter metal powders in a layer-by-layer
fashion to create the final build. In addition to the PBF
AM process, there exists a variety of other AM processes,
such as material jetting, binder jetting, materials extrusion,
directed energy deposition (DED), sheet lamination, and
vat polymerization. The choice of materials ranges from
metals, composites, polymers, biomaterials, to ceramics.

Notably, technical challenges in quality management
hamper widespread adoption of AM technology in the
industry. For example, the microstructure and mechanical
properties of AM builds are influenced by complex, hard to
model, process phenomena (e.g., thermal effects and resid-
ual stresses). These intricate process interactions, in turn,
can lead to hidden internal defects that deteriorate the
quality of the parts. As a result, the rejection rate of AM
parts is high, particularly when considering one-of-a-kind
production. In real-world case studies, it is not uncommon
that parts that are built simultaneously with the same CAD
model in the same commercial AM machine may yield
different quality outcomes. As shown in Fig. 1, seven parts
are built simultaneously with the same CAD model in the
same commercial AM machine, and only two of which
are defect-free. The high rejection rate of AM builds and
associated costs significantly hinder the wider exploitation
of AM capabilities, beyond the current rapid prototyping
status quo.

Six sigma (6S) is a widely used practice in traditional
manufacturing industries (e.g., semiconductor and auto-
motive industries) for quality planning, quality assurance
(QA), quality control (QC), and continuous improvements
with the extensive use of data, statistics, and optimiza-
tion [5], [6]. As shown in Fig. 2, 6S entails a data-driven
Define, Measure, Analyze, Improve, and Control (DMAIC)
methodology.

Fig. 1. Seven stainless steel parts built on a commercial AM

system in a case study at the University of Nebraska–Lincoln. The

parts only differ in their orientation, with all other process

conditions identical.

1) Define: Outline the quality challenges based on cus-
tomer requirements.

2) Measure: Collect data about key process variables
from the manufacturing systems.

3) Analyze: Extract useful information pertinent to
defect-causing factors.

4) Improve: Design solutions and methods to improve
the manufacturing system.

5) Control: Develop process management plans and opti-
mal control policies when the manufacturing system
is out of control.

The goal of the 6S techniques is to identify and remove
the root causes of defects and further improve the qual-
ity of final products. The success of 6S can be seen

Fig. 2. DMAIC methodology for 6S quality management.
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Fig. 3. High-volume–low-mix production scheme in mass manufacturing.

through Motorola’s application of its philosophies. In 1978,
the company had a net income of $2.3 billion. By 1988,
the net income had increased to $8.3 billion; this is
roughly a 260% increase. Similarly, General Electric saw
massive successes with their own 6S program and achieved
$4 billion in savings per year. The list goes on with other
notable examples, including Toyota, Ford, Polaroid, Gen-
eral Motors, and many more.

Although 6S has achieved significant success in a host
of domains ranging from manufacturing, healthcare, and
logistics, more research needs to be done to initiate the
practice of 6S quality management in the specific context
of AM. In this article, we propose to design, develop,
and implement the new DMAIC methodology for the 6S
quality management of AM. First, we define the specific
quality challenges arising from AM layerwise fabrication
and mass customization (even one-of-a-kind production).
Second, we present a review of AM metrology and sens-
ing techniques, from materials through design, process,
environment, to postbuild inspection. Third, realizing the
full potential of AM-sensing data depends, to a great
extent, on the availability of analytical methods and tools.
Accordingly, we propose and develop new data-driven
analytical methods, including artificial intelligence (AI),
machine learning, and network science, to character-
ize and model the interrelationships between engineer-
ing design, machine setting, process variability, and final
build quality. Fourth, we present the methodologies of
ontology modeling, design of experiments (DOE), and
simulation analysis for continuous quality improvements.
In the end, new control approaches are discussed to
optimize the action plans, once an anomaly is detected,
with specific considerations of lead time and energy
consumption. It is worth noting that this review article
mainly focuses on metal AM processes given the popularity
in high-value industries, such as aerospace, automotive,
and healthcare. However, the proposed 6S framework is
applicable, in general, for quality management of dif-
ferent AM processes through the intensive use of data,
statistics, and optimization. We hope that this article
can help catalyze more in-depth investigations and mul-
tidisciplinary research efforts to lay the foundation of a
new scientific basis of 6S quality management for AM
processes.

The rest of this article is organized as follows. Section II
discusses specific quality challenges arising from unique

AM characteristics, such as mass customization (even one-
of-a-kind), low-volume production, multilayer part fabri-
cation, and sequential manufacturing. Section III reviews
the development of advanced sensing and measurement
systems to increase information visibility for AM qual-
ity management. Then, we present AM data analytics
in Section IV. Continuous quality improvements for AM
are discussed in Section V, and Section VI presents the
sequential optimization of layerwise control strategies for
AM. Section VII discusses the 6S quality management for
AM and concludes this article.

II. D E F I N E Q U A L I T Y C H A L L E N G E S
AM’s capability to build objects from the ground stimulates
the imagination, causing one to envision a broader range of
possibilities during design. Nonetheless, AM faces a broad
range of quality challenges that hamper the wider adoption
of AM in the industry. The urgent need to produce complex
builds in low volume and high mix, combined with rapid
advancements in AM technology, poses significant chal-
lenges to current paradigms for AM quality management.
As such new standards are being developed for material
and process qualification and part certification [7], [8],
countless experiments and modeling/simulation studies
are being conducted to gain insights into the complex
physics of AM processes [9]–[11], new in situ sensing capa-
bilities and process monitoring strategies are developed
for process control [12]–[16], and efforts are underway
to capture, store, manage, and assure pedigreed data
for QA/QC of AM parts [17], [18]. In spite of these
advances, repeatability and reliability issues seen in many
metal AM processes [e.g., laser PBF (LPBF) and DED]
unfortunately exacerbate these challenges, particularly
when trying to produce end-use parts for critical applica-
tions and highly regulated industries (e.g., aerospace and
medical) [19]–[22].

A. Quality Management for
High-Volume–Low-Mix Production

It is well known that “quality is inversely proportional
to variability” [23], [24]. Fig. 3 shows the mass manufac-
turing that focuses on the production of a large volume of
parts with a low-level mix. Traditionally, the measure of
“variability” often refers to the scenario of high-volume–
low-mix production in the context of mass manufactur-
ing. In other words, if there is a large number of parts
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Fig. 4. Area under the normal curve and the proportion of

defectives produced.

produced from the manufacturing systems, then it will
be a logical step to characterize and measure the process
variability and repeatability. The variability can be due to
random or assignable causes in the manufacturing process.
If the quality variations are solely because of random
factors (i.e., nonassignable causes, not identifiable), then
the distribution should be normal. However, if there are
assignable causes, then statistical control charts are often
used to monitor the process and detect when and how
the process performance is affected. As such, the process
can be stopped to look for assignable causes and eliminate
them to resume normal production. Quality improvement
involves a series of managerial, operational, and engi-
neering activities to reduce the variability in the process.
Especially, statistical DOE is utilized to realize a robust
process by studying the effects of controllable settings
under the uncertainty of uncontrollable factors, also called
“robust parameter design” [25].

As a result, the 6S program emerged to meet the needs
of mass manufacturing in the automotive and semiconduc-
tor industries and has achieved enormous successes in the
past century. As shown in Fig. 4, the 6S program utilizes
the DMAIC methodology for the reduction of process vari-
ability to the level that failures and defects are extremely
unlikely. If the 3σ limits overlap with product specification
limits, then the probability for a part falling outside the
μ ± 3σ limit is 0.27%, which means that the number of
defective parts per million (PPM) is about 2700. For the
μ ± 6σ limit, the probability will be 0.0000002%, which
means that the PPM is 0.002 (i.e., extremely unlikely).
In the 6S scenario, if a finished product has 100 com-
ponents and each component must be nondefective for
the product to be nondefective, then the probability of
the product to be nondefective is (0.999999998)100 ≈ 1.0.
The 6S concepts (e.g., design for 6S, lean production, and
variation reduction) have been widely used to improve
the capability of many business processes nowadays. The

development of the 6S program has gone through three
phases as follows.

1) Phase I: Address process monitoring, defect elimina-
tion, and variability reduction.

2) Phase II: Reduce total production cost and increase
system performance.

3) Phase III: Emphasize the value creation to business
organizations.

However, AM moves toward a high level of customiza-
tion by enabling low-volume–high-mix production (even
one-of-a-kind production) directly from the digital designs
from the customers, resulting in “economies of one” [26].
The large quantity of parts produced from the same design
is not available anymore, as in the traditional paradigm
of mass manufacturing, to establish and measure process
variability. Therefore, the 6S practice from mass manufac-
turing tends to be limited in the ability to be generally
applicable to AM. There is an urgent need to push forward
the next phase of the 6S program for AM. Fig. 5 shows
the low-volume–high-mix production scheme for a cus-
tomized design, which may only be fabricated once or
in low volume. Note that there are significant layer-to-
layer variations in part geometry. AM presents new QA/QC
challenges: mass customization, low-volume production,
and layer-to-layer variations in part geometry. In particu-
lar, because of the customized design and layer-by-layer
fabrication in AM, it is not uncommon that each layer is
different in terms of part geometry. Hence, it is difficult
to characterize and measure the process variability and
repeatability from one layer to another or from one build
to the next.

B. Multilayer and Sequential Manufacturing
Process

The layer-by-layer approach to AM brings significant
challenges for QA/QC. Many AM processes use the raw
materials of metal powders, where particle sizes and
shapes vary between batches. Also, a laser or electron
beam is utilized as the heating source in LPBF and DED.
Slight variations in the intensity and diameter of the beam
contribute to the issue of repeatability both between differ-
ent machines and between the same machines at different
locations on the build plate. Thus, every parameter that
affects the end result of the process must be tailored
to the materials used [27]. Furthermore, an AM system
can utilize different layer thicknesses when manufacturing
parts. A 2-cm-high object that uses a layer thickness of
100 μm will require 200 layers. IF the layer thickness is
50 μm, then the number of layers would be 400. Each of
these layers has the opportunity for failure. Even if a single
layer has a small probability of having a defect, the overall
build will have a high probability of having at least one
defect. To illustrate the effects and challenges of multilayer
fabrication, consider the following example.

1) If the probability to contain defects is 0.0114 in a
layer, then what is the probability for this layer to be
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Fig. 5. Low-volume–high-mix production scheme for a customized design with layer-to-layer variations in part geometry in 3-D printing.

nondefective?

1 − 0.0114 = 98.86%.

2) For an AM build with 100 layers, what is the proba-
bility to have no defects?

(1 − 0.0114)100 = 31.77%.

3) For an AM build with 100 layers, what is the proba-
bility of having at least a defect?

1 − (1 − 0.0114)100 = 68.23%.

4) If the probability of a build to contain defects is
specified to be less than 10%, then what should be
the probability for a layer to have defects?

1 − (1 − x)100 = 10% ⇒ x = 0.0011.

It is worth noting that this example assumes that each
layer is independent of each other. However, AM is highly
correlated from one layer to another layer. In other words,
the defects in one layer can be corrected during the
processing of the subsequent layer or can negatively impact
the next layer and all the subsequent layers. This is anal-
ogous to the multistage assembly line in the traditional
manufacturing paradigm. In the automotive industry, a car
body assembly often involves a sequence of assembly
operations. The variations in one assembly step can poten-
tially introduce a stream of variations in the following
steps [28]. However, the physics of multistage assembly
operations are different from multilayer AM with LPBF in
each layer. A 6S program for multistage manufacturing
systems typically analyzes the current state of a process
and then incrementally improves system performance with
statistical methods and tools.

