
Math. Model. Nat. Phenom. 16 (2021) 8 Mathematical Modelling of Natural Phenomena
https://doi.org/10.1051/mmnp/2020051 www.mmnp-journal.org

A PARTITIONED NUMERICAL SCHEME FOR FLUID–STRUCTURE

INTERACTION WITH SLIP

Martina Bukač1 and Sunčica Čanić2,*

Abstract. We present a loosely coupled, partitioned scheme for solving fluid–structure interaction
(FSI) problems with the Navier slip boundary condition. The fluid flow is modeled by the Navier–
Stokes equations for an incompressible, viscous fluid, interacting with a thin elastic structure modeled
by the membrane or Koiter shell type equations. The fluid and structure are coupled via two sets
of coupling conditions: a dynamic coupling condition describing balance of forces, and a kinematic
coupling condition describing fluid slipping tangentially to the moving fluid–structure interface, with
no penetration in the normal direction. Problems of this type arise in, e.g., FSI with hydrophobic
structures or surfaces treated with a no-stick coating, and in biologic FSI involving rough surfaces of
elastic tissues or tissue scaffolds. We propose a novel, efficient partitioned scheme where the fluid sub-
problem is solved separately from the structure sub-problem, and there is no need for sub-iterations
at every time step to achieve stability, convergence, and its first-order accuracy. We derive energy
estimates, which prove that the proposed scheme is unconditionally stable for the corresponding linear
problem. Moreover, we present convergence analysis and show that under a time-step condition, the
method is first-order accurate in time and optimally convergent in space for a Finite Element Method-
based spatial discretization. The theoretical rates of convergence in time are confirmed numerically on
an example with an explicit solution using the method of manufactured solutions, and on a benchmark
problem describing propagation of a pressure pulse in a two-dimensional channel. The effects of the slip
rate and fluid viscosity on the FSI solution are numerically investigated in two additional examples: a
2D cylindrical FSI example for which an exact Navier slip Poiseuille-type solution is found and used
for comparison, and a squeezed ketchup bottle example with gravity enhanced flow. We show that the
Navier-slip boundary condition increases the outflow mass flow rate by 21% for a bottle angled at 45
degrees pointing downward, in the direction of gravity.
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1. Introduction

Most models capturing the interaction between fluids and elastic structures employ the no-slip condition,
stating continuity between fluid and structure velocities at the fluid–structure interface. While the no-slip
condition is reasonable for a great variety of problems, in many cases of practical significance no-slip is not

Keywords and phrases: Fluid-structure interaction, Navier slip condition, partitioned method.

1 Applied and Computational Mathematics and Statistics, University of Notre Dame, USA.
2 Department of Mathematics, University of California, Berkeley, USA.

* Corresponding author: canics@berkeley.edu

c© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/mmnp/2020051
https://www.mmnp-journal.org/
mailto:canics@berkeley.edu
https://creativecommons.org/licenses/by/4.0
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adequate. Examples include flows over hydrophobic surfaces or surfaces treated with a no-stick coating, flows
over “rough” surfaces such as those of grooved vascular tissue scaffolds, and problems involving contact of
smooth solids immersed in a viscous, incompressible fluid. More precisely, for flows over “rough” (rigid and
fixed) surfaces, it has been shown that the Navier slip boundary condition, also known as the Coulomb friction
law, is the appropriate “effective boundary condition” [57, 58]. Instead of using the no-slip condition at the small
groove scale, the effective Navier slip boundary condition is applied at the corresponding “groove-free” smooth
boundary [57, 58]. Regarding contact of smooth bodies immersed in a viscous, incompressible fluid, recent
studies have shown that contact is not possible if the no-slip boundary condition is considered [48, 49, 72, 75].
A resolution to this no-collision paradox is to employ a different boundary condition, such as the Navier slip
boundary condition, which allows contact between smooth rigid bodies [65]. Problems of this type arise, e.g., in
modeling elastic heart valve closure, where different kinds of ad hoc “gap” conditions with the no-slip boundary
condition have been used to get around this difficulty [34]. By using the Navier slip boundary condition near
and at the closure, approximating a boundary layer solution, a more realistic model of this FSI problem would
be provided.

Classical FSI problems assuming the no-slip boundary condition have been extensively studied from both
the theoretical and numerical points of view (see e.g. [1, 2, 7, 17, 20, 22, 29, 30, 32, 35, 36, 39, 40, 45, 46, 51–
53, 55, 66–70, 73, 74] and the references therein).

Both monolithic and partitioned methods have been developed for FSI with no-slip condition. Development
of partitioned methods is particularly challenging in applications where the fluid and structure densities are
comparable, since classical partitioned methods suffer from numerical instabilities known as the “added mass
effect” [21]. However, partitioned methods that are able to successfully deal with these instabilities have been
developed, including both strongly-coupled schemes [3–5, 43, 77], in which case the fluid and structure sub-
problems are iteratively solved within one time step until the energy at the interface is balanced, and loosely-
coupled schemes [6, 12, 16–19, 38, 56, 67], when such sub-iterations are not needed.

The state-of-the art in the well-posedness theory includes results on global existence of weak solutions for
FSI problems with various elastic structures [45, 60–62], and local existence of strong unique solutions for
various elastic structures immersed in a viscous, incompressible fluid [7, 8, 24, 25, 30, 31, 51, 53]. All the global
existence results involving elastic structures hold until the structure(s) are about to “touch” each other, i.e.,
until contact. In [48, 49, 72, 75], it was shown, however, that such a contact is not possible when rigid balls
with smooth boundaries interact with an incompressible viscous fluid, indicating that the no-slip condition may
not be a good physical model for FSI dynamics near a contact. In 2010, Neustupa and Penel proved that if
the no-slip boundary condition is replaced with the slip boundary condition, collision between two rigid bodies
can occur [65]. This sparked recent activity in FSI problems involving rigid solids and slip boundary conditions
[23, 41, 42, 64, 71, 76]. However, these very recent theoretical results have not yet received traction in the
numerical community.

Motivated by the recent progress in modeling various biological processes where slip is used to couple different
structures and/or fluids, and the aforementioned recent theoretical results in this area, we propose a partitioned
numerical scheme for FSI problems with slip. In particular, we consider the interaction between an incompress-
ible, viscous fluid and a thin, linearly elastic structure. Namely, we assume that the structure is described by a
lower-dimensional reduced model, such as a membrane/shell, or a plate model. We develop an unconditionally
stable, partitioned, loosely coupled scheme, which is based on the time-discretization via operator splitting. The
main advantage of the scheme is efficiency, since there is no need for sub-iterations at every time step to achieve
stability, convergence, and its first-order accuracy.

The splitting scheme separates the fluid from the structure sub-problem in a way that is significantly different
from the previously proposed numerical loosely coupled schemes [13, 17, 67] for FSI problems with the no-slip
condition. While the normal components of the coupling conditions are split using the approach similar to the
kinematically coupled β scheme [13, 17], a different treatment is required to split the tangential components. Due
to the slip between the fluid and structure, the coupled problem exhibits additional dissipation in the tangential
direction at the fluid-structure interface when compared to FSI with no slip, which we exploit numerically. While
the normal components of the coupling conditions are split as in the Lie operator splitting approach, previously
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Figure 1. Computational domain Ω.

used in FSI problems with no slip, the tangential components are split differently, without respecting the so
called “added mass effect”. Using analysis based on energy estimates, we show that the proposed scheme is still
unconditionally stable. This is interesting because it shows that added mass effect is dominant in the normal
direction, and that the tangential forces have secondary importance in the added mass effect since they only
“reposition” the points on the fluid-structure interface, without significantly changing the displaced fluid mass.
This is new. It is because of friction due to slip that our scheme does not require implicit coupling between the
fluid and structure inertia in both the normal and tangential direction, and still provides an unconditionally
stable partitioned scheme without the need for sub-iterations at every time step.

In this manuscript we also present convergence analysis based on a priori error estimates, which shows
that under a time-step condition, the proposed numerical method is first-order accurate in time and optimally
convergent in space. Numerical examples are presented to verify the convergence properties and to investigate
the effects of the slip rate and fluid viscosity on the solution of the coupled problem. The theoretical rates
of convergence in time are confirmed numerically on an example with an explicit solution using the method
of manufactured solutions, and on a benchmark problem describing the propagation of a pressure pulse in a
two-dimensional channel. The effects of the slip rate and fluid viscosity on the FSI solution are numerically
investigated in two additional examples: a 2D cylindrical FSI example for which an exact Navier slip Poiseuille-
type solution is found and used for comparison, and a squeezed ketchup bottle example with gravity enhanced
flow. We show that the Navier-slip boundary condition increases the outflow mass flow rate by 21% for a bottle
angled at 45◦ pointing downward, in the direction of gravity.

This paper is organized as follows. The FSI model with slip is introduced in Section 2. The proposed numer-
ical scheme is presented in Section 3. Stability analysis is preformed in Section 4, and convergence analysis
is presented in Section 5. Numerical examples are presented in Section 6. Finally, conclusions are drawn in
Section 7.

2. Problem definition

Let Ω ⊂ Rd, d = 2, 3 denote the reference fluid domain and assume ∂Ω = Γ ∪ Γin ∪ Γout, where Γ represents
the elastic part of the boundary while Γin and Γout represent artificial inflow and outflow sections, see Figure 1.
We assume that Ω is filled with an incompressible, viscous fluid, whose dynamics is modeled using the Navier-
Stokes equations for an incompressible, viscous fluid defined on a time-dependent domain Ω(t), which is not
known a priori :

ρF (∂tu+ u · ∇u) = ∇ · σ(u, p),
∇ · u = 0,

}
in Ω(t), t ∈ (0, T ), (2.1)

where ρF denotes fluid density, u is the fluid velocity, σ = −pI + 2µFD(u) is the fluid Cauchy stress tensor, p
is the fluid pressure, µF is the kinematic viscosity coefficient, and D(u) = 1

2 (∇u+∇τu) is the fluid strain rate
tensor.
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The structure elastodynamics is described by a linearly elastic model, given by a reduced membrane or shell
model in general form:

ρSω∂ttη + Leη = f , on Γ, t ∈ (0, T ), (2.2)

where η is a vector function describing the structure displacement from its reference configuration Γ, Le is a
coercive and continuous differential operator on the function space specified later, associated with the elastic
energy of the thin structure. For example, for a linearly elastic membrane, the functions space is defined by
the Sobolev space H1, while for a Koiter shell with radial displacement, the functions space is defined by H2.
Different models will be used in this manuscript. The notation f denotes force density (load), and ρS and ω
are the structure density and thickness, respectively.

