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ABSTRACT 
 

The objective of this work is to provide experimental 

validation of the graph theory approach for predicting the 

thermal history in additively manufactured parts that was 

recently published in the ASME transactions. In the present 

paper the graph theory approach is validated with in-situ infrared 

thermography data in the context of the laser powder bed fusion 

(LPBF) additive manufacturing process. We realize this 

objective through the following three tasks. First, two types of 

test parts (stainless steel) are made in two corresponding build 

cycles on a Renishaw AM250 LPBF machine. The intent of both 

builds is to influence the thermal history of the part by changing 

the cooling time between melting of successive layers, called 

interlayer cooling time. Second, layer-wise thermal images of the 

top surface of the part are acquired using an in-situ a priori 

calibrated infrared camera. Third, the thermal imaging data 

obtained during the two builds were used to validate the graph 

theory-predicted surface temperature trends. Furthermore, the 

surface temperature trends predicted using graph theory are 

compared with results from finite element analysis.  As an 

example, for one the builds, the graph theory approach 

accurately predicted the surface temperature trends to within 6% 

mean absolute percentage error, and approximately 14 Kelvin 

root mean squared error of the experimental data. Moreover, 

using the graph theory approach the temperature trends were 

predicted in less than 26 minutes which is well within the actual 

build time of 171 minutes. 
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1 Introduction 

The thermal history of an additively manufactured (AM) 

part as it is being built layer-upon-layer is a critical determinant 

of its functional integrity [1, 2]. Accurate and fast computational 

approaches to predict the thermal history in AM parts are 

valuable for: (i) reducing the experimental tests needed to 

optimize processing conditions; and (ii) augmenting in-process 

sensor data for closed-loop process control [3-8].  

In a previous paper, we proposed a graph theory-based 

computational heat transfer approach for predicting the thermal 

history in AM parts in near real-time [9]. In that paper, the graph 

theory-predicted temperature trends were verified with: (a) exact 

analytical Green’s function-based solutions, (b) finite element 

implementation of Goldak’s double ellipsoid moving heat source 

model [10, 11], and (c) a commercial software for thermal 

simulation in AM (Autodesk Netfabb). Results from our prior 

work showed that the graph theory approach was about ten times 

faster than the benchmark Goldak’s model implemented with the 

finite element method in Abaqus. The mean absolute percentage 

error of the graph theory-derived predictions relative to finite 

element analysis was less than 10%. 

The objective of the present paper is to validate the graph 

theoretic approach using in-situ infrared thermal imaging data 

acquired in the specific context of the laser powder bed fusion 

(LPBF) AM process. In LPBF, metal powder is deposited on a 

bed (build plate) and selectively melted layer-upon-layer using a 

laser. The cyclical heating and cooling of the part during LPBF 

is one of the main causes for defects such as cracking and 

distortion in shape [2, 7].  
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To realize the foregoing objective, we frame the following three 

tasks: 

(1) Two distinctive test part geometries were made in two 

separate builds on a Renishaw AM250 LPBF system. The 

two test parts built were:  

(i)   a cylinder of diameter 8 mm and height 60 mm deposited 

under a build plan that causes variation in the interlayer 

cooling time (ILCT), viz., the time between the end of 

melting a layer and the start of melting of the next layer 

for a specific location, and  

(ii) an inverted cone shape with bottom diameter of 2 mm, 

top diameter of 20 mm, and vertical build height of 11 

mm, whose geometry leads to a gradual change in the 

ILCT. 

(2) During the two aforementioned builds, temperature 

measurements of the top surface of the test parts were 

acquired using an in-situ longwave infrared camera (spectral 

range 7.5 μm to 13 μm). An offline calibration procedure 

was used to convert the relative temperature trends recorded 

by the infrared camera to absolute temperature scale.  

(3) The temperature trends predicted using the graph theory-

based approach was validated against the experimental 

measurements of the surface temperature of the part. The 

graph theory predictions were also compared with a finite 

element solution.  