Establishing a 6S paradigm for AM calls upon new
innovations to tackle these emerging quality challenges,
including mass customization, low-volume production,
lay-to-layer variations, and multilayer manufacturing

process, which are unique when moving from traditional
mass production to the new paradigm of AM. “Measure”
requires the design and development of new sensor tech-
nologies for materials, processes, and postbuild inspections
at different stages of AM. “Analyze” should be able to
handle and connect the big data that are generated during
the AM product lifecycle. “Improve” calls upon a better
understanding of the process physics and an ontological
knowledge of the underlying phenomena through statis-
tical DOE on physical machines, AM processes, and/or
computer experiments on simulation models. “Control”
should consider the sequential decision-making problem
for the multilayer fabrication process in AM and further
address the multiobjective optimization of AM, for exam-
ple, minimizing total cost (e.g., energy or time) consumed
in the LPBF process and maximizing the quality of final
parts. The new scientific basis of 6S quality management
will impact the production-scale viability of AM and enable
wider exploitation of AM capabilities beyond the current
rapid prototyping status quo.

III. M E A S U R E A M
In the DMAIC approach, the measure step is aimed at
collecting data from key variables during the AM process,
such as: 1) process input variables (e.g., characteristics of
metal powders and design parameters); 2) in situ variables
(e.g., machine settings, layerwise imaging, and thermal
maps); and 3) process output variables (e.g., postbuild CT
scans). Modern manufacturing industries have invested in
advanced sensing and measurement systems to cope with
high levels of complexity in AM and increase the infor-
mation visibility about key variables from raw materials,
manufacturing process to final products. As mentioned in
Section II, the low-volume–high-mix production presents
specific challenges to AM quality management. With rich
data readily available from the step of “measure AM,”
this provides an opportunity for the “analyze” step to
develop an in-depth understanding of the current state
and performance of the AM process. Here, data could
be collected online (i.e., in the layer-by-layer fabrication
process) or offline (i.e., prebuild material characterization
or postbuild CT scan). The offline measurements allow for
the inspection of quality but are limited in the ability to
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Fig. 6. Broad representation of AM qualification flow about the

material, process, and product.

help in-process corrections or repairs because the defects
are often embedded within the build already. Online sens-
ing captures the dynamics of process–machine interactions
and offers a higher level of flexibility for on-the-fly control
actions. The data collected in the “measure” step can be
visualized in different ways to provide comprehensible
information about the AM process, for example, image
stacks, 3-D point clouds, histograms, network representa-
tion, and Fourier and wavelet transformations. An effective
visualization further helps the “analyze” step to estimate
and extract salient features about the process variability or
product defects.

A. Prebuild Measurement and Characterization

Fig. 6 shows a broad representation of AM qualification
flow about the material, process, and product. Metal pow-
ders are used as the input to the LPBF (and many DED) AM
machines. Material qualification is indispensable to avoid
the scenario of “garbage in, garbage out.” Standard powder
characterization techniques include X-ray photoelectron
spectroscopy, sieve analysis, inert gas fusion, scanning
electron microscopy, laser light diffraction, and differential
thermal analysis. These techniques allow the characteriza-
tion of powders in three main aspects: particle morphol-
ogy and distribution (e.g., the shape, surface roughness,
or size), powder chemistry (i.e., elemental composition),
and powder microstructure (e.g., porosity and rheology)
(see [29] for a review of AM powder characterization).
The standard practices for sampling metal powders are
provided by standards organizations, such as ASTM Inter-
national B215 and Metal Powder Industries Federation
(MPIF). These sampling standards provide practical guide-
lines to obtain a representative sample from the whole lot
and then apply the powder characterization techniques to
measure the powder properties. Furthermore, manufactur-
ers will be able to leverage the characterization results to
pose requirements for suppliers, select the best supplier,
and improve the powder reuse practices.

After prebuild material qualification, there are also
system qualifications in the AM process and performance
qualification of the part after the build is completed
(see Fig. 6). In this article, we mainly focus on the
in situ sensing of AM process performance to improve
the understanding of machine–process physics, in-process
monitoring, diagnostics, and prognostics (see details in
Section III-B), Then, we briefly discuss postbuild measure-
ment and inspection in Section III-C.

B. In Situ Sensing and Measurement

The in situ sensing of AM is a rapidly developing area
encompassing new hardware systems, approaches for sys-
tem integration, and data analytics. The need for in situ
sensing in AM is motivated by the fact that a defect in any
layer, if not detected and promptly corrected, will remain
permanently sealed in on the deposition of subsequent lay-
ers. Recent review articles in this area include Grasso and
Colosimo [30], Mani et al. [31], [32], Moylan et al. [33],
Everton et al. [34], Spears and Gold [35], and Tapia and
Elwany [36]. The challenges for in situ sensing of AM are
steep and discussed as follows.

1) Each type of AM process (there are currently
seven) imposes a unique layer bonding mecha-
nism ranging from photochemical-initiated bonding
to thermal-induced bonding; therefore, it is not pos-
sible to devise a generalized sensing scenario that is
decoupled from the process physics.

2) The defects in AM are multifarious and are linked to
specific process phenomena that range across length
scales [37]. For example, delamination and cracking
in LPBF processes occur at the part level (100 μm
and above, and extending to the millimeter scale and
beyond) due to thermal-induced residual stresses.
In contrast, balling and keyhole melting are related
to the instability at the meltpool level (less than
100 μm). A single sensor is not likely capable of
capturing these diverse phenomena.

3) Integrating sensors into AM machines is difficult
due to the tight form factor and mechanics of
the process [38]. In the fused filament fabrication
process, for instance, material in the form of a poly-
mer filament is heated past its glass transition tem-
perature and deposited by a nozzle. The gap between
the nozzle and the top of the part is of the order
of tens of millimeters. Therefore, sensors, such as
an infrared (IR) thermal camera, are intractable to
be mounted near the nozzle to obtain the surface
distribution. This is because a large surface of the part
will be blocked by the nozzle as it translates over the
part [39]. A similar argument is made for the material
jetting process.

4) In the LPBF process, layers of the powder material
are spread across a bed and melted with a laser. The
temperature gradient in the part is responsible for a
host of defects, such as microstructural heterogeneity
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and delamination [40]–[42]. However, it is tractable
only to obtain an estimate of the surface temperature
distribution with the use of IR cameras and pyrom-
eters. The temperature at the bottom layer is not
easy to obtain in LPBF because the part is surrounded
by powder, which acts as an insulating medium and
progressively attenuates the thermal signatures gen-
erated as the laser melts the material on the layers
near the top.
Moreover, it is not possible to obtain the temperature
distribution in the interior of the part without alter-
ing the process flow, for example, a thermocouple
can be introduced inside the part by stopping the
process [43], [44]. However, this will lead to loss
of the chamber atmosphere and invariably alter the
thermal profile. Researchers in Penn State’s CIMP-3D
have pioneered wireless sensing attachments that fit
into the power bed and collect temperature informa-
tion from thermocouples and strain gages [43], [44].
Moreover, the thermal phenomena in LPBF occur at
multiple spatial and temporal scales. For example,
the meltpool-related thermal phenomena are at the
order of a few micrometers and last for tenths of
seconds, with cooling rates exceeding 105 ◦/s. In the
same vein, the surface-level thermal signatures last
for a few seconds. Hence, different thermal imaging
modalities are required for measuring meltpool-level
and part-level phenomena. For the meltpool ther-
mal imaging, a high frame-rate thermal camera with
imaging range in the shortwave IR region is typically
used, while, at the part level, a long-wave IR camera
with a large field-of-view and smaller frame rate and
integration time is used [33], [45], [46].

5) Even though the process dynamics might be notion-
ally similar, such as DED and LPBF, the sensors from
one process cannot be readily transferred between
them. For example, in the DED AM process, the melt-
pool is several orders of magnitude larger than in
LPBF, and in the former, the meltpool can approach
the millimeter level, while, in LPBF, it is close to
100 μm [47]. Likewise, the deposition rates in DED
can be more than ten times that of LPBF. Moreover,
in DED, the part is exposed on all sides of the chamber
and therefore convection forces (due to carrier gases
from the nozzle) and radiation are all active at the
same time. Consequently, it is exceedingly difficult
to demarcate and measure all of these heat transfer
mechanisms.

6) The sensor measurements must be synchronized with
the state of the process if the data is to be used for
process control. Furthermore, the data from multi-
ple sensors must be synchronized with each other.
From an LPBF perspective, recording the process state
would involve capturing the position of the laser (i.e.,
the angular displacement of the galvanometer) and
merging the laser position with the sensor data being
acquired. In other words, the data acquisition system

must communicate with the AM machine and sensor
hardware with temporal error in the microsecond
range (the laser in LPBF can translate at a veloc-
ity exceeding 0.5–1.0 m/s). The challenge is further
complicated given that the sensor array may include
both temporal sensors, such as photodetectors, and
image-based sensors, such as thermal and optical
cameras.

To overcome these barriers, researchers use heterogeneous
sensing modalities [47]. A notable example of such a
multiphenomena sensing array in LPBF is the so-called
open architecture LPBF platform at the Edison Welding
Institute (EWI), which is currently instrumented with the
following sensors [48], [49]:

1) local sensors for monitoring the meltpool-level
phenomena (10–200 μm scale):

a) a coaxial shortwave IR thermal camera for
meltpool temperature measurement (85 frames
per second (fps), 13.4 × 7.12 mm field of view, and
5-μm spatial resolution);

b) a coaxial high-speed camera to track the meltpool
shape (1000 fps and 10-μm resolution);

c) a photodetector to record the meltpool intensity
(350–1100 nm and 10-kHz sampling rate);

d) an spectrometer to measure the optical emission in
the meltpool region (200–1100 nm and 1 kHz).

2) global sensors for monitoring phenomena at the bulk
part level (500 μm–100 mm):

a) a coaxial short-wave IR thermal camera focused
on the powder bed to detect part temperature
gradients (4 fps, 127 × 95 mm field of view, and
400-μm resolution);

b) a laser interferometer (405 nm) for measuring
surface finish and distortion in a layer;

c) an structured light optical imaging of the powder
bed with two digital cameras to detect distortion
of the part (21 fps, 25.4 × 14.7 mm field of
view, 6.6-μm pixel resolution, and 165-pixel/mm
fidelity);

d) an acoustic microphone and a surface acoustic
wave transducer to detect when the part cracks
due to distortion or makes contact with the powder
recoater (sampling rate of 10–40 kHz).

3) sensor data acquisition, data synchronization with the
laser position, and noise isolation:

a) close to two terabytes of sensor data are acquired
in a 12-h build cycle on EWI’s LPBF platform.
Researchers at EWI have built the hardware and
software mechanisms to ensure the seamless acqui-
sition of sensor data of such high volume, variety,
and sampling speed (a big data problem).