The fluid and structure are coupled via two sets of coupling conditions: the dynamic and kinematic coupling
conditions. To state the coupling conditions we introduce ξ to denote the structure velocity, ξ = ∂tη. The
coupling conditions are given by:

• Dynamic coupling condition:

f = −Jσn|Γ(t) on Γ× (0, T ), (2.3)

stating that the thin structure elastodynamics is driven by the fluid normal stress at the interface. The
term J is the Jacobian of the transformation between the Eulerian and Lagrangian formulations of the
fluid and structure problems, respectively.
• Kinematic coupling condition:

ξ · n = u · n|Γ(t) on Γ× (0, T ) (the non-penetration condition)
(ξ − u|Γ(t)) · τ i = αJσn · τ i|Γ(t), i = 1, . . . , d− 1 on Γ× (0, T ) (slip between fluid and structure)

Here, n and τ denote the outward normal and tangential unit vectors to the fluid domain, and α is the slip
rate.

At the inlet we prescribe Dirichlet or Neumann boundary conditions, depending on the problem at hand,
and at the outlet we prescribe Neumann boundary condition:

u = uin(t), or σn = −pin(t)n on Γin × (0, T ), (2.4)

σn = −pout(t)n on Γout × (0, T ), (2.5)

and assume that the structure is clamped at the edges. For membranes, this means η = 0 on ∂Γ.

2.1. The ALE framework

To deal with the difficulty associated with the fact that the fluid domain changes in time, we adopt the
arbitrary Lagranian Eulerian (ALE) framework [33, 50]. The ALE approach is based on introducing a family of
arbitrary, smooth, homeomorphic mappings At defined on the reference domain Ω such that, for each t ∈ (t0, T ),
At maps the reference domain Ω into the current domain Ω(t):

At : Ω→ Ω(t) ⊂ Rn, n = 2, 3, x = At(x̂) ∈ Ω(t), for x̂ ∈ Ω.

In particular, we consider the ALE mappings At defined via the harmonic extensions of the boundary data
onto the entire fluid domain, i.e., the mappings defined by the following boundary value problems on the
reference domain Ω:

∆At = 0 in Ω, (2.6)
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At = η on Γ, (2.7)

At = 0 on Γin ∪ Γout. (2.8)

Written in the ALE framework, system (2.1) reads as follows: Find u and p, with û(x̂, t) = u(At(x̂), t) such
that

ρF

(
∂u

∂t

∣∣∣∣
x̂

+ (u−w) · ∇u
)

= ∇ · σ(u, p), in Ω(t)× (0, T ), (2.9)

∇ · u = 0 in Ω(t)× (0, T ), (2.10)

where

w =
∂At(x̂)

∂t
(2.11)

denotes the domain velocity. The fluid domain can be computed as Ω(t) = (I + At)Ω. Note that
∂f

∂t

∣∣∣∣
x̂

denotes

the time derivative of f evaluated with respect to the reference domain.

2.2. Energy estimate

To state the energy estimate, we introduce the following notation for the projection operator onto the tangent
space of the reference configuration Γ [26]:

Pτu =
d−1∑
i=1

(u · τ i)τ i. (2.12)

Lemma 2.1. Consider the FSI problem modeled by the Navier-Stokes equations in ALE form (2.9)–(2.10) and
the structure equation (2.2), with the flow driven by the dynamic pressure inlet and outlet boundary data:

p+
ρF
2
|u|2 = pin(t) on Γin × (0, T ), (2.13)

p+
ρF
2
|u|2 = pout(t) on Γout × (0, T ), (2.14)

u× n = 0 on Γin ∪ Γout × (0, T ). (2.15)

Then the following formal energy inequality holds for the coupled problem (2.1)–(2.5):

1

2

d

dt

(
ρF ‖u‖2L2(Ω(t)) + ρSω‖∂tη‖2L2(Γ) + c‖η‖2Le(Γ)

)
+ µF ‖D(u)‖2L2(Ω(t)) +

1

α
‖Pτu− Pτξ‖2L2(Γ) ≤ C,

Here, C depends on the initial and boundary data, ‖ · ‖Le(Γ) is the norm associated with the coercive, linear
continuous operator Le, and the constant c is associated with the coercivity of the structure operator L e.

Proof. We multiply (2.9) by u and (2.10) by p, and integrate over Ω(t). Furthermore, we multiply (2.2) by ∂tη
and integrate over Γ. Using the boundary conditions and adding the equations together, we obtain

ρF

∫
Ω(t)

∂tu|x̂ · u+ ρF

∫
Ω(t)

(u−w) · ∇u · u+ 2µF ‖D(u)‖2L2(Ω(t)) +
1

2

d

dt

(
ρSω‖∂tη‖2L2(Γ) + c‖η‖2Le(Γ)

)
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=

∫
Γ

Jσn · (u− ∂tη)−
∫

Γin

pinu · n−
∫

Γout

poutu · n+
ρF
2

∫
Γin∪Γout

|u|2u · n.

(2.16)

We recast the first term to the reference configuration, use the Euler expansion formula, and recast back, yielding

∫
Ω(t)

ρF∂tu|Ω · u =
1

2

d

dt
ρF ‖u‖2L2(Ω(t)) −

1

2

∫
Ω(t)

ρF∇ ·w|u|2.

Integrating one half of the convective term by parts (see [63] for details), we obtain

∫
Ω(t)

((u−w) · ∇)u · u =
1

2

∫
Ω(t)

∇ ·w|u|2 +
1

2

∫
Γ(t)

((u−w) · n) |u|2 +
1

2

∫
Γin∪Γout

u · n|u|2.

Decomposing the interface integral in (2.16) in the normal and tangential components, taking the coupling
conditions into account and estimating the forcing term using usual inequalities (see e.g., [63]), we obtain the
desired energy estimate.

The energy estimate in Lemma 2.1 shows that the proposed model is reasonable in the sense that the total
kinetic and elastic energy of the coupled problem, plus dissipation due to fluid viscosity and slip friction, are
all bounded by a constant depending only on the initial and boundary data.

3. The numerical scheme

The splitting in continuous form. We propose a partitioned scheme which separates the coupled problem
into a fluid sub-problem and a structure sub-problem, which are solved only once at every time step, avoiding
expensive sub-iterations typically associated with Dirichlet–Neumann partitioned FSI schemes [3–5, 43, 54, 77].
The partitioning proposed here is different from the classical partitioned schemes since we deal with the Navier
slip boundary condition, and the coupling between the fluid and structure in the tangential direction to the
interface needs to be carefully split in order to keep the accuracy of the scheme first order, and provide a stable
loosely coupled scheme.

We start by semi-discretizing the problem in time. Let tn = n∆t for n = 1, . . . , N where T = N∆t is the final
time. We will semi-discretize the coupled evolution problem in time using the Lie operator splitting scheme [44]
applied to our coupled problem written as a first-order system in time:

dU

dt
= AU = (A1 +A2)U, t ∈ (0, T ), with U(0) = U0.

Here, A1 and A2 correspond to a fluid and structure operators/sub-problems. Following the Lie splitting strategy,
this problem is semi-discretized in time in such a way that at every sub-interval (tn, tn+1) the sub-problem
determined by the operator A1 is solved (dU/dt = A1U) with the initial data given by the solution from the
previous time step, i.e., the solution at t = tn, and then the sub-problem determined by the operator A2 is solved
(dU/dt = A2U) over (tn, tn+1) with the initial data given by the just calculated solution of the sub-problem A1.
This approach has been used to split FSI problems with the no-slip condition in [12, 17, 59]. Here, we generalize
this approach to deal with the Navier slip condition. We propose to split the normal component of the dynamic
coupling condition (2.3) into two parts by using the Lie splitting strategy: one part will serve as a boundary
condition for the fluid sub-problem, and the other will be a part of the structure sub-problem, such that both
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parts include the time-derivative term (as defined by the Lie splitting):

structure︷ ︸︸ ︷
ρSω∂tξ · n︸ ︷︷ ︸

fluid

+

structure︷ ︸︸ ︷
L eη · n = −Jσn · n+Jσn · n︸ ︷︷ ︸

fluid

structure︷ ︸︸ ︷
−Jσn · n on Γ. (3.1)

Additionally, in the fluid sub-problem the normal component of the kinematic coupling condition (no-
penetration) will be used to replace the structure velocity by the normal trace of the fluid velocity on Γ(t).
Thus, so far we have used the normal component of the dynamic coupling condition and the normal component
of the kinematic coupling condition.

The remaining tangential components of the dynamic and kinematic coupling conditions are split between the
fluid and structure sub-problems as follows. First, the tangential component of the dynamic coupling condition
is rewritten by using the tangential component of the kinematic coupling condition (slip) so that:

ρSω∂tξ · τ + L eη · τ = −Jσn · τ = − 1

α
(ξ − u) · τ on Γ.

The portion:

ρSω∂tξ · τ + L eη · τ = − 1

α
(ξ − u) · τ on Γ,

is then used in the structure sub-problem, and the portion:

−Jσn · τ = − 1

α
(ξ − u) · τ on Γ (3.2)

in the fluid sub-problem.
Thus, the structure sub-problem is defined by:

ρSω∂tξ · n+ L eη · n = −Jσn · n,

ρSω∂tξ · n+ L eη · n = − 1

α
(ξ − u) · τ ,

defined on Γ, and the coupling conditions that enter the fluid sub-problem as boundary conditions for the
Navier-Stokes equations are (from (3.1) and (3.2)):

ρSω∂tu · n+ Jσn · n = Jσn · n,
∂tu · τ + αJσn · τ = ξ · τ .

