
J. Numer. Math. 2021; 29(1):1ś22

Martina Bukač* and Catalin Trenchea

Boundary update via resolvent for
fluidśstructure interaction

https://doi.org/10.1515/jnma-2019-0081

Received August 28, 2019; revised April 22, 2020; accepted May 02, 2020

Abstract: We propose a BOundary Update using Resolvent (BOUR) partitioned method, second-order accu-

rate in time, unconditionally stable, for the interaction between a viscous incompressible luid and a thin

structure. The method is algorithmically similar to the sequential Backward Euler Ð Forward Euler imple-

mentation of the midpoint quadrature rule. (i) The structure and luid sub-problems are irst solved using a

Backward Euler scheme, (ii) the velocities of luid and structure are updated on the boundary via a second-

order consistent resolvent operator, and then (iii) the structure andluid sub-problems are solved again, using

a Forward Euler scheme. The stability analysis based on energy estimates shows that the scheme is uncon-

ditionally stable. Error analysis of the semi-discrete problem yields second-order convergence in time. The

two numerical examples conirm theoretical convergence analysis results and show an excellent agreement

between the proposed partitioned scheme and the monolithic scheme.

Keywords: luidśstructure interaction, non-iterative partitioned method, second order accuracy, uncondi-

tional stability

Classiication: 65M12

1 Introduction

Due to their various applications, development of numerical methods for luidśstructure interaction (FSI)

problems has been a subject of extensive research [1, 5ś7, 15, 19ś22, 24, 28, 33, 37ś40, 42]. Computational

algorithms for FSI problems can be classiied as monolithic or partitioned. In the monolithic approach, the

luid and structure equations are solved together [19, 25, 40]. Using this approach, the two problems remain

strongly coupled, but the resulting linear system is large and ill-conditioned [3, 40]. Alternatively, using the

partitioned approach, the luid problem is solved separately from the structure problem, resulting in two

smaller and better-conditioned linear systems. Partitioned algorithms can be further classiied as strongly-

coupled [1, 2, 4, 45], in which case the luid and structure sub-problems are iteratively solved within one

time step until the energy at the interface is balanced, or loosely-coupled [6, 10, 20, 37, 38], when such sub-

iterations are not needed. Since the complexity and computational time of strongly coupled partitioned al-

gorithms may often be comparable to a monolithic approach, loosely-coupled schemes have been a popular

choice. However, loosely coupled algorithms often sufer from numerical instabilities known as the ‘added

mass efect’, which is apparent in applications, where the luid and solid densities are similar, such as hemo-

dynamics.

Loosely coupledmethods or the interaction between a luid and a thin structure based on the Lie operator

splitting approach were proposed in [11, 12, 20]. The ‘kinematically coupled β scheme’ introduced in [10, 11]

is obtained by adding and subtracting the luid pressure from the previous time step, while the ‘incremental

displacementścorrection scheme’ introduced in [20] is obtained by adding and subtracting the elastic opera-

tor applied to the displacement from the previous time step. In both schemes, the luid sub-problem is solved

with a Robin boundary conditionwhich takes into account the structuremass at the luidśstructure interface,

exploiting the assumption that the structure is thin, i.e., has lower dimension than the luid. The incremental
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displacementścorrection scheme and the kinematically coupled β scheme for β = 1 have been shown to be

irst order convergent in time [11, 20]. In [13, 14] the authors propose partitioned and monolithic approaches

for FSI problems based on the Nitsche’s penaltymethod. They consider both thin and thick structuremodels,

which result in FSI problems that are more diicult to decouple. Due to numerical instabilities, the proposed

partitioned scheme is stabilized by adding a termwhich controls the pressure variations at the interface. The

splitting error, however, lowers the temporal accuracy of the scheme, which was then corrected by proposing

a few defect-correction sub-iterations to achieve an optimal, irst order convergence rate.

Second-order partitioned schemes have been proposed in [5, 6, 17, 37, 38]. In particular, a partitioned

approach based on the Strang splitting was proposed in [37] to study the interaction between non-Newtonian

luids and thin structures. However, the order of convergence was only investigated in numerical experi-

ments. A staggered scheme for luidśstructure interaction problems was proposed in [17]. The scheme was

analyzed on a simpliied model problem consisting of an elastic spring, a dashpot and two point masses,

and shown to be unconditionally stable and second-order accurate. The application of this method to three-

dimensional luidśstructure interaction problems involving incompressible luids has been numerically in-

vestigated. While the method provides accurate approximations for several examples if the time step is small

enough, it was noted that the method may not be suitable to simulate blood low problems. Partitioned algo-

rithms based on the so called added-mass partitioned Robin conditions have been proposed in [5, 6]. Using

the vonNeumann stability analysis, the authors showed that the algorithm for the interaction between a luid

and a thick, elastic structure proposed in [5] is stable under a condition on the time step which depends on

the structure parameters. The algorithm proposed in [6], which involves FSI with structural shells, is weakly

stable under a CourantśFriedrichsśLewy (CFL) condition. Although the numerical results indicate second-

order convergence in time, the convergence rates are not analytically derived. A loosely-coupled scheme for

the interaction between a luid and a thin structure based on the CrankśNicolson time discretization, com-

bined with operator-splitting, was proposed in [38]. In order to achieve stability, the luid problem is solved

with a Robin boundary condition containing structure inertia at the luidśstructure interface, where the luid

stress was added and subtracted to ensure second-order convergence in time. Based on energy estimates,

the scheme has been shown to be stable under a CFL condition. The optimal convergence rates have been

obtained via both a priori error estimates and numerical results.

In this paper, we propose a novel partitioned algorithm for the interaction between an incompressible,

viscousluid anda thin, elastic structure. As commonlydone in the literature,weassume that theluid ismod-

eled using the Stokes equations, that the structure displacement is ininitesimal and that the luidśstructure

interaction problem is linear [5, 11, 13, 20]. The proposed BOURpartitioned algorithm is similar to the sequen-

tial Backward Euler (BE) ś Forward Euler (FE) implementation of the midpoint quadrature rule. (i) The luid

and structure sub-problems are irst solved using a BE scheme, (ii) the velocities of luid and structure are

updated on the boundary via a second-order in time consistent resolvent operator, and then (iii) the struc-

ture and luid sub-problems are solved again, using a FE scheme. The main novelty of the BOUR algorithm

is the way in which the interface conditions are combined with the luid and structure sub-problems, which

leads to an unconditionally stable method. Due to the modus operandi used in coupling of the luid and

solid sub-problems, BOUR difers signiicantly from the numerical scheme we previously developed in [38],

whichwas only conditionally stable. The stability and convergence properties of the semi-discretized scheme

are analyzed in Theorems 3.1 and 4.1, yielding the unconditional stability and optimal, second-order conver-

gence in time. We investigated the properties of the proposed method on two numerical examples, and com-

pared the method to the existing ones in the literature. Our results indicate optimal convergence rate of the

BOUR method. Furthermore, we observe an excellent comparison between the BOUR method and a mono-

lithic scheme, even in case of large time steps, making the proposed method an appealing alternative to the

monolithic scheme.
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Fig. 1: Fluid domain Ω. The lateral boundary Γ represents an elastic structure.

2 Description of the problem

We are interested inmodeling the interaction between a viscous incompressible luid and a thin elastic struc-

ture. We assume that the luid is occupying domain Ω ⊂ ℝd, d = 2, 3, and that ∂Ω = Γ ∪ Γin ∪ Γout, where Γ
represents the elastic structure, Γin represents inlow, and Γout represents outlow (see Fig. 1).We also assume

that the low is modeled using the Stokes equations for a Newtonian luid, that the structure undergoes in-

initesimal displacements and that the luidśstructure interaction is linear. These are common assumptions

in the analysis of partitioned schemes for FSI problems [5, 11, 13, 20].

The luid equations in a ixed domain Ω are given by

ρf ∂tu = ∇ ⋅ σ(u, p) in Ω × (0, T) (2.1)

∇ ⋅ u = 0 in Ω × (0, T) (2.2)

σ(u, p)n = −pin(t)n on Γin × (0, T) (2.3)

σ(u, p)n = −pout(t)n on Γout × (0, T) (2.4)

u(⋅, 0) = u0 in Ω (2.5)

where u = (ui)i=1,...,d is the luid velocity, p is the luid pressure, ρf is the luid density and σ(u, p) =
−pI ⋇ 2µD(u) is the luid stress tensor, where D(u) = (∇u ⋇ (∇u)T)/2 is the strain rate tensor and µ is the

luid viscosity. The outward normal to the luid domain boundary is denoted by n, while pin and pout are the

prescribed inlow and outlow forces, respectively.