EWI’s open-architecture LPBF platform provides the
capability to measure the temperature distribution in the
part and track changes of thermal gradients that are
not available on other commercial LPBF systems. Another
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Fig. 7. Illustration of multisensor suite for monitoring a

Commercial ProX 320 PBFAM system.

recently operational and comparable apparatus is the
Additive Manufacturing Metrology Testbed at the National
Institute of Standards and Technology (NIST). In addition,
CIMP-3D at Penn State developed a multisensor suite for
monitoring and control of a commercial 3D System ProX
320 PBFAM system, as shown in Fig. 7. The multisensor
suite has also been demonstrated on 3D Systems ProX
200, EOS M280, and GE Concept Laser M2 machines. The
system consists of a variety of sensors as follows:

1) a high-resolution/high-magnification imaging system
(six differing lighting schemes);

2) two high-speed/high-magnification cameras, includ-
ing a coaxial camera with 405-nm filter and a
front-facing camera with 520-nm filter;

3) high-speed video (>33 000 fps);
4) optical process emissions (100 kHz), including a spec-

trometer and multispectral sensors;
5) acoustic sensors (100 kHz);
6) a thermal imaging and DMP meltpool sensor.

This multisensor suite includes an optical layerwise
imaging system to monitor the LPBF AM process, which
consists of a 36.3 Mpixel digital single-lens-reflex (DSLR)
camera that is placed inside the chamber of the EOS
M280 machine [15]. In-process optical images have also
been collected and used to identify and characterize
defects caused by lack-of-fusion in the LPBF process [50].
Stutzman et al. [13], Nassar et al. [51], and Dunbar
and Nassar [52] describe the use of an in situ optical
emission spectroscopy system consisting of two filtered
photodetectors in a series of papers.

Montazeri et al. [53] demonstrated the use of this
relatively inexpensive system to monitor lack-of-fusion
porosity in Inconel 718 test parts an use features derived
from the line-to-continuum ratio as inputs to detect lack-
of-fusion porosity. Inconel has chromium as an alloying
element. When Inconel is fused (melted) by the laser,
atomically excited chromium is vaporized and emits pho-
tons corresponding to electronic transition. One set of
transitions occurs in the wavelength around 520 nm [54].
If melting is stable, so will be line emission from the

vapor. A key innovation is the use of two photodetectors,
one of which is filtered to have a frequency spectrum in
a region where line emissions are not likely and mea-
sures emissions pertaining to the background radiation (a
wavelength different from the line emission wavelength,
called the continuum emission spectrum). Furthermore,
Nassar et al. [51], [52] divide this difference (line emis-
sion intensity minus continuum emission intensity) by
the continuum emission intensity; this ratio is called the
line-to-continuum ratio. In summary, multisensor systems
generate high-dimensional and heterogeneous data (e.g.,
time series, video, and image profiles) that provide rich
information about AM processes. However, realizing the
full potential of these data for AM system qualification
depends, to a great extent, on the development of analyt-
ical methods to characterize, represent, and extract useful
information about the defective state in each layer of AM
builds, as detailed in Section IV.

C. Postbuild Measurement and Inspection

As shown in Fig. 8, postbuild quality inspection and
function integrity assessment for AM are often per-
formed with radiographic-based computed tomography
(CT). Here, CT scans of AM builds are collected with a
GE vTomex M300 microfocus X-ray CT (XCT) scanner and
are processed using the Volume Graphic myVGL3.0 soft-
ware to extract the 2-D image profiles of every layer in
an AM build. CT reconstructs hundreds to thousands of
2-D radiographs in a 3-D volume of voxels. The resolution
of image profiles is determined by the CT voxel size,
typically with a pixel size of 10–50 μm or less. These
data will enable the investigation of the effect of design
parameters or LPBF process settings, for example, hatch
spacing (H), scan velocity (V ), and laser power (P),
on the defect patterns in AM image profiles. The sensor
data and offline CT scans can be used to create a library
of (sensor) patterns that correlate to specific defects using
sensor fusion and predictive analytics. These sensor signal
patterns, which exemplify specific process defects, can

Fig. 8. Radiographic-based CT for postbuild inspection.
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be integrated with prescriptive models (i.e., for decision-
making) to optimize the selection of corrective action in
case an anomaly is detected in the process. The focus is
to minimize defects, delamination, and warpage of the
final workpiece and maximize final strength and fatigue
resistance. In addition, other equipment, such as coor-
dinate measuring machines (CMMs) and surface prob-
ing machines, provide important information about part
dimensional metrology and surface roughness [55], [56].

D. AM Data Management

Large amounts of data are generated, exchanged, and
used dynamically during AM test coupon and part devel-
opment processes. As the volume of data grows with
increased in situ sensing and nondestructive examina-
tion (NDE), the types of data generated by AM activities
also become richer. The information necessary for AM
process qualification includes not only measurement data
but also material/machine specifications, design models,
control, and management data. Characterizing the entire
AM process demands a comprehensive analysis of all the
information collected through the build history of thou-
sands of parts and coupons, in the context of the complete
AM value chain. As a result, it requires an effective and
efficient AM data management system to ensure that data
are captured, stored, and used appropriately.

In the area of data management, several AM
information management systems are available as com-
mercial products. For example, the Senvol Database
(http://senvol.com/database/) provides researchers and
manufacturers with open access to information about
industrial AM machines and materials. Granta, a material
information management technology provider, offers the
product GRANTA MI: Additive Manufacturing, specifically
customized for AM data capturing and use. At the same
time, multiple database and data management systems are
built to organize and manage the data generated from
research and industry projects. The Data Management Sys-
tem for Additive Manufacturing (DMSAM) was developed
by researchers at Penn State’s CIMP-3D (http://www.cimp-
3d.org/datamanagement). DMSAM is a schema-based
software tool that stores and tracks all of the data and
information related to an AM part, including the state
of associated AM resources (e.g., powder, software, and
machine), part requirements for sponsors, 3-D solid mod-
els, part workflow, build plan, postprocessing plan, and all
data associated with part properties, in situ monitoring,
postprocessing, testing, and inspection. DMSAM stores
data locally, communicating with global (i.e., shared)
databases and generating build reports for QA/QC as
needed through XML, as well as Excel. NIST’s Additive
Manufacturing Materials Database (AMMD) [57] is a
data management system built with Not Only Structured
Query Language (NoSQL) database technology and pro-
vides a Representational State Transfer (REST) interface
for application integration. The database captures rich

research data sets generated by the NIST AM program
(https://ammd.nist.gov/) based on an open XML schema.
In addition, as an open data management platform,
the AMMD system is set to evolve through codevelopment
of the AM schema and contributions of data from the AM
community.

However, due to the multifarious factors that could
affect AM part quality, existing data-driven AM process
qualification requires extensive testing of material, which
is beyond the capability of any individual organization.
None of the existing databases provide comprehensive data
sets with a multitude of geometries and processes settings
by itself to qualify an AM process for parts with various
features and specifications. In order to significantly reduce
the cost and time associated with the data management
for AM process qualification, a collaborative data space
is required, and a collaborative data management sys-
tem is necessary. Fig. 9 shows a multitier AM collabo-
rative data management system with the characteristics:
1) distributed data storage facilitated by using common
data terms and definitions; 2) collaborative linked data
through federation based on neutral data formats; 3) con-
tinuous knowledge management by extracting AM mate-
rial process–structure–property relationship automatically
from AM data; 4) lifecycle and value chain-based decision
support; and 5) an adaptive data generation system that
helps AM community to efficiently design experiments. The
collaborative data management system is set to identify,
generate, curate, and analyze AM data through AM prod-
uct lifecycle and can significantly reduce the cost and time
associated with AM product deployment.

IV. A N A L Y Z E T H E D ATA
The “analyze” step focuses on the extraction of useful infor-
mation from online and/or offline data collected in the
“measure” step or from historical data available in the AM
data management system. The main purpose is to explore
the interrelations among key variables (i.e., process inputs,
outputs, and in-process variables) during the AM process,
model causal relationships between these variables, and
quality problems and further develop a new understanding
of how they contribute to the process variability and prod-
uct defects. In other words, multiple sources of variability
may exist in the AM process and can potentially lead to
quality problems in products and customer services. The
“analyze” step helps delineate and determine the random
causes and assignable causes to quality problems. If only
random causes (i.e., nonassignable factors, not identifi-
able) are presented in the process, then the distribution
should be normal [1]–[3]. However, if there are assignable
causes, then the “analyze” tools should be able to monitor
the process and detect when and how the process perfor-
mance is affected. As such, the process can be stopped to
look for assignable causes and eliminate them to resume
normal production.

However, advanced sensing systems bring more and
more complex-structured data from the “measure” step
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Fig. 9. Multitier data management system for AM.

for AM quality management, which are different from
geometric features, linear, and nonlinear profiles gener-
ated in conventional manufacturing settings [4], [58]. For
example, CT scanning and layerwise imaging result in
high-dimensional image profiles from the AM process. As
such, traditional “analyze” tools, such as control charts
and confidence intervals, are limited in the ability to han-
dle such high-dimensional image profiles. Control charts
and confidence intervals are much easier to establish
for a single random variable or multiple variables (e.g.,
geometric features of products) in the setting of mass
manufacturing but are more difficult to be developed for
high-dimensional images; let alone geometrical structures
in these images may vary from one layer to another layer
in the AM builds. Hence, new “analyze” tools are urgently
needed to help handle and connect large amounts of
data, model the cause-and-effect relationships among key
process variables, and pinpoint potential root causes to
quality problems during the AM process. This, in turn, will
help the “improve” step (see Section V) to further identify
and develop new strategies for quality improvements. New
experiments can then be designed to test the effectiveness
of these improvement strategies on either physical AM
machines or computer simulation models

A. Engineering Design Versus Build Quality
Engineering design and relevant parameters are some

of the key process input variables during the AM process.
Traditional subtractive manufacturing tends to be lim-
ited in the ability to handle complex designs. “Design
for manufacturing” refers to the conventional scheme
that adapts a design to enable manufacturing within the

capability of available machines and tools. AM offers a
higher level of design freedom and enables the new scheme
of “manufacturing for design.” Complex designs can now
be manufactured in a layer-upon-layer fashion with the
new generation of AM technology. Nonetheless, complex
designs still pose quality challenges on AM-fabricated
products, despite the fact that AM can handle certain
aspects of fabrication better than traditional manufactur-
ing technologies.

The new research question is whether and how design
parameters influence the quality of AM builds? Our prior
work has designed and performed experiments on an
LPBF machine to investigate how design parameters (i.e.,
height, width, recoating orientation, and hatching pattern)
impact the quality in the final build of thin-wall struc-
tures [59], [60] that are widely used in the fabrication
of heat exchangers. As shown in Fig. 10, our experiments
built the thin-wall structures with a variety of design para-
meters, that is, heights, widths, recoating orientations, and
hatching patterns. The metal powder is Spherical ASTM
B348 Grade 23 Ti-6Al-4V, with the distribution of powder
size in the range of 14–45 μm. Each build includes 25 thin
walls that are fabricated on a 15 mm × 15 mm × 55 mm
platform. Experimental factors such as height, width,
recoating orientation, and hatching pattern are detailed
as follows.

1) Height: The height of thin walls varies from 0.6 to
3.0 mm with a step size of 0.1 mm. The height-to-
width ratio is 0.1 in each thin wall.

2) Width: The width of thin walls ranges from 0.06 to
0.3 mm with a step size of 0.01 mm.
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Fig. 10. Illustration of design parameters (i.e., orientation, width, height, and hatching pattern) for the thin-wall structure.