The splitting scheme in semi-discrete form. To write the splitting in semi-discrete form, we introduce the
following notation for the approximate time derivative:

dtϕ
n+1 =

ϕn+1 −ϕn

∆t
. (3.3)

By using the Backward Euler scheme, the time-discrete numerical scheme is given by the following.
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Step 1 (Structure). Given un and pn from the previous time step, calculate ξn+1 and ηn+1 = ∆tξn+1 + ηn

such that

ρSω
ξn+1 − un

∆t
· n+ Leη

n+1 · n = −Jnσ(un, pn)n · n on Γ (3.4)

ρSω
ξn+1 − ξn

∆t
· τ i + Leη

n+1 · τ i = − 1

α
(ξn+1 − un) · τ i, i = 1, . . . , d− 1 on Γ. (3.5)

Step 2 (Fluid). Given the thin structure velocity ξn+1, calculate un+1 and pn+1 such that:

ρF
un+1|Ω − un|Ω

∆t
+ ρF ((un −wn) · ∇)un+1 = ∇ · σ(un+1, pn+1) in Ω(tn), (3.6)

∇ · un+1 = 0 in Ω(tn), (3.7)

ρSω
un+1 − ξn+1

∆t
· n = −Jnσ(un+1, pn+1)n · n+ Jnσ(un, pn)n · n on Γ, (3.8)

un+1 · τ i + αJnσ(un+1, pn+1) n · τ i = ξn+1 · τ i, i = 1, . . . , d− 1 on Γ. (3.9)

Step 3 (Fluid domain update). Given the displacement ηn+1 of the boundary Γ, we update the fluid domain
Ω(tn+1) in a classical way by using the harmonic extension Ext(ηn+1) of the boundary data ηn+1 onto the entire
domain, and compute the ALE velocity wn+1 which is defined as the time derivative of the ALE mapping .
More precisely, we calculate the ALE mapping as:

Atn+1(x̂) = x̂+ Ext(ηn+1) ∀x̂ ∈ Ω,

and update

Ω(tn+1) = Atn+1(Ω), wn+1 =
dAtn+1

dt
=
xn+1 − xn

∆t
, (3.10)

where xn+1 = A −1
tn+1(x̂) ∈ Ω(tn+1) and xn = A −1

tn (x̂) ∈ Ω(tn), for x̂ ∈ Ω.

Remark 1. We remark that in this scheme the kinematic coupling condition describing continuity of the normal
components of the velocity between the fluid and thin structure is satisfied asynchronously, and not identically.
It is, in general, not true in this scheme that un · nF = ξn · nF . Only in the limit as ∆t → 0, this will be
satisfied. In fact, it can be shown that this condition is satisfied to the second-order accuracy in ∆t.

Remark 2. We further remark that the splitting proposed here is slightly different from the splitting discussed
in the existence proof in [63], and it is significantly different from the splitting schemes proposed by the authors
in [13, 60] to solve FSI problems with the no-slip kinematic coupling condition. One important difference is the
form of the Robin boundary condition for the fluid sub-problem. In contrast with the earlier works [10, 13–
15, 60, 63], the Robin boundary condition (3.8) ties the fluid and structure inertia implicitly only in the normal
component of the inertia. The lack of implicit coupling between the fluid and structure inertia in loosely coupled
schemes for problems with no-slip condition typically leads to instabilities due to the added mass effect. We
show below that this is not the case here. Our energy estimate for the semi-discretized problem, presented in
Theorem 4.1, shows that the energy of the semi-discretized problem is bounded, uniformly in ∆t, indicating that
this scheme is also unconditionally stable. In the tangential direction dissipation due to slip friction is sufficient
to provide stability of our scheme. It is because of friction due to slip that our scheme does not require implicit
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coupling between the fluid and structure inertia in both the normal and tangential direction, and still provides
an unconditionally stable partitioned scheme without the need for sub-iterations at every time step.

3.1. The fully discretized scheme in weak form

We discretize problem (3.5)–(3.9) in space using a finite element method approach. For this purpose we
introduce the following spaces:

V F (t) = {ϕ : Ω(t)→ Rd| ϕ = ϕ̂ ◦ (At)
−1, ϕ̂ ∈ (H1(Ω))d}, (3.11)

Q(t) = {ψ : Ω(t)→ R| ψ = ψ̂ ◦ (At)
−1, ψ̂ ∈ L2(Ω)}, (3.12)

V S = {χ ∈ (H1(Γ))d | χ = 0 on ∂Γ}, (3.13)

for all t ∈ [0, T ]. These are the spaces associated with the fluid, pressure, and structure problem, respectively.
We recall here that the thin structure operator LE , obtained from the elastic energy of the thin structure,

is coercive and continuous on the space V S , which defines a bilinear form on V s:

aE(χ,η) =

∫
Γ

LEχ · η,

and the norm

‖η‖2E := aE(η,η). (3.14)

The finite element spaces are then defined as the subspaces V fh ⊂ V f , Qh ⊂ Q,V Th ⊂ V T and V Sh ⊂ V S based

on a conforming finite element triangulation with maximum triangle diameter h. We assume that spaces V fh
and Qfh are inf-sup stable. The main steps of the scheme in the weak formulation are given as follows:

Step 1 (Structure): Given unh and pnh from the previous time step, find ξh and ηn+1
h = ∆tξn+1

h + ηnh such
that for all χh ∈ V Sh we have:

ρSω

∆t

∫
Γ

Pτξ
n+1
h · Pτχh +

ρSω

∆t

∫
Γ

(ξn+1
h · n)(χh · n) +

∫
Γ

Leη
n+1
h · χh +

1

α

∫
Γ

Pτξ
n+1
h · Pτχh

=
ρSω

∆t

∫
Γ

Pτξ
n
h · Pτχh +

ρSω

∆t

∫
Γ

(unh · n)(χh · n) +
1

α

∫
Γ

Pτu
n · Pτχh −

∫
Γ

Jn (σ(unh, p
n
h)n · n) (χh · n).

(3.15)

Step 2 (Fluid): Given the thin structure velocity ξn+1
h , calculate un+1

h and pn+1
h such that for all (ϕh, ψh) ∈

V Fh ×Qh we have

ρF

∫
Ω(tn)

dtu
n+1
h ·ϕh + ρF

∫
Ω(tn)

((unh −wn
h) · ∇)un+1

h ·ϕh + 2µF

∫
Ω(tn)

D(un+1
h ) : D(ϕh)

−
∫

Ω(tn)

pn+1
h ∇ ·ϕh +

∫
Ω(tn)

ψh∇ · un+1
h +

1

α

∫
Γ

Pτu
n+1
h · Pτϕh +

ρSω

∆t

∫
Γ

(un+1
h · n)(ϕh · n)

=
1

α

∫
Γ

Pτξ
n+1
h · Pτϕh +

ρSω

∆t

∫
Γ

(ξn+1
h · n)(ϕh · n) +

∫
Γ

Jn (σ(unh, p
n
h)n · n) (ϕh · n)

−
∫

Γin

pin(tn+1)ϕh · n−
∫

Γout

pout(t
n+1)ϕh · n. (3.16)
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4. Stability analysis

To simplify stability and convergence analysis and focus on the issues related to the splitting strategy, we
will assume that the fluid domain is fixed (i.e., geometric nonlinearities are neglected) and neglect the nonlinear
fluid advection. These two issues are related since energy estimates for the problem with advection must include
moving domain in order to control the cubic terms that arise in the corresponding energy [60, 63]. These
simplifying assumptions are commonly used in stability analysis of FSI partitioned schemes [11, 37, 38]. The
unconditional stability of the proposed scheme is given by the following theorem:

Theorem 4.1. Let (ξnh,η
n
h,u

n
h, p

n
h) be a solution of (3.15)–(3.16) with negligible nonlinear fluid advection and

fixed fluid domain. Then, for each ∆t > 0, there exist the constants CP , CK , CT > 0, independent of ∆t, such
that the following a priori energy estimate holds:

EN + DN + H N + N N ≤ E 0 + H 0 +
C2
TCPC

2
K∆t

2µF
‖pin(tn+1)‖2L2(Γin) +

C2
TCPC

2
K∆t

2µF
‖pout(tn+1)‖2L2(Γout)

,

(4.1)

where EN is the sum of the kinetic energy of the fluid, the kinetic energy of the structure and the elastic energy
of the structure:

EN =
ρF
2
‖uNh ‖2L2(Ω) +

ρSω

2

(
‖PτξNh ‖2L2(Γ) + ‖uNh · n‖2L2(Γ)

)
+

1

2
‖ηNh ‖2E ,

DN denotes dissipation due to fluid viscosity and due to slip between the fluid and structure:

DN = 2µF∆t
N−1∑
n=0

‖D(un+1
h )‖2L2(Ω) +

∆t

2α

N−1∑
n=0

(
‖Pτ (ξn+1

h − unh)‖2L2(Γ) + ‖Pτ (un+1
h − ξn+1

h )‖2L2(Γ)

)
,

and H N and N N denote the terms due to numerical dissipation, defined by:

H N =
∆t

2α
‖PτuNh ‖2L2(Γ) +

∆t2

2ρSω
‖σ(uN , pN )n · n‖2L2(Γ),

N N =
ρF
2

N−1∑
n=0

‖un+1
h − unh‖2L2(Ω) +

ρSω

2

N−1∑
n=0

‖Pτ (ξn+1
h − ξnh)‖2L2(Γ)

+
N−1∑
n=0

‖(ξn+1
h − unh) · n‖2L2(Γ) +

1

2

N−1∑
n=0

‖ηn+1
h − ηnh‖2E ,

where ‖ · ‖E is defined in (3.14) by the elastic operator LE.