The structure elastodynamics is described by a linearly elastic, lower-dimensional model, given by

ρsh∂ttη ⋇ Lsη = f on Γ × (0, T) (2.6)

η = 0 on ∂Γ × (0, T) (2.7)

η(⋅, 0) = η0, ∂tη(⋅, 0) = η0v on Γ (2.8)

where η = (ηi)i=1,...,d denotes the structure displacement, ρs denotes the structure density, h denotes the

structure thickness, and f is a surface force applied by the luid on the structure. We assume that there are no

external forces acting on the structure. The operatorLs describes the elastic behavior of the structure. Speciic

choices of Ls are detailed in Section 5. We deine an inner-product associated with the structure operator

as(η, ζ ) = ∫
Γ
Lsη ⋅ ζ dS

and norm ‖η‖2S = as(η, η). We assume that operator Ls : D(Ls) ⊂ H1(Γ) → H−1(Γ) is a maximal monotone

operator [9], such that a Poincaré type inequality holds

‖η‖L2(Γ) ⩽ CP,S‖η‖S (2.9)

and the norm ‖ ⋅ ‖S is equivalent to the H1(Γ) norm. One example of such an operator is the one associated

with the linearly elastic cylindrical Koiter shell used in [12].

To couple the luid and the structure, we prescribe the kinematic and dynamic coupling conditions. The

kinematic coupling condition enforces the continuity of velocities at the luidśstructure interface:

u = ∂tη on Γ × (0, T). (2.10)
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The dynamic coupling condition enforces the conservation ofmomentum:

f = −σ(u, p)n on Γ × (0, T). (2.11)

Equations (2.1)ś(2.11) deine a linear luidśstructure interaction problem, which has a well-deined en-

ergy [11, 38].

3 Numerical scheme

Westart by rewriting the coupledproblem. Introduce thedisplacement velocity ξ = ∂tη. The coupledproblem
can be reformulated in the following way: Find u, p, η, and ξ such that

ρf ∂tu = ∇ ⋅ σ(u, p) in Ω × (0, T) (3.1)

∇ ⋅ u = 0 in Ω × (0, T) (3.2)

ρsh∂tξ ⋇ Lsη = −σ(u, p)n on Γ × (0, T) (3.3)

u = ξ = ∂tη on Γ × (0, T) (3.4)

with the boundary and initial conditions speciied in the previous section.

Let ∆t be the time step and tn = n∆t for n = 0, . . . , N, where T = N∆t is the inal time. The proposed,

semi-discrete numerical scheme is given as follows.

Algorithm 3.1 (BOUR). Given u0 inΩ, and η0, ξ0 = u℘0Γ on Γ, we irst need to compute u1/2, p1/2, u1 inΩ, and
η1/2, η1, ξ1/2, ξ1 on Γ with a second-ordermethod. Amonolithicmethod based on a BDF2 or CrankśNicolson

time discretization, or a loosely coupled scheme based on the CrankśNicolsonmethod proposed in [38] could

be used, among others. Then for all n ⩾ 1 compute:

BE :

{{{{
{{{{{

ηn⋇1/2 − ηn
∆t/2 = ξ n⋇1/2 on Γ

ρsh
ξ n⋇1/2 − ξ n

∆t/2 ⋇ Lsη
n⋇1/2 = −σ(un−1/2, pn−1/2)n on Γ

(3.5)

BE :

{{{{{{{{{{
{{{{{{{{{{{

ρf
un⋇1/2 − un

∆t/2 − ∇ ⋅ σ(un⋇1/2, pn⋇1/2) = 0 in Ω

∇ ⋅ un⋇1/2 = 0 in Ω

ρsh
un⋇1/2 − ξ n⋇1/2

∆t/2 ⋇ ∆t
2
Ls(un⋇1/2 − ξ n⋇1/2)

= 2( − σ(un⋇1/2, pn⋇1/2)n ⋇ σ(un−1/2, pn−1/2)n) on Γ

(3.6)

FE :

{{{{
{{{{{

ηn⋇1 − ηn⋇1/2
∆t/2 = un⋇1/2 on Γ

ρsh
ξ n⋇1 − un⋇1/2

∆t/2 ⋇ Lsη
n⋇1/2 = −σ(un−1/2, pn−1/2)n on Γ

(3.7)

FE :
{{
{{{
ρf
un⋇1 − un⋇1/2

∆t/2 − ∇ ⋅ σ(un⋇1/2, pn⋇1/2) = 0 in Ω

un⋇1 = ξ n⋇1 on Γ.

(3.8)

We note that the luid BE and FE problems should be complemented with boundary conditions (2.3)ś(2.4)

evaluated at tn⋇1/2, and the structure BE and FE problems should be solved with structure boundary condi-

tion (2.7).
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Remark 3.1. Operator ρsh
∆t I ⋇ ∆t

4 Ls is bijective from D(Ls) onto H := L2(Γ). Furthermore, ∆t
ρsh

J is the resolvent

of Ls and

J = (ρsh
∆t

I ⋇ ∆t
4
Ls)
−1

(3.9)

is a bounded operator, with the following bounds on the operator-norms:

‖J‖L(H) ⩽ ∆t

ρsh
, ‖LsJ‖L(H) ⩽ ∆t

ρsh
‖Ls‖L(H). (3.10)

Note that denoting α = ∆t2

4ρsh
, Jα = (I ⋇ αLs)−1, and Lα

s the Yosida approximation of Ls, we have

LsJ = Ls (ρsh
∆t

I ⋇ ∆t
4
Ls)
−1
= ∆t

ρsh
Ls (I ⋇ ∆t2

4ρsh
Ls)
−1
≡ ∆t

ρsh
LsJ

α ≡ ∆t

ρsh
Lα
s

which in turns, due to (see, e.g., [9, Prop. 7.2]):

‖Lα
s (z)‖ ⩽ ‖Ls(z)‖ ∀z ∈ D(Ls)

gives the second part of (3.10). Furthermore, the following J-norm is well-deined

‖η‖2
J
= (η, Jη⏟⏟⏟⏟⏟⏟⏟

:=v
) = ((ρsh

∆t
I ⋇ ∆t

4
Ls) v, v) = ρsh

∆t
‖v‖2L2(Γ) ⋇ ∆t4 ‖v‖2S

= ρsh
∆t
‖Jη‖2L2(Γ) ⋇ ∆t4 ‖Jη‖2S . (3.11)

We also note that the boundary condition in (3.6) can be written as

un⋇1/2 − ξ n⋇1/2 = J( − σ(un⋇1/2, pn⋇1/2)n ⋇ σ(un−1/2, pn−1/2)n). (BOUR)

Remark 3.2. Computational savings canbe achievedby combining the stages of (3.5)ś(3.8),which shows that

the proposed numerical scheme is similar to the sequential BEśFE implementation of the midpoint method.

Evaluating the irst displacement equation in (3.7) at n −1 instead of n and adding it to the irst displacement

equation in (3.5) we get

ηn⋇1/2 − ηn−1/2
∆t

= ξ
n⋇1/2 ⋇ un−1/2℘Γ

2
on Γ.

Similarly, velocity equations in (3.7) and (3.5) can be combined to obtain

ρsh
ξ n⋇1/2 − un−1/2℘Γ

∆t
⋇ Ls (ηn⋇1/2 ⋇ ηn−1/2

2
)

= −1
2
(σ(un−1/2℘Γ , pn−1/2℘Γ)n ⋇ σ(un−3/2℘Γ , pn−3/2℘Γ)n) on Γ. (3.12)

For the luid, we again write the irst relation in (3.8) at n−1 instead of n and add it to the irst relation in (3.6)
to obtain

ρf
un⋇1/2 − un−1/2

∆t
− 1
2
∇ ⋅ (σ(un⋇1/2, pn⋇1/2) ⋇ σ(un−1/2, pn−1/2)) = 0 in Ω.

The boundary conditions on the luid part at half-integers are given in relation (BOUR), while at the integer

values, the relation un = ξ n gives again (3.12). Therefore, the numerical algorithm at half-integer values can

be written as

ηn⋇1/2 − ηn−1/2
∆t

= ξ
n⋇1/2 ⋇ un−1/2℘Γ

2
on Γ (3.13)

ρsh
ξ n⋇1/2 − un−1/2℘Γ

∆t
⋇ Ls(ηn⋇1/2 ⋇ ηn−1/2

2
)

= −1
2
(σ(un−1/2℘Γ , pn−1/2℘Γ)n ⋇ σ(un−3/2℘Γ , pn−3/2℘Γ)n) on Γ (3.14)

ρf
un⋇1/2 − un−1/2

∆t
− 1
2
∇ ⋅ (σ(un⋇1/2, pn⋇1/2) ⋇ σ(un−1/2, pn−1/2)) = 0 in Ω (3.15)

un⋇1/2 = ξ n⋇1/2 − J(σ(un⋇1/2, pn⋇1/2)n − σ(un−1/2, pn−1/2)n) on Γ. (3.16)
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This formulation of the proposed algorithm will be used in the convergence analysis.