The rest of this paper is structured as follows. Section 2 

describes the research methodology including the LPBF setup 

and experimental procedure to obtain surface temperature 

measurements with in-situ infrared thermal imaging for two 

builds. Section 2 also summarizes the approach used to calibrate 

and adapt the graph theory model for predicting the surface 

temperature trends. Validation of the graph theory-predicted 

surface temperature trends with experimental temperature 

observations and comparison with finite element analysis are 

reported in Section 3. Lastly, the conclusions and avenues for 

future work are summarized in Section 4. 

2 Methods 

2.1 Experimental Setup 

The experimental setup and calibration process is detailed 

in a recent publication [12]; a brief summary is given here. As 

shown in Figure 1, a FLIR A35X longwave infrared (LWIR) 

camera with a spectral range of 7.5 μm to 13 μm is integrated 

within the build chamber of a Renishaw AM250 LPBF machine. 

The thermal camera is sealed inside a vacuum-tight box with a 

germanium window, and focused onto the build plate inclined at 

an angle of 66° from the horizontal. This configuration allows 

measurement of the surface temperature of the whole build area 

continuously throughout the process. 

Thermal images are captured at a resolution of 320 × 256 

pixels, providing a pixel resolution of approximately 1 mm2, and 

recorded at a rate of 60 frames per second. To calibrate for 

absolute temperature, the data captured by the thermal camera 

was analyzed for a cylinder-shaped calibration artefact identical 

in geometry and material to one of the experimental test parts – 

Build 1 – described later in Sec. b. This calibration procedure, 

described in depth in  Ref. [12], ensures that the surface 

characteristics, and hence emissivity of the calibration artifact 

are similar to the test parts used in this work. To summarize, the 

temperature of the calibration artefact is controlled using a 

cartridge heater embedded inside a built-in cavity. The surface 

temperature of the calibration artifact is recorded using 

thermocouples inside two slots on the top surface and mapped 

against readings of the LWIR thermal camera [12].  

 

 
Figure 1: The schematic of the experimental setup used in this work; 

surface temperature data is acquired by a longwave infrared camera 

which is inclined at an angle of 66° to the horizontal plane. 

2.2 Experimental Builds 

a. Rationale 

The three main factors that influence the temperature distribution 

in LPBF parts are [13]:  

(1) The geometry of the part, including features such as steep 

overhangs, and the presence of anchoring supports [14-17]. 

The geometry of the part beneath the powder bed 

determines the rate at which the heat is conducted away 

from the build surface. Supports are an important aspect of 

the part geometry because they serve as conduits for heat 

to dissipate [7, 17].  

(2) Type and characteristics of the feedstock material, and 

process parameters, such as the laser power, hatch spacing, 

layer thickness, laser scan velocity, and scanning strategy, 

which governs the average heat input for melting (global 

energy density).  

(3) The time between the end of scanning of a layer and start 

of scanning of the next layer, called interlayer cooling time 

(ILCT), is a function of the build layout determined by the 

number, geometry, orientation, placement and scanning 

sequence of other parts on the build plate.  

In this work, we conducted two builds that are designed to 

influence the surface temperature distribution in the test part 

through gradual variation in the ILCT. The scan pattern, process 

parameters and material properties for the two builds are 

reported in Table 1. 
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b. Build 1 – Inducing variation in the interlayer cooling time 

by altering the build plan.  

The test part is cylinder of diameter 8 mm and height 

60 mm in the center of the build plate. This cylindrical test part 

is built in three phases, as depicted in Figure 2. In Phase 1, the 

test part is built along with eight other identical cylinders 

arranged in a grid pattern. The ILCT in Phase 1 is roughly 10.5 

seconds. After a build height of 20 mm (400 layers, each layer is 

50 μm) is reached, the processing of the rest of the cylinders is 

stopped marking the end of Phase 1, and start of Phase 2. In 

Phase 2, only the test sample, i.e., the center cylinder is processed 

until a total build height of 40 mm (800 layers) is reached. 