Proof. We replace the test functions χh in (3.15), and (ϕh, ψh) in (3.16), by the following: χh = ξn+1 = dtη
n+1

in (3.15) and (ϕh, ψh) = (un+1
h , pn+1

h ) in (3.16). After multiplying the two equations by ∆t, adding them
together, and using the identity 2a(a− b) = a2 − b2 + (a− b)2 we get:

ρSω

2

(
‖Pτξn+1

h ‖2L2(Γ) − ‖Pτξ
n
h‖2L2(Γ) + ‖Pτ (ξn+1

h − ξnh)‖2L2(Γ)

)
+

1

2

(
‖ηn+1

h ‖2E − ‖ηnh‖2E + ‖ηn+1
h − ηnh‖2E

)
+
ρSω

2

(
‖un+1

h · n‖2L2(Γ) − ‖u
n
h · n‖2L2(Γ) + ‖(un+1

h − ξn+1
h ) · n‖2L2(Γ) + ‖(ξn+1

h − unh) · n‖2L2(Γ)

)
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+
∆t

2α

(
‖Pτun+1

h ‖2L2(Γ) − ‖Pτu
n
h‖2L2(Γ) + ‖Pτ (un+1

h − ξn+1
h )‖2L2(Γ) + ‖Pτ (ξn+1

h − unh)‖2L2(Γ)

)
+
ρF
2

(
‖un+1

h ‖2L2(Ω) − ‖u
n
h‖2L2(Ω) + ‖un+1

h − unh‖2L2(Ω)

)
+ 2∆tµF ‖D(un+1

h )‖2L2(Ω)

= ∆t

∫
Γ

(σ(unh, p
n
h)n · n) (un+1

h · n− ξn+1
h · n)︸ ︷︷ ︸

I

−∆t

∫
Γin

pin(tn+1)un+1
h · ndx−∆t

∫
Γout

pout(t
n+1)un+1

h · ndx.

(4.2)

To express the right hand-side in terms of the L2-norms of the fluid and structure quantities we notice that
(3.8) implies:

un+1 · n− ξn+1 · n = − ∆t

ρSω

(
σ(un+1, pn+1)n− σ(un, pn)n

)
· n on Γ.

Now, the integral I on the right hand-side of (4.2) becomes:

I =

∫
Γ

(σ(unh, p
n
h)n · n) (un+1

h · n− ξn+1
h · n)

=
∆t

2ρSω
‖σ(un, pn)n · n‖2L2(Γ) −

∆t

2ρSω
‖σ(un+1, pn+1)n · n‖2L2(Γ)

+
∆t

2ρSω
‖
(
σ(un+1, pn+1)n− σ(un, pn)n

)
· n‖2L2(Γ)

=
∆t

2ρSω
‖σ(un, pn)n · n‖2L2(Γ) −

∆t

2ρSω
‖σ(un+1, pn+1)n · n‖2L2(Γ)

+
ρSω

2∆t
‖(un+1 − ξn+1) · n‖2L2(Γ). (4.3)

After canceling equal terms with opposite signs, we obtain the following energy equality:

ρSω

2

(
‖Pτξn+1

h ‖2L2(Γ) − ‖Pτξ
n
h‖2L2(Γ) + ‖Pτ (ξn+1

h − ξnh)‖2L2(Γ)

)
+

1

2

(
‖ηn+1

h ‖2E − ‖ηnh‖2E + ‖ηn+1
h − ηnh‖2E

)
+
ρSω

2

(
‖un+1

h · n‖2L2(Γ) − ‖u
n
h · n‖2L2(Γ) + ‖(ξn+1

h − unh) · n‖2L2(Γ)

)
+

∆t

2α

(
‖Pτun+1

h ‖2L2(Γ) − ‖Pτu
n
h‖2L2(Γ) + ‖Pτ (ξn+1

h − unh)‖2L2(Γ) + ‖Pτ (un+1
h − ξn+1

h )‖2L2(Γ)

)
+
ρF
2

(
‖un+1

h ‖2L2(Ω) − ‖u
n
h‖2L2(Ω) + ‖un+1

h − unh‖2L2(Ω)

)
+ 2∆tµF ‖D(un+1

h )‖2L2(Ω)

+
∆t2

2ρSω
‖σ(un+1, pn+1)n · n‖2L2(Γ) −

∆t2

2ρSω
‖σ(un, pn)n · n‖2L2(Γ)

= −∆t

∫
Γin

pin(tn+1)un+1
h · ndx−∆t

∫
Γout

pout(t
n+1)un+1

h · ndx. (4.4)

Using the Cauchy–Schwarz and Young’s inequalities with ε > 0, as well as the trace, Poincare and Korn
inequalities, we obtain: ∣∣∣∣−∆t

∫
Γin

pin(tn+1)un+1
h · ndx−∆t

∫
Γout

pout(t
n+1)un+1

h · ndx
∣∣∣∣
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≤ C2
TCPC

2
K∆t

2µF
‖pin(tn+1)‖2L2(Γin) +

C2
TCPC

2
K∆t

2µF
‖pout(tn+1)‖2L2(Γout)

+ µF∆t‖D(un+1
h )‖2L2(Ω) (4.5)

Taking into account (4.5) and summing from 0, . . . , N − 1, we obtain the desired estimate.

5. Convergence analysis

To study convergence of our scheme, we compare the solutions of the fully discretized problem (3.15)–(3.16)
obtained using our partitioned scheme, with the weak solution of the monolithic, continuous problem. Since
the test functions of the partitioned scheme do not satisfy the no-penetration condition, we will formulate the
continuous, monolithic weak form using those same test functions, and then compare the two solutions.

For spatial discretization we use the Lagrangian finite elements of polynomial degree k for all the variables,
except for the fluid pressure, for which we use elements of degree s < k. We assume that our finite element
spaces satisfy the usual approximation properties, and that the fluid velocity–pressure spaces satisfy the discrete
inf-sup condition.

Assume that the continuous solution, in addition to belonging to the space

V FD = {u ∈ V F | ∇ · u = 0},

satisfies the following additional regularity assumptions:

u ∈ H2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;Hk+1(Ω)), (5.1)

u|Γ ∈ L2(0, T ;Hk+1(Γ)) ∩ L∞(0, T ;Hk+1(Γ)), (5.2)

∂tu|Γ ∈ L2(0, T ;Hk+1(Γ)) ∩H1(0, T ;L2(Γ)) (5.3)

p ∈ L2(0, T ;Hs+1(Ω)), p|Γ ∈ H1(0, T ;Hs+1(Γ)), (5.4)

η ∈W 1,∞(0, T ;Hk+1(Γ)). (5.5)

We introduce the following time discrete norms:

‖ϕ‖L2(0,T ;X) =

(
∆t

N−1∑
n=0

∥∥ϕn+1
∥∥2

X

) 1
2

, ‖ϕ‖L∞(0,T ;X) = max
0≤n≤N

‖ϕn‖X , (5.6)

where X ∈ {Hk(Ω), Hk(Γ), E}. Note that they are equivalent to the continuous norms since we use piecewise
constant approximations in time. Furthermore, the following inequality holds

∆t
N−1∑
n=1

‖dtϕ‖2X . ‖∂tϕ‖2L2(0,T ;X) . (5.7)

Here, and in the rest of this text, we use a . (&)b to denote the inequality a ≤ (≥)Cb, where constant C is
independent of the time step size ∆t, mesh size h and slip rate α.

Let Ih be the Lagrangian interpolation operator onto V Sh . Similarly as in [17, 38], we introduce a Stokes-like
projection operator (Sh, Ph) : V F → V Fh ×Qh, defined for all u ∈ V F by

(Shu, Phu) ∈ V Fh ×Qh, (5.8)

(Shu)|Γ = Ih(u|Γ), (5.9)
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2µF

∫
Ω

D(Shu) : D(ϕh)−
∫

Ω

(Phu)∇ ·ϕh = 2µF

∫
Ω

D(u) : D(ϕh), ∀ϕh ∈ V Fh such that ϕh|Γ = 0, (5.10)∫
Ω

q∇ · (Shu) = 0, ∀q ∈ Qh. (5.11)

Projection operators Sh and Ih satisfy the following approximation properties (see [38], Thm. B.5 and [27]):

‖D(u− Shu)‖L2(Ω) . hk ‖u‖Hk+1(Ω) for all u ∈ V F , (5.12)

‖ξ − Ihξ‖L2(Γ) + h ‖ξ − Ihξ‖H1(Γ) . hk+1 ‖ξ‖Hk+1(Γ) for all ξ ∈ V S . (5.13)

Let Πh : Q→ Qh be a projection operator onto Qh such that

‖p−Πhp‖L2(Ω) . hs+1 ‖p‖Hs+1(Ω) , for all p ∈ Q. (5.14)

Let Rh be the Ritz projector onto V Sh such that for all η ∈ V S

ae(η −Rhη,χh) = 0 for all χh ∈ V Sh . (5.15)

Then, the finite element theory for Ritz projections [27] gives

‖η −Rhη‖E . hk ‖η‖Hk+1(Γ) for all η ∈ V S . (5.16)

We will use these results to compare the solution of our fully discretized partitioned scheme with the continuous
solution. For this purpose we now present the monolithic, continuous, weak formulation, using the test function
in V Sh × V Fh ×Qh, which do not necessarily satisfy the no-penetration condition.