3) Orientation: Thin-wall structures are fabricated ver-
tically upward with the layer thickness of 60 μm in
three orientations with respect to the travel direc-
tion of the recoater blade (i.e., 0◦, 60◦, and 90◦).
Fig. 10 shows three orientations with the reference
of recoating direction.

4) Hatching: The hatching patterns of thin walls follow
the standard processing path of EOS machines, but
various categories of scan paths are utilized when
the width increases (see Fig. 10). Fins 1 and 2 have
two inner rectangle paths, two outer layer paths (or
contours), and rotating diagonal hatching from rec-
tangles. In Fins 3–14, there are three outer layer paths
and rotating diagonal hatching inside the innermost
rectangle. In Fins 15–18, there is one rectangular
hatching. In Fins 19–25, there is one thin area path.

As shown in Fig. 10, we fabricate three thin-wall parts
in this experimental study, each of which includes 25 thin
walls. The orientations are different for three thin-wall
parts on the build plate. In other words, the orientation
of each thin-wall part is adjusted to the degree of 0◦, 60◦,
or 90◦ with respect to the travel direction of the recoater
blade in the EOS machine. After fabrication, we scan each
build with XCT. These XCT images are then registered with
the original CAD models to extract the quality charac-
teristics (e.g., edge roughness and defect levels) in each
layer of the thin wall. Here, the edge roughness refers
to the geometric deviation of build boundary between
CT scans and CAD designs. The defect level refers to the
number and degree of defects in each layer of the thin
wall. These quality characteristics are tracked from one
layer to another for the detection of the impending collapse
of thin-wall failures (see [59] and [60] for the analysis of
variance with respect to design parameters).

Through the analysis of XCT data and in-process imag-
ing data, experimental results show that the build qual-
ity of thin-wall parts is impacted by design parameters
(height, width, and height-to-length ratio) and machine
settings (hatching and recoating orientation). This study
helps provide a set of design guidelines on the use of

LPBF machines for the fabrication of thin-wall structures
as follows.

1) The 0◦ orientation gives a superior quality in the
thin-wall builds to other orientations. Fewer defects
are generated when the travel direction of the
recoater blade is parallel to the long edge of a thin
wall. The 90◦ orientation should be avoided to build
thin-wall structures, which tends to generate more
flaws by making the recoater motion perpendicular
to the long edge of a thin wall.

2) The height of a thin wall should not be more than nine
times its width. Otherwise, this thin-wall build tends
to collapse. The LPBF machine in this experiment is
limited to build the thin-wall structures with a width
that is smaller than 0.15 mm. If the length-to-width
ratio exceeds 73 (11 mm/0.15 mm), thin walls also
tend to collapse.

This study made an attempt to answer the research ques-
tion about whether and how design complexity influences
quality characteristics of AM thin-wall builds. There is
more research to be done to optimize the engineering
design for AM. For example, it is imperative to generalize
design guidelines for different LPBF machines, process
conditions, or thin walls with overhang structures.

B. Machine Setting Versus Build Quality

Machine settings (e.g., hatching space, laser power, and
scan velocity) often influence the final outcomes of the AM
manufacturing process, including the cosmetic appearance
and build quality. To increase the information visibility and
cope with the complexity in the machine–process interac-
tions, advanced sensing is increasingly employed in AM
(see the multisensor suite and CT scanner in Figs. 7 and 8),
thereby generating large amounts of data (e.g., optical
images and postbuild CT scans). Realizing the full poten-
tial of sensor data hinges on the development of new
statistical QC (SQC) methods. Existing SQC methods for
conventional manufacturing processes are more concerned
about key features of finished products (e.g., dimensional
accuracy) and linear and nonlinear profiles, as opposed
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Fig. 11. Illustration of multifractal patterns in the image profiles of an AM build.

to high-dimensional sensor data. The research on AM
sensing, machine–process interaction, and QA/QC poses
several new challenges:

1) Sensor-based metrology for in situ quality
inspection: Traditional QA/QC techniques, such
as surface metrology geometric and dimensioning
and tolerancing (GD&T), are more concerned
about the Euclidean features of the finished AM
products. They are offline and not amenable to
the inspection of internal defects in AM parts with
complex geometries [61]–[64]. In the absence
of sensor-based approaches for in situ quality
monitoring, benchmarking of AM builds remains
relegated to postbuild inspection and qualitative
attributes [65]–[67].

2) Statistical quality management for AM: Current qual-
ity monitoring approaches are offline, based on
purely data-driven techniques (neural networks, mix-
ture Gaussian modeling, and statistical analysis),
or lumped-mass formulations [68]–[71]. Very little
has been done to investigate AM quality management
using sensor-based analytical models and layerwise
AM QA/QC strategies. In situ monitoring provides an
opportunity to in-process AM defect mitigation that is
indispensable for manufacturing industries mandat-
ing stringent quality standards and product esthetics.

Hence, the first step is to extract useful information from
AM sensing data and then estimate the defect levels in
AM builds. Fig. 11 shows an illustration of AM images
in different scales, where multiscale self-similarity can be
observed to some extent. In other words, fine-grained
images of AM builds can often show multifractal charac-
teristics over a range of scales. Traditional linear methods
are limited in the ability to handle nonlinear fractals and
irregular patterns in the images. Fractal analysis extracts a
single fractal dimension that describes the self-similarity
(scale-invariant) behavior of fractal objects but cannot
fully characterize multifractal patterns that are often
shown in real-world objects [72], [73]. However, image
profiles of AM builds are often comprised of complex
self-similar patterns that are not due to a single fractal
but rather the existence of a spectrum of fractal dimen-
sions. These fractals interact with each other and then

generate highly nonlinear and complex self-similar behav-
iors (see Fig. 11).

Little has been done to characterize multifractal pat-
terns in large amounts of image profiles to investigate
how machine settings influence the AM build quality. Our
prior work has developed new multifractal methods for
the analysis of large amounts of AM imaging data and
extracts features that are sensitive to the defects, instead
of extraneous factors and random noises [72]–[76].
As shown in Fig. 12, multifractal analysis characterizes
the nonlinear and self-similar behaviors of AM images in
multiscale lenses, ranging from large-scale approximations
to small-scale details. AM images are then decomposed as
an interwoven set of fractals with different dimensions,
which is shown as the multifractal spectrum. In addition,
lacunarity measures the degree or extent to which this
set of fractals fill the space, which cannot be provided
by multifractal analysis alone. Therefore, we developed
the method of joint multifractal and lacunarity analysis to
characterize and quantify the nonlinear and multifractal
patterns in AM images that cannot be otherwise achieved
by either traditional statistical methods or fractal analysis.

After the multifractal characterization results of AM
images, we investigated how AM machine settings
[e.g., laser power (P), hatch spacing (H), and veloc-
ity (V )] influence the build quality. In the experimental
study, we printed cylinder parts in the EOS M280 machine
with varying levels of machine settings (see Fig. 20).
Especially, laser scanning velocity is increased from 1250,
1562.5, to 1875 mm/s. The hatching space is varied from
0.12, 0.15, to 0.18, and laser power is decreased from 340
250, to 170 W. Furthermore, a regression model is con-
structed to predict the relationship between machine set-
tings with the Hotelling T 2 indices of build quality, which
are computed with multifractal and lacunarity features of
XCT image profiles [72]–[76]. The model achieves the
adjusted R2 value of 94.76%, showing a strong correlation
between process conditions and build quality.

C. In Situ Sensing Variables Versus Build Quality

CT scans help characterize the quality of a finished
build but cannot detect the flaws during the AM process.
In situ sensing provides a means for on-the-fly defect
characterization. As shown in Fig. 13, a drag link part
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Fig. 12. Multiscale analysis of fractal and lacunarity patterns in the layerwise AM images with Voronoi tessellation from 100, 1000 to

10000 cells and Delaunay triangulation from 100, 1000 to 10000 cells for multiresolution quality inspection of the layerwise AM build.

with complex geometry was printed in CIMP-3D with
intentional defects at four layers (i.e., 1.5, 6.7, 12.0, and
16.0 mm), each of which includes eight defects as follows:

1) 0.050-, 0.250-, 0.500-, and 0.750-mm cubed defects
are on each plane.

2) 0.050-, 0.250-, 0.500-, and 0.750-mm diameter cylin-
der defects are also on each plane surrounding the
cubes. All cylinders have a 1:1 diameter to depth ratio
except for 0.050, which has a depth of 0.250 mm.

3) The top of the defect is the flat plane in the build
direction.

In situ optical images are recorded after each layer is
printed. This experimental study is aimed at predicting
incipient defects from in situ imaging data for QC in
the AM processes. The state-of-the-art deep neural net-
work (DNN) models show superior performance in the
handling of imaging data. However, layerwise imaging

data from AM processes pose significant challenges to DNN
defect analysis.

1) Region of Interests (ROIs): Each image contains not
only metal powders but also many AM parts in the
build plate. As such, there is a need to delineate the
image for a specific part. Often, a squared region is
cropped around the part, and then, the images of
layers are fed to the DNN model. This guarantees
the same dimensionality of input images to the DNN
model. However, due to the broad geometrical diver-
sity from one layer to another, images of some layers
will have small part geometries and large powder
areas, while others have large part geometries and
small powder areas. DNN learning will be biased by
the layerwise geometrical diversity, as well as the
varying areas of unfused powders. Therefore, it is
more desirable to leverage CAD files to delineate and

Fig. 13. (a) Four layers of intentional defects. (b) Different shapes and sizes of defects.
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register the ROI for the part geometry in each layer
(see Fig. 14).

2) Layer-to-Layer Geometry Variation: AM provides a
higher level of flexibility for the low-volume and
high-mix production, even for a one-of-a-kind design.
As shown in Fig. 5, AM fabricates the build directly
from a complex CAD design through layer-upon-layer
deposition of materials. Although we may register
the ROI for the part geometry in each layer, there
will be ROI variations among layers. Hence, both the
shape and dimensionality of ROIs will be varying from
one layer to another. The inconsistent ROIs consist
of different numbers of pixels and cannot be used as
inputs to the DNN models for learning the incipient
defects in the layers.

3) ROI Segmentation and Spatial Characterization: To
tackle the challenge of inconsistent ROIs, one
approach is to extract features from layerwise ROIs
(e.g., mean, median, and variance). However, statis-
tical features tend to aggregate useful information
within the ROIs, thereby leading to the deficiency
in defect characterization and predictive modeling.
The other approach is to segment ROIs into smaller
ROIs with the same number of pixels. Although the
dimensionality of ROIs is changing from one layer to
another, the greatest common divisor (GCD) for ROIs
of all layers can be leveraged to segment ROIs with
the same number of pixels. However, these ROIs may
still have variations in shapes. Furthermore, spatial
characterization can be used to measure spatial corre-
lations among pixels and describe pertinent patterns
about defects in the ROIs. As the number of pixels is
constant in the ROIs, characterization images share
the same dimensionality that can be fed into DNN
models for the learning and prediction of defects in
each ROI in the AM processes.

As shown in Fig. 14, our prior work has designed a new
DNN model to learn incipient defects from sROIs of in situ
image profiles [77], [78]. The experimental study provides
large amounts of images taken for each layer with different
lighting schemes. To tackle the aforementioned challenges,
DNN learning of in situ AM defects consists of the following
critical steps.

1) Image Registration and Segmentation: We first used
the CAD design to perform shape-to-image regis-
tration and extract the ROIs of 362 layers in the
drag link part. Then, these ROIs are segmented into
1708 sROIs, each of which has the same number of
pixels. Furthermore, the dyadic partitioning of sROIs
can be used to split each region into smaller subre-
gions and provides a large amount of data for mul-
tiresolution DNN learning of layerwise AM defects.