Because only one cylinder is processed, the ILCT reduces to 

nearly 6.6 seconds from 10.5 seconds in Phase 1.  

 

Lastly, in Phase 3, all nine cylinders are again processed 

for a total build height of 60 mm (1200 layers). Accordingly, in 

Phase 3, the ILCT again increases to approximately 10.5 

seconds. The total build time is about 171 minutes. In Phase 3 

because there is raw un-melted powder underneath the rest of the 

eight cylinders, the laser power for melting of these eight 

cylinders is set at a minimum of 5 W to avoid potential build 

failures given their unsupported geometry. 

 

 
Figure 2. The three phases in building the cylinder part. Shown in the top is the front view, with the change in the interlayer cooling time (ILCT) 

depending on the number of parts being processed in a layer. Shown in the bottom is the corresponding infrared image of the part captured by the 

thermal camera. 

Table 1. Summary of the material and processing parameters used in 

this work for Build 1 and 2. 

 
Process Parameter Values [units] 

Laser type and wavelength. 200 W fibre laser 

wavelength 1070 nm 

Laser power, point distance, 

exposure time  

200 W, 60 um, 80 us 

Inner border parameters - power, 

point distance, exposure time 

200 W, 40 um, 90 us 

Outer border parameters - power, 

point distance, exposure time 

110 W, 20 um, 100 us 

Hatch spacing 110 um 

Layer thickness 50 um 

Spot diameter of the laser 65 um 

Scanning strategy for the bulk 

section of the part 

Meander-type scanning 

strategy without rotation of 

scan path between layers.  

Build atmosphere Argon 

Material Properties Values [units] 

Material type 316L stainless steel 

Particle size 10-45 um 

 

c. Build 2 – Inducing variation in the interlayer cooling time 

through the part geometry.  

The test part devised for this build is shown in Figure 3; 

it is an inverted cone whose diameter gradually increases from 2 

mm to 20 mm over a build height of 11 mm (50 μm layer 

thickness, 220 layers). The build time is about 51 minutes. In this 

test part, the ILCT increases almost linearly from 10 seconds to 

16 seconds proportion to the build height, while the narrower 

cross-section of the part in the preceding layers impedes the 

diffusion of heat. Consequently, the temperature of the top 

surface increases progressively with the deposition of new 

layers. 

 
Figure 3. The schematic of the inverted cone geometry implemented in 

Build 2. 
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2.3 Pre-Processing the Temperature Measurements 
Acquired from the Thermal Camera 

The surface temperature of a pixel located in the center of 

the thermal image of the test artifact is tracked throughout the 

process. This surface temperature signal reveals the presence of 

several sharp peaks. These peaks are artifacts that correspond to 

certain process events extraneous to the melting process. 

Referring to Figure 4(c) and (d), we extract the steady state 

surface temperature before melting of the new layer as the 

representative surface temperature. This aspect is common to 

both Build 1 and Build 2. We now describe the signal obtained. 

Step 1: Large upward spike due to laser exposure. 

In this stage of the process, the laser is active (ON), and 

is currently scanning the powder bed. The maximum temperature 

in the large upward peak results when the laser is exactly over 

that reference point on the powder bed that aligns with the IR 

camera pixel which is used to map the temperature trends. The 

temperature values in this step (large upward spikes) are not 

meaningful and accurate since the temperature values are beyond 

the calibrated temperature range of the IR camera. Moreover, the 

spatial and temporal resolution of the IR camera is not sufficient 

to resolve the temperature at the meltpool scale; the meltpool in 

LPBF is typically under 100 um, while the resolution of the IR 

camera used in this work is greater than 1 mm × 1 mm. 

Step 2: First downward spike due to the recoater blocking the 

field-of-view of the IR camera when it returns to the powder 

reservoir.  