Monolithic, weak formulation: Find (ξn+1 = ∂tη
n+1,un+1, pn+1) ∈ V S × V F ×Q with un+1 ·n = ξn+1 ·n

on Γ such that for all (χ,ϕ, ψ) ∈ V Sh × V Fh ×Qh we have

ρF

∫
Ω

∂tu
n+1 ·ϕh + 2µF

∫
Ω

D(un+1) : D(ϕh)−
∫

Ω

pn+1∇ ·ϕh + ρSω

∫
Γ

∂tξ
n+1
h · χh

+

∫
Γ

Leη
n+1 · χh +

1

α

∫
Γ

Pτ (un+1 − ξn+1) · Pτ (ϕh − χh)

=

∫
Γ

(σ(un+1, pn+1)n · n)(ϕh · n− χh · n)−
∫

Γin

pin(tn+1)ϕh · n−
∫

Γout

pout(t
n+1)ϕh · n. (5.17)

The error equation. Subtracting (3.15)–(3.16) from (5.17), we obtain the following error equation

ρF

∫
Ω

dt(u
n+1 − un+1

h ) ·ϕh + 2µF

∫
Ω

D(un+1 − un+1
h ) : D(ϕh)−

∫
Ω

(pn+1 − pn+1
h )∇ ·ϕh

−
∫

Ω

ψh∇ · un+1
h +

ρSω

∆t

∫
Γ

Pτ (ξn+1 − ξn+1
h ) · Pτχh +

ρSω

∆t

∫
Γ

(ξn+1 · n− ξn+1
h · n)(χh · n)

+

∫
Γ

Le(η
n+1 − ηn+1

h ) · χh +
1

α

∫
Γ

Pτ (ξn+1
h − ξn+1) · Pτχh +

1

α

∫
Γ

Pτ (un+1 − un+1
h ) · Pτϕh

+
ρSω

∆t

∫
Γ

(un+1 · n− un+1
h · n)(ϕh · n)

=

∫
Γ

(σ(un − unh, pn − pnh)n · n)(ϕh · n− χh · n)
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+
ρSω

∆t

∫
Γ

Pτ (ξn − ξnh) · Pτχh +
ρSω

∆t

∫
Γ

(un · n− unh · n)(χh · n) +
ρSω

∆t

∫
Γ

(ξn+1 · n− ξn+1
h · n)(ϕh · n)

+
1

α

∫
Γ

Pτ (ξn+1 − ξn+1
h ) · Pτϕh +

1

α

∫
Γ

Pτ (un − unh) · Pτχh + R1(ϕ,χ), (5.18)

for all (χ,ϕ, ψ) ∈ V Sh × V Fh ×Qh, where

R1(ϕ,χ) = ρF

∫
Ω

(dtu
n+1 − ∂tun+1) ·ϕh −

1

α

∫
Γ

Pτ (un+1 − un) · Pτχh,

− ρSω
∫

Γ

(∂tξ
n+1 · n− dtξn+1 · n)(χh · n)− ρSω

∫
Γ

Pτ (∂tξ
n+1 − dtξn+1) · Pτχh

+

∫
Γ

(σ(un+1 − un, pn+1 − pn)n · n)(ϕh · n− χh · n).

We will use the error equation (5.18) to obtain the L2-error estimates, namely the estimates of the quantities:

‖un − unh‖2L2(Ω), ‖ξ
n − ξnh‖2L2(Γ), ‖η

n − ηnh‖2E , and ‖Pτ (un − unh)‖2L2(Γ).

We split the error of the method as a sum of the approximation error θn+1
r and the truncation error δn+1

r , for
r ∈ {f, p, η, ξ} as follows:

en+1
f = un+1 − un+1

h = (un+1 − Shun+1) + (Shu
n+1 − un+1

h ) = θn+1
f + δn+1

f , (5.19)

en+1
p = pn+1 − pn+1

h = (pn+1 −Πhp
n+1) + (Πhp

n+1 − pn+1
h ) = θn+1

p + δn+1
p , (5.20)

en+1
η = ηn+1 − ηn+1

h = (ηn+1 −Rhηn+1) + (Rhη
n+1 − ηn+1

h ) = θn+1
η + δn+1

η , (5.21)

en+1
ξ = ξn+1 − ξn+1

h = (ξn+1 − Ihξn+1) + (Ihξ
n+1 − ξn+1

h ) = θn+1
ξ + δn+1

ξ . (5.22)

The main result of this section is stated in the following theorem.

Theorem 5.1. Let ∆t > 0 and h > 0. Consider the solution (ξnh,η
n
h,u

n
h, p

n
h) of (3.15)–(3.16) at tn = n∆t, with

discrete initial data (ξ0
h,η

0
h,u

0
h, p

0
h) = (Ihξ

0, Rhη
0, Shu

0,Πhp
0), and let (ξn,ηn,un, pn) be the exact solution of

the continuous problem (5.17) at tn = n∆t, with the same initial data. Assume that the exact solution satisfies
assumptions (5.1)–(5.5) and that

∆t < min

{
1,

ρF
ρSωCTIk2

h

}
. (5.23)

Then, for each n ≤ N , the following estimate holds:

ρF
2
‖un − unh‖2L2(Ω) +

ρSω

2
‖ξn − ξnh‖2L2(Γ) +

1

2
‖ηn − ηnh‖2E +

∆t

2α
‖Pτ (un − unh)‖2L2(Γ)

. eT
(
h2kA1 + h2k+2A2 + h2s+2A3 + ∆t2A4 + ∆t3A5

)
where

A1 = ‖ξ‖2L2(0,T ;Hk+1(Γ)) +
ρ2
f

µ
‖∂tu‖2L2(0,T ;Hk+1(Ω)) + µ‖u‖2L2(0,T ;Hk+1(Ω))

+ ‖u‖L∞(0,T ;Hk+1(Ω)) + ‖ξ‖L∞(0,T ;Hk+1(Γ)) + ‖η‖L∞(0,T ;Hk+1(Γ))
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A2 = ρ2
Sω

2

(
1

µ
+

1

ρSω

)
‖∂tξ · n‖2L2(0,T ;Hk+1(Γ)) +

(
ρSω +

∆t2

ρSωα2

)
‖Pτ (∂tξ)‖2L2(0,T ;Hk+1(Γ))

A3 =
1

µ
‖p‖2L2(0,T ;Hs+1(Ω))

A4 =
ρ2
F

µF
‖∂ttu‖2L2(0,T,L2(Ω)) +

1

α2ρSω
‖Pτ (∂tu

n+1)‖2L2(0,T,L2(Γ)) + ρ2
Sω

2

(
1

µF
+

1

ρS

)
‖∂ttξ · n‖2L2(0,T,L2(Γ))

+ ρSω‖Pτ (∂ttξ)‖2L2(0,T,L2(Γ)) +
1

ρSω
‖∂tσn‖2L2(0,T ;L2(Γ)) + ‖∂ttη‖2L2(0,T ;E),

A5 =
1

ρSω
‖∂tσn‖2L2(0,T ;L2(Γ)).

Proof. We start by rearranging the error equation (5.18) and taking the property (5.15) of the Ritz projection
operator into account, to get

ρF

∫
Ω

dtδ
n+1
f ·ϕh + 2µF

∫
Ω

D(δn+1
f ) : D(ϕh)−

∫
Ω

δn+1
p ∇ ·ϕh −

∫
Ω

ψh∇ · un+1
h +

ρSω

∆t

∫
Γ

Pτ (δn+1
ξ ) · Pτχh

+
ρSω

∆t

∫
Γ

(δn+1
ξ · n)(χh · n) +

∫
Γ

Le(δ
n+1
η ) · χh +

1

α

∫
Γ

Pτ (δn+1
ξ ) · Pτχh +

1

α

∫
Γ

Pτ (δn+1
f ) · Pτϕh

+
ρSω

∆t

∫
Γ

(δn+1
f · n)(ϕh · n)

=

∫
Γ

(σ(enf , e
n
p )n · n)(ϕh · n− χh · n) +

ρSω

∆t

∫
Γ

Pτ (δnξ ) · Pτχh +
ρSω

∆t

∫
Γ

(δnf · n)(χh · n)

+
ρSω

∆t

∫
Γ

(δn+1
ξ · n)(ϕh · n) +

1

α

∫
Γ

Pτ (δn+1
ξ ) · Pτϕh +

1

α

∫
Γ

Pτ (δnf ) · Pτχh − ρF
∫

Ω

dtθ
n+1
f ·ϕh

− 2µF

∫
Ω

D(θn+1
f ) : D(ϕh) +

∫
Ω

θn+1
p ∇ ·ϕh −

ρSω

∆t

∫
Γ

Pτ (θn+1
ξ ) · Pτχh −

ρSω

∆t

∫
Γ

(θn+1
ξ · n)(χh · n)

− 1

α

∫
Γ

Pτ (θn+1
ξ ) · Pτχh −

1

α

∫
Γ

Pτ (θn+1
f ) · Pτϕh −

ρSω

∆t

∫
Γ

(θn+1
f · n)(ϕh · n)

+
ρSω

∆t

∫
Γ

Pτ (θnξ ) · Pτχh +
ρSω

∆t

∫
Γ

(θnf · n)(χh · n) +
ρSω

∆t

∫
Γ

(θn+1
ξ · n)(ϕh · n)

+
1

α

∫
Γ

Pτ (θn+1
ξ ) · Pτϕh +

1

α

∫
Γ

Pτ (θnf ) · Pτχh + R1(ϕ,χ). (5.24)

Let ϕh = ∆tδn+1
f ,χh = ∆tδn+1

ξ and ψh = ∆tδn+1
p . Thanks to (5.11), the pressure terms simplify as follows:

−∆t

∫
Ω

δn+1
p ∇ · δn+1

f −∆t

∫
Ω

δn+1
p ∇ · un+1

h = −∆t

∫
Ω

δn+1
p ∇ · (Shun+1) = 0.