2) Spatial Characterization: Although these sROIs are in
different shapes, we utilized the spatial characteriza-
tion to extract pertinent patterns about defects from

sROIs and then fed images of spatial correlations for
deep learning.

3) Deep Learning: The DNN model includes a series of
convolutional layers to learn sROI characterization
images with multiple levels of abstraction. Each hid-
den layer is followed by nonlinear modules, which
transforms the representation at one level into a
representation at a higher, slightly more abstract
level [77]. The DNN builds up effective learning and
representations of various intentional defects [i.e.,
embedded in the drag link part (see Fig. 13)] that
help significantly reduce the size of state space and
state-action pairs for predictive modeling and opti-
mization in the following.

The DNN model described earlier is shown to effec-
tively predict the layerwise defects with the specificity of
93.85±0.83%, the sensitivity 90.01±1.56%, the negative
predictive value of 93.83±0.67%, the positive predictive
value of 90.03±2.34%, and the accuracy of 92.50±1.03%.
This experimental study avoids the use of DNN as a black-
box by just feeding cropped images of layers (i.e., with
the broad geometrical diversity) into the neural networks
and then letting AI classify ROIs and identify the defects.
Indeed, engineering domain knowledge is indispensable to
preprocessing AM training data and developing effective AI
methods for in situ AM defect learning and analysis.

V. I M P R O V E T H E S Y S T E M
This section presents a set of statistical methodologies—
ontology models, DOE, and simulation analysis—for the
quality improvement of AM processes. The “measure” step
provides rich data about key variables to increase informa-
tion visibility during the AM process. The “analyze” step
extracts useful information from the data and performs
the cause-and-effect analysis between and among these
key process variables. Now, the “improve” step exploits
data-driven knowledge to look for changes or parameter
designs that can be made to the AM process so that the
performance can be improved.

Ontology provides a high-level map that is useful to
explore and understand the interrelationships of para-
meters, elements, and variables during the AM process.
Hundreds of terms may be involved in the AM process
ontology to describe input–output parameters of the laser,
thermal, microstructure, and mechanical properties of
AM parts. These terms may be physical parameters or
concepts that are based on mathematical modeling and
physical phenomenon characterizing the AM system. For
instance, the laser source affects the thermal behavior and
microstructure evolution during an AM process [79], and
the thermal distribution of the heat source affects the
microstructure behavior and mechanical properties [80].
As a result, ontology models relate process parameters to
mechanical properties and material characteristics and can
be used for process redesign, sensor selection, and quality
improvement.
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Fig. 14. Schematic illustration of deep learning of incipient defects from in situ image profiles.

Furthermore, DOE is one of the most widely used tools
for quality improvement. Note that the “analyze” step
delineates multiple sources of variability in the AM process,
for example, assignable causes or random causes. There-
fore, the “improve” step can then choose experimental fac-
tors and vary the factor levels with statistical designs (e.g.,
randomized block design, factorial design, and response
surface design) to investigate how these factors influence
the quality of AM process and final builds. Most impor-
tantly, optimal factor settings can be determined to ensure
that the desired performance of the AM process can be
achieved, which is robust to uncontrollable factors and/or
random noises [25].

It should be noted that the designed experiments can
be conducted on physical AM machines, computer sim-
ulation models, or both to improve the performance of
AM processes. Simulation analysis involves the design of
computer experiments that is often faster and cheaper than
physical experiments. As such, before expensive experi-
ments are undertaken on AM machines, simulation analy-
sis can help screen the process variables to reduce the
number of factors and design more cost-effective experi-
ments in the “improve” step. If the AM process is far from
the desired level of performance and produces a large
number of defective builds, then it may be necessary to
abandon the old process and redesign a new AM process.
In this way, the “improve” step is converted into a “design”
step in the DMAIC approach.

A. Ontology Modeling

As shown in Fig. 15, the growing body of AM research
exists in many forms (e.g., papers, models, simulations,
graphs, and data) and is both specific to a given AM

process and generalizable to AM more broadly. Several
complementary efforts are underway to develop data man-
agement systems by NIST,1 CIMP-3D,2 Granta,3 and many
others. Also, numerous sensing capabilities (e.g., photodi-
odes, cameras, pyrometers, thermocouples, and spectrom-
eters) are available for metal AM processes (e.g., PBF and
DED). Different sensors have been installed on different
AM systems to generate empirical data to help validate
simulation models, for instance, or develop process maps
for different AM systems and materials. The challenge now
lies in the integration of all the information into useful
AM knowledge, which includes the selection of the right
sensors to generate the right data for the right analytics
for QA/QC.

Our previous work developed an ontology to support
AM process model development and reuse [81], [82]. The
AM ontologies sought to overcome pertinent challenges
about disparate AM process models and simulations (e.g.,
with variations in the input–output specification), not to
mention the levels of detail, fidelity, and composability.
This limitation restricts their reuse and makes it difficult
to integrate different models from different groups into
the most accurate AM simulation model or for different
use cases. The AM ontologies developed by Penn State
and NIST allowed users to navigate complex relationships
and understand the connections between different process
parameters, microstructural characteristics, and mechani-
cal properties for AM parts. A sample of the ontology is
shown in Fig. 16 where the details on the class hierarchy

1https://ammd.nist.gov/
2http://www.cimp3d.org/datamanagement
3https://grantadesign.com/industry/products/granta-mi/support-

materials-engineering/granta-miadditive-manufacturing/
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Fig. 15. Challenges navigating research, sensing, and data management for metal AM.

for AM thermal models can be seen along with the defini-
tion of the Absorbed_laser_power class.

The AM process ontology generates a network of para-
meters that can be visualized as a graph to look for
similarities and differences across different models from
different researchers. We will refer to these as knowledge
graphs as they can be navigated forward (or backward)

to identify important relationships between parameters
and phenomena that were previously disconnected. Two
examples of navigating such a knowledge graph to identify
important relationships during AM are shown in Fig. 17.
In Fig. 17(a), the knowledge graph is used to trace a
process parameter that we can measure (i.e., meltpool
area) to understand how it influences different mechanical

Fig. 16. Sample of AM ontology showing detail for absorbed laser power class definition.
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Fig. 17. Examples of using knowledge graphs from AM ontology to identify relationships between measurable process parameters and

potential requirements for metal AM part. (a) Example of using a knowledge graph to navigate from a measurable process parameter

(meltpool area) to mechanical properties of interest (tensile strength, yield strength, and so on). (b) Example of navigating knowledge graph

backward to trace a requirement (Vickers hardness) to two measurable process parameters (scanning speed and absorbed laser power).

properties that may be of interest (e.g., tensile strength,
yield strength, elongation, and the Vickers hardness). The
graph does not tell us exactly how they are related, but
we know from the AM ontology that these parameters
influence each other based on data and models in the
literature.

These same ontologies developed to manage process
models can be easily extended to support data

management and configuration. As noted in Section III,
a vast amount of AM process data is being measured,
often used for the development and validation of AM
process models. Fig. 17(b) shows an example of how the
AM ontology can be leveraged to navigate the knowledge
graph in reverse to identify what sensor data should be
captured to help ensure that a requirement is met. In this
example, we assume that a requirement is specified on
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Table 1 Experimental Data for Metal AM [83] and Results of Linear Regression Analysis

the Vickers hardness of the part, and then, we navigate
the knowledge graph backward until we find process
parameters that we might be able to sense, namely,
scanning speed and absorbed laser power in this case.
While we may not be able to measure absorbed laser
power directly, this, nonetheless, provides an indication of
what we might want to sense during the process to gather
data to help ensure that our requirement is met.

The AM ontology and corresponding knowledge graphs
can also be used to support the analysis of process parame-
ters and sensor data. For instance, Table 1 shows data from
an experiment where several input process parameters
(e.g., laser power, velocity, and spot size) were varied,
and sensors were used to capture meltpool depth and
width; deposition height and width were also measured
for each test specimen [83]. Linear regression was then
used to analyze the data in Table 1, and R2

adjusted values
for deposition height and deposition depth are 91.75 and
89.97, respectively, as a function of the process parameters
that were varied. The R2

adjusted value for meltpool width is
also good (94.85); however, the R2

adjusted value for meltpool
depth is not (68.00). When we trace these relationships
in our AM ontology, we find that the Marangoni effect,
the velocity of the fluid, and the Buoyancy effect have a
relationship with meltpool depth, yet none of these are
in the data because they were not measured or sensed dur-
ing the experiment. Had the researchers had the ontology,
the corresponding knowledge graph could have been used
to plan the experiment more carefully, that is, what data to
sense and capture based on what they wanted to analyze
after the experiment. This simple example demonstrates
what might be achieved (and potentially avoided) by using
a knowledge graph, such as the AM ontology to guide
sensing and inform the analysis.

B. Design of Experiments

The distinctive aspects of AM compared to traditional
subtractive and formative manufacturing processes are
the relative tight coupling of the part geometry (shape),

microstructure evolved, and process conditions [84]–[86].
In other words, the shape, microstructure, and process
conditions interact to influence the functional integrity
aspects of the part, such as its strength, fatigue life,
adherence to geometric, and dimensional specifications,
among others. This coupling of part shape, process para-
meters, microstructure, and part properties is rather weak
in conventional manufacturing; for instance, in subtractive
machining, although the near-subsurface microstructure is
influenced by the cutting conditions and geometry, the bulk
microstructure is largely unaltered. Some of these process–
structure–property relationships in AM are exemplified in
Fig. 18.

This intricate interaction in AM lies at the crux of the
large uncertainty in part quality aspects, and accordingly,

Fig. 18. Complex part design-process parameters—property

linkages in AM.
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Fig. 19. Large number of process variables in the LPBF AM process makes process optimization using DOE expensive and untenable.

the use of traditional DOE-based methods to achieve the
optimal processing conditions is constrained for the follow-
ing reasons.

1) Large Number of Key Process Input Variables Can Be
Adjusted and Several Output Variables Need to Be Simul-
taneously Optimized: For example, in the LPBF process
alone, a schematic of which is shown in Fig. 19, over
50 process input variables are known to influence the part
properties [76], [87]. Taking just the example of LPBF,
the key input variables can be categorized into two main
categories, namely boundary condition factors and input
parameters, as demarcated in Table 2. Within the for-
mer boundary, condition-related factors are again divided
into two: 1) part design related and 2) material-related
aspects. Under the category of controllable input factors,
condition-related factors are three further subdivisions:

1) environmental factors; 2) process–machine factors; and
3) the characteristics of the energy source, such as the
laser, optics, and scanning factors.

Moreover, researchers have found that key process out-
put variables may conflict with each other. For instance,
part strength and geometric integrity are known to conflict,
while increasing the infill percentage can increases the
strength of the part, the increase in material density due
to the added material has the tendency to create large
residual stresses, which causes the part to warp [88], [89].