After the end of sintering a layer, the recoater returns to 

fetch fresh powder. During Step 2, the bed is lowered so that the 

recoater can pass freely over the powder bed and avoid scraping 

the part. As the recoater returns to fetch fresh powder, it 

momentary blocks the IR camera field-of-view leading to a large 

downward spike in temperature lasting less than a 1/50th of a 

second. 

Step 3: Second downward spike due to new powder being 

deposited on the powder bed when the recoater rakes a new layer 

of powder on the surface of build plate.  

As the recoater makes another pass to deposit new 

powder, it momentarily blocks, again, the observation point from 

the field-of-view of the IR camera causing a large downward 

spike in the raw signal. Because, a fresh layer of powder material 

is deposited during this step, the recoater speed is considerably 

slower than in the previous Step 2, and hence the downward peak 

lasts for close to 1/5th of a second. Once the three large spikes 

have been removed the temperature trends are averaged over the 

ILCT. 

 

 
Figure 4. The physical process-related reasons for the spikes observed in the thermal camera images. (a) The three large periodic spikes in the 

temperature and the schematic representation of why these spikes occur. (b) zoomed in portion of the thermal camera signature. 
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2.4 Procedure for Application of the Graph Theory 
Approach 

The graph theory approach is illustrated schematically in 

Figure 5 in the context of Build 1. These steps are discussed in 

detail in our previous works [9, 18].  The graph theory approach, 

as explained in our previous work, converts the part geometry 

into a set number of discrete nodes [9]. A network graph is 

constructed over these nodes, and heat diffusion over the graph 

is studied layer-by-layer.  

If the temperature at each node is arranged in matrix form, 

the instantaneous temperature T after time t is obtained as a 

function of the Laplacian eigenvectors (𝛟) and eigenvalues (𝚲), 

with T0 as the melting point of the material, 

𝐓 = 𝛟𝑒−𝛼g𝚲𝑡𝛟′T0 (1) 

 
Figure 5. The four steps in the graph theory approach as applied to 

the cylindrical part described in Build 1. The mathematical details are 

described in [9]. 

a. Reducing computation time by simulating deposition 

of multiple layers at once (super layer)  

To mitigate the computation time, instead of simulating 

the deposition one individual layer (layer height 50 μm) at a time, 

we simulate the deposition of several layers at a time. Such a 

layer consolidated from two or more individual layers is called a 

super layer. This super layer approach was described in our 

previous work, which showed that the thermal-induced 

distortion predicted using finite element models with the 

simulated layer thickness corresponding to 8 actual layers is 

within 5% of experimentally measured distortion measurements 

[19]. Using the super layer approach is particularly well suited 

to the graph theory method as the precision is independent of the 

simulated time step. This is because the time 𝑡 for which the heat 

is diffused in the part in Eqn. (1) can be set to any continuous 

value in graph theory, without the need for discrete steps as in 

finite element analysis. The thickness of the super layer in this 

work in varied from 3 mm (consisting of 60 individual layers of 

50 μm each) to 0.3 mm (6 individual layers). 

b. Tuning the graph theory model parameters  

The graph theory simulation studies require tuning of two 

types of factors.  

(1) Number of Nodes (N): The total number of nodes into 

which the part is discretized. In our previous work, we 

reported that selecting the number of nodes involves a 

tradeoff in computation time and accuracy [9]. For a 

complex geometry part, selecting a higher number of 

nodes was found to result in a smaller error in 

comparison to benchmark finite element studies, while 

degrading the computational efficiency. In this work, 

we evaluated the effect of varying the number of nodes 

from 1000 to 5000 in steps of 1000.  

(2) Model Parameters related to heat diffusion. In the 

graph theory approach two model parameters must be 

determined, namely, the gain factor (g) Eqn. (1), and 

the neighborhood distance (ε) which governs the 

connectivity of the nodes [9]. There is an interaction 

between these two parameters. To mitigate this 

complexity, and need for extensive tuning, in this work 

we have made one change to the graph theory model, 

instead of setting ε to an absolute distance in mm, we 

now connect the nearest 50 neighbors of a node with 

edges. The number 50 is selected from extensive offline 

studies. 