Equation (5.24) now becomes

ρF
2

(
‖δn+1

f ‖2L2(Ω) − ‖δ
n
f ‖2L2(Ω) + ‖δn+1

f − δnf ‖2L2(Ω)

)
+ 2µF∆t‖D(δn+1

f )‖2L2(Ω)

+
ρSω

2

(
‖Pτ (δn+1

ξ )‖2L2(Γ) − ‖Pτ (δnξ )‖2L2(Γ) + ‖Pτ (δn+1
ξ − δnξ )‖2L2(Γ)

)
+ ∆t

∫
Γ

Le(δ
n+1
η ) · δn+1

ξ

+
ρSω

2

(
‖δn+1

f · n‖2L2(Γ) − ‖δ
n
f · n‖2L2(Γ) + ‖(δn+1

ξ − δnf ) · n‖2L2(Γ) + ‖(δn+1
f − δn+1

ξ ) · n‖2L2(Γ)

)
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+
∆t

2α

(
‖Pτ (δn+1

f )‖2L2(Γ) − ‖Pτ (δnf )‖2L2(Γ) + ‖Pτ (δn+1
ξ − δnf )‖2L2(Γ) + ‖Pτ (δn+1

f − δn+1
ξ )‖2L2(Γ)

)
= ∆t

∫
Γ

(σ(enf , e
n
p )n · n)(δn+1

f · n− δn+1
ξ · n)−∆tρF

∫
Ω

dtθ
n+1
f · δn+1

f − 2µF∆t

∫
Ω

D(θn+1
f ) : D(δn+1

f )

+ ∆t

∫
Ω

θn+1
p ∇ · δn+1

f − ρSω
∫

Γ

Pτ (θn+1
ξ ) · Pτδn+1

ξ − ρSω
∫

Γ

(θn+1
ξ · n)(δn+1

ξ · n)− ∆t

α

∫
Γ

Pτ (θn+1
ξ ) · Pτδn+1

ξ

− ∆t

α

∫
Γ

Pτ (θn+1
f ) · Pτδn+1

f − ρSω
∫

Γ

(θn+1
f · n)(δn+1

f · n) + ρSω

∫
Γ

Pτ (θnξ ) · Pτδn+1
ξ

+ ρSω

∫
Γ

(θnf · n)(δn+1
ξ · n) + ρSω

∫
Γ

(θn+1
ξ · n)(δn+1

f · n) +
∆t

α

∫
Γ

Pτ (θn+1
ξ ) · Pτδn+1

f

+
∆t

α

∫
Γ

Pτ (θnf ) · Pτδn+1
ξ + ∆tR1(δn+1

f , δn+1
ξ ). (5.25)

We rewrite the term ∆t
∫

Γ
Le(δ

n+1
η ) · δn+1

ξ as follows:

∆t

∫
Γ

Le(δ
n+1
η ) · δn+1

ξ = ∆taE(δn+1
η , dtδ

n+1
η + Ihξ

n+1 −Rhdtηn+1) =
1

2
‖δn+1

η ‖2E −
1

2
‖δnη‖2E

+
∆t2

2
‖dtδn+1

η ‖2E + ∆taE(δn+1
η , Ihξ

n+1 −Rhdtηn+1).

Note that Ihξ
n+1 − Rhdtηn+1 = Ihξ

n+1 − ξn+1 + ξn+1 − Rhdtηn+1 = −θn+1
ξ + dtθ

n+1
η + ∂tη

n+1 − dtηn+1.
Hence, using property (5.15) of the Ritz projection operator, the Cauchy-Schwartz and Young’s inequalities, we
have

∆taE(δn+1
η , Ihξ

n+1 −Rhdtηn+1) ≤ ∆t‖θn+1
ξ ‖2E +

∆t

4
‖δn+1

η ‖2E + ∆tR2(δn+1
η ), (5.26)

where

R2(δn+1
η ) = aE(δn+1

η , ∂tη
n+1 − dtηn+1).

To estimate the first term on the right hand side of (5.25), similarly as in [17], we note that (δn+1
f −δn+1

ξ ) ·n =

−(un+1
h −ξn+1

h ) ·n. Furthermore, after adding and subtracting the continuous velocity and pressure on the right
hand side of (3.8), we see that the following relation holds on Γ:

(δn+1
f − δn+1

ξ ) · n =
∆t

ρSω

(
σ(enf , e

n
p )n− σ(en+1

f , en+1
p )n+ σ(un+1 − un, pn+1 − pn)n

)
· n. (5.27)

After employing the identity (5.27), we get:

∆t

∫
Γ

(σ(enf , e
n
p )n · n)(δn+1

f · n− δn+1
ξ · n)

=
∆t2

ρSω

∫
Γ

(σ(enf , e
n
p )n · n)

(
σ(enf , e

n
p )n · n− σ(en+1

f , en+1
p )n · n

)
dS︸ ︷︷ ︸

T1

+
∆t2

ρSω

∫
Γ

(σ(enf , e
n
p )n · n)

(
σ(un+1 − un, pn+1 − pn)n · n

)
dS.︸ ︷︷ ︸

T2.

(5.28)
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The term T1 can be estimated as follows:

T1 = − ∆t2

2ρSω
‖σ(en+1

f , en+1
p )n · n‖2L2(Γ) +

∆t2

2ρSω
‖σ(enf , e

n
p )n · n‖2L2(Γ)

+
∆t2

2ρSω
‖σ(en+1

f , en+1
p )n · n− σ(enf , e

n
p )n · n‖2L2(Γ). (5.29)

To estimate the last term in (5.29), we again use identity (5.27), (3.8) and Young’s inequality as follows:

∆t2

2ρSω
‖σ(en+1

f , en+1
p )n · n− σ(enf , e

n
p )n · n‖2L2(Γ)

=
∆t2

2ρSω

∥∥∥σ(un+1 − un, pn+1 − pn)n · n− ρSω

∆t
(δn+1
f − δn+1

ξ ) · n
∥∥∥2

L2(Γ)

=
∆t2

2ρSω

∥∥σ(un+1 − un, pn+1 − pn)n · n
∥∥2

L2(Γ)
+
ρSω

2
‖(δn+1

f − δn+1
ξ ) · n‖2L2(Γ)

−∆t

∫
Γ

(δn+1
f · n− δn+1

ξ · n) σ(un+1 − un, pn+1 − pn)n · n dS

≤
(

∆t2

2ρSω
+

4∆t

ρSω

)∥∥σ(un+1 − un, pn+1 − pn)n · n
∥∥2

L2(Γ)
+

(
ρSω

2
+
ρSω∆t

16

)
‖(δn+1

f − δn+1
ξ ) · n‖2L2(Γ).

(5.30)

Finally, we estimate T2 using the Cauchy-Schwartz inequality and Young’s inequality to obtain:

T2 =
∆t2

ρSω

∫
Γ

(σ(enf , e
n
p )n · n) ·

(
σ(un+1 − un, pn+1 − pn)n · n

)
dS

≤ ∆t3

4ρSω

∥∥σ(enf , e
n
p )n · n

∥∥2

L2(Γ)
+

∆t

ρSω

∥∥σ (un+1 − un, pn+1 − pn
)
n · n

∥∥2

L2(Γ)
. (5.31)

We bound the remaining terms in (5.25) as follows. First, by using the Cauchy–Schwartz, Young’s, Poincaré–
Friedrichs, and Korn’s inequalities, we obtain:

−∆tρF

∫
Ω

dtθ
n+1
f · δn+1

f − 2µF∆t

∫
Ω

D(θn+1
f ) : D(δn+1

f ) + ∆t

∫
Ω

θn+1
p ∇ · δn+1

f

.
∆tρ2

f

µ
‖dtθn+1

f ‖2L2(Ω) + ∆tµ‖D(θn+1
f )‖2L2(Ω) +

∆t

µ
‖θn+1
p ‖2L2(Ω) +

µ∆t

2
‖D(δn+1

f )‖2L2(Ω).

Next, noting that θf |Γ = θξ, we have

− ρSω
∫

Γ

Pτ (θn+1
ξ ) · Pτδn+1

ξ − ρSω
∫

Γ

(θn+1
ξ · n)(δn+1

ξ · n) + ρSω

∫
Γ

Pτ (θnξ ) · Pτδn+1
ξ

+ ρSω

∫
Γ

(θnf · n)(δn+1
ξ · n)− ρSω

∫
Γ

(θn+1
f · n)(δn+1

f · n) + ρSω

∫
Γ

(θn+1
ξ · n)(δn+1

f · n)

− ∆t

α

∫
Γ

Pτ (θn+1
ξ ) · Pτδn+1

ξ − ∆t

α

∫
Γ

Pτ (θn+1
f ) · Pτδn+1

f +
∆t

α

∫
Γ

Pτ (θn+1
ξ ) · Pτδn+1

f

+
∆t

α

∫
Γ

Pτ (θnf ) · Pτδn+1
ξ
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= −ρSω∆t

∫
Γ

(dtθ
n+1
ξ · n)(δn+1

ξ · n)︸ ︷︷ ︸
T3

−ρSω∆t

∫
Γ

Pτ (dtθ
n+1
ξ ) · Pτ (δn+1

ξ )− ∆t2

α

∫
Γ

Pτ (dtθ
n+1
ξ ) · Pτδn+1

ξ︸ ︷︷ ︸
T4

. (5.32)

By rewriting T3 and using the Cauchy-Schwartz, Poincaré-Friedrichs, Korn’s and Young’s inequalities, we get

T3 = ρSω∆t

∫
Γ

(dtθ
n+1
ξ · n)(δn+1

f − δn+1
f − δn+1

ξ ) · n

= −ρSω∆t

∫
Γ

(dtθ
n+1
ξ · n)(δn+1

f · n) + ρSω∆t

∫
Γ

dtθ
n+1
ξ · n(δn+1

f − δn+1
ξ ) · n

. ∆tρ2
Sω

2

(
1

µ
+

1

ρSω

)
‖dtθn+1

ξ · n‖2L2(Γ) +
µ∆t

2
‖D(δn+1

f )‖2L2(Ω) +
∆tρSω

16
‖(δn+1

f − δn+1
ξ ) · n‖2L2(Γ).