Remark 3.3. We point out that Algorithm 3.1 is presented in the sequential implementation BEśFE of the

midpoint rule (3.5)ś(3.8) for the theoretical argumentation. From a computational viewpoint, the bulk of the

work in Algorithm 3.1 is performed in the Backward-Euler (BE) steps, as the Forward-Euler (FE) steps are

equivalent to linear extrapolations, acting like time-ilters (see, e.g., [29, 30, 35]):

BE :

{{{{{{{{{

ηn⋇1/2 − ηn
∆t/2 = ξ n⋇1/2 on Γ

ρsh
ξ n⋇1/2 − ξ n

∆t/2 ⋇ Lsη
n⋇1/2 = −σ(un−1/2℘Γ , pn−1/2℘Γ)n on Γ

BE :

{{{{{{{{{{{{{{{{{{{{{

ρf
un⋇1/2 − un

∆t/2 − ∇ ⋅ σ(un⋇1/2, pn⋇1/2) = 0 in Ω

∇ ⋅ un⋇1/2 = 0 in Ω

ρsh
un⋇1/2 − ξ n⋇1/2

∆t/2 ⋇ ∆t
2
Ls(un⋇1/2 − ξ n⋇1/2)

= 2( − σ(un⋇1/2, pn⋇1/2)n ⋇ σ(un−1/2, pn−1/2)n) on Γ

FE :
{{{{{
ηn⋇1 = 2ηn⋇1/2 − ηn ⋇ ∆t

2
(un⋇1/2℘Γ − ξ n⋇1/2) on Γ

ξ n⋇1 = un⋇1/2℘Γ ⋇ ξ n⋇1/2 − ξ n on Γ

FE :
{{{
un⋇1 = 2un⋇1/2 − un in Ω

un⋇1 = ξ n⋇1 on Γ.

3.1 Stability and energy estimates

Denote by ENs is the sum of the elastic energy of the structure, kinetic energy of the structure, and kinetic

energy of the luid

ENs = 12 ‖ηN‖2S ⋇
ρsh

2
‖ξN‖2L2(Γ) ⋇ ρf2 ‖uN‖2L2(Ω)

and byDN
s is the luid viscous dissipation rate

DN
s = 2µ∆t

N−1∑
n=1
‖D(un⋇1/2)‖2L2(Ω).

The stability of the scheme (3.5)ś(3.8) is given in the following theorem.

Theorem 3.1. Assume that the system is isolated, i.e., pin = pout = 0, and that as(⋅, ⋅) is an inner-product

associated with the structure operator Ls. We also assume that Ls is a maximal monotone operator, such that

inequality (2.9) holds, the norm ‖η‖S = (as(η, η))1/2 is equivalent to the H1(Γ) norm, and ∆t
ρsh

J is the resolvent

of Ls. Let (ξ n , ηn , un , pn) be the solution of (3.5)ś(3.8). Then, the following a priori energy equality holds
ENs ⋇DN

s ⋇NN
s = E1s ⋇ ∆t4 ����σ(u1/2℘Γ , p1/2℘Γ)n����2J

whereNN
s denotes terms due to numerical dissipation

NN
s = ∆t4 ����σ(uN⋇1/2℘Γ , pN⋇1/2℘Γ)n����2J ⋇

ρsh

4

N−1
∑
n=1
‖un⋇1/2 − ξ n⋇1/2‖2L2(Γ) ⋇ ∆t

2

16

N−1
∑
n=1
‖un⋇1/2 − ξ n⋇1/2‖2S .
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Proof. We multiply (3.5) by Lsη
n⋇1/2 and ξ n⋇1/2, respectively, integrate over Γ, add and apply the polarized

identity (a − b)a = 1
2a

2 − 1
2b

2 ⋇ 1
2 (a − b)2 to obtain:

0 = 1

∆t
(‖ηn⋇1/2‖2S − ‖ηn‖2S ⋇ ‖ηn⋇1/2 − ηn‖2S)
⋇ ρsh

∆t
(‖ξ n⋇1/2‖2L2(Γ) − ‖ξ n‖2L2(Γ) ⋇ ‖ξ n⋇1/2 − ξ n‖2L2(Γ)) ⋇ ∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n ξ n⋇1/2.

Similarly, from (3.7), multiplying with Lsη
n⋇1/2 and un⋇1/2℘Γ , we derive

0 = 1

∆t
(‖ηn⋇1‖2S − ‖ηn⋇1/2‖2S − ‖ηn⋇1 − ηn⋇1/2‖2S)
⋇ ρsh

∆t
(‖ξ n⋇1‖2L2(Γ) − ‖un⋇1/2‖2L2(Γ) − ‖ξ n⋇1 − un⋇1/2‖2L2(Γ)) ⋇ ∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n un⋇1/2℘Γ .

Hence, from the structure part, we have

0 = 1

∆t
(‖ηn⋇1‖2S − ‖ηn‖2S − ‖ηn⋇1 − ηn⋇1/2‖2S ⋇ ‖ηn⋇1/2 − ηn‖2S)
⋇ ρsh

∆t
(‖ξ n⋇1‖2L2(Γ) − ‖ξ n‖2L2(Γ) ⋇ ‖ξ n⋇1/2‖2L2(Γ) − ‖un⋇1/2‖2L2(Γ))

⋇ ρsh
∆t
(‖ξ n⋇1/2 − ξ n‖2L2(Γ) − ‖ξ n⋇1 − un⋇1/2‖2L2(Γ)) ⋇ ∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n (ξ n⋇1/2 ⋇ un⋇1/2).

Using again the displacement equations in (3.7) and (3.5) we have

− ‖ηn⋇1 − ηn⋇1/2‖2S ⋇ ‖ηn⋇1/2 − ηn‖2S = ∆t
2

4
(− ‖un⋇1/2‖2S ⋇ ‖ξ n⋇1/2‖2S)

while the velocity equations yield

− ‖ξ n⋇1 − un⋇1/2‖2L2(Γ) ⋇ ‖ξ n⋇1/2 − ξ n‖2L2(Γ) = 0.
Hence the above energy estimate on the structure part gives

0 = 1

∆t
(‖ηn⋇1‖2S − ‖ηn‖2S)
⋇ ρsh

∆t
(‖ξ n⋇1‖2L2(Γ) − ‖ξ n‖2L2(Γ)) ⋇ ρsh∆t (‖ξ n⋇1/2‖2L2(Γ) − ‖un⋇1/2‖2L2(Γ))

⋇ ∆t
4
( − ‖un⋇1/2‖2S ⋇ ‖ξ n⋇1/2‖2S) ⋇ ∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n (ξ n⋇1/2 ⋇ un⋇1/2). (3.17)

For the luid part, we multiply the irst two equations in (3.6) by un⋇1/2 and 2pn⋇1/2 respectively, and (3.8) by
un⋇1/2, integrate over Ω, add and obtain

0 = ρf
∆t
(‖un⋇1‖2L2(Ω) − ‖un‖2L2(Ω) − ‖un⋇1 − un⋇1/2‖2L2(Ω) ⋇ ‖un⋇1/2 − un‖2L2(Ω))
− 2∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n un⋇1/2 ⋇ 2∫

Ω
σ(un⋇1/2, pn⋇1/2) : ∇un⋇1/2

⋇ ρsh
∆t
(‖un⋇1/2‖2L2(Γ) − ‖ξ n⋇1/2‖2L2(Γ) ⋇ ‖un⋇1/2 − ξ n⋇1/2‖2L2(Γ))

⋇ ∆t
4
‖un⋇1/2‖2S − ∆t4 ‖ξ n⋇1/2‖2S ⋇

∆t

4
‖un⋇1/2 − ξ n⋇1/2‖2S ⋇ 2∫

Ω
pn⋇1/2∇ ⋅ un⋇1/2.