We report the mean absolute percentage error (MAPE) and 

root mean square error (RMSE, Kelvin) for each tested 

combination of super layer thickness and number of nodes. To 

obtain the gain factor (g), we fixed the total number of nodes at 

1000, and conduct a grid search with respect to the infrared 

thermal measurements obtained for Phase 1 of Build 1. To make 

the calibration more rigorous, the layer height set in the 

simulation for the calibration of g studies is 50 μm, which is the 

same as the layer height of the build – the super layer is equal to 

actual layer height.  

The value of g is changed with the number of nodes (N) 

fixed at 1000, and layer thickness 50 μm and the graph theory 

approach is applied for the first 20 mm of the build height the 

cylinder, i.e., the graph theoretic model is calibrated for the 

temperature readings from Phase 1 of Build 1.  

The results from the model calibration procedure are shown 

in Figure 6(a). The value of g that minimizes the MAPE and 

RMSE is selected. The results from the grid search are shown in 

Figure 6(b). The value of g that minimizes MAPE and RMSE 

after the grid search was found to be 1.5 × 104; this value of g is 

set constant for all subsequent simulation studies, including 

Phase 2 and Phase 3 of Build 1, as well as the entirety of Build 

2. The rest of the material-related constants and simulation 

parameters are described in Table 2. The simulations were 

conducted in the MATLAB environment on a desktop personal 

computer with an Intel Core i7-6700 CPU, clocked at 3.40 GHz 

with 32 gigabytes of onboard memory. 
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Figure 6. (a) Representative surface temperature trends obtained for 

Phase 1 of Build 1 by varying the gain factor (g). (b) The mean absolute 

percentage error and root mean squared error (RMSE, in Kelvin). 

3 Results 

3.1 Results for Build 1 

The raw thermal signatures recorded for Build 1 are shown in  

Figure 7(a). These changes in the temperature trend are more 

clearly evident in  

Figure 7(b) on pre-processing of the raw temperature signatures 

as described in Sec. 2.3. A steady increase in temperature is 

observed during Phase 1, succeeded by a sharp increase observed 

at the start of Phase 2, and finally followed by a drop at the start 

of Phase 3. The frequency changes in the temperature correspond 

to the change ILCT; the reason for the sharp increase in 

temperature in Phase 2 is the decreased ILCT of roughly 6.6 

seconds ( 

Figure 7(d)), compared to 10.5 seconds in Phase 1 and Phase 3 ( 

Figure 7(c)). 

 
Figure 7. Data obtained from Build 1. (a) the raw temperature readings 

scaled by the LWIR camera, (b) smoothened trends obtained after 

removing the peaks and averaging the temperature in the time between 

sintering of two consecutive layers. (c) and (d) the interlayer cooling 

time decreases between Phase 1 and Phase 2 of the build leading to a 

large increase in steady state temperature 

a. Comparison of graph theory predictions with 

experimental observations  

In Figure 9(a), the effect of changing the super layer 

thickness (SLT) for a set number of graph nodes (N) of 3000 is 

mapped, and in Figure 9(b), the converse case, i.e., the SLT is 

maintained constant (0.3 mm, 6 individual layers of 50 μm each) 

and the surface temperature distribution with varying node 

density is observed. In general, as depicted in Figure 8 the 

accuracy improves (MAPE and RMSE reduce) as the SLT is 

decreased, and N is increased. However, the relationship is not 

linear, especially, given that the shape of the test geometry is a 

simple cylinder; the number of nodes does not tend to have a 

large effect. In the best-case scenario, a balance in both accuracy 

and computation time is obtained by setting the SLT at a level of 

0.3 mm (6 individual layers) and maintaining the total number of 

nodes N = 3000. The error under these conditions (MAPE) is 

close to 6%, and the results are obtained in approximately 26 

minutes (≈ 1/6th of the actual build time of 171 minutes). 

 
Figure 8: Sensitivity analysis for Build 1. (a)The effect of the super layer 

thickness (SLT) in mm and number of nodes (N) used in the graph theory 

approach on the error vis-à-vis experimental data. (b) The ratio of the 

simulation time to build time as a percentage, versus N and SLT. The 

decrease in SLT and increase in number of nodes (N) improves the 

prediction accuracy, at the cost of computation time. 

Table 2. Summary of the simulation parameters used in this work 

Simulation Parameters Values 

Super layer thickness [mm]  

Varies from 3 to 0.3 mm for Build 

1 (Cylinder) and from 1 to 0.2 

mm for Build 2 (Inverted Cone) 

Total number of nodes in the part 

(N) 

Varies from 1000 to 5000 in steps 

of 1000 

Node Density (N per mm3) 

Varies from 0.3 to 1.6 for Build 1 

(Cylinder) and from 0.8 to 4.3 for 

Build 2 (Inverted Cone) 

Number of neighbors which is 

connected to each node. 
50 

Gain factor (g) 1.3 × 104 

Convection coefficient wall to 

powder, hw [W·m-2· K] 
1 × 10-5 

Convection coefficient substrate 

(sink), hs [W·m-2· K]  
1 × 10-2 

Thermal diffusivity (α), [m2/s]  3 × 10-6 

Density, 𝜌 [kg/m3] 8,440 

Melting Point (T0) (K) 1,600 

Ambient temperature, T∞ (K) 300 

Processing hardware 
Intel Core i7-6700 CPU, @3.40 

GHz with 32 GB RAM. 
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Figure 9. (a) Representative temperature trend predictions for Build 1 (cylinder). The effect of the super layer thickness on the temperature trends 

predicted using graph theory with number of nodes fixed at N = 3000. (b) The effect of varying the number of nodes N at a fixed super layer thickness 

of 0.3 mm (6 actual layers of 50 μm each). The best results are obtained with N = 3000 and super layer thickness set at 0.3 mm. The computation time 

is ~ 27 minutes with the resulting mean absolute percentage error close to 6% 

 
Figure 10. The finite element and graph theory results compared for different super layer thicknesses (SLT) for Build 1. The number of nodes for the 

graph theoretic approach are fixed at (a) N=3000 and (b) = 5000. Abaqus is used for simulating the deposition of super layers in the FE approach. 

Table 3. Comparison of finite element and graph theoretic approaches for Build 1 (cylinder). The actual build time is 171 minutes (10,260 seconds) 

 Finite Element Graph Theory Graph Theory Finite Element Graph Theory 

Nodes (N) 3000 3000 4000 5000  

Super Layer 

Thickness (SLT) [mm] 
0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 

Computation Time [s] 2,048 1,347 1,655 949 3,912 2,209 10,446 6,053 7,270 4,176 

MAPE (%) 16.7 29.4 13.8 18.2 8.7 11.5 9.1 9.4 8.6 10.4 

RMSE (Kelvin, [K]) 36.8 90.1 16.2 54.1 15.7 16.8 17.2 18.4 15.2 25.1 

 

b. Comparison of graph theory predictions with finite 

elements analysis 

The predictions from the graph theory approach are 

compared with finite element (FE) analysis in Figure 10 and 

Table 3. To ensure equitable comparison, we implemented the 

coarse super layer approach in a finite element framework in the 

commercially available Abaqus software, the detailed 

implementation of the FE analysis is described in Ref. [19].  

In Figure 10(a), representative thermal trends for two 

super layer settings 0.3 mm (6 individual layers) and 0.5 mm (8 

individual layers), with N = 3000 for the graph theoretic 

approach are compared with FE analysis (approximately 3000 

nodes) and experimental temperature measurements. The results 

for N = 5000 are shown in Figure 10(b). 

With N =3000, and super layer thickness (SLT) 0.3 mm, 

the MAPE for the FE analysis is approximately 16%, and the 

results are obtained within 2,048 seconds (34 minutes). Using 

the graph theory approach, the MAPE is 14%, and the trends are 

obtained in 1,655 seconds (27 minutes) of computation.  

Next, we fix the MAPE of ~ 9% , and RMSE 16.5 ± 1 K and 

compare the computational time for graph theory and FE 

approach for an identical resolution (SLT = 0.3).  For the graph 
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theory approach the MAPE and RMSE reduced to less than 9% 

and 16 K on increasing N = 4000 with corresponding 

computation time of 65 minutes.   

To achieve the same level of prediction error it requires the FE 

approach 5000 nodes, and nearly 175 minutes. Effectively, the 

graph theory approach requires 40% of the computation time of 

FE to reach approximately similar level of MAPE and RMSE 

with an identical level of resolution (super layer thickness). The 

computational advantage of the graph theory approach is 

retained when the number of nodes N = 5000 for both FE and 

graph theory; the graph theory approach converges ~30% faster 

than FE.  

3.2 Results for Build 2 

a. Thermal signatures acquired from the thermal 

camera 

The procedure described earlier in Sec. 2.3 is used to 

pre-process the thermal signatures obtained for Build 2. As 

shown in Figure 11(a), in Build 2, a gradual increase in 

temperature is observed at the top surface after removing the 

peaks in the thermal signature. This geometry also has the effect 

of increasing the ILCT with the build height (Figure 11(b)), 

because, as the top surface area increases, the time required to 

scan successive layers also increases.  

The increasing trend in surface temperature is gradual, 

almost linear, as the accumulation of heat near the top surface is 

concurrently accompanied by an increase in ILCT. In other 

words, while the temperature increases for layers near the top, 

there is also more time for the layer to cool because it takes 

longer time for the laser to scan a larger surface area. 

b. Comparison of graph theory predictions with 

experimental observations 

The inverted cone shape is more complex than the cylinder, 

in that the cross-section area changes with the build height, and 

hence more number of nodes are required to capture the heat 

flux. As before, a smaller super layer thickness (SLT) and larger 

number of nodes both improve the accuracy of the solution. A 

representative best case scenario is shown in Figure 12, which 

shows the effect of the super layer thickness and number of nodes 

(N) on the surface temperature trends predictions from graph 

theory.  

For instance, in Figure 12 when the number of nodes (N) is 

set at 4000, and the SLT is 0.3 mm the MAPE ~ 9%, and 

computation time is close to 34 minutes. Another situation with 

similar results is to set the super layer thickness at 0.2 mm with 

N = 4000, which results in MAPE ~ 8%, and computation time 

41 minutes. The actual build time for Build 2 is close to 51 

minutes. 

  
Figure 11. (a) The gradual increase in the surface temperature, as well 

as (b) the interlayer cooling time with the build height. We note in (a) 

that the IR camera is calibrated in the range of room temperature (300 

K) to 800 K.  

 
Figure 12. (a) Representative temperature trend predictions for Build 2 (inverted cone). The effect of the super layer thickness on the temperature 

trends predicted using graph theory with number of nodes fixed at N = 4000. (b) The effect of varying the number of nodes N at a fixed super layer 

thickness of 0.3 mm (6 actual layers of 50 μm each). The best results are obtained with N = 4000 and super layer thickness (SLT) set at either 0.3 mm 

or 0.2 mm. The computation time for N=4000 and SLT = 0.3 mm is ~ 34 minutes with the resulting mean absolute percentage error (MAPE) close to 