2) Influence of Part Geometry, Process Parameters, and
Build Strategy on the Build Quality: In AM, the mechanical
and physical properties of the final part are governed
by thermal aspects, such as heat flux and cooling time
between layers. These thermal aspects are, in turn, func-
tions of the process parameter, part geometry, support

Table 2 Boundary Conditions and Controllable Input Parameters in LPBF Processes
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structures, and build plan. Hence, process parameters opti-
mized for rudimentary test coupons established for one
type of geometry may not typically carry over to another
geometry. To explain further, currently, in the metal AM
processes, such as LPBF, process parameters, such as the
laser power (P) [W], velocity (V ) [m·s−1], hatch spacing
(H) [m], and layer height (T ) [m], are aggregated in terms
of the incident laser energy per unit volume, called global
energy density, Ev = P/(V × H × T ) [J/mm3], which,
when coupled with the scanning strategy, determines the
average rate of heat input at the build surface. However,
the global energy density is not sufficient to ensure part
quality because, apart from the part geometry and process
parameters, the placement of parts on the build plate,
shape, and placement of other parts in the build plan
(build layout) also influence the cooling rate. For example,
Fig. 20 depicts the XCT images of the cross section of an
Inconel 718 cylinder made using the LPBF process [53].
The parts are built simultaneously using a commercial
LPBF machine. The part demarcated as Disc B is built
under the so-called default, factory optimized process con-
ditions recommended by the manufacturer for Inconel 718.
Nonetheless, the part shows pronounced lack-of-fusion
porosity.

Lack-of-fusion porosity, also called acicular porosity,
occurs due to poor consolidation of the material with
insufficient energy. The energy density for Disc B is
close to 80 J/mm3. However, increasing, indeed doubling,
the energy density Ev to 160 J/mm3 as in the case of Disc
A did not eliminate the lack-of-fusion porosity. The reason
for this observation can be explained on the basis of the
placement of the parts on the build plate and requires an
understanding of the manner in which the laser beam is
focused on the powder bed. In LPBF systems, typically,
the laser is in the IR region with a wavelength in the
vicinity of 1050 nm, and the beam is rastered with the
galvanic mirror assembly in the xy plane and focused on
the build plate by means of an optic called the f –θ lens.
This lens is designed to maintain a constant focal length
( f ) irrespective of the angle of incidence (θ) of the laser
beam after it is directed by the galvanic mirror assembly.
A drawback with the f –θ lens is that, at extreme incidence
angles, corresponding to the edges of the build plate,
the focal length tends to deviate from the desired setpoint.
In other words, the beam tends to become defocused at
the edges, and hence, building parts near the edges is not
advisable, as the energy delivered will not be sufficient to
melt the material. Some of the newer LPBF systems, such
as the Renishaw RenAM 500M system, have overcome this
problem by replacing the f –θ lens with a dynamic focusing
system.

We note that Both Disc B and Disc A are placed on
the far corners of the build plate (the recoater scans
from right to left), and since the LPBF system uses an
f –θ lens, there is a possibility of exacerbated defocusing
of the laser beam. This claim is substantiated in the case of
Disc D, which has a smaller global energy density applied

to it (107 J/mm3) as opposed to Disc A, but is nominally
devoid of porosity. This example serves to demonstrate that
setting the process parameters to offline-optimized process
conditions based on ideal conditions is not guaranteed to
result in flaw-free parts in AM. Indeed, the placement of
the parts on the build plate is also an important factor.

The geometry of the part beneath the powder bed in
LPBF determines the rate at which the heat is conducted
away from the build surface (heat flux) and, hence, gov-
erns the cooling rate, which, in turn, influences defects,
such as cracking and microstructure heterogeneity. The
placement of supports bares an important aspect of the
part geometry because they serve as conduits for heat to
dissipate [37], [90].

Furthermore, if more parts are added onto the build
plate, the time for scanning a layer increases, and there-
fore, the heat from a previously melted region has a
longer time to dissipate, which, in turn, alters the cooling
rate. Thus, if any aspect of the build layout changes, for
instance, new parts are added or taken away, the orienta-
tion of a component is altered, the scanning strategy and
order are varied, and then these changes will affect not just
one part but potentially every part present on the platen
during that build. Consequently, a part must be requalified
when it is built as part of a different build layout.

3) Empirical Testing Is Expensive: In AM, and more so
in metal AM, the consumables are prohibitively expen-
sive (the cost of powder material, such as titanium, can
exceed several hundred dollars per pound), the process is
slow (a �8 mm × 60 mm-tall build takes approximately
180 min), and only a few parts can be made at a time.
Moreover, postprocess destructive mechanical testing is
expensive, and there are no standard approaches to ascer-
tain the mechanical properties of complex objects, such as
lattices. Indeed, nondestructive testing approaches, such
as XCT, are cumbersome, and the resolution progressively
degrades with the material density and size.

4) Sensitivity to Disturbances (Nonstationarity) Makes
Maintaining Stable Experimental Conditions Difficult: One of
the main tenets of statistical DOE is that the process should
remain stationary during the duration of the test. This
condition is not strictly true in AM, as the process para-
meters tend to fluctuate. For instance, in LPBF, during long
experimental builds, the hot residue, such as vaporized
material from the printing process, tends to accumulate in
the cooler areas of the machine. For instance, soot buildup
on the optics leads to occlusion of the laser beam during
long builds. Consequently, the shape of the laser beam and
the power delivered tend to drift over time, which, in turn,
affects the part properties.

Likewise, the morphology of the top surface of the part
tends to change in DED. In contrast to LPBF, the top surface
in DED is not relatively flat but has an uneven wavy
surface. This wavy surface emerges because only a part of
the material may be melted and adhered to the surface
due to a variety of reasons, such as insufficient energy
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Fig. 20. XCT of the four disks, and their relative placement on the build platen.

to melt the surface, loss of powder in the stream, and
either too much or too little material flow. Subsequently,
the distance between the top surface and the powder
delivery nozzle (called the standoff distance) varies from
its initial setpoint. If the standoff distance between the part
and nozzle decreases, more power tends to be delivered,
and accordingly, more volume of the powder is melted,
leading to a further decrease in the standoff distance.
Eventually, the deviation of the standoff distance from the
setpoint will rapidly exacerbate; the standoff distance will
decrease and the nozzle may eventually crash into the part.

On the other hand, if the standoff distance increases,
the power delivered is insufficient to melt the powder, and
the standoff distance will decrease, causing the laser beam
to walk off from the part. Such process drifts inherent
to AM processes cause the part properties to vary along
the build direction and, as a consequence, induce a large
spread in the measurement of the output variables.

For example, the XCT image of a titanium alloy coupon
deposited using the DED process is shown in Fig. 21 [91].
One of these parts is deposited under suboptimal process
conditions; the laser power (300 W) is insufficient to melt
the material and manifests long lack-of-fusion flaws. When
after extensive testing, it was found that, when the laser
power is increased from 300 to 475 W, the lack-of-fusion
flaws are mitigated; however, a relatively small flaw is still
evident, whose root cause cannot be pinpointed. In other
words, there is a stochastic (random) aspect to defect
formation.

These challenges pose considerable uncertainty in the
generalizability and effectiveness concerning the con-
ventional statistical DOE in AM. To address these con-
cerns, researchers have explored several strategies. First,
to reduce the number of expensive empirical tests required,
sequential and evolutionary DOE strategies have been
demonstrated [92]. The key idea of the evolutionary opti-
mization approach is to use previous experiments to inform
the next set of experiments. One approach to evolutionary
optimization is to conduct a set of experiments and test
for the key process output variables. Based on the results,
the next set of experiments is conducted in the vicinity
of those process settings that result in outcomes closer to
the desired. Another approach is to use a technique called

minimum-energy DOE, which provides a set of candidate
points using a Bayesian analysis [93].

Another strategy is to augment DOE with machine learn-
ing models trained on the available data set. In this regard,
King et al. suggest including results from simulation mod-
els to rapidly narrow the process conditions. With regard to
the development of experimental data sets, extensive part
design and testing strategies have been formalized by the
ASTM F42 Committee.

Note that the global energy density is not sufficient to
ensure part quality because, apart from the part geometry
and process parameters, the shape and placement of other
parts in the build plan (build layout) also influence the
cooling rate. The uncertainty introduced in the compo-
nent quality due to the complex interdependence between
material, part geometry, process parameters, and build
plan negates one of the most attractive aspects of AM: the
flexibility to implement changes to the part design without
the need for extensive optimization of the process parame-
ters. This process complexity in AM strengthens the case
for supplanting an empirical build-and-test optimization
approach with a thermal physics-driven methodology.

C. Simulation Modeling and Analysis

Computationally efficient and accurate physical models
are critically needed for AM to: 1) narrow the process

Fig. 21. Two DED parts (15 mm × 15 mm × 10 mm) show that (left)

systemic flaws due to poor selection of processing conditions

and (right) random (stochastic) flaws tend to occur even under

flaw-free conditions [91].
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Fig. 22. Thermal phenomena in metal AM processes range across multiple scales, starting from the meltpool level to the part level [100].

parameter space for a property of interest; 2) identify
red-flag problems in the part design; 3) aid support place-
ment, build orientation, and build plans; 4) predict the
distortion and microstructure evolved; and 5) augment
process control by providing a model-based baseline for
adjusting the process (feedforward control) [94]–[97].
From a broader vista, simulation in AM can be categorized
into three classes contingent on the dominant phenomena:
thermal, fluid, and photopolymerization based. To explain
further, in the metal AM processes, such as LPBF and DED,
the energy applied in joining the layers is supplied by
a laser; accordingly, researchers have focused on model-
ing the thermal phenomena in metal AM. Melting- and
extrusion-based polymer AM approaches, such as fused
filament fabrication, may also be considered to fall under
the category of thermal initiated AM. Processes such as
binder jetting and aerosol jet printing are governed by the
mechanics of droplet formation, fluid flow, and wetting.
Finally, material jetting stereolithography is governed by
photochemical reactions.

In this article, we have chosen to focus on metal AM
processes given their popularity in high-value industries,
such as aerospace and biomedical. The industrial interests
in LPBF and DED have propelled active research in simula-
tion modeling of these processes, with several commercial
ventures being initiated in the last decade. The three key
problems faced by researchers in this area are as follows:

1) simulation time;
2) coupling of phenomena across multiple scales;
3) difficulty in experimental validation.

These difficulties originate because thermal modeling
in LPBF and DED involves multiscale physics, which
starts at the meltpool level, progressing to the layer
level, and, finally, the part level [42], [96], [98]. The

various process-part thermal interactions in the LPBF and
DED processes are depicted in Fig. 22. The meltpool or
particle-level dynamics are tied to material solidification
rates and the interaction of the laser beam with the pow-
der, and hence, it is the key to predict the microstructure
evolved and, as a consequence, mechanical properties,
such as hardness, strength, and fatigue life [99]. Next,
in ascending order, is the so-called mesoscale or track level,
which ranges from a few hundreds of micrometers to under
a millimeter. The aim of track-level simulations is to predict
consolidation of the powder and dynamic evolution of the
meltpool as the laser is scanned, which is consequential to
the density of the part formed. Finally, at the macroscopic
or part level, which ranges from millimeters and beyond,
the thrust is to predict the thermal-related residual stresses
and geometric deformation.

At the meltpool or particle level, the interaction of
the laser beam with particles is the focus. Particularly,
in LPBF, the energy absorbed by the material is a function
of its reflectivity (in electron beam PBF, the electroneg-
ativity is of importance). Highly reflective material will
tend to absorb a smaller magnitude of the incident laser
energy. Furthermore, the laser is reflected repeatedly by
the powder particles when it is incident on the powder
bed. This is advantageous to material melting as the energy
absorbed by the material increases on account of multiple
reflections. The laser–particle interaction is also important
to understand the formation of the pinhole (due to vapor-
ization) and keyhole-type porosity. The former occurs due
to one of three reasons: first, the vaporization of remnants
of moisture on the surface of powder particles; second, the
escaping gases trapped within the meltpool; and third, due
to the vaporization of impurities within the powder that
has a lower melting point than the desired alloy. Keyhole
melting porosity occurs at inordinately high laser energy
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conditions, which causes the powder to vaporize and cre-
ate a cavity. This cavity serves to further focus the laser
into a narrow beam, exacerbating the vaporization of more
material. Eventually, the surrounding material falls into
the cavity and fills it incompletely, causing a void (keyhole
collapse). In the case of the DED process, the simulation at
this scale includes modeling the interaction of the falling
powder with the carrier gas, as well as the laser.

At the track levels, the simulations must take into
account surface tension-related phenomena, such as the
Plateau–Rayleigh effect, which is the root cause of melt-
pool instability and, consequently, inferior consolidation of
the material. Furthermore, at the meltpool level, the mate-
rial changes from solid to liquid and back to solid again;
as a result, latent heat effects cannot be neglected. The
simulations at this scale have been used to model the seg-
regation or breakup of the meltpool into discrete chunks,
called balling. This phenomenon is typically observed
underneath unsupported features in the part and is related
to the accumulation of heat in a region. The temperature
increase causes the surface tension of the meltpool to
decrease, which, in turn, leads to an increase in its length.
The inordinate increase in the meltpool causes the onset
of the Plateau–Rayleigh instability causing the meltpool
to break up into discrete chunks. Each of these chunks
eventually coalesces into spheroid shapes. The occurrence
of balling phenomena is tied closely to the laser power
and hatch spacing. This example serves to emphasize that
the dynamics of the meltpool and track levels involve both
fluid and heat transfer phenomena.

Finally, at the part level, the prediction of the tem-
perature distribution has garnered commercial interest,
with the emphasis on four aspects: 1) predicting distortion
during and after the build; 2) possibility of a recoater crash
due to part distortion during the build; 3) optimizing part
orientation and placement of supports; and 4) build layout
planning. To explain further, the three main factors that
influence the thermal distribution at the part level in LPBF
are as follows:

1) the geometry of the part, including features such
as steep overhangs, and the presence of anchoring
supports [90], [101]–[103];

2) type and characteristics of the feedstock material and
process parameters, such as the laser power, hatch
spacing, layer thickness, laser scan velocity, and scan-
ning strategy, which influences the average heat input
(global energy density) [104];

3) the time required for scanning a layer and the interval
between the melting of successive layers (interlayer
cooling time), which are functions of the build layout
determined by the number, geometry, orientation,
placement, and scanning sequence of other parts on
the build plate.

At the part level, the effect of meltpool-level phenomena
(e.g., latent heat aspects) is neglected to aid computation.
Mathematically, the aim is to solve the heat diffusion
equation, in which conduction is the model heat transfer,

and radiative and convective effects are considered post-
facto, that is, after the heat diffusion equation is solved.
The heat diffusion equation takes the following form:

ρcp
∂T

∂t
− k

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T = Q. (1)

Solving the heat equation results in the instantaneous
temperature T (x, y, z, t) at a time t for a Cartesian spatial
coordinate (x, y, z). The temporal map of T (x, y, z, t), that
is, the trace of the temperature T at the location (x, y, z)
over time, gives the temperature history in the part for that
location. The right-hand side term is the energy supplied
by the laser per unit volume of the material per second
(Q). Although the units are identical to the global energy
density (Ev), Q is a more encompassing term because of
the flexibility to include the effect of the beam shape.

The benchmark computational approach for solving the
heat equation originates in the welding literature, as exem-
plified in the work of Goldak et al. [105]. This model
called Goldak’s double-ellipsoid model considers, as the
name suggests, the laser source to be ellipsoidal in shape.
The beam energy is assumed to be concentrated in the
center and dissipates near the boundary of the ellipse.
In the AM context, researchers tend to model the beam
to be ellipsoidal and the energy distribution within its
Gaussian. A key difference between welding and AM is
that, in the latter, the heat source has a smaller profile, and
the translation speed (scan velocity) is a magnitude higher.
Consequently, the cooling rates in LPBF approach the order
of nearly 105 ◦/s. In DED, the spot sizes are much larger
than LPBF.

The main problem faced at the part-level thermal mod-
eling is the evolving nature of the part geometry in AM.
To explain further, the model must take into account
the change in the computational domain and boundary
conditions as the material is deposited layer-upon-layer.
The key challenge is to keep track of the elements from a
finite-element modeling perspective [106]. Typically, this
is done through the element birth-and-death approach,
where the elements are slowly activated. The second is
the quiet element method, wherein the part was meshed
beforehand, but the thermal properties of an element are
activated at the appropriate interval. Commercial soft-
ware, such as Netfabb, makes use of a hybrid strategy
involving both the quite element and birth-and-death
approach. It may be noted that researchers at the Lawrence
Livermore National Laboratories have developed compre-
hensive multiscale modeling tools based on their extensive
code base, at the mesoscale (ALE3D) to the part level
(Diablo). Techniques such as finite difference and discrete
element methods have been employed to solve the heat
diffusion equation [107]. Newer approaches based on
circuit theory and graph analysis have been introduced for
mapping the thermal distribution in AM [100], [108].

Fig. 23 shows a schematic of the mesh-free graph theory
to solve the heat diffusion equation. The key idea is that the
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Fig. 23. A graph theory approach for simulating the LPBF process: Step 1 convert he geometry to a set of discrete nodes; Step 2 network

construction; Step 3 simulation modeling of laser sintering and heat transfer; and Step 4: analysis of temperature distribution [100], [108].

discrete heat diffusion equation is solved as a function of
the eigenvalues and eigenvectors of the Laplacian matrix
of a graph projected onto the geometry of the part. The
main advantage of the graph theory approach is that the
temperature distribution part can be potentially computed
many times faster compared to FE because: 1) graph
theory eliminates time-consuming meshing steps and 2) it
avoids cumbersome matrix inversion operations needed
to solve the heat equation and, instead, uses the matrix
eigendecomposition.

Furthermore, the graph theory approach is verified
with a finite-element implementation of the so-called gold
standard Goldak’s double-ellipsoid model, which has its
genesis in welding [105]. The graph theory solution was
also quantitatively compared with the commercial Netfabb
solution. The results for three-part geometries are shown
in Fig. 24. The graph theory simulation accurately predicts
the accumulation of heat in the overhang region of a
C-shaped part. Moreover, the approach also predicts that
heat trapped in an overhang region can be dissipated by
build extra supports. More pertinently, at the graph theory,
the approach converged to within 90% of Goldak’s solution
within 10% of the computation time. The fast conver-
gence of the graph theory approach opens the possibility
of recognizing and correcting red flag problems in part
design even before the part is printed. In other words,
thermal simulations can be used as a viable path for design
optimization in AM.

VI. C O N T R O L T H E P R O C E S S
This section presents the learning and optimization of
action strategies for AM QC when the state of the
build is dynamically evolving from one layer to another.

As the finish in each layer will impact the next layer
and all subsequent layers, this is a typical sequential
decision-making program under real-world uncertainty
(e.g., random variations, perturbations, or errors from
measurements, machine settings, environments, and sta-
tistical estimation). Furthermore, we present a constrained
framework for sequential decision-making. Examples of
constraints include the lead time to complete a build,

Fig. 24. Comparison of the graph theory approach with an

FE-implementation of Goldak’s model and the commercial Netfabb

software for three different part geometries [100], [108]. The

images are the temperature distribution in the last layer of the part

(the part is 20-mm long × 2-mm wide × 20-mm tall). The

temperature distribution is shown in normalized units.

370 PROCEEDINGS OF THE IEEE | Vol. 109, No. 4, April 2021

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on April 01,2021 at 12:34:46 UTC from IEEE Xplore.  Restrictions apply. 



Yang et al.: Six-Sigma Quality Management of Additive Manufacturing

Fig. 25. (a) Illustration of state-action transition diagram. Note that sh, sm, and sl denote the high-, median-, and low-defect states of an

AM layer. (b) MDP for smart AM.

materials, and/or energy consumption in the manufactur-
ing process.

A. Sequential Decision-Making Under Uncertainty

Modern industries pose more stringent standards in
product esthetics, QA, and functional integrity. Thus, it is
critical that AM machines can mitigate incipient defects.
Hybrid machines with both additive and subtractive manu-
facturing abilities provide an opportunity to take corrective
actions and perform layerwise repairs, thereby realizing
a new paradigm of zero-defect AM [109]. For instance,
sensor-based analytical methods (see Section IV) help
characterize and estimate the state of defects in each layer
of the AM build. If a layer is estimated to have a small
likelihood sl to contain defects, the AM process will con-
tinue and take no corrective action, denoted as aW . On the
other hand, if a layer has a high likelihood sh to have
embedded defects, the AM process will pause and take an
action to machine off this defective layer, denoted as aM .
The number of available actions depends, to a great extent,
on the technological advancement of hybrid machines. For
example, for the defects due to lack of fusion, a potential
action is to refuse with the laser and mitigate such defects,
denoted as aL . If there are more actions available after
each layer is built, then dynamic transitions among state-
action pairs will become more complex. This is mainly due
to the fact that AM layers are not independent but rather
highly interrelated with each other. As shown in Fig. 25(a),
the action chosen for one layer will impact the evolving
dynamics of defect states in the next layer and, through
that, all subsequent layers. In addition, there are uncer-
tainties in the sensor measurements, machine settings,
environments, defect estimation, and layer-to-layer tran-
sitions. The new sequential optimization framework needs
to account for the uncertainty in AM processes and realize
the zero-defect AM by minimizing the expected cumulative
cost at the end when all layers are completed.

As shown in Fig. 25(b), each layer of AM builds will
be captured by the sensors (i.e., high-resolution cameras)
as imaging profiles. The probability for a layer to con-
tain defects (e.g., sh , sm , and sl) will be estimated with
sensor-based analytical methods, such as layerwise deep

learning of incipient defects [77], [78]. The sequential
decision-making framework for smart AM is formulated
as a Markov decision process (MDP) model. Although the
MDP has been widely used and proved to be effective
in the management of engineering systems [110]–[113],
very little has been done to realize smart AM using MDPs.
Our prior work formulated this problem as an MDP cor-
responding to a five-tuple (�, S, A, T , and R), where �

is the set of sensor observations, S is the set of defective
states, A is the set of actions, T : S × A × S represents the
state transition, and R is the reward function. The main
objective is to search for an optimal policy π∗(s) specifying
the optimal action a∗ in state s, which will maximize the
sum of rewards after taking the action a∗ and, thereafter,
keeping being optimal.

1) States, Actions, and Observations: The complexity of
AM poses challenges in measuring and characterizing the
exact defective state of a layerwise build. As shown in
Fig. 14, we have developed a DNN learning method that
tackles the challenge of layerwise geometrical variations
and then estimate the risk probability of defects in a layer.
As such, we can take full advantage of in-process image
profiles and integrate them with MDP models. Each action
affects the state transitions between layerwise builds in the
AM process. Here, actions that are generally available in
hybrid AM may include doing nothing, cutting off a layer,
refusion, or process adjustments.

2) State Transitions: p(s, a, s �) provides the probability
that an intervention a in state s at layer i will lead to
the state s � at layer i + 1. The transition can be estimated
from rich data collected in the AM processes, but it is
influenced by the uncertainty in sensor measurements and
process conditions. Few works in the AM literature studied
sequential decision-making under uncertainty.

3) Reward Function: R(s, a, s �) is a reward that the
decision agent receives for a specific state transition. For
example, if an action drives the defect likelihood from high
to low, it will be rewarded. Otherwise, this action will be
penalized. The utility V ∗(s) represents the sum of rewards
received when starting in the state s and acting optimally,
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and Q∗(s, a) is the utility when taking the action a from
the state s and, thereafter, acting optimally.

Furthermore, we performed preliminary studies to
develop a novel “sensing-modeling-optimization” frame-
work that is tailored for AM processes. First, we leveraged
the advanced sensing capabilities readily available in Penn
State CIMP-3D to collect large amounts of layerwise image
data. Second, we developed new sensor-based models to
estimate the risk probability for a layer to contain defects
and then predict the evolving dynamics of defect condi-
tions from one layer to the next. Third, new MDP models
are developed to model state-action transition dynamics
among layers as a stochastic Markov process and further
derive the optimal control policy [114], [115]. The new
“sensing–modeling–optimization” framework enables the
implementation of in-process corrective actions to repair
and counteract incipient defects in each layer of AM builds
prior to the completion. The propagation of defects will
be detected by sensor-based modeling and analysis of in
situ data and will be mitigated long before they reach the
nonrecoverable stage.

B. Constrained Optimization of AM Processes

MDP helps optimize the policy to choose layerwise
actions by maximizing expected rewards (or minimizing
the expected cumulative cost incurred by the AM defects)
for a sequential decision-making problem in the real-world
AM environment. Traditional MDP frameworks commonly
focus on a single objective (e.g., minimizing the defects in
each layer of AM build) [114] and are less concerned about
multiple simultaneous objectives that may be added to the
AM processes (i.e., minimizing total cost—wasted materi-
als, consumed energy, or lead time, as well as improving
the quality). As a vertical step to advance smart and
sustainable AM, there is an urgent need to investigate the
multiobjective optimization of sequential decision-making
problems for 6S quality management of AM.

If there are multiple objectives, for example, minimizing
total cost (e.g., lead time or consumed energy) in the AM
process while improving the quality of layerwise builds,
then sequential optimization becomes a challenging task
because some objectives may be conflicting with others.
For instance, if we increase the frequency to take corrective
actions and make sure that each layer has a small likeli-
hood to contain defects, then the lead time to complete the
build will be longer, and more energy will be consumed.
In other words, the number of defects will be minimized
in each layer of the build, but the total cost will be high.
On the other hand, if we do not take as many corrective
actions as needed, the build can be completed in a shorter
period of lead time, and less energy will be consumed.
The total cost is low, but the likelihood to contain defects
in the AM build will be higher. In the state of the art,
few, if any, previous works have considered multiobjective
optimization of the sequential decision-making strategy for
AM processes. In particular, there is a need to balance

multiple conflicting objectives for the quality management
of AM builds.

To address these challenges, our prior work proposed
a new constrained MDP (CMDP) framework to derive the
optimal control policy in each layer of the AM processes
that minimize the total cost (e.g., lead time or consumed
energy) and makes sure that the quality standards are met
for the AM builds [115]. The CMDP formulation is detailed
as follows:

1) State Space: The state space is defined as S = (T, S),
where T = {1, 2, . . . , T } denotes the set of layer index,
and S is the set of defect states, i.e., s1, s2, . . . , sl ,
which is structured in the increasing order of defect
levels (i.e., s1 is the lowest defect level, and sl denotes
the highest defect level).

2) Action Space: In this study, the action space is simpli-
fied to include three actions, A = {aM , aL , aW }, where
aM denotes the action of removing a layer with the
cost of cM , aL is the action of laser repair and refusion
with the cost of cL , and aW represents the action to
do nothing with the cost of cW . With rapid advances
of hybrid AM technology, it is anticipated that more
actions will be available with different costs to be
considered in future work.

3) Decision Policy: Let Qt (st , a) denote the decision rule
at layer t , which is defined as the probability to choose
an action a ∈ A given the presence of defect state st

at the layer t .
4) State Transition: Let Pa

t (st+1|st ) be the transition prob-
ability from state st of layer t to state st+1 of layer
t +1 under the action a ∈ A. Given the decision policy
Qt (st , a), the state transition is then defined as

Mt (i, j) =
∑
a	 A

Qt (st , a)Pa
t (st+1 = s j | st = si ).

Let the vector xt = [xt1, . . . , xtl ]T (1Txt = 1, where 1 is
a vector of 1’s) represent the probability distribution of
defect states st ∈ {s1, . . . , sl} at layer t , which means that
the probability of defect state st staying in the defect level
si is xti . Then, xt evolves according to

xt+1 = Mtxt.

The CMDP model will then be formulated as follows:

min
Q1,...,QT −1

vT = Ex1

[
T −1∑
t=1

ct (xt , Qt ) + cT

]

s.t. xt ≤ h, 1T xt = 1

xt+1 = Mtxt, Qt 1 = 1, Qt ≥ 0

for t = 1, 2, . . . , T − 1

where Qt is the decision matrix for layer t , vT is
the expected total cost in energy or time, ct (xt , Qt ) =∑

a	 A ca Qt (st , a) is the immediate cost at layer t , and cT
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is the terminal cost at the final layer T . The first constraint
makes sure that the quality standards are met by bounding
the probability of each defect state with an upper limit h
and 0 ≤ h ≤ 1. The second constraint guarantees each
row of Qt to be a valid probability distribution. If we
delete the quality constraint (i.e., xt ≤ h) in the CMDP
model, then the rows of Qt will be independent and not
correlated. As such, the CMDP model can be solved with
dynamic programming and simple backward induction
algorithms. However, due to the quality constraint on
the density distribution xt of defect state st , the rows of
Qt are correlated in the formulation through state-action
transition dynamics xt+1 = Mtxt. As a result, it is difficult
to solve the CMDP model here with traditional dynamic
programming algorithms. Therefore, our prior work devel-
oped new dynamic programming algorithms to solve the
CMDP model and demonstrated the optimal control policy
for the worst case scenario of the probability distribution
of defect states [115].

In the proposed “sensing–modeling–optimization”
framework, in situ sensor signals, which exemplify
specific process defects, are integrated with AI, machine
learning, and CMDP models to optimize the selection
of corrective actions for smart and sustainable AM.
In addition, the objectives can also be extended to include
the minimization of delamination and warpage of the final
workpiece and the maximization of reliability measures,
such as build strength and fatigue resistance. As opposed
to purely data-driven approaches, which cannot suggest
process adjustments, this sensor-based modeling and
optimization approach not only detects process anomalies
but also guides the optimal corrective action, thereby
enabling closed-loop control of AM to build quality and
functional integrity.

VII. C O N C L U S I O N A N D D I S C U S S I O N
AM provides an unprecedented opportunity to produce
complex geometries that are often impossible with tra-
ditional subtractive (machining) and formative (casting,
welding, and molding) manufacturing processes. Once the
quality challenge is tackled, such a capability will result in
the advent of newer and cheaper consumer products. Also,
AM offers the possibility of taking a computer-generated
design and directly putting the build into the hands of
an end user. If the designs can be repeatably produced
with a very low probability for defects, then new disruptive
business models will become possible. A brick-and-mortar
retail store will no longer need to carry an inventory of
final products. A consumer could simply go to the store or
the store’s online website, select a premium and validated
product from a catalog, push a button, and wait for the
product to be made using an AM process. This so-called
“zero lead time” store could see extended applications
with at-home AM machinery and systems. Digital designs
could be downloaded from the internet and created in the
comfort of one’s own home. Nonetheless, these concepts of
“zero defects” or “zero lead time” depend to a great extent

on the effective management of AM quality to recognize
and anticipate defects and then take the appropriate cor-
rective action to control process variability and ensure the
final build’s conformance to standards.

However, effective management of AM quality cannot
just rely on the purchase of new machines and the installa-
tion of sensing and automation systems but rather requires
a set of quality-focused activities, ranging from quality
planning, QA/QC, and continuous quality improvement.
Quality planning identifies the needs of AM customers,
for example, whether they are interested in zero-defect
products, esthetic aspects, or geometric accuracies. Only
by listening to the customers, the AM manufacturers can
develop the right strategic plan to help save time and costs
in the handling of product returns, warranty charges, and
customer complaints. QA/QC focuses on the reduction of
process variability and ensures that the quality levels of
final builds meet with standards (or specifications) from
the customers. An important QA/QC function is to develop
the ontological knowledge graph, document fundamental
elements of the AM process (e.g., suppliers, materials,
machines, processes, outputs, and customers in the AM
ontology), analyze their relevance to the product qual-
ity, and identify the responsibilities (and accountability)
of each element or business unit. Quality improvement
goes beyond QA/QC activities to engage in the contin-
uous improvement of quality toward gaining competi-
tive advantages in the global market. As mentioned in
Section V, ontology analytics, DOE, and simulation analy-
ses are major methods and tools that can be used to help
AM manufacturers further improve quality on a continual
basis.

Furthermore, quality management is not just the job of
the quality-inspection unit in an AM enterprise, but rather
depends on all units during the AM process. For example,
the design should consider the capability of AM machines
and then be optimized for quality. The selection of suppli-
ers should not only be based on the cost only but also focus
on the quality, timely delivery of raw materials, and so on.
Indeed, quality management should include engineering,
operational, and managerial activities to ensure that the
AM builds are conforming to standards and then continu-
ously engage in quality improvement. On the other hand,
quality should not become anybody’s job once everybody
is involved. QA/QC is needed to develop the documen-
tation and policy to explicitly provide the quality-related
responsibility and accountability of each person or business
unit during the AM process, from procurement engineers
to machine operators to higher levels of management,
and so on. The philosophy of quality management is to
emphasize quality, raise awareness, engage each person in
the AM process, and then communicate quality problems
effectively, so as to optimize resource allocation and tackle
such problems efficiently.

Lest quality-related challenges with AM are addressed,
it is unlikely that traditional manufacturers will forego
well-established conventional methods. In light of the
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strategic and economic prize at stake, there is a burgeoning
need to address the quality challenges in AM, reduce
process variability, and improve AM process repeatabil-
ity. This article aims to advance the scientific basis of
AM quality management. The DMAIC approach for AM
quality improvement has the potential to substantially
improve the production-scale viability of AM and enable
wider exploitation of AM capabilities beyond the current
rapid prototyping status quo. Achieving quality excellence
in AM may have consequential socioeconomic impacts
and outcomes, in terms of profitability (quick scaling of
process conditions to changing requirements), sustainabil-
ity (economy of resources and energy by the reduction in
waste, scrap, and rework), and efficiency (minimize efforts
required toward obtaining the best quality product). This

will spur the growth of advanced manufacturing in the
nation and the world, thus leading to broader social and
economic impacts. It is hoped that this article will help cat-
alyze more in-depth investigations and multidisciplinary
research efforts to advance the new practice of 6S quality
management for AM.

D I S C L A I M E R
Certain commercial equipment, or materials, suppliers,
or software are identified in this article to foster under-
standing. Such identification does not imply recommenda-
tion or endorsement by the National Institute of Standards
and Technology nor does it imply that the materials or
equipment identified are necessarily the best available for
the purpose.
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