Taking into account the low equations we have

− ‖un⋇1 − un⋇1/2‖2L2(Ω) ⋇ ‖un⋇1/2 − un‖2L2(Ω) = 0.
Hence the luid part of the energy estimates gives

0 = ρf
∆t
(‖un⋇1‖2L2(Ω) − ‖un‖2L2(Ω)) ⋇ 4µ‖D(un⋇1/2)‖2L2(Ω)
⋇ ρsh

∆t
(‖un⋇1/2‖2L2(Γ) − ‖ξ n⋇1/2‖2L2(Γ) ⋇ ‖un⋇1/2 − ξ n⋇1/2‖2L2(Γ))

⋇ ∆t
4
‖un⋇1/2‖2S − ∆t4 ‖ξ n⋇1/2‖2S ⋇

∆t

4
‖un⋇1/2 − ξ n⋇1/2‖2S − 2∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n un⋇1/2℘Γ .
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Therefore the structure and luid estimates combine to give

0 = 1

∆t
(‖ηn⋇1‖2S − ‖ηn‖2S) ⋇ ρsh∆t (‖ξ n⋇1‖2L2(Γ) − ‖ξ n‖2L2(Γ))
⋇ ρsh

∆t
‖un⋇1/2 − ξ n⋇1/2‖2L2(Γ) ⋇ ∆t4 ‖un⋇1/2 − ξ n⋇1/2‖2S

⋇ ρf
∆t
(‖un⋇1‖2L2(Ω) − ‖un‖2L2(Ω)) ⋇ 4µ‖D(un⋇1/2)‖2L2(Ω) ⋇ ∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n (ξ n⋇1/2℘Γ − un⋇1/2℘Γ).

Now using the J-norm (3.11), and the boundary conditions on the luid part (BOUR) at the half-integer time-

steps, we have

∫
Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n (ξ n⋇1/2℘Γ − un⋇1/2℘Γ)
= ∫

Γ
σ(un−1/2℘Γ , pn−1/2℘Γ)n J(σ(un⋇1/2℘Γ , pn⋇1/2℘Γ)n − σ(un−1/2℘Γ , pn−1/2℘Γ)n)

= 1
2
����σ(un⋇1/2℘Γ , pn⋇1/2℘Γ)n����2J − ����σ(un−1/2℘Γ , pn−1/2℘Γ)n����2J
− 1
2

������σ(un⋇1/2℘Γ , pn⋇1/2℘Γ)n − σ(un−1/2℘Γ , pn−1/2℘Γ)n
������
2

J

= 1
2
����σ(un⋇1/2℘Γ , pn⋇1/2℘Γ)n����2J − ����σ(un−1/2℘Γ , pn−1/2℘Γ)n����2J
− ρsh
2∆t
‖un⋇1/2 − ξ n⋇1/2‖2L2(Γ) − ∆t8 ‖un⋇1/2 − ξ n⋇1/2‖2S .

Finally,

0 = 1

∆t
(‖ηn⋇1‖2S − ‖ηn‖2S) ⋇ ρsh∆t (‖ξ n⋇1‖2L2(Γ) − ‖ξ n‖2L2(Γ))
⋇ ρsh
2∆t
‖un⋇1/2 − ξ n⋇1/2‖2L2(Γ) ⋇ ∆t8 ‖un⋇1/2 − ξ n⋇1/2‖2S ⋇

ρf
∆t
(‖un⋇1‖2L2(Ω) − ‖un‖2L2(Ω))

⋇ 4µ‖D(un⋇1/2)‖2L2(Ω) ⋇ 12(����σ(un⋇1/2℘Γ , pn⋇1/2℘Γ)n����2J − ����σ(un−1/2℘Γ , pn−1/2℘Γ)n����2J).
Summation from n = 1 to N − 1 and multiplication by 1

2∆t yields

ENs ⋇DN
s ⋇NN

s = E1s ⋇ ∆t4 ����σ(u1/2℘Γ , p1/2℘Γ)n����2J
which completes the proof.

Remark 3.4. When the system is not isolated, the boundary terms associated with (2.3)ś(2.4) can be easily

bounded using Young’s inequality and the luid viscous dissipation (see, e.g., [11]) leading to an energy in-

equality.

4 Error analysis

In this section we analyze the error of the proposed numerical method in time. The process of the anal-

ysis is summarized as follows. Using Taylor expansions, we compute the local truncation error, and after

some manipulations involving the bound (3.10) on the norm of the linear operator J, we conclude that the

method (3.5)ś(3.8) is consistent of order 2.

The analysis is based on the notion of modiied equations, related to the idea of backward error anal-

ysis and geometric integration (see, e.g., [26, 27, 31, 32, 41] and references therein). Instead of regarding

the computed values ηn, ξ n, un, pn of (3.5)ś(3.8) as approximations to the solutions η(tn), ξ (tn), u(tn),
p(tn) of (3.1)ś(3.4), we consider them as the solutions to a ‘nearby’ problem. Namely, we shall construct

new partial diferential equations (4.13)ś(4.17) such that the method (3.5)ś(3.8) has cubic consistency order
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O(∆t3) to the modiied equations, compared to only quadratic consistency order O(∆t2) to the original equa-
tions (3.1)ś(3.4). Let d denote the displacement, w the structure velocity, v the luid velocity, and q the luid

pressure, such that (d(t),w(t), v(t), q(t)) satisfy the modiied equations. Since, for example, η(tn) − ηn =
(η(tn)−d(tn))⋇ (d(tn)−ηn) = (η(tn)−d(tn))⋇O(∆t3), the global errors can hence be characterized by the dif-
ferences between the solutions η(tn)−d(tn) of the original andmodiied equations, respectively. Theorem 4.1

shows that the two manifolds (η(t), ξ (t), u(t), p(t)) and (d(t),w(t), v(t), q(t)) are O(∆t2) apart.
Assumption 4.1. We assume that the solution η, ξ , u, p of (3.1)ś(3.4) satisies the following regularity

η ∈ (W3,2(0, T;H1(Γ)))d , ξ ∈ (W2,2(0, T;H2(Γ)))d
u ∈ (W3,2(0, T; L2(Ω)))d ∩ (W2,2(0, T;H2(Ω)))d ∩ (W1,2(0, T;H3(Γ)))d

∩ (W3,2(0, T; L2(Γ)))d ∩ (W2,2(0, T;H1(Γ)))d
p ∈ W2,2(0, T;H1(Ω)) ∩W1,2(0, T : H2(Γ)) ∩W1,∞(0, T;H1(Γ)).

For the purposes of analysis, we use the half-integer formulation of the proposed method (3.13)ś(3.16). In the

irst part of the analysis, we manipulate the local truncation error to obtain the modiied equations related

to our numerical scheme. To simplify the presentation, we will assume that the functions typeset without a

time argument are evaluated at tn.

We expand η, ξ , and u about t = tn, evaluate the expansions at t = tn⋇1/2 and t = tn−1/2, and plug them
in (3.13)ś(3.16), obtaining

η� ⋇ ∆t2
24

η��� = ξ ⋇ u
2
⋇ ∆t

4
(ξ � − u�) ⋇ ∆t2

16
(ξ �� ⋇ u��) ⋇ ∆t3

96
(ξ ��� − u���) ⋇ O(∆t4) on Γ (4.1)

ρsh

∆t
(ξ − u ⋇ ∆t

2
(ξ � ⋇ u�) ⋇ ∆t2

8
(ξ �� − u��)) ⋇ ∆t3

48
(ξ ��� ⋇ u���) ⋇ Ls(η ⋇ ∆t2

8
η��)

= − (σ(u, p)n − ∆tσ(u�, p�)n ⋇ 5
8
∆t2σ(u��, p��)n) ⋇ 7

24
∆t3σ(u���, p���)n ⋇ O(∆t4) on Γ (4.2)

ρf u
� ⋇ ∆t2

24
ρf u
��� − ∇ ⋅ σ(u, p) − ∆t2

8
∇ ⋅ σ(u��, p��) = O(∆t4) in Ω (4.3)

∇ ⋅ u ⋇ ∆t
2
∇ ⋅ u� ⋇ ∆t2

8
∇ ⋅ u�� = O(∆t3) in Ω (4.4)

u ⋇ ∆t
2
u� ⋇ ∆t2

8
u�� ⋇ ∆t3

48
u��� = ξ ⋇ ∆t

2
ξ � ⋇ ∆t2

8
ξ �� ⋇ ∆t3

48
ξ ��� − ∆tJ(σ(u�, p�)n) ⋇ O(∆t4) on Γ. (4.5)

We irst diferentiate equation (4.4) to obtain

∇ ⋅ u� = − ∆t
2
∇ ⋅ u�� ⋇ O(∆t2) in Ω

∇ ⋅ u�� = − ∆t
2
∇ ⋅ u��� ⋇ O(∆t2) in Ω.

Taking into account latter equations, (4.4) becomes

∇ ⋅ u = O(∆t3) in Ω.