9%; for SLT = 0.2 mm the computation time is 41 minutes and MAPE ~ 8%. 
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c. Comparison of graph theory predictions with finite 

element analysis 

The graph theory-derived predictions for Build 2 are 

compared with the FE analysis in Figure 13 and Table 4. For 

equitable comparison, the FE analysis is set to a super layer 

thickness of 0.2 mm and 0.3 mm, and the number of nodes (N) 

is set at 4000. As apparent from Figure 13(a), both the FE and 

graph theory approaches track the increasing surface temperature 

trends evident in the experimental data. Furthermore, for the 

results shown in Figure 13 (b) we increased number of nodes (N) 

for the FE analysis until it converged to a nearly identical 

accuracy level of accuracy in terms of MAPE and RMSE 

observed for graph theory.   

As exemplified in Figure 13, and quantitatively in Table 4, 

for a fixed resolution (SLT), and for an RMSE of 28.5 ± 1 K, and 

MAPE ~ 6%, the  FE analysis required N = 6800 and 96 minutes 

of computation time.  By contrast, for the foregoing degree of 

prediction error, the graph theory approach required N = 4000, 

and converged in 41 minutes. In other words, the graph theory 

required 40% fewer nodes and converged within 40% of the time 

required by FE. These results affirm the computational 

advantages of the graph theory approach over FE. 

 

 
Figure 13. The finite element and graph theory results compared for different super layer thicknesses for Build 2. The number of nodes for the graph 

theoretic approach are fixed at N=4000. Abaqus is used for simulating the deposition of super layers in the FE analysis. 

Table 4. Comparison of finite element and graph theoretic approaches for Build 2 (inverted cone). 
 Finite 

Element 

Graph Theory Graph Theory Finite 

Element 

Number of nodes (N) 4000 4000 5000 6800 

Super Layer Thickness (mm) 0.2 0.3  0.2  0.3 0.2 0.3 0.2 0.3 

Computation Time [s] 3,274 2,948 2,471 2,081 4,784 4,045 5,982 5,034 

MAPE (%) 9.6 15.9 5.73 6.8 3.72 4.54 6.2 10.9 

RMSE  [K] 42.1 76.4 26 32.8 12.15 20.7 27.6 43.8 

 

4 Conclusions 
This work provided the experimental evidence to substantiate the 

computational efficiency and accuracy of the graph theoretic 

approach proposed in our previous work [9]. We arrive at the 

following conclusions through two experimental builds 

conducted in the specific context of the laser powder bed fusion 

(LPBF) AM process. 

(1) In Build 1, a cylindrical part was built in a phased manner, 

such that the interlayer cooling time changed on account of 

other parts being present during the build. In the best case 

scenario, the graph theoretic approach predicted the 

temperature history within 25 minutes with a mean absolute 

percentage error (MAPE) less than 7% and root mean 

squared error the actual build time was close to 171 minutes. 

For a comparable level of accuracy, a coarse finite element 

approximation requires 34 minutes and MAPE exceeding 

10%. 

From a practical perspective, Build 1 shows that the graph 

theoretic approach is capable of emulating a complex multi-

part build plan with test parts being removed and added 

during the process. Furthermore, the graph theoretic 

approach has a large degree of flexibility, as the approach 

can be scaled to provide finer hatch-level information as 

shown in our previous work, or made coarser by simulating 

deposition of several individual layers consolidated together 

(called a super layer) [9]. 

(2) In Build 2, a conical part was built such that the diameter of 

its circular end progressively increases with the build height 

(an inverted cone). The test geometry depicts an increase in 

the surface temperature despite processing under constant 
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LPBF parameters. The graph theoretic approach predicted 

the surface temperature distribution with an error less than 

8% of the experimental observations within 35 minutes 

(actual build time 51 minutes). In contrast, for a comparable 

level of accuracy (9%), the finite element approach requires 

55 minutes. 

In our forthcoming works we will endeavor to validate the graph 

theory approach for large, complex geometry parts, and further, 

characterize the effect of the temperature distribution on 

microstructure and distortion.  
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