Similarly, we have

T4 = −ρSω∆t

∫
Γ

Pτ (dtθ
n+1
ξ ) · Pτ (δn+1

ξ )− ∆t2

α

∫
Γ

Pτ (dtθ
n+1
ξ ) · Pτδn+1

ξ

≤ 2∆t

(
ρSω +

∆t2

ρSωα2

)
‖Pτ (dtθ

n+1
ξ )‖2L2(Γ) +

ρSω∆t

4
‖Pτ (δn+1

ξ )‖2L2(Γ). (5.33)

Combining the estimates above with equation (5.25), summing from n = 0, . . . , N − 1 and taking into account
the assumption on the initial data, we have

ρF
2
‖δNf ‖2L2(Ω) +

ρSω

2
‖Pτ (δNξ )‖2L2(Γ) +

ρSω

2
‖δNf · n‖2L2(Γ) +

∆t

2α
‖Pτ (δNf )‖2L2(Γ) +

1

2
‖δNη ‖2E

+
∆t2

2ρSω
‖σ(eNf , e

N
p )n · n‖2L2(Γ) +

ρF
2

N−1∑
n=0

‖δn+1
f − δnf ‖2L2(Ω) + µF∆t

N−1∑
n=0

‖D(δn+1
f )‖2L2(Ω)

+
ρSω

2

N−1∑
n=0

‖Pτ (δn+1
ξ − δnξ )‖2L2(Γ) +

ρSω

2

N−1∑
n=0

‖(δn+1
ξ − δnf ) · n‖2L2(Γ)

+
∆t

2α

N−1∑
n=0

(
‖Pτ (δn+1

ξ − δnf )‖2L2(Γ) + ‖Pτ (δn+1
f − δn+1

ξ )‖2L2(Γ)

)
+

∆t2

2

N−1∑
n=0

‖dtδn+1
η ‖2E

. ∆t
N−1∑
n=0

‖θn+1
ξ ‖2E +

∆tρ2
f

µ

N−1∑
n=0

‖dtθn+1
f ‖2L2(Ω) + ∆tµ

N−1∑
n=0

‖D(θn+1
f )‖2L2(Ω) +

∆t

µ

N−1∑
n=0

‖θn+1
p ‖2L2(Ω)

+ ∆tρ2
Sω

2

(
1

µ
+

1

ρSω

)N−1∑
n=0

‖dtθn+1
ξ · n‖2L2(Γ)

+ ∆t

(
ρSω +

∆t2

ρSωα2

)N−1∑
n=0

‖Pτ (dtθ
n+1
ξ )‖2L2(Γ) +

∆t

4

N−1∑
n=0

‖δn+1
η ‖2E +

ρSω∆t

8

N−1∑
n=0

‖(δn+1
f − δn+1

ξ ) · n‖2L2(Γ)

+
∆t3

4ρSω

N−1∑
n=0

∥∥σ(enf , e
n
p )n · n

∥∥2

L2(Γ)
+
ρSω∆t

4

N−1∑
n=0

‖Pτ (δn+1
ξ )‖2L2(Γ) + ∆t

N−1∑
n=0

R1(δn+1
f , δn+1

ξ )
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+ ∆t
N−1∑
n=0

R2(δn+1
η ) +

(
∆t2

ρSω
+

∆t

ρSω

)N−1∑
n=0

∥∥σ (un+1 − un, pn+1 − pn
)
n · n

∥∥2

L2(Γ)
. (5.34)

By using Lemmas A.1, A.2 and A.3, we get the following estimate of the approximation and consistency
errors:

ρF
2
‖δNf ‖2L2(Ω) +

ρSω

2
‖Pτ (δNξ )‖2L2(Γ) +

ρSω

2
‖δNf · n‖2L2(Γ) +

∆t

2α
‖Pτ (δNf )‖2L2(Γ) +

1

2
‖δNη ‖2E

+
∆t2

2ρSω
‖σ(eNf , e

N
p )n · n‖2L2(Γ) +

ρF
2

N−1∑
n=0

‖δn+1
f − δnf ‖2L2(Ω) +

µF∆t

2

N−1∑
n=0

‖D(δn+1
f )‖2L2(Ω)

+
ρSω

2

N−1∑
n=0

‖Pτ (δn+1
ξ − δnξ )‖2L2(Γ) +

ρSω

2

N−1∑
n=0

‖(δn+1
ξ − δnf ) · n‖2L2(Γ)

+
∆t

2α

N−1∑
n=0

(
‖Pτ (δn+1

ξ − δnf )‖2L2(Γ) + ‖Pτ (δn+1
f − δn+1

ξ )‖2L2(Γ)

)
+

∆t2

2

N−1∑
n=0

‖dtδn+1
η ‖2E

. h2k

(
‖ξ‖2L2(0,T ;Hk+1(Γ)) +

ρ2
f

µ
‖∂tu‖2L2(0,T ;Hk+1(Ω)) + µ‖u‖2L2(0,T ;Hk+1(Ω))

)

+ h2k+2

(
ρ2
Sω

2

(
1

µ
+

1

ρSω

)
‖∂tξ · n‖2L2(0,T ;Hk+1(Γ)) +

(
ρSω +

∆t2

ρSωα2

)
‖Pτ (∂tξ)‖2L2(0,T ;Hk+1(Γ))

)
+ h2s+2

(
1

µ
‖p‖2L2(0,T ;Hs+1(Ω))

)
+ ∆t2

(
ρ2
F

µF
‖∂ttu‖2L2(0,T,L2(Ω)) +

1

α2ρSω
‖Pτ (∂tu

n+1)‖2L2(0,T,L2(Γ)) + ρ2
Sω

2

(
1

µF
+

1

ρS

)
‖∂ttξ · n‖2L2(0,T,L2(Γ))

+ρSω‖Pτ (∂ttξ)‖2L2(0,T,L2(Γ)) + ‖∂ttη‖2L2(0,T ;E) +
∆t+ 1

ρSω
‖∂tσn‖2L2(Γ)

)
+

∆t

2

N−1∑
n=0

‖δn+1
η ‖2E +

ρSω∆t

4

N−1∑
n=0

‖(δn+1
f − δn+1

ξ ) · n‖2L2(Γ) +
∆t3

4ρSω

N−1∑
n=0

∥∥σ(enf , e
n
p )n · n

∥∥2

L2(Γ)

+
ρSω∆t

2

N−1∑
n=0

‖Pτ (δn+1
ξ )‖2L2(Γ). (5.35)

The term
ρSω∆t

4

N−1∑
n=0

‖(δn+1
f − δn+1

ξ ) · n‖2L2(Γ) in the above inequality can be estimated by adding and sub-

tracting δnF and using trace-inverse inequality [67], where CTI depends on the angles in the finite element mesh,
as follows:

ρSω∆t

4

N−1∑
n=0

‖(δn+1
f − δn+1

ξ ) · n‖2L2(Γ) =
ρSω∆t

4

N−1∑
n=0

‖(δn+1
f − δnf + δnf − δ

n+1
ξ ) · n‖2L2(Γ)

≤ ρSω∆t

2

N−1∑
n=0

‖(δn+1
f − δnf ) · n‖2L2(Γ) +

ρSω∆t

2

N−1∑
n=0

‖(δnf − δ
n+1
ξ ) · n‖2L2(Γ)

≤ ρSωCTIk
2∆t

2h

N−1∑
n=0

‖δn+1
f − δnf ‖2L2(Ω) +

ρSω∆t

2

N−1∑
n=0

‖(δnf − δ
n+1
ξ ) · n‖2L2(Γ). (5.36)
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We combine the estimates above with (5.35) and recall that the error between the exact and the discrete
solution is the sum of the approximation error and the truncation error. Thus, using the triangle inequality,
approximation properties (5.12)–(5.16) and the Gronwall lemma we obtain the estimate from Theorem 5.1.

We have shown that the loosely coupled, partitioned scheme (3.15), (3.16) is unconditionally, stable, first-
order accurate in time, and optimally accurate in space. No sub-iterations are needed between the fluid and
structure sub-problems to achieve this accuracy and stability. In the next section we present examples which
confirm the theoretical findings, and study the influence of the Navier slip boundary condition on the solution
of FSI problem as compared with that with no-slip.

6. Numerical examples

To investigate the computational model and the numerical properties of the proposed partitioned scheme,
we present four examples. In the first example, the method of manufactured solutions is used to verify the
convergence properties of the scheme on a simplified modeled describing the interaction between a compressible
fluid and a thin structure assuming that the domain is fixed. In the second example, we investigate the rates
of convergence on a benchmark problem describing a moving domain FSI problem, where the fluid is described
using the incompressible Navier-Stokes equations. In the third and fourth example, different flow conditions, fluid
domains, and structure models are investigated, including a ketchup bottle model showing the flow difference in
the bottle with and without a no-stick coating. All the computations have been performed with FreeFem++ [47].

6.1. Example 1

The model. The first numerical example is focused on the computational study of the convergence rates in
time using the method of manufactured solutions. We consider a two-dimensional example where the fluid flow
is described by the time-dependent Stokes equations:

ρF∂tu = ∇ · σ(u, p) + g
∇ · u = s

}
in Ω, (6.1)

where g is volumetric force, and both s and g are determined from the manufactured solution.
We assume that the fluid domain is fixed, corresponding to the assumptions made in Section 4. The fluid

domain is given by Ω = (0, 1) × (0, 0.5), with the fluid-structure interface corresponding to Γ = (0, 1) × {0.5}.
We model the structure using the elastic Koiter shell model [13] defined on Γ, accounting for both tangential
(horizontal) and transverse (vertical) displacements ηx and ηy, given by:

ρSω∂ttηx − C2∂xηy − C3∂xxηx = fx, (6.2)

ρSω∂ttηy + C0ηy − C1∂xxηy + C2∂xηx = fy. (6.3)

The dynamic coupling condition implies: f = (fx, fy) = −σn.
The parameters used in this example are ρF = µF = C0 = C1 = C2 = C3 = α = 1, ρS = 0.5 and h = 0.1.

The exact solution. The exact solution is given by

u =

 et
αµF (ρSω + C3π

2) + µF − C2

ρSω + C3π2
sin(πx) sin(πy)

et
cos(πx)

π
sin(πy)

 , (6.4)

p = et cos(πx)

((
ρSω + C0

π
+ C1π +

C2π(µF − C2)

ρSω + C3π2

)
sin(πy) + 2µF cos(πy)

)
, (6.5)
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Figure 2. Top left: Relative error for fluid velocity in the L2 norm. Top right: relative error
for the structure velocity in the L2 norm. Bottom: relative error for the structure displacement
in the ‖ · ‖E norm.

η =

 et
µF − C2

ρSω + C3π2
sin(πx)

et
cos(πx)

π

 . (6.6)

We note that while the exact solution satisfies the coupling conditions described in Section 2, the fluid defined
by this solution is not incompressible. Nevertheless, this is a good example to test convergence rates in time,
which are predominantly affected by the splitting of the coupling conditions at the fluid-structure interface.

Boundary conditions. Dirichlet boundary conditions are imposed on the rigid boundary ∂Ω \ Γ, while the
kinematic and dynamic coupling conditions specified in Section 2 are imposed on Γ = (0, 1)× {0.5}.

Computation. Numerical simulations were run using the following set of discretization parameters:

(∆t,∆x) ∈
{

10−2

2k
,

0.2

2k

}3

k=0

, (6.7)

corresponding to four levels of mesh refinement. We used P1-bubble/P1 elements to discretize the fluid problem
and P1 elements to discretize the solid problem. Simulations were run until the final time of T = 0.1s.
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Table 1. Parameters used in Example 2.

Parameters Values Parameters Values

Radius R (cm) 0.5 Young’s mod. E(dynes/cm2) 7.5 · 105

Wall density ρS(g/cm3) 0.5 Wall thickness ω (cm) 0.12
Fluid density ρF (g/cm3) 1 Poisson’s ratio σ 0.45
Fluid viscosity µF (poise) 0.035 Slip rate γ 0.1

Results. Convergence rates in time were studied by comparing the exact solution with the numerical results for
different levels of mesh refinement. Figure 2 shows the relative errors for the fluid velocity (top left), structure
velocity (top right), and structure displacement (bottom). We observe that while the fluid and structure velocities
converge with the rate greater than 1, the rates of convergence of the solid displacement agree with the theoretical
predictions.

6.2. Example 2

The model. In this example, we investigate the rates of convergence on a benchmark problem describing
the interaction between an incompressible fluid and a thin, elastic structure. As opposed to the first example,
we consider an incompressible fluid described by the Navier–Stokes equations in a moving domain, as specified
in Section 2. Here, we do not have an explicit solution as in Example 1, so we compare the results for different
discretizations with the solution obtained using the finest discretization.

The reference fluid domain is given by Ω = [0, L]× [0, R], and structure domain by Γ = (0, L)× {R}, where
L = 5 and R = 0.5. At the bottom boundary Γb = (0, 5)× {0}, symmetry boundary conditions are prescribed:

∂yux = 0, uy = 0.

The structure is described using the same model as in Example 1, given by (6.2)–(6.3), with

C0 =
ωE

R2(1− ν2)

(
1 +

h2

12R2

)
, C1 =

ωE

1− ν2
, C2 =

ωEν

R(1− ν2)
, C3 =

ωE

1− ν2
, (6.8)

where E denotes the Young’s modulus of elasticity, and ν denotes the Poisson’s ratio of the elastic structure
material. The parameters used in this example are given in Table 1.

The inlet and outlet data. The inlet and outlet forcing terms, pin and pout, as defined in (2.4)–(2.5), are
given by

pin(t) =

{
pmax

2

[
1− cos

(
2πt
tmax

)]
, if t ≤ tmax

0, if t > tmax
, pout = 0 ∀t ∈ (0, T ),

where tmax = 0.03 s with maximum pressure pmax = 1.333 × 104 dyne/cm2. The final time is T = 10 ms. This
type of inlet and outlet data is common in testing numerical solvers for FSI problems.

Initial data. Initially, zero fluid and structure velocity, and zero structure displacement were prescribed.

Computation. We used P1-bubble/P1 elements to discretize the fluid problem and P1 elements to discretize
the solid problem. Numerical simulations were run using the following set of discretization parameters:

(∆t,∆x) ∈
{

(2.5 · 10−4, 1.25 · 10−1), (1.67 · 10−4, 8.3× 10−2), (1.25 · 10−4, 6.25× 10−2),

(8.3 · 10−5, 4.16× 10−2), (6.25× 10−5, 3.125 · 10−2), (3.125× 10−5, 1.5625× 10−2).
}
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Figure 3. Propagation of the fluid pressure in the upper half of the fluid domain, and the
magnitude of the structure displacement at times t = 2, 4, 6 and 8 ms.

corresponding to six levels of mesh refinement. The solution obtained using the finest set of parameters was
taken as a reference solution.

Results. The pressure in the domain at t = 2, 4, 6 and 8 ms, as well as the magnitude of the structure displace-
ment are shown in Figure 3. Figure 4 shows the relative errors for the fluid velocity (top left), structure velocity
(top right), and structure displacement (bottom) obtained at T = 10 ms. We note that the convergence rates
for all variables are close to one, agreeing with theoretical predictions.

6.3. Example 3

In this example, we investigate the effects of the slip rate α on the fluid flow in a straight channel, for two
different values of fluid viscosity. Here we no longer assume that the fluid domain is fixed. Namely, the full
nonlinear coupling is implemented.

The model. We consider the full FSI model described by the Navier-Stokes equations, as specified in Section 2,
in a straight channel of reference radius R = 0.5 and length L = 5. Since the problem is axially symmetric, we
consider only the top part of the fluid domain. We set the reference fluid domain to be Ω = (0, 5) × (0, 0.5),
with the top boundary representing a thin, elastic structure, whose reference configuration is Γ = (0, 5)×{0.5}.

As in Example 2, we prescribe symmetry boundary conditions at the bottom boundary Γb. On Γ, the
elastodynamics of the structure is modeled by the Koiter shell model (6.2)–(6.3) described in Example 1,
allowing both horizontal and vertical displacement. In this example, the coefficients of the structural model are
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Figure 4. Top left: relative error for fluid velocity in the L2 norm. Top right: relative error for
the structure velocity in the L2 norm. Bottom: relative error for the structure displacement in
the ‖ · ‖E norm.

Table 2. Parameters used in Example 3.

Parameters Values Parameters Values

Radius R (cm) 0.5 Young’s mod. E(dynes/cm2) 106

Fluid density ρF (g/cm3) 1 Poisson’s ratio σ 0.5
Wall density ρS(g/cm3) 1.1 Wall thickness ω (cm) 0.1

given by

C0 =
ωE

R2(1− ν2)
(1 +

ω2

12R2
), C1 =

ω3

6

Eν

R2(1− ν2)
,

C2 =
ω

R

Eν

1− ν2
, C3 =

ωE

1− ν2
.

(6.9)

The parameters used in this example are given in Table 2.

The inlet and outlet data. At the inlet x = 0, we prescribe Dirichlet data with the parabolic velocity profile:

ux = umax
(R− y)(R+ y)

R2
, uy = 0, with umax = 10 cm/s. (6.10)
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Figure 5. The velocity in the channel obtained using the slip condition with α = 1 (top) and
no-slip condition (bottom) The fluid viscosity is µF = 0.035 poise (top) and µF = 100 poise
(bottom)

At the outlet x = 5, we prescribe Neumann data corresponding to the normal fluid stress equal to zero.

Initial data. Initially, zero fluid and structure velocity, with zero structure displacement were prescribed.

Computation. The simulations were run using ∆t = 10−3, until steady state is achieved for the prescribed
inlet and outlet data. The domain is discretized using a uniform mesh with mesh size h = 0.025. As in Exam-
ple 1, P1-bubble/P1 elements were used to discretize the fluid problem, and P1 elements to discretize the solid
problem.

Results. We considered two different viscosities, µF = 0.035 poise and µF = 100 poise, corresponding to the
viscosity of water and honey, respectively. In each of these cases, we found a solution corresponding to the
slip rates α = 1, 10−1 and 10−2. Figure 5 shows the 2D velocity magnitude for the solutions corresponding to
α = 1 and the no-slip case, for the two values of viscosity µ = 0.035 (top) and µ = 100 (bottom). To obtain the
no-slip solution, we used the kinematically coupled β scheme [13, 17] with β = 1. The two solutions, shown in
Figure 5, show the difference in the solution, especially near the boundary, where faster flow is observed near
the boundary in the slip case. The difference between the two solutions is more prominent for the more viscous
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Figure 6. The difference between the fluid and solid velocity at the interface (top) and the
structure displacement obtained with no-slip condition and slip condition (bottom) for different
slip rates. Left: µF = 0.035 poise. Right: µF = 100 poise.

flow, as shown in the bottom panel of Figure 5. When the slip condition is prescribed, significant amount of
flow occurs close to the fluid-structure interface. See top panel in Figure 6. Because of the slip, the flow near
the fluid–structure interface causes significantly less structure displacement than in the no-slip case, as can be
seen in the bottom panel of Figure 6. Thus, in the slip case, less of the fluid kinetic energy is spent on structure
displacement, and more on dissipation due to slip friction. Indeed, Figure 6 shows the slip at the boundary,
and structure displacement, respectively. Figure 6 shows also show that as α approaches zero, the slip solutions
become closer to the solution for the no-slip case. We remark that significant boundary layer can be observed
in these figures, especially near the inlet boundary, which is due to the clamped shell boundary condition, used
to solve the structure equations.

Finally, we compared the velocity profiles at the mid-point (x = 2.5) of the fluid domain obtained with the
no-slip and slip conditions. Figure 7 shows the velocity profiles obtained with µF = 0.035 poise (left) and µF =
100 poise (right). When µF = 0.035 poise, the velocity profile is parabolic and it does not change significantly
when no-slip or slip conditions are imposed. However, for µF = 100 poise the velocity profile obtained with
no-slip condition is still parabolic, but it gets closer to plug velocity profile as the slip rate increases.
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Figure 7. Velocity profile at the center of the domain obtained with no-slip condition and slip
condition with different slip rates. Left: µF = 0.035 poise. Right: µF = 100 poise.

We compare our numerical solution to an exact solution for the 2D Poiseuille flow in a rigid tube with the
the Navier slip condition, and compare the exact solution to the numerically calculated solutions for different
values of µ and α. We calculate the exact 2D Poiseuille solution in a rigid tube, satisfying the Navier slip
condition to obtain:

ux =
p0 − pL

2µL

(
R2 − r2

)
+ α

R

L
(p0 − pL), uy = 0, (6.11)

where α is the slip rate, p0 and pL are the inlet and outