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Abstract: We propose a BOundary Update using Resolvent (BOUR) partitioned method, second-order accu-
rate in time, unconditionally stable, for the interaction between a viscous incompressible fluid and a thin
structure. The method is algorithmically similar to the sequential Backward Euler — Forward Euler imple-
mentation of the midpoint quadrature rule. (i) The structure and fluid sub-problems are first solved using a
Backward Euler scheme, (ii) the velocities of fluid and structure are updated on the boundary via a second-
order consistent resolvent operator, and then (iii) the structure and fluid sub-problems are solved again, using
a Forward Euler scheme. The stability analysis based on energy estimates shows that the scheme is uncon-
ditionally stable. Error analysis of the semi-discrete problem yields second-order convergence in time. The
two numerical examples confirm theoretical convergence analysis results and show an excellent agreement
between the proposed partitioned scheme and the monolithic scheme.

Keywords: fluid—structure interaction, non-iterative partitioned method, second order accuracy, uncondi-
tional stability

Classification: 65M12

1 Introduction

Due to their various applications, development of numerical methods for fluid-structure interaction (FSI)
problems has been a subject of extensive research [1, 5-7, 15, 19-22, 24, 28, 33, 37-40, 42]. Computational
algorithms for FSI problems can be classified as monolithic or partitioned. In the monolithic approach, the
fluid and structure equations are solved together [19, 25, 40]. Using this approach, the two problems remain
strongly coupled, but the resulting linear system is large and ill-conditioned [3, 40]. Alternatively, using the
partitioned approach, the fluid problem is solved separately from the structure problem, resulting in two
smaller and better-conditioned linear systems. Partitioned algorithms can be further classified as strongly-
coupled [1, 2, 4, 45], in which case the fluid and structure sub-problems are iteratively solved within one
time step until the energy at the interface is balanced, or loosely-coupled [6, 10, 20, 37, 38], when such sub-
iterations are not needed. Since the complexity and computational time of strongly coupled partitioned al-
gorithms may often be comparable to a monolithic approach, loosely-coupled schemes have been a popular
choice. However, loosely coupled algorithms often suffer from numerical instabilities known as the ‘added
mass effect’, which is apparent in applications, where the fluid and solid densities are similar, such as hemo-
dynamics.

Loosely coupled methods or the interaction between a fluid and a thin structure based on the Lie operator
splitting approach were proposed in [11, 12, 20]. The ‘kinematically coupled 8 scheme’ introduced in [10, 11]
is obtained by adding and subtracting the fluid pressure from the previous time step, while the ‘incremental
displacement-correction scheme’ introduced in [20] is obtained by adding and subtracting the elastic opera-
tor applied to the displacement from the previous time step. In both schemes, the fluid sub-problem is solved
with a Robin boundary condition which takes into account the structure mass at the fluid—-structure interface,
exploiting the assumption that the structure is thin, i.e., has lower dimension than the fluid. The incremental

*Corresponding author: Martina Bukac, Department of Applied and Computational Mathematics and Statistics, University of
Notre Dame, Notre Dame, IN 46556, USA. Email: mbukac@nd.edu
Catalin Trenchea, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA.



2 —— M.Bukaé and C.Trenchea, Boundary update via resolvent for FSI DE GRUYTER

displacement-correction scheme and the kinematically coupled 8 scheme for 8 = 1 have been shown to be
first order convergent in time [11, 20]. In [13, 14] the authors propose partitioned and monolithic approaches
for FSI problems based on the Nitsche’s penalty method. They consider both thin and thick structure models,
which result in FSI problems that are more difficult to decouple. Due to numerical instabilities, the proposed
partitioned scheme is stabilized by adding a term which controls the pressure variations at the interface. The
splitting error, however, lowers the temporal accuracy of the scheme, which was then corrected by proposing
a few defect-correction sub-iterations to achieve an optimal, first order convergence rate.

Second-order partitioned schemes have been proposed in [5, 6, 17, 37, 38]. In particular, a partitioned
approach based on the Strang splitting was proposed in [37] to study the interaction between non-Newtonian
fluids and thin structures. However, the order of convergence was only investigated in numerical experi-
ments. A staggered scheme for fluid—structure interaction problems was proposed in [17]. The scheme was
analyzed on a simplified model problem consisting of an elastic spring, a dashpot and two point masses,
and shown to be unconditionally stable and second-order accurate. The application of this method to three-
dimensional fluid—structure interaction problems involving incompressible fluids has been numerically in-
vestigated. While the method provides accurate approximations for several examples if the time step is small
enough, it was noted that the method may not be suitable to simulate blood flow problems. Partitioned algo-
rithms based on the so called added-mass partitioned Robin conditions have been proposed in [5, 6]. Using
the von Neumann stability analysis, the authors showed that the algorithm for the interaction between a fluid
and a thick, elastic structure proposed in [5] is stable under a condition on the time step which depends on
the structure parameters. The algorithm proposed in [6], which involves FSI with structural shells, is weakly
stable under a Courant-Friedrichs—Lewy (CFL) condition. Although the numerical results indicate second-
order convergence in time, the convergence rates are not analytically derived. A loosely-coupled scheme for
the interaction between a fluid and a thin structure based on the Crank—Nicolson time discretization, com-
bined with operator-splitting, was proposed in [38]. In order to achieve stability, the fluid problem is solved
with a Robin boundary condition containing structure inertia at the fluid—-structure interface, where the fluid
stress was added and subtracted to ensure second-order convergence in time. Based on energy estimates,
the scheme has been shown to be stable under a CFL condition. The optimal convergence rates have been
obtained via both a priori error estimates and numerical results.

In this paper, we propose a novel partitioned algorithm for the interaction between an incompressible,
viscous fluid and a thin, elastic structure. As commonly done in the literature, we assume that the fluid is mod-
eled using the Stokes equations, that the structure displacement is infinitesimal and that the fluid—-structure
interaction problem is linear [5, 11, 13, 20]. The proposed BOUR partitioned algorithm is similar to the sequen-
tial Backward Euler (BE) — Forward Euler (FE) implementation of the midpoint quadrature rule. (i) The fluid
and structure sub-problems are first solved using a BE scheme, (ii) the velocities of fluid and structure are
updated on the boundary via a second-order in time consistent resolvent operator, and then (iii) the struc-
ture and fluid sub-problems are solved again, using a FE scheme. The main novelty of the BOUR algorithm
is the way in which the interface conditions are combined with the fluid and structure sub-problems, which
leads to an unconditionally stable method. Due to the modus operandi used in coupling of the fluid and
solid sub-problems, BOUR differs significantly from the numerical scheme we previously developed in [38],
which was only conditionally stable. The stability and convergence properties of the semi-discretized scheme
are analyzed in Theorems 3.1 and 4.1, yielding the unconditional stability and optimal, second-order conver-
gence in time. We investigated the properties of the proposed method on two numerical examples, and com-
pared the method to the existing ones in the literature. Our results indicate optimal convergence rate of the
BOUR method. Furthermore, we observe an excellent comparison between the BOUR method and a mono-
lithic scheme, even in case of large time steps, making the proposed method an appealing alternative to the
monolithic scheme.
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Fig. 1: Fluid domain Q. The lateral boundary I represents an elastic structure.

2 Description of the problem

We are interested in modeling the interaction between a viscous incompressible fluid and a thin elastic struc-
ture. We assume that the fluid is occupying domain Q ¢ R4, d = 2, 3, and that 0Q = I' U Iip U Tgyt, where T
represents the elastic structure, I'y, represents inflow, and Iy represents outflow (see Fig. 1). We also assume
that the flow is modeled using the Stokes equations for a Newtonian fluid, that the structure undergoes in-
finitesimal displacements and that the fluid—structure interaction is linear. These are common assumptions
in the analysis of partitioned schemes for FSI problems [5, 11, 13, 20].

The fluid equations in a fixed domain Q are given by

prot = V-o(u,p) inQx(0,T) 2.1)
V-u=0 inQx(0,7) (2.2)
o(u,p)n = —pin(t)n  on Iip x (0, T) 2.3)
a(u,p)n = —pout(t) - on Iyt X (0, T) (2.4)
u-,0)=u® inQ (2.5)

where u = (u;)i-1,...,q is the fluid velocity, p is the fluid pressure, ps is the fluid density and o(u, p) =
-pI + 2uD(u) is the fluid stress tensor, where D(u) = (Vu + (vu)T)/2 is the strain rate tensor and u is the
fluid viscosity. The outward normal to the fluid domain boundary is denoted by n, while pi, and poyt are the
prescribed inflow and outflow forces, respectively.

The structure elastodynamics is described by a linearly elastic, lower-dimensional model, given by

pshoun+Lsyp =f onIx(0,T) (2.6)
n=0 onolx(0,T) 2.7
n,0=n° om0 =n) onrl (2.8)

where 1 = (1:)i=1,...,a denotes the structure displacement, ps; denotes the structure density, h denotes the
structure thickness, and f is a surface force applied by the fluid on the structure. We assume that there are no
external forces acting on the structure. The operator £ describes the elastic behavior of the structure. Specific
choices of £ are detailed in Section 5. We define an inner-product associated with the structure operator

as(n, §) = Lbsn-cds

and norm ||11||§ = as(n, ). We assume that operator Ls : D(Ls) ¢ HY(I — H~(I') is a maximal monotone
operator [9], such that a Poincaré type inequality holds

Inliz2ay < Ceslinlls 29)

and the norm | - ||s is equivalent to the H(I') norm. One example of such an operator is the one associated
with the linearly elastic cylindrical Koiter shell used in [12].

To couple the fluid and the structure, we prescribe the kinematic and dynamic coupling conditions. The
kinematic coupling condition enforces the continuity of velocities at the fluid—structure interface:

u=09m onlx(0,T). (2.10)
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The dynamic coupling condition enforces the conservation of momentum:
f=-o(u,p)n onTx(0,T). (2.11)

Equations (2.1)-(2.11) define a linear fluid-structure interaction problem, which has a well-defined en-
ergy [11, 38].

3 Numerical scheme

We start by rewriting the coupled problem. Introduce the displacement velocity & = 9. The coupled problem
can be reformulated in the following way: Find u, p, n, and ¢ such that

prou = V-o(u,p) inQx(0,7) (G.1)
V-u=0 in Qx(0,T) (3.2
pshoi& + Lsn = —o(u,p)n on I x (0, T) (3.3)
u=&=90m onlx(0,T) (3.4)

with the boundary and initial conditions specified in the previous section.
Let At be the time step and t" = nAt forn = 0, ..., N, where T = NAt is the final time. The proposed,
semi-discrete numerical scheme is given as follows.

Algorithm 3.1 (BOUR). Givenu®in Q,and n°, §° = u|? on I', we first need to compute u'/2, p/2, u' in Q, and
n'2,nt, & 2, &' on I'with a second-order method. A monolithic method based on a BDF2 or Crank-Nicolson
time discretization, or a loosely coupled scheme based on the Crank-Nicolson method proposed in [38] could
be used, among others. Then for all n > 1 compute:

'1"+1/2 - 'In _ £n+1/2 onTl
At/2
BE : - (3.5)
{n+1/2_€n 1/2 1/2 1/2
pShW +Lsn"* 2= o™ V%, p"Y)n onT
n+1/2 _ yn
pre- At/2 LoV, p ) 0 in0
g,V uT?=0 in0 (5:6)
uti/2 _ n+1/2 At
Psh At/§ + ?Ls(unﬂ/z _ {n+1/2)
— 2( _ 0(u”+1/2,p"+1/2)n + a(u"‘l/z,p”‘l/z)n) onl
¢ 1 1/2
% _ 2 onr
FE : { o (B.7)
& w2 1/2 1/2 1/2
psh ) + L2 = o™ V2, p" Y2 onT
un+1 _ un+1/2
" _y. o.(un+1/2, n+1/2) =0 inQ
FE : pr At/2 P (3.8)
u"tl = $n+1 onTl.

We note that the fluid BE and FE problems should be complemented with boundary conditions (2.3)-(2.4)
evaluated at t"*1/2, and the structure BE and FE problems should be solved with structure boundary condi-
tion (2.7).
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Remark 3.1. Operator ”A%h[ + AT[L s is bijective from D(L;) onto H := L2(I"). Furthermore, %3 is the resolvent
of L and

g- (”Aifn %Ls> 1 (3.9)
is a bounded operator, with the following bounds on the operator-norms:
Bluon < 35 Wosdluan < >z oslhan. (310)
Note that denoting a = é—fh, J*=(I+al s)_1, and L the Yosida approximation of £, we have
psh At \' At A \TN At A,
LsJ =L (A—tu ?LS) = ﬁﬁs <1+ WLS> = ﬂLSH = ITLS

which in turns, due to (see, e.g., [9, Prop. 7.2]):
L5 < 1£s(2)] Yz € D(Ls)

gives the second part of (3.10). Furthermore, the following J-norm is well-defined

2 _ _((psh, At _psh at o
bl = o, 3) = ((Befr+Ges ) vav) = Bz, + 5 V2

h At
= Bl lami, + - lomi: (3.11)
We also note that the boundary condition in (3.6) can be written as
un+1/2 _ £n+1/2 — 3( _ o.(un+1/2’pn+1/2)n + a(un—l/z’pn—l/Z)n). (BOUR)

Remark 3.2. Computational savings can be achieved by combining the stages of (3.5)—(3.8), which shows that
the proposed numerical scheme is similar to the sequential BE-FE implementation of the midpoint method.
Evaluating the first displacement equation in (3.7) at n — 1 instead of n and adding it to the first displacement

equation in (3.5) we get
nn+1/2 _ nn—1/2 €H+1/2 + un—1/2|F

At = 5 onl.

Similarly, velocity equations in (3.7) and (3.5) can be combined to obtain

h€n+1/2 _ un_1/2|1" i r ’1"+1/2 + nn—l/Z
At ° 2

Ps

1 - - - -
= -3 (o@ " 21r, p" P Inn + 6P|, p"Pr)n) onT. (3.12)

For the fluid, we again write the first relation in (3.8) at n — 1 instead of n and add it to the first relation in (3.6)

to obtain 2 2
utte —ut 1 n+1/2 o on+l/2 n-1/2 .n-1/2 :
pr At —EV'(U(H s D )+0(u » P )) =0 inQ.
The boundary conditions on the fluid part at half-integers are given in relation (BOUR), while at the integer
values, the relation u™ = &" gives again (3.12). Therefore, the numerical algorithm at half-integer values can
be written as

nn+l/2 _ nn—l/z {n+1/2 + un_l/2|1“

I, = 5 onl’ (3.13)
£n+1/2 _ un—1/2|F ,ln+1/2 + nn—l/z
psh Y, + Ls( 5 )
1 _ _ _ _
= ->(o@™21r, p" P In + 021, p" P r)n) onT (3.14)
un+1/2 _ un—l/z 1
57" (o™, p™172) + g2, p" %)) =0 inQ (3.15)

un+1/2 _ £n+1/2 _ 3(a(un+1/2’pn+1/2)n _ o(u"‘l/z,p”‘l/z)n) onTl. (3.16)
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This formulation of the proposed algorithm will be used in the convergence analysis.

Remark 3.3. We point out that Algorithm 3.1 is presented in the sequential implementation BE-FE of the
midpoint rule (3.5)-(3.8) for the theoretical argumentation. From a computational viewpoint, the bulk of the
work in Algorithm 3.1 is performed in the Backward-Euler (BE) steps, as the Forward-Euler (FE) steps are
equivalent to linear extrapolations, acting like time-filters (see, e.g., [29, 30, 35]):

nn+1/2 _ nn _ £n+1/2 onT

At/2
BE : 1
£n+1/2 _ }’_«n
psh* ==+ L™ = o™ P, p"PIn on T
un+1/2 —u"
hW -Vv. o.(un+1/2,pn+1/2) =0 inQ
BE - V.-utt2 -0 inQ
' n+1/2 _ gn+1/2 At
Pshu At/;f + 7Ls(urﬁ—l/z _ £n+1/2)

— 2( _ U(un+1/2,pn+1/2)n + a(un—l/z’pn—l/Z)n) onT

At
B nn+1 _ 2nn+1/2 _ nn + ?(unﬂ/zll‘ _ £n+1/2) onl

€n+1 — un+l/2|l" + £n+1/2 _ {n onTl
{ un+1 _ 2un+1/2 —u" inQ

n+l _ €n+1

FE :

u onl.

3.1 Stability and energy estimates

Denote by €Y is the sum of the elastic energy of the structure, kinetic energy of the structure, and kinetic
energy of the fluid

1 psh Pt
N N2 S N 12 N2
ES = E”n ”5 + T"{ "LZ([‘) + ?"u ”LZ(Q)

and by DY is the fluid viscous dissipation rate
N-1
DY = 2uAt Y ID@™ )T, g
n=1
The stability of the scheme (3.5)—(3.8) is given in the following theorem.

Theorem 3.1. Assume that the system is isolated, i.e., pin = pPout = O, and that as(-,-) is an inner-product
associated with the structure operator Ls. We also assume that L is a maximal monotone operator, such that
inequality (2.9) holds, the norm |n|s = (as(n, )1))1/ 2 is equivalent to the H'(I') norm, and %3 is the resolvent
of Ls. Let (§", ™, u™, p™) be the solution of (3.5)-(3.8). Then, the following a priori energy equality holds

At
el + DY+ Y = &8 + - oI, pIn)m]f;

where N denotes terms due to numerical dissipation

S

NN _ gllo.(uN+1/2| N+1/2| )nnz + pLhNil ”un+1/2 _ €n+1/2"2 + A_tZNil ”uYH—l/Z _ £n+1/2”2
= 4 r,p r g 4 = L2(I) 16 P S
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Proof. We multiply (3.5) by £s7"*1/2 and §"*%/2, respectively, integrate over I', add and apply the polarized
identity (a - b)a = 3a* - 3b? + 3(a - b)?* to obtain:

0= - (Im™ 213 1" + ™2 - 1)
+ ‘%f(us”*“zuizm ~IE Wy + 1™ = EM Ny ) + L o2 |p, p M2 g2,
Similarly, from (3.7), multiplying with £s™*'/2 and u™'/?|r, we derive
0 = (I3 b2 — - )
+ ’%f(uf”“n%z(r) ™2, - 18T - w2 ) + L o 2|p, p" 2
Hence, from the structure part, we have
0= - (I3 - 1"~ ™~ " )
e P 2 gy~ 002y + 10y~ W )
N PAL? (||£n+1/2 B ‘fn"%z(n e - un+1/z”%z(r)) N L G2, P2y (872 4 1),
Using again the displacement equations in (3.7) and (3.5) we have

tz 1/2)2 1/22
= (2 g )

n+l _ n+1/2"2
S

A
+ "nn+1/2 _ nnllé —

—In 4

n

while the velocity equations yield

1 1/2
— 1™ w2,y + 182 = EM s = O.

Hence the above energy estimate on the structure part gives
_ 1 n+1,2 n;2
0= (1™ 13 - I"13)
psh 1 psh 1/2
+ (1 = 1" ey ) + S (1 2y — 12 )
At _ _
+ T( 3 ”un+1/2"§ + "%:n+1/2"§> N JF o™ 2|, p" 2| )n (€n+1/2 + un+1/2). (3.17)

For the fluid part, we multiply the first two equations in (3.6) by u™*1/2 and 2p™*1/2 respectively, and (3.8) by
u™1/2 integrate over Q, add and obtain

_ 7 n+12 ny2 n+l n+1/2)2 n+1/2 n|2
0= A_t<||u "Lz(Q) - "u ”Lz(.Q) - ||u -u ”Lz(.Q) + ||u -u "LZ(.Q))

_> J o2, p 2|y w2 4 ZJ o2, priii2y s yynt/2
r Q

psh n+1/2)2 n+1/2 2 n+1/2 _ gn+1/2,2
el (R P T S TSR A TNy
+ _||un+1/2"§ _ _||€Yl+ / ||§ + _”un+1/2 _ %'Tl+ / ”§ + 2J pn+1/2V . un+1/2'
4 4 4 Q
Taking into account the flow equations we have
n+1 n+1/2)2 n+1/2 ny2 _
- ”u -u ”LZ(.Q) + ”u -u "LZ(Q) =0.

Hence the fluid part of the energy estimates gives
p
0 = (1™ 120~ 10" ) + 4HID@™ DI,

psh n+1/2,2 n+1/2,2 n+1/2 n+1/2,2
+ C (Y2 ) = 0y + 2 - R )

At|

At At _ -
+ Z"un+1/2”§ _ Z"%«n+1/2"§ n 3 |un+1/2 _ {n+1/2”§ ) L_ ou" 1/2|F,pn 1/2|F)n un+1/2|F.
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Therefore the structure and fluid estimates combine to give

_ 1 n+1,2 n;2 pSh n+1,2 n,2
0= (I3 - 1m"3) + S (18 ey~ 1872 )

At

h
+ pL"urHl/Z _ €n+1/2"%2m + o

At

p _ _
B () = W ) + 4RIDU D g + [ 0210, p™ 12 o (5712 - 121y,

||un+1/2 _ {n+1/2"2
S

Now using the J-norm (3.11), and the boundary conditions on the fluid part (BOUR) at the half-integer time-
steps, we have

J 0(un_1/2|r, pi‘l—l/zlr)n ({H+1/2|F _ un+1/2|F)
r

JF o@" 2|, p" 2 n (e 2|, p" 2 ) - o 2|, p" 2 p)n)
1 2 - - 2

= Slo@™ 21, p™ 2 Irnl; ~ o™ 2\r, p" 2 rn]l;
1 _ _ 2

- Se@ 21, p 2 inn - o2, p 2 in|

1
= Slo@™ 21, p" 2 inn|; - Jo2r, p" 2 Ir)n]

_ _h||un+1/2 _ €n+1/2

At n+1/2 _ £n+1/2”2
2At s

”izu") - E”u

Finally,

B 1 neln2 2 Psh n+12 n2
0= E(”” Is—ln ||5) + E(”f Iz~ 15 ”LZ(F))

psh i1z pne1s2p2 At w172 enetj2g2 | PE (12 ny2
+ S g, g S - g T (I )~ 1 )

1 2 _ _ 2
+ D@ ) + 5 (lo@™ 21, 2 ipn] - Jo@™ 21, 2 r)n]} ).
Summation from n = 1 to N — 1 and multiplication by %At yields
N, PN . ~N_ o1, At 12 1/2 2
EN+ DN+ NV =gl 4 ZHG(H Ir, p*"*Ir)n|l;

which completes the proof. O

Remark 3.4. When the system is not isolated, the boundary terms associated with (2.3)-(2.4) can be easily
bounded using Young’s inequality and the fluid viscous dissipation (see, e.g., [11]) leading to an energy in-
equality.

4 Error analysis

In this section we analyze the error of the proposed numerical method in time. The process of the anal-
ysis is summarized as follows. Using Taylor expansions, we compute the local truncation error, and after
some manipulations involving the bound (3.10) on the norm of the linear operator J, we conclude that the
method (3.5)—(3.8) is consistent of order 2.

The analysis is based on the notion of modified equations, related to the idea of backward error anal-
ysis and geometric integration (see, e.g., [26, 27, 31, 32, 41] and references therein). Instead of regarding
the computed values ", £", u", p" of (3.5)-(3.8) as approximations to the solutions n(t"), £(t"), u(t"),
p(t") of (3.1)-(3.4), we consider them as the solutions to a ‘nearby’ problem. Namely, we shall construct
new partial differential equations (4.13)—(4.17) such that the method (3.5)-(3.8) has cubic consistency order
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O(A£3) to the modified equations, compared to only quadratic consistency order O(At?) to the original equa-
tions (3.1)-(3.4). Let d denote the displacement, w the structure velocity, v the fluid velocity, and g the fluid
pressure, such that (d(t), w(t), v(t), q(t)) satisfy the modified equations. Since, for example, p(t") — n" =
() —d(tY) + (d(t") - ™) = () - d(t")) + O(AL3), the global errors can hence be characterized by the dif-
ferences between the solutions n(t") — d(t") of the original and modified equations, respectively. Theorem 4.1
shows that the two manifolds (n(t), £(t), u(t), p(t)) and (d(t), w(t), v(t), q(t)) are O(At*) apart.

Assumption 4.1. We assume that the solution n, &, u, p of (3.1)-(3.4) satisfies the following regularity

ne W0, THID), £ e (W2(0, T; HA(I))?
u e (W>2(0, T; L2(2))? n (W>2(0, T; HX(@)))4 n (WH2(0, T; H3(I)))*
N (W>2(0, T; L2(N)4 n (W>2(0, T; HY(I"))?
p e W22(0, T; HL(Q)) n WH2(0, T : HA(I)) n Wh(0, T; H(I).

For the purposes of analysis, we use the half-integer formulation of the proposed method (3.13)-(3.16). In the
first part of the analysis, we manipulate the local truncation error to obtain the modified equations related
to our numerical scheme. To simplify the presentation, we will assume that the functions typeset without a
time argument are evaluated at ¢".
We expand 1, &, and u about t = t", evaluate the expansions at t = t"*1/2 and t = t"~1/2, and plug them
in (3.13)-(3.16), obtaining
12

y A, §+u At AC Ly
m+ o =t —uw) s e ut) +

A
96
At?

PLh _ At oy A A_t3 ", A_tz "
A (F e SE ) S @ u) T @ ) s L )

— (a(u,p)n - Ato',phn + %Atza(u”,p”)n) + 2l4At3a(u”’,p”')n +0tY onl (4.2

&" -u")+0@tY onT 4.0

] At? m At? "oy _ AN
pru’ + ﬂpfu -V-o(u,p)- ?V o, p"y=0At") inQ (4.3)
At At?
V'u+?V'u’+?V‘u” = O(At3) inQ (4.4)
At Af? A8 At At? A3
u+ ?u’ + ?u” + Eu"' =&+ ?f' + ?f” + H{"’ —Atj(o@’, p")n) + O(At*) onT. (4.5)

We first differentiate equation (4.4) to obtain
v-ou' = —%V-u"ﬂ?(mz) inQ
voul = - %v u" + 0% inQ.
Taking into account latter equations, (4.4) becomes
V-u=04¢) inQ.

Rearranging, equation (4.5) can be written as

At ! ! Atz n 1 At3 nm " ! ! 4
§-u=S@-§H+ @ -§H+ o= )+ Atg(o(u’, p')n) + O(AL?). (4.6)
By differentiation, we have
A At? A3 .. .
§-u' = S - g T - g+ e ) Ao, pm) + 0 (G47)

2 ;
& -u" = ‘;(u”’ &M+ %t(u(‘” — &My L Atg(a’, p""n) + O(AL). (4.8)
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Substituting (4.6) in (4.1) and (4.2), after simplifications and rearrangements, we obtain the following local
truncation error

A At? At? A3 A
nl =&+ ?t(f’ _ u/) + ?tf”— %nm_'_ 4_t8(€m_ u”’) _ ?tg(a(u’,p’)n) n O(At4) onT
At? At?
p5h<u’ + Eu”’ + H(a(u’,p’)n) +Lsn + ?Lsn”
= —o(u,p)n+Ate(u’,p')n - %Atza(u”,p”)n + %At%(u”’,p”’)n +0tY onrl
At? At?

psu' -V -o(u, p) —2—4pfu'"+?V-G(u",p”)+O(At4) inQ

2 3
£+ 5 ) S - u) - G )

- Atg(e@’, p")n) + O(At*) onT.

u

Using (4.7) in the first and last equations, applying (3.10) and rearranging we get

J At? "n_gn At? ”_Atz ,,,_At ' 3
n §+ T(u '3 )+?f Z" ?3(0(11 ,p)n) +0A’) onT
2
pshu' + Lsn = - o(u, p)n+ Ate’, p')n - pshg(o(u’, p')n —pshA—tu’

"

24
A 2
_ %qu” - %Atza(u",p")n +O@e) onTl
At? At?
psu' -V-o(u,p) = - 2—4pfu"' += V- a",p")+0At") inQ

At?

u==§+ ?(u” -&"M - Atg(e, p')n) + O(A) onT.

Next, using (4.8) in the first and fourth equations and noting that Atz(u’ - & ") = O(A83), we get

2 2

W =g g - S - Saled )+ 0ae) onr (49)

pshu' + Lsp = — o(u, p)n + Atou', p')n - pshd(e’, p')n

_ At " At n_ 5,0 non 3

Pshzu ?Lsn gAt ou’,p")n+0O) onTl (4.10)

i _ At? " At? "non 4 :
psu' -V -o(u,p) = - S P + = Vo, p")+0(4tY) inQ (4.11)
u=4§&-Atj(o',p')n) + 0(A) onl. (4.12)

Now we are going to rearrange the following expression from (4.6):
y :=Ato(’, p')n - pshj(o', p')n

as follows. Denote x := o(u’, p')n, then
y = (At - pshd)x.

Using the definition of J (3.9), this is equivalent to /%x - /ﬁ y = Jx, so

(e o)~ () e o)

psh h At 4 psh h
1 At? At
=X——y+—Lsx——L
X= 2t T upon ™ T pn ™Y
or equivalently,
1 At At?
y

y = WLSX

YT
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Using further manipulations, we have

h_ At
(pAS_t + ZLs>y = TLSX
At?
H‘ly = TLsX
At?
y= TgLsx

SO

2
Ato(u',p")n - pshd(e’, p')n = ATtHLSa(u’,p’)n.

Using the relation above, equation (4.6) can be written as

2
"

, Af? . At
pshu’ +Lsn = —o(u,p)n+ 5 Lsou’,p )n—pshﬁu
2
- %qu” - %Atza(u”,p")n +0(A) onT.

Using the first derivative of (4.12), we can write

2
psh(§' — Acd(ow@”, p"m)) + £n = ~ o, pin + -t 00, p')m

A 2 A 2
%u”’ - %Lsn” - gé\tza(u”,p”)n +0A) onl.

Rearranging and use the bound (3.10), we have

— psh

psh&' + Lsn = - a(u, p)n + Atpshd (o, p")n)

2 2
L;—t4u"’ - %qu” - gAtzo(u",p")n +0@¢) onl.
Finally, the local truncation error is given by

_psh

2 2
nl €+ A?tgll _ Z;_;nlll _ %g(o(ul’pl)n) + O(AtB) onTl

psh§' +Lsn = —o(u, p)n + Atpshj(o(u”, p")n)

At? At?
—pshz—l;u”’ - %Lsn” - gz\tza(u”,p”)n +0(A) onTl
! Atz n Atz n n 4 .
u-v-ou,p)=-—pu +—V-o',p’)+0t") inQ
Pr 2% Pr 3
V-u=04 in0
u=4§-Atg(o',p')n) + O(A) on'.

— 11

Similar to before, in the following, when there is no confusion, we will assume that the functions typeset
without a time argument are evaluated at t. Denoting the displacement by d, the structure velocity by w, the
fluid velocity by v, and the fluid pressure by g, method (3.5)-(3.8) is therefore consistent of O(At3) with the

following modified equations (see, e.g., [18, 26, 27, 34, 36, 44]):

At? At? A
d=w+ ?tw" - %d”’ - ?ta(o(v', q')n) onrl
Af?
pshw' + Lgd = — a(v, q)n + Atpshd(a(v", q")n) —pshﬂ "
A 2
- ?tﬁsd” - %Atza(v”, ¢"n onT
Af? At?
vV -V.o(v,q) = -—pv" +—V-0(v",q") inQ
Pf 2% Pf 3
V-v=0 inQ
v=w-AtJ(e(v',q')n) onT

(4.13)

(4.14)

(4.15)

(4.16)
(4.17)
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where we assume that the ‘modified’ variables d, w, v, and q are smooth enough for the quantities involved to
be well-defined. The differences in the structure displacement, structure velocity, fluid velocity, and pressure
d-n,w-¢§,v-u,and q - p, respectively, satisfy the following partial differential system

2
@-n)' = w-+ 5w ”——d”' 260, ghm) onl (413

pshw-&)' +Ls(d-n) = -6(v-u,q-p)n +Atpsh8(0(V”,q”)n)

Atz n At n 2 1" "
—pshz ——Lsd At ov',qg')n onl (4.19)

! Atz n At " " .

pfv-u) -V-o(v-u,q-p) = —ﬂpfv +?V-a(v ,q) inQ (4.20)
V-v-u)=0 inQ (4.21)
v-u=w-¥¢-AtJ(e(v',q')n) onT. (4.22)

We will now use the standard energy estimates to show that d, w, v, g generate a manifold O(At?)-close
to the n, &, u, p solution manifold. First, we introduce the following notation. Let £, denote the sum of the
kinetic and elastic energy and D, denote the dissipation, given by

1 h p
e = Shd-nid+ 22w - g,y + v - ui g
= 2#||D(V - u)||£2(_o)-
The main results of this section is given in the following theorem.
Theorem 4.1. Assume that the solution n, &, u, p of (3.1)-(3.4) satisfies the regularity assumptions in Hypothe-

sis 4.1, and that the system is isolated, i.e., pin = Pout = 0. Then, the following estimate holds

t t
Eolt) + J Do(1) dr < At*e! <I O4(1)dr + Oz(t)>
0 0
where

_1/1 1w 3Cps 2
01 = 5(gIw"lls + 514" s + 5 2145 (00, mlzzcr)

1 1 " 5 1" n S 1" 2
— (=] Lsd =(eo(v", n —|v
+ o (G1esd Iz + IO, bz + S5V i)

"

_1 "non 2 1 P 2
+ 115pr(Pf“V L2 +3IV-a(v’, q )”LZ(Q)) + 2psh||a(y N DL

"

h 1 5 2
(llU(V”, gl + %llv 2 + a”Lsd””LZ(F) + §||0(V”, fI”)nllLZ(r))

1
i 2psh
1 ! ! 2 1 ! ! 2
OZ = ﬂ"a(v H q )n||L2(F) + m"a(v (0)7 q (O))n"LZ(F)-

Proof. We multiply (4.18) by Ls(d - 1), (4.19) by w — &, (4.20) by v — u, and (4.21) by g — p, then add, integrate
by parts on I' (assuming that w"’ = d"’ = J(a(v', ¢')n) - n = 0 on dI), and use (4.22) as follows

1d Pf

Atz H III ! !
- Sj £s(d - n)——jd Ly(d - n)——jﬁ(o(v,qm)zs(d—n)

IV - Ul g, + 2uIDW - W

+ Atpsh | (0", g"m)w - §) sy L v (w - §)

At2
8

A 2
—Atjr ov-u,q-pnj(o(v',q")n)+ ?t JQ v-o(v",q" v -u).

2
j Lsd” —&- —Atz J U(V”, q”)n(w— £ - Az_t4pfj W(V u)
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Using (4.19), we have
- L o(v-u,q-pnj(e(v', q")n) = psh JF(W -9'd(e(v', ¢")n) + L Ls(d-n)d(o(v', q')n)

1 n Atz
—pShAth](o(v q"mi(e(v', ¢")»n) + psh—-

24 j VWH(O'(VI,(,],)H)

2
Aé jLsd”g(a(v q) )+§At2 L_a(v”,q”)na(a(v’,q’)n).

Using the relation above, the Cauchy-Schwarz inequality, symmetry of operator £, the Poincaré inequality,
and the bound (3.10) we have

psh d
Dot W — 8y + LS i g + 201D )

N~
Q-lQ_

||d nlz +
t " Atz n
<28 “nlls + 25 a5l -
5 Iw”lsld - nlis + 5% Id™lIslld - nlis
At
+ ?llﬁsH(U(V', g"n)l2lld - Rl + Atpsh Jr J(aov", g"n)(w- &)
At? At?
+ Pshz—4 V" 2y lw = EllL2qry + ?lwsd"”u(r) Iw - &l
5
+ gé\tz lev", ¢'"ll2llw = Elr2(ry + pshAt JF(W -9'd(e(v', q')n)

+Atld -l L3V, ¢ )n)l2

+pshAt?13(a(v", ")l 3 (v, g )Nz
At3 n ! ! At3 n ! !
+Psh2—4||V lzplld(ev', ¢ n)l2 ) + ?Hﬁsd lezpld(ev', ¢Hn)li2
5 3 1" n ! ! Atz n
+ gﬂt lev", ¢ nl2plld(ev', )l + EpfllV lz2@yllv = ullr2q)

Atz 1" n
+ ?IIV-G(V » 4 Nz llv —ullr2 ).

Applying (2.9) and (3.10) and grouping similar terms together, we obtain

psh d pr d 2
> dt”d G + 257w = 812y + 2 v = ul ) + 200D~ Wl
1 3 Cps
< a2 (GIw"ls + 514" s + 3 oo 1es(@0 A mliacn ) 1d - mls

1 5
+ Atz(—uasd” oy + Glow"”, g")nlley + ’%uv"'nm)uw = §ll2n

"

(Pf”V Iz + 31V - (v, q")||L2(Q))"V - Ul

"

o
. At
<h

h 5
(100", " mllzary + 22" 12y + 10", 4"l

Ath
+ ——Lsd" 2 lov', ¢)nll2(ry + Atpsh j J(o(v", " n)(w - &)
8psh r

+ Atpsh L(w -&'d(a(v', g')n).
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Using Young’s inequality, we have

d 1 h
(51 -+ 2w = 812,y + L - wl ) + 201D - W) g

1 2 . Psh 2 Prf 2 At* TN
s;m—nk+—ZWW—ﬂm@ﬁ~—w—ummn+Zzwww,qnwym

At* /1 1 3 CPS 5

o (GIW"ls + 514" s + 5 2221850V, m) e

+-éﬁi(lnﬁsd”ﬂL%r>+-EHG(V”,q”)nnLqr)+-Bihuv”mL4D)2
psh\8 8 24

Ath
+
1152pf

2
(prIV" 2y + 319 - 00", 4"ll2(on )

At noon psh m "
+ 2psh("o(v , q )nlle(r)+ﬂ||v Iz + 4||Lsd I

5 1 n 2
+ 3o, ¢"nliz )

+ Atpsh L I(oWv", q"n)(w - &) + Atpsh JF(W -9'd(e(v', g")n).

Integrating from O to t and integrating the last integral by parts in time, we have
lIld(t) -n()l3 + pLhIIW(t) ~EON L + ﬂIIV(t) —u(t)l}2 g + 2 tIID(V(T) ~u(D)l}2 g AT
> nolls += oty ORI R L2(2)
1 h
< 51d(©) - ()1 + 2 1w(0) - §O)I2. , + ’%uv(m ~u(0) [0,

tr1 sh
e[ (5140 - 0@l + 2w - £l + L v -l g ) de

At4 t 1 3C
5 J’o (gllw”(T)lls + 0 IId'"(T)lls —ﬁllﬁ (6(V' (1), ' (D)n)||2 r)) dr
4 ot ,

’ l% L (l”LSd”(T)”Lz(T) + _”‘T(VH(T)y q"(O)nl2r) + 2L4||V,"(T)||L2(F)) dr
Ath

" 1152p;

4

" 2psh

4

2psh

[} (V" @l +319 - 00" @0, 4" (Dlizca))”

j l00/ (1), ¢ (D)l dT

j (1o @), ¢" )l + 2 ||V”,(T)||L2(F + 8o @iy
+yww%nﬂfu»mmaﬂﬂh+4mmj(wm—$umﬂmwax¢a»m
- Btpsh [ w(O) - §0)3(00V'(0), 4'O)n).
We apply the Cauchy-Schwarz and Young’s inequalities to last couple of terms as follows
Amﬁq}wm—meWW%mqw»m—Ammprm—fm»mwwwxdm»m
< ’%nwa) —EO12 ) + AP IOV (0), g ),

Sh
+ pTHW(O) - 5(0)"%2(,—) + A ph|3(a (V' (0), Q'(O))n)llfz(n- (4.23)
Applying equation (3.10), we have

AR RIF(o(V (1), g (O)N)2s p, + AP RIF(O(V'(0), 4 O I,

< 2% 60, @ Oml  + 2 o (0), ¢ Ol 1. (4.24)
p5h ’ L " pep ’ 2(D)
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Taking into account (4.23) and (4.24), after collecting like terms, we have
t t t
Eolb) + J Do (1) dT < 3€,(0) + j Eo(r)dT + A" J 01(7) d7 + A0,
0 0 0

Assuming that €.(0) and using the Gronwall’s inequality, we obtain

Eolt) + L: Do (1) dr < At'e! (Lt O1(r)dr + oz>

which completes the proof. O

5 Numerical results

We investigate the performance of the BOUR method on a two- and three-dimensional examples. In the first
example, we compute numerical errors and rates of convergence. The second example is based on modeling
blood flow in a common carotid artery under physiological conditions. In both examples, we compare per-
formance of the BOUR method with a couple of other partitioned schemes from the literature, namely the
kinematically coupled 8 scheme [10, 11] and the incremental displacement-correction scheme [20].

5.1 Example1

We present numerical results on a two-dimensional benchmark problem commonly used to investigate per-
formance of numerical schemes for FSI problems [11, 13, 20]. The problem consists of a pressure wave prop-
agating in a straight channel. The fluid domain is a rectangle Q = [0, 5] x [0, 0.5], which corresponds to
the upper half of the channel, while the symmetry boundary conditions are prescribed on the bottom fluid
boundary

Oxuy =0, uy =0 ony=0.

The top boundary represents a thin, elastic structure. To model the structure elastodynamics, we use a gen-

eralized string model
Eh Eh

R1-0)V 21+0
where E is the Young’s modulus and o is Poisson’s ratio, with the assumption of zero axial displacement,
implying that u, = 0 on I'. The values of the parameters used in this example are given in Table 1.

At the fluid inlet (left boundary) we prescribe

pshogny + Ouxlly = fy

3Pmax (1-cos (ZL))n, < tmax

o(u,p)n = { (5.1)
0

s t > tmax

where pmax = 1.3333 - 10* dyne/cm? and fpax = 3 ms. At the right fluid boundary we set a(u, p)n = 0.
The problem is solved over the time interval [0, 14] ms. We use P, — IP; elements for the fluid velocity and
pressure, and P, elements for the displacement.

Tab. 1: Geometry, fluid, and structure parameters used in Example 1.

Parameter Value Parameter Value
Radius R (cm) 0.5 Wall thickness h (cm) 0.1
Length L (cm) 5 Poisson’s ratio o 0.5

Fluid viscosity p (g/(cm's))  0.035 Young’s modulus E (dyne/cm?)  0.75-10°

Fluid density pf (g/cm?) 1 Wall density ps(g/cm3) 1.1
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Fig. 2: Structure displacement att = 3, 6,9, 12 ms obtained using an implicit scheme (black line), BOUR scheme (red line),
kinematically coupled B scheme (green line) and incremental displacement-correction scheme (blue line) with At = 107 and
Ax =0.02.

Using this benchmark problem, we compare the performance of the BOUR method to an implicit scheme,
the kinematically coupled 8 scheme [10, 11] and the incremental displacement-correction scheme [20]. The
latter two methods are unconditionally stable, first-order partitioned schemes for FSI problems. A second
order partitioned method previously developed by the authors in [38] is not included in the comparison be-
cause of its time step restrictions. Figure 2 shows the structure displacement, while Figures 3 and 4 show
the pressure and the axial velocity in the center of the channel (bottom fluid boundary), respectively. The
results are obtained using At = 10~* and Ax = 0.02. The BOUR method gives a good agreement with the im-
plicit method. We note that the incremental displacement-correction scheme and the kinematically coupled
B scheme dissipate energy much faster than BOUR method.

To investigate the rates of convergence in time, we simultaneously refine spatial and temporal meshes
using the following set of parameters

(5.2)

s

5.10% 5.1072)°
2i 2i

(At, Ax) € «l .

i=0
Using a reference solution, we compute the relative L?-error for the fluid velocity and error in the elastic
energy-norm for the structure displacement. The reference solution is obtained by solving an implicit scheme
with Ax = 5-1073 and At = 5 - 107%. On the same example, we compute the errors for the kinematically cou-
pled B scheme and the incremental displacement-correction scheme. Figure 5 shows the comparison of the
errors and rates of convergence obtained using the BOUR method (blue line), kinematically coupled 8 scheme
(red line) and the incremental displacement-correction scheme (green line). We observe that the second or-
der convergence is obtained using the BOUR scheme, confirming our theoretical results. Furthermore, when
compared to other partitioned schemes, the BOUR scheme exhibits the smallest relative errors.