Rearranging, equation (4.5) can be written as

ξ − u = ∆t
2
(u� − ξ �) ⋇ ∆t2

8
(u�� − ξ ��) ⋇ ∆t3

48
(u��� − ξ ���) ⋇ ∆tJ(σ(u�, p�)n) ⋇ O(∆t4). (4.6)

By diferentiation, we have

ξ � − u� = ∆t

2
(u�� − ξ ��) ⋇ ∆t2

8
(u��� − ξ ���) ⋇ ∆t3

48
(u(iv) − ξ (iv)) ⋇ ∆tJ(σ(u��, p��)n) ⋇ O(∆t4) (4.7)

ξ �� − u�� = ∆t

2
(u��� − ξ ���) ⋇ ∆t2

8
(u(iv) − ξ (iv)) ⋇ ∆tJ(σ(u���, p���)n) ⋇ O(∆t3). (4.8)
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Substituting (4.6) in (4.1) and (4.2), after simpliications and rearrangements, we obtain the following local

truncation error

η� = ξ ⋇ ∆t
2
(ξ � − u�) ⋇ ∆t2

8
ξ ��− ∆t2

24
η���⋇ ∆t3

48
(ξ ���− u���) − ∆t

2
J(σ(u�, p�)n) ⋇ O(∆t4) on Γ

ρsh(u� ⋇ ∆t2

24
u��� ⋇ J(σ(u�, p�)n) ⋇ Lsη ⋇ ∆t2

8
Lsη
��

= − σ(u, p)n ⋇ ∆tσ(u�, p�)n − 5
8
∆t2σ(u��, p��)n ⋇ 7

24
∆t3σ(u���, p���)n ⋇ O(∆t4) on Γ

ρf u
�−∇ ⋅ σ(u, p) = − ∆t2

24
ρf u
��� ⋇ ∆t2

8
∇ ⋅ σ(u��, p��) ⋇ O(∆t4) in Ω

u = ξ ⋇ ∆t
2
(ξ � − u�) ⋇ ∆t2

8
(ξ �� − u��) ⋇ ∆t3

48
(ξ ��� − u���)

− ∆tJ(σ(u�, p�)n) ⋇ O(∆t4) on Γ.

Using (4.7) in the irst and last equations, applying (3.10) and rearranging we get

η� = ξ ⋇ ∆t2
4
(u�� − ξ ��) ⋇ ∆t2

8
ξ �� − ∆t2

24
η��� − ∆t

2
J(σ(u�, p�)n) ⋇ O(∆t3) on Γ

ρshu
� ⋇ Lsη = − σ(u, p)n ⋇ ∆tσ(u�, p�)n − ρshJ(σ(u�, p�)n − ρsh ∆t2

24
u���

− ∆t2
8

Lsη
�� − 5

8
∆t2σ(u��, p��)n ⋇ O(∆t3) on Γ

ρf u
� − ∇ ⋅ σ(u, p) = − ∆t2

24
ρf u
��� ⋇ ∆t2

8
∇ ⋅ σ(u��, p��) ⋇ O(∆t4) in Ω

u = ξ ⋇ ∆t2
8
(u�� − ξ ��) − ∆tJ(σ(u�, p�)n) ⋇ O(∆t3) on Γ.

Next, using (4.8) in the irst and fourth equations and noting that ∆t2(u�� − ξ ��) = O(∆t3), we get
η� = ξ ⋇ ∆t2

8
ξ �� − ∆t2

24
η��� − ∆t

2
J(σ(u�, p�)n) ⋇ O(∆t3) on Γ (4.9)

ρshu
� ⋇ Lsη = − σ(u, p)n ⋇ ∆tσ(u�, p�)n − ρshJ(σ(u�, p�)n

− ρsh ∆t2
24

u��� − ∆t2
8

Lsη
�� − 5

8
∆t2σ(u��, p��)n ⋇ O(∆t3) on Γ (4.10)

ρf u
� − ∇ ⋅ σ(u, p) = − ∆t2

24
ρf u
��� ⋇ ∆t2

8
∇ ⋅ σ(u��, p��) ⋇ O(∆t4) in Ω (4.11)

u = ξ − ∆tJ(σ(u�, p�)n) ⋇ O(∆t3) on Γ. (4.12)

Now we are going to rearrange the following expression from (4.6):

y := ∆tσ(u�, p�)n − ρshJ(σ(u�, p�)n
as follows. Denote x := σ(u�, p�)n, then

y = (∆tI − ρshJ)x.
Using the deinition of J (3.9), this is equivalent to ∆t

ρsh
x − 1

ρsh
y = Jx, so

x = J−1( ∆t
ρsh

x − 1

ρsh
y) = (ρsh

∆t
I ⋇ ∆t

4
Ls)( ∆t

ρsh
x − 1

ρsh
y)

= x − 1

∆t
y ⋇ ∆t2

4ρsh
Lsx − ∆t

4ρsh
Lsy

or equivalently,

1

∆t
y ⋇ ∆t

4ρsh
Lsy = ∆t2

4ρsh
Lsx.



M.Bukač and C. Trenchea, Boundary update via resolvent for FSI | 11

Using further manipulations, we have

(ρsh
∆t

I ⋇ ∆t
4
Ls)y = ∆t2

4
Lsx

J−1y = ∆t2

4
Lsx

y = ∆t2

4
JLsx

so

∆tσ(u�, p�)n − ρshJ(σ(u�, p�)n = ∆t2
4

JLsσ(u�, p�)n.
Using the relation above, equation (4.6) can be written as

ρshu
� ⋇ Lsη = − σ(u, p)n ⋇ ∆t2

4
JLsσ(u�, p�)n − ρsh ∆t2

24
u���

− ∆t2
8

Lsη
�� − 5

8
∆t2σ(u��, p��)n ⋇ O(∆t3) on Γ.

Using the irst derivative of (4.12), we can write

ρsh(ξ � − ∆tJ(σ(u��, p��)n)) ⋇ Lsη = − σ(u, p)n ⋇ ∆t2
4

JLsσ(u�, p�)n
− ρsh ∆t2

24
u��� − ∆t2

8
Lsη
�� − 5

8
∆t2σ(u��, p��)n ⋇ O(∆t3) on Γ.

Rearranging and use the bound (3.10), we have

ρshξ
� ⋇ Lsη = − σ(u, p)n ⋇ ∆tρshJ(σ(u��, p��)n)

− ρsh ∆t2
24

u��� − ∆t2
8

Lsη
�� − 5

8
∆t2σ(u��, p��)n ⋇ O(∆t3) on Γ.

Finally, the local truncation error is given by

η� = ξ ⋇ ∆t2
8

ξ �� − ∆t2
24

η��� − ∆t
2
J(σ(u�, p�)n) ⋇ O(∆t3) on Γ

ρshξ
� ⋇ Lsη = − σ(u, p)n ⋇ ∆tρshJ(σ(u��, p��)n)

− ρsh ∆t2
24

u��� − ∆t2
8

Lsη
�� − 5

8
∆t2σ(u��, p��)n ⋇ O(∆t3) on Γ

ρf u
� − ∇ ⋅ σ(u, p) = − ∆t2

24
ρf u
��� ⋇ ∆t2

8
∇ ⋅ σ(u��, p��) ⋇ O(∆t4) in Ω

∇ ⋅ u = O(∆t3) in Ω

u = ξ − ∆tJ(σ(u�, p�)n) ⋇ O(∆t3) on Γ.

Similar to before, in the following, when there is no confusion, we will assume that the functions typeset

without a time argument are evaluated at t. Denoting the displacement by d, the structure velocity by w, the

luid velocity by v, and the luid pressure by q, method (3.5)ś(3.8) is therefore consistent of O(∆t3) with the

following modiied equations (see, e.g., [18, 26, 27, 34, 36, 44]):

d� = w ⋇ ∆t2
8

w�� − ∆t2
24

d��� − ∆t
2
J(σ(v�, q�)n) on Γ (4.13)

ρshw
� ⋇ Lsd = − σ(v, q)n ⋇ ∆tρshJ(σ(v��, q��)n) − ρsh ∆t2

24
v���

− ∆t2
8

Lsd
�� − 5

8
∆t2σ(v��, q��)n on Γ (4.14)

ρf v
� − ∇ ⋅ σ(v, q) = − ∆t2

24
ρf v
��� ⋇ ∆t2

8
∇ ⋅ σ(v��, q��) in Ω (4.15)

∇ ⋅ v = 0 in Ω (4.16)

v = w − ∆tJ(σ(v�, q�)n) on Γ (4.17)
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wherewe assume that the ‘modiied’ variables d,w, v, and q are smooth enough for the quantities involved to

be well-deined. The diferences in the structure displacement, structure velocity, luid velocity, and pressure

d − η, w − ξ , v − u, and q − p, respectively, satisfy the following partial diferential system
(d − η)� = (w − ξ ) ⋇ ∆t2

8
w�� − ∆t2

24
d��� − ∆t

2
J(σ(v�, q�)n) on Γ (4.18)

ρsh(w − ξ )� ⋇ Ls(d − η) = − σ(v − u, q − p)n ⋇ ∆tρshJ(σ(v��, q��)n)
− ρsh ∆t2

24
v��� − ∆t2

8
Lsd
�� − 5

8
∆t2σ(v��, q��)n on Γ (4.19)

ρf (v − u)� − ∇ ⋅ σ(v − u, q − p) = − ∆t2
24

ρf v
��� ⋇ ∆t2

8
∇ ⋅ σ(v��, q��) in Ω (4.20)

∇ ⋅ (v − u) = 0 in Ω (4.21)

v − u = w − ξ − ∆tJ(σ(v�, q�)n) on Γ. (4.22)

We will now use the standard energy estimates to show that d, w, v, q generate a manifold O(∆t2)-close
to the η, ξ , u, p solution manifold. First, we introduce the following notation. Let Ee denote the sum of the

kinetic and elastic energy andDe denote the dissipation, given by

Ee = 1

2
‖d − η‖2S ⋇ ρsh4 ‖w − ξ‖2L2(Γ) ⋇

ρf
2
‖v − u‖2L2(Ω)

De = 2µ‖D(v − u)‖2L2(Ω).
The main results of this section is given in the following theorem.

Theorem 4.1. Assume that the solution η, ξ , u, p of (3.1)ś(3.4) satisies the regularity assumptions in Hypothe-

sis 4.1, and that the system is isolated, i.e., pin = pout = 0. Then, the following estimate holds
Ee(t) ⋇ ∫t

0
De(τ)dτ ⩽ ∆t4et (∫t

0
O1(τ)dτ ⋇ O2(t))

where

O1 = 1
2
(1
8
‖w��‖S ⋇ 1

24
‖d���‖S ⋇ 3

2

CP,S

ρsh
‖Ls(σ(v�, q�)n)‖L2(Γ))2

⋇ 1

ρsh
(1
8
‖Lsd
��‖L2(Γ) ⋇ 5

8
‖(σ(v��, q��)n‖L2(Γ) ⋇ ρsh

24
‖v���‖L2(Γ))2

⋇ 1

1152ρf
(ρf ‖v���‖L2(Ω) ⋇ 3‖∇ ⋅ σ(v��, q��)‖L2(Ω))2 ⋇ 1

2ρsh
‖σ(v�, q�)n‖2L2(Γ)

⋇ 1

2ρsh
(‖σ(v��, q��)n‖L2(Γ) ⋇ ρsh

24
‖v���‖L2(Γ) ⋇ 1

64
‖Lsd
��‖L2(Γ) ⋇ 5

8
‖σ(v��, q��)n‖L2(Γ))2

O2 = 1

ρsh
‖σ(v�, q�)n‖2L2(Γ) ⋇ 1

ρsh
‖σ(v�(0), q�(0))n‖2L2(Γ).

Proof. Wemultiply (4.18) byLs(d−η), (4.19) byw− ξ , (4.20) by v− u, and (4.21) by q− p, then add, integrate
by parts on Γ (assuming that w�� = d��� = J(σ(v�, q�)n) ⋅ n = 0 on ∂Γ), and use (4.22) as follows

1

2

d

dt
‖d − η‖2S ⋇ ρsh2

d

dt
‖w − ξ‖2L2(Γ) ⋇ ρf2

d

dt
‖v − u‖2L2(Ω) ⋇ 2µ‖D(v − u)‖2L2(Ω)

= ∆t2
8
∫
Γ
w��Ls(d − η) − ∆t2

24
∫
Γ
d���Ls(d − η) − ∆t

2
∫
Γ
J(σ(v�, q�)n)Ls(d − η)

⋇ ∆tρsh∫
Γ
J(σ(v��, q��)n)(w − ξ ) − ρsh ∆t2

24
∫
Γ
v���(w − ξ )

− ∆t2
8
∫
Γ
Lsd
��(w − ξ ) − 5

8
∆t2 ∫

Γ
σ(v��, q��)n (w − ξ ) − ∆t2

24
ρf ∫

Ω
v���(v − u)

− ∆t∫
Γ
σ(v − u, q − p)n J(σ(v�, q�)n) ⋇ ∆t2

8
∫
Ω
∇ ⋅ σ(v��, q��)(v − u).
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Using (4.19), we have

− ∫
Γ
σ(v − u, q − p)nJ(σ(v�, q�)n) = ρsh∫

Γ
(w − ξ )�J(σ(v�, q�)n) ⋇ ∫

Γ
Ls(d − η)J(σ(v�, q�)n)

− ρsh∆t∫
Γ
J(σ(v��, q��)nJ(σ(v�, q�)n) ⋇ ρsh ∆t2

24
∫
Γ
v���J(σ(v�, q�)n)

⋇ ∆t2
8
∫
Γ
Lsd
��
J(σ(v�, q�)n) ⋇ 5

8
∆t2 ∫

Γ
σ(v��, q��)nJ(σ(v�, q�)n).

Using the relation above, the CauchyśSchwarz inequality, symmetry of operator Ls, the Poincaré inequality,

and the bound (3.10) we have

1

2

d

dt
‖d − η‖2S ⋇ ρsh2

d

dt
‖w − ξ‖2L2(Γ) ⋇ ρf2

d

dt
‖v − u‖2L2(Ω) ⋇ 2µ‖D(v − u)‖2L2(Ω)

⩽ ∆t2
8
‖w��‖S‖d − η‖S ⋇ ∆t2

24
‖d���‖S‖d − η‖S

⋇ ∆t
2
‖LsJ(σ(v�, q�)n)‖L2(Γ)‖d − η‖L2(Γ) ⋇ ∆tρsh∫

Γ
J(σ(v��, q��)n)(w − ξ )

⋇ ρsh ∆t
2

24
‖v���‖L2(Γ)‖w − ξ‖L2(Γ) ⋇ ∆t2

8
‖Lsd
��‖L2(Γ)‖w − ξ‖L2(Γ)

⋇ 5
8
∆t2‖σ(v��, q��)n‖L2(Γ)‖w − ξ‖L2(Γ) ⋇ ρsh∆t∫

Γ
(w − ξ )�J(σ(v�, q�)n)

⋇ ∆t‖d − η‖L2(Γ)‖LsJ(σ(v�, q�)n)‖L2(Γ)
⋇ ρsh∆t2‖J(σ(v��, q��)n)‖L2(Γ)‖J(σ(v�, q�)n)‖L2(Γ)
⋇ ρsh ∆t

3

24
‖v���‖L2(Γ)‖J(σ(v�, q�)n)‖L2(Γ) ⋇ ∆t3

8
‖Lsd
��‖L2(Γ)‖J(σ(v�, q�)n)‖L2(Γ)

⋇ 5
8
∆t3‖σ(v��, q��)n‖L2(Γ)‖J(σ(v�, q�)n)‖L2(Γ) ⋇ ∆t2

24
ρf ‖v���‖L2(Ω)‖v − u‖L2(Ω)

⋇ ∆t2
8
‖∇ ⋅ σ(v��, q��)‖L2(Ω)‖v − u‖L2(Ω).

Applying (2.9) and (3.10) and grouping similar terms together, we obtain

1

2

d

dt
‖d − η‖2S ⋇ ρsh2

d

dt
‖w − ξ‖2L2(Γ) ⋇ ρf2

d

dt
‖v − u‖2L2(Ω) ⋇ 2µ‖D(v − u)‖2L2(Ω)

⩽ ∆t2(1
8
‖w��‖S ⋇ 1

24
‖d���‖S ⋇ 3

2

CP,S
ρsh
‖Ls(σ(v�, q�)n)‖L2(Γ))‖d − η‖S

⋇ ∆t2(1
8
‖Lsd
��‖L2(Γ) ⋇ 5

8
‖σ(v��, q��)n‖L2(Γ) ⋇ ρsh

24
‖v���‖L2(Γ))‖w − ξ‖L2(Γ)

⋇ ∆t2
24
(ρf ‖v���‖L2(Ω) ⋇ 3‖∇ ⋅ σ(v��, q��)‖L2(Ω))‖v − u‖L2(Ω)

⋇ ∆t4
ρsh
(‖σ(v��, q��)n‖L2(Γ) ⋇ ρsh

24
‖v���‖L2(Γ) ⋇ 5

8
‖σ(v��, q��)n‖L2(Γ))

⋇ ∆t4

8ρsh
‖Lsd
��‖L2(Γ)‖σ(v�, q�)n‖L2(Γ) ⋇ ∆tρsh∫

Γ
J(σ(v��, q��)n)(w − ξ )

⋇ ∆tρsh∫
Γ
(w − ξ )�J(σ(v�, q�)n).
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Using Young’s inequality, we have

d

dt
(1
2
‖d − η‖2S ⋇ ρsh2 ‖w − ξ‖2L2(Γ) ⋇

ρf
2
‖v − u‖2L2(Ω)) ⋇ 2µ‖D(v − u)‖2L2(Ω)

⩽ 1
2
‖d − η‖2S ⋇ ρsh4 ‖w − ξ‖2L2(Γ) ⋇

ρf
2
‖v − u‖2L2(Ω) ⋇ ∆t4

2ρsh
‖σ(v�, q�)n‖2L2(Γ)

⋇ ∆t4
2
(1
8
‖w��‖S ⋇ 1

24
‖d���‖S ⋇ 3

2

CP,S
ρsh
‖Ls(σ(v�, q�)n)‖L2(Γ))2

⋇ ∆t4
ρsh
(1
8
‖Lsd
��‖L2(Γ) ⋇ 5

8
‖σ(v��, q��)n‖L2(Γ) ⋇ ρsh

24
‖v���‖L2(Γ))2

⋇ ∆t4

1152ρf
(ρf ‖v���‖L2(Ω) ⋇ 3‖∇ ⋅ σ(v��, q��)‖L2(Ω))2

⋇ ∆t4

2ρsh
(‖σ(v��, q��)n‖L2(Γ) ⋇ ρsh

24
‖v���‖L2(Γ) ⋇ 1

64
‖Lsd
��‖L2(Γ)

⋇ 5
8
‖σ(v��, q��)n‖L2(Γ))2

⋇ ∆tρsh∫
Γ
J(σ(v��, q��)n)(w − ξ ) ⋇ ∆tρsh∫

Γ
(w − ξ )�J(σ(v�, q�)n).

Integrating from 0 to t and integrating the last integral by parts in time, we have

1

2
‖d(t) − η(t)‖2S ⋇ ρsh2 ‖w(t) − ξ (t)‖2L2(Γ) ⋇

ρf
2
‖v(t) − u(t)‖2L2(Ω) ⋇ 2µ∫

t

0
‖D(v(τ) − u(τ))‖2L2(Ω) dτ

⩽ 1
2
‖d(0) − η(0)‖2S ⋇ ρsh2 ‖w(0) − ξ (0)‖2L2(Γ) ⋇

ρf

2
‖v(0) − u(0)‖2L2(Ω)

⋇ ∫t
0
(1
2
‖d(τ) − η(τ)‖2S ⋇ ρsh4 ‖w(τ) − ξ (τ)‖2L2(Γ) ⋇

ρf

2
‖v(τ) − u(τ)‖2L2(Ω)) dτ

⋇ ∆t4
2
∫t
0
(1
8
‖w��(τ)‖S ⋇ 1

24
‖d���(τ)‖S ⋇ 3

2

CP,S

ρsh
‖Ls(σ(v�(τ), q�(τ))n)‖L2(Γ))2 dτ

⋇ ∆t4
ρsh
∫t
0
(1
8
‖Lsd
��(τ)‖L2(Γ) ⋇ 5

8
‖σ(v��(τ), q��(τ))n‖L2(Γ) ⋇ ρsh

24
‖v���(τ)‖L2(Γ))2 dτ

⋇ ∆t4

1152ρf
∫t
0
(ρf ‖v���(τ)‖L2(Ω) ⋇ 3‖∇ ⋅ σ(v��(τ), q��(τ))‖L2(Ω))2 dτ

⋇ ∆t4

2ρsh
∫t
0
‖σ(v�(τ), q�(τ))n‖2L2(Γ) dτ

⋇ ∆t4

2ρsh
∫t
0
(‖σ(v��(τ), q��(τ))n‖L2(Γ) ⋇ ρsh

24
‖v���(τ)‖L2(Γ) ⋇ 1

64
‖Lsd
��(τ)‖L2(Γ)

⋇ 5
8
‖σ(v��(τ), q��(τ))n‖L2(Γ))2 dτ ⋇ ∆tρsh∫

Γ
(w(t) − ξ (t))J(σ(v�(t), q�(t))n)

− ∆tρsh∫
Γ
(w(0) − ξ (0))J(σ(v�(0), q�(0))n).

We apply the CauchyśSchwarz and Young’s inequalities to last couple of terms as follows

∆tρsh∫
Γ
(w(t) − ξ (t))J(σ(v�(t), q�(t))n) − ∆tρsh∫

Γ
(w(0) − ξ (0))J(σ(v�(0), q�(0))n)

⩽ ρsh
4
‖w(t) − ξ (t)‖2L2(Γ) ⋇ ∆t2ρsh‖J(σ(v�(t), q�(t))n)‖2L2(Γ)

⋇ ρsh
4
‖w(0) − ξ (0)‖2L2(Γ) ⋇ ∆t2ρsh‖J(σ(v�(0), q�(0))n)‖2L2(Γ). (4.23)

Applying equation (3.10), we have

∆t2ρsh‖J(σ(v�(t), q�(t))n)‖2L2(Γ) ⋇ ∆t2ρsh‖J(σ(v�(0), q�(0))n)‖2L2(Γ)
⩽ ∆t4
ρsh
‖σ(v�(t), q�(t))n‖2L2(Γ) ⋇ ∆t

4

ρsh
‖σ(v�(0), q�(0))n‖2L2(Γ). (4.24)
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Taking into account (4.23) and (4.24), after collecting like terms, we have

Ee(t) ⋇ ∫t
0
De(τ)dτ ⩽ 3Ee(0) ⋇ ∫t

0
Ee(τ)dτ ⋇ ∆t4 ∫t

0
O1(τ)dτ ⋇ ∆t4O2.

Assuming that Ee(0) and using the Grönwall’s inequality, we obtain
Ee(t) ⋇ ∫t

0
De(τ)dτ ⩽ ∆t4et (∫t

0
O1(τ)dτ ⋇ O2)

which completes the proof.

5 Numerical results

We investigate the performance of the BOUR method on a two- and three-dimensional examples. In the irst

example, we compute numerical errors and rates of convergence. The second example is based on modeling

blood low in a common carotid artery under physiological conditions. In both examples, we compare per-

formance of the BOUR method with a couple of other partitioned schemes from the literature, namely the

kinematically coupled β scheme [10, 11] and the incremental displacement-correction scheme [20].

5.1 Example 1

We present numerical results on a two-dimensional benchmark problem commonly used to investigate per-

formance of numerical schemes for FSI problems [11, 13, 20]. The problem consists of a pressure wave prop-

agating in a straight channel. The luid domain is a rectangle Ω = [0, 5] × [0, 0.5], which corresponds to

the upper half of the channel, while the symmetry boundary conditions are prescribed on the bottom luid

boundary

∂xuy = 0, uy = 0 on y = 0.
The top boundary represents a thin, elastic structure. To model the structure elastodynamics, we use a gen-

eralized string model

ρsh∂ttηy ⋇ Eh

R2(1 − σ2)ηy −
Eh

2(1 ⋇ σ)∂xxηy = fy
where E is the Young’s modulus and σ is Poisson’s ratio, with the assumption of zero axial displacement,

implying that ux = 0 on Γ. The values of the parameters used in this example are given in Table 1.

At the luid inlet (left boundary) we prescribe

σ(u, p)n = {{{
1
2pmax (1 − cos ( 2πttmax

)) n, t ⩽ tmax

0, t > tmax

(5.1)

where pmax = 1.3333 ⋅ 104 dyne/cm2 and tmax = 3 ms. At the right luid boundary we set σ(u, p)n = 0.
The problem is solved over the time interval [0, 14] ms. We use ℙ2 − ℙ1 elements for the luid velocity and

pressure, and ℙ2 elements for the displacement.

Tab. 1: Geometry, fluid, and structure parameters used in Example 1.

Parameter Value Parameter Value

Radius R (cm) 0.5 Wall thickness h (cm) 0.1

Length L (cm) 5 Poisson’s ratio σ 0.5

Fluid viscosity µ (g/(cm s)) 0.035 Young’s modulus E (dyne/cm2) 0.75 ⋅ 106
Fluid density ρf (g/cm

3) 1 Wall density ρs(g/cm
3) 1.1
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Fig. 2: Structure displacement at t = 3, 6, 9, 12ms obtained using an implicit scheme (black line), BOUR scheme (red line),
kinematically coupled β scheme (green line) and incremental displacement-correction scheme (blue line) with ∆t = 10−4 and
∆x = 0.02.

Using this benchmark problem, we compare the performance of the BOURmethod to an implicit scheme,

the kinematically coupled β scheme [10, 11] and the incremental displacement-correction scheme [20]. The

latter two methods are unconditionally stable, irst-order partitioned schemes for FSI problems. A second

order partitioned method previously developed by the authors in [38] is not included in the comparison be-

cause of its time step restrictions. Figure 2 shows the structure displacement, while Figures 3 and 4 show

the pressure and the axial velocity in the center of the channel (bottom luid boundary), respectively. The

results are obtained using ∆t = 10−4 and ∆x = 0.02. The BOUR method gives a good agreement with the im-

plicit method. We note that the incremental displacement-correction scheme and the kinematically coupled

β scheme dissipate energy much faster than BOUR method.

To investigate the rates of convergence in time, we simultaneously reine spatial and temporal meshes

using the following set of parameters

(∆t, ∆x) ∈ {5 ⋅ 10−4
2i

,
5 ⋅ 10−2

2i
}3
i=0

. (5.2)

Using a reference solution, we compute the relative L2-error for the luid velocity and error in the elastic

energy-norm for the structure displacement. The reference solution is obtained by solving an implicit scheme

with ∆x = 5 ⋅ 10−3 and ∆t = 5 ⋅ 10−6. On the same example, we compute the errors for the kinematically cou-

pled β scheme and the incremental displacement-correction scheme. Figure 5 shows the comparison of the

errors and rates of convergence obtained using the BOURmethod (blue line), kinematically coupled β scheme

(red line) and the incremental displacement-correction scheme (green line). We observe that the second or-

der convergence is obtained using the BOUR scheme, conirming our theoretical results. Furthermore, when

compared to other partitioned schemes, the BOUR scheme exhibits the smallest relative errors.

In order to investigate the convergence using the spatial and temporal parameters of the same order, we

change the Young’s modulus to E = 2.5 ⋅ 102 dyne/cm2 and take pmax = 10 dyne/cm2 and tmax = 0.6 s in the
luid boundary condition (5.1). The problem is solved over the time interval [0, 1.2] s. All the other parameters

are the same as the ones in Table 1. The reference solution is computed using ∆x = 6.3 ⋅10−3 and ∆t = 5 ⋅10−4.
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Fig. 3: Pressure in the middle of the channel at t = 3, 6, 9, 12ms obtained using an implicit scheme (black line), BOUR scheme
(red line), kinematically coupled β scheme (green line) and incremental displacement-correction scheme (blue line) with ∆t =
10−4 and ∆x = 0.02.
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Fig. 4: Axial velocity in the middle of the channel at t = 3, 6, 9, 12ms obtained using an implicit scheme (black line), BOUR
scheme (red line), kinematically coupled β scheme (green line) and incremental displacement-correction scheme (blue line)

with ∆t = 10−4 and ∆x = 0.02.
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Fig. 5: Relative L2-errors of the fluid velocity (left) and relative errors in the energy norm for the structure displacement (right)

obtained using the BOUR method (blue line), kinematically coupled β scheme (red line), and the incremental displacement-

correction scheme (green line) with parameters (5.2).
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Fig. 6: Relative L2-errors of the fluid velocity (left) and relative errors in the energy norm for the structure displacement (right)

obtained using the BOUR method (blue line), kinematically coupled β scheme (red line), and the incremental displacement-

correction scheme (green line) with parameters (5.3).

Fig. 7: Computational domain used in Example 2.

The time convergence is investigated using

(∆t, ∆x) ∈ {5 ⋅ 10−2
2i

,
8.3 ⋅ 10−2

2i
}3
i=0

. (5.3)

Figure 6 shows the comparison of the errors and rates of convergence obtained using the BOURmethod (blue

line), kinematically coupled β scheme (red line), and the incremental displacement-correction scheme (green

line). Again, the BOUR scheme exhibits the smallest relative errors.We notice that in this case, the asymptotic

regime is achieved faster them when using parameters (5.2).

5.2 Example 2

In this example we focus on a three-dimensional simpliied model of blood low in common carotid artery.

Blood low is modeled using (2.1) in a straight cylinder of length 4 cm and radius 0.3 cm (see Fig. 7). The luid

lateral boundary represents a thin elastic wall.
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Tab. 2: Geometry, fluid, and structure parameters used in Example 2.

Parameter Value Parameter Value

Radius R (cm) 0.3 Wall thickness h (cm) 0.06

Length L (cm) 4 Poisson’s ratio σ 0.5

Fluid viscosity µ (g/(cm s)) 0.04 Young’s modulus E(dyne/cm2) 2.6 ⋅ 106
Fluid density ρf (g/cm

3) 1 Coeicient D1(dyne/cm
3) 6 ⋅ 105

Wall density ρs(g/cm
3) 1.1
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Fig. 8: Boundary conditions for the fluid domain. Left: inlet velocity. Right: outlet pressure.

The wall elastodynamics are modeled using a linear membrane model [16, 23, 24], given in the weak

form as

ρsh∫
Γ

∂2η

∂t2
⋅ ζ dS ⋇∫

Γ
D1η ⋅ ζ dS ⋇ h∫

Γ
Πγ(η) : ∇γζ dS⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

as(η,ζ )

= ∫
Γ
f ⋅ ζ dS (5.4)

where η = (ηx , ηy , ηz) denotes the structure displacement. We note that the bilinear form as(η, ζ ) in this

case was obtained after operator Lsη was integrated by parts in the equation above. For a linearly elastic,

isotropic structure

Πγ(η) = E

1 ⋇ σ2
∇γη ⋇ ∇Tγ η

2
⋇ Eσ

1 − σ2∇γ ⋅ η (5.5)

where E denoted the Young’s modulus, σ denotes the Poisson’s ratio, and ∇γ(⋅) denotes the surface gradient,
which can be computed as [8, 16]:

∇γ(η) = ∇η(I − n ⊗ n)
where the symbol ⊗ denotes the tensor product and I is the identity operator. Term multiplied by D1 in (5.4)

takes into account the constraining efects of the external tissue. Values of the parameters used in this exam-

ple are given in Table 2.

At the luid inlet section Γin we prescribe a fully developed time-dependent axial velocity, and a pressure

waveform is imposed at the outlet Γout using the following boundary conditions [38, 43]:

u = (0, 0, uD(t)R2 − (x2 ⋇ y2)
R2

) on Γ in, σn = −pout(t)n on Γout (5.6)

where uD(t) and pout(t) are shown in Fig. 8. All initial conditions are set to zero.
The luid mesh used in this example consists of 8181 vertices and 41280 tetrahedral elements, while the

structure mesh consists of 2268 vertices and 4480 triangles. We used the time step ∆t = 10−3. The problem is

solvedusing theBOURmethod, an implicit scheme, the kinematically coupled β scheme, and the incremental

displacement-correction scheme. All methods reached a periodic solution after three cardiac cycles.

Figure 9 shows a comparison of the results obtained using diferent numerical schemes. Left panel shows

a comparison of the structure displacement at the midpoint of the structure domain (0.5, 0, 2) and the right
panel shows a comparison of the luid velocity at the center of domain (0, 0, 2). In both cases, the solution
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Fig. 9: Comparison of the results obtained using CNFSI scheme and a monolithic scheme. Left: structure displacement. Right:

fluid velocity.

obtained with the BOUR method is in an excellent agreement with the solution obtained using an implicit

approach. Even though the kinematically coupled β scheme and the incremental displacement-correction

scheme gave stable and periodic results, they signiicantly difer from the solution obtained by the implicit

scheme. Due to their lower convergence rate, a much smaller time step would have to be used to get satisfac-

tory results.

6 Conclusions

We proposed and analyzed a novel partitioned method for the interaction between a viscous incompressible

luid and a thin elastic structure. Using energy estimates, we showed that the proposed method is uncon-

ditionally stable. Our error analysis indicates that the method is second-order convergent in time. The per-

formance of the scheme is tested on two numerical examples and compared to other schemes available in

the literature. While partitioned methods usually require a smaller time step than monolithic methods, our

numerical results show a great comparison between the proposed method and the monolithic method us-

ing the same time step. This is especially apparent in the second numerical example, where the focus is on

modeling blood low in common carotid artery. In this example, other partitioned schemes consider in this

study produced stable, periodic results, but with very poor accuracy when large time steps are used, while

the results obtained using the proposed scheme are in an excellent agreementwith the results obtained using

the monolithic method. The accuracy properties of the proposed scheme and its great performance for large

time steps are due to the second-order discretization method used in this study, which is very similar to the

midpoint method, and features only a small amount of numerical dissipation. Given its stability, accuracy,

and simple implementation, the proposed method is an excellent alternative to the monolithic scheme.

Some limitations of the proposedmethod are related to the use of a thin structuremodel and the assump-

tion that the displacement is ininitesimal. Using the second assumption, we further assumed that the luid

domain is ixed, i.e., that the coupling between the luid and solid sub-problems is linear. The extension of

the method to FSI in moving domains will be a subject of our future research.
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