In order to investigate the convergence using the spatial and temporal parameters of the same order, we
change the Young’s modulus to E = 2.5 - 10? dyne/cm? and take ppmax = 10 dyne/cm? and tmay = 0.6 s in the
fluid boundary condition (5.1). The problem is solved over the time interval [0, 1.2] s. All the other parameters
are the same as the ones in Table 1. The reference solution is computed using Ax = 6.3-1073 and At = 5-107%.
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Fig. 3: Pressure in the middle of the channelat t = 3, 6,9, 12 ms obtained using an implicit scheme (black line), BOUR scheme
(red line), kinematically coupled B scheme (green line) and incremental displacement-correction scheme (blue line) with At =
10~* and Ax = 0.02.
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Fig. 4: Axial velocity in the middle of the channelatt = 3, 6,9, 12 ms obtained using an implicit scheme (black line), BOUR
scheme (red line), kinematically coupled B scheme (green line) and incremental displacement-correction scheme (blue line)
with At = 107 and Ax = 0.02.
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Fig. 5: Relative L2-errors of the fluid velocity (left) and relative errors in the energy norm for the structure displacement (right)
obtained using the BOUR method (blue line), kinematically coupled B scheme (red line), and the incremental displacement-
correction scheme (green line) with parameters (5.2).
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Fig. 6: Relative L2-errors of the fluid velocity (left) and relative errors in the energy norm for the structure displacement (right)
obtained using the BOUR method (blue line), kinematically coupled B scheme (red line), and the incremental displacement-
correction scheme (green line) with parameters (5.3).
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X
/4 Z
Fig. 7: Computational domain used in Example 2.

The time convergence is investigated using

(5.3)

5.1072 8.3-1072 }3

(At,Ax)e{ T 5

i=0
Figure 6 shows the comparison of the errors and rates of convergence obtained using the BOUR method (blue
line), kinematically coupled 8 scheme (red line), and the incremental displacement-correction scheme (green
line). Again, the BOUR scheme exhibits the smallest relative errors. We notice that in this case, the asymptotic
regime is achieved faster them when using parameters (5.2).

5.2 Example 2
In this example we focus on a three-dimensional simplified model of blood flow in common carotid artery.

Blood flow is modeled using (2.1) in a straight cylinder of length 4 cm and radius 0.3 cm (see Fig. 7). The fluid
lateral boundary represents a thin elastic wall.
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Tab. 2: Geometry, fluid, and structure parameters used in Example 2.

Parameter Value Parameter Value
Radius R (cm) 0.3 Wall thickness h (cm) 0.06
Length L (cm) 4 Poisson’s ratio o 0.5
Fluid viscosity p (g/(cms))  0.04 Young’s modulus E(dyne/cm?)  2.6-10°
Fluid density pf (g/cm?) 1 Coefficient D1(dyne/cm3) 6-10°
Wall density ps(g/cm3) 1.1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time (s) time (s)

Fig. 8: Boundary conditions for the fluid domain. Left: inlet velocity. Right: outlet pressure.

The wall elastodynamics are modeled using a linear membrane model [16, 23, 24], given in the weak
form as

o’n ) _

as(n,$)

where n = (nx, 1y, 1) denotes the structure displacement. We note that the bilinear form as(n, ¢) in this
case was obtained after operator Lsn was integrated by parts in the equation above. For a linearly elastic,
isotropic structure

E Vyn+VI Eo
vy yn+ Vy'n
1+ 02 2 1-o02

my(n) = (5.5)

where E denoted the Young’s modulus, o denotes the Poisson’s ratio, and Vy(-) denotes the surface gradient,
which can be computed as [8, 16]:
Vy(m) =VRI-nen)

where the symbol ® denotes the tensor product and I is the identity operator. Term multiplied by D; in (5.4)
takes into account the constraining effects of the external tissue. Values of the parameters used in this exam-
ple are given in Table 2.

At the fluid inlet section I';, we prescribe a fully developed time-dependent axial velocity, and a pressure
waveform is imposed at the outlet I'oy¢ using the following boundary conditions [38, 43]:

R’ - (* +y%)

u= (0, 0, up(t) R?

) on Iy, on = —pout(t)n on oyt (5.6)
where up(t) and poyt(t) are shown in Fig. 8. All initial conditions are set to zero.

The fluid mesh used in this example consists of 8181 vertices and 41280 tetrahedral elements, while the
structure mesh consists of 2268 vertices and 4480 triangles. We used the time step At = 1073. The problem is
solved using the BOUR method, an implicit scheme, the kinematically coupled  scheme, and the incremental
displacement-correction scheme. All methods reached a periodic solution after three cardiac cycles.

Figure 9 shows a comparison of the results obtained using different numerical schemes. Left panel shows
a comparison of the structure displacement at the midpoint of the structure domain (0.5, 0, 2) and the right
panel shows a comparison of the fluid velocity at the center of domain (0, 0, 2). In both cases, the solution



20 —— M.Buka and C.Trenchea, Boundary update via resolvent for FSI DE GRUYTER

0.07 — implicit
— BEFE 500
E 0.06 — B schdgmtla o
= incr. displ.-corr.
S 0.05 P 5
& > o0 = VoA
8 0.04 5
s o
n >
5 0.03
0.02 ‘ -500 ‘ ‘
0 0.5 1 0 0.5 1
time (s) time (s)

Fig. 9: Comparison of the results obtained using CNFSI scheme and a monolithic scheme. Left: structure displacement. Right:
fluid velocity.

obtained with the BOUR method is in an excellent agreement with the solution obtained using an implicit
approach. Even though the kinematically coupled  scheme and the incremental displacement-correction
scheme gave stable and periodic results, they significantly differ from the solution obtained by the implicit
scheme. Due to their lower convergence rate, a much smaller time step would have to be used to get satisfac-
tory results.

6 Conclusions

We proposed and analyzed a novel partitioned method for the interaction between a viscous incompressible
fluid and a thin elastic structure. Using energy estimates, we showed that the proposed method is uncon-
ditionally stable. Our error analysis indicates that the method is second-order convergent in time. The per-
formance of the scheme is tested on two numerical examples and compared to other schemes available in
the literature. While partitioned methods usually require a smaller time step than monolithic methods, our
numerical results show a great comparison between the proposed method and the monolithic method us-
ing the same time step. This is especially apparent in the second numerical example, where the focus is on
modeling blood flow in common carotid artery. In this example, other partitioned schemes consider in this
study produced stable, periodic results, but with very poor accuracy when large time steps are used, while
the results obtained using the proposed scheme are in an excellent agreement with the results obtained using
the monolithic method. The accuracy properties of the proposed scheme and its great performance for large
time steps are due to the second-order discretization method used in this study, which is very similar to the
midpoint method, and features only a small amount of numerical dissipation. Given its stability, accuracy,
and simple implementation, the proposed method is an excellent alternative to the monolithic scheme.

Some limitations of the proposed method are related to the use of a thin structure model and the assump-
tion that the displacement is infinitesimal. Using the second assumption, we further assumed that the fluid
domain is fixed, i.e., that the coupling between the fluid and solid sub-problems is linear. The extension of
the method to FSI in moving domains will be a subject of our future research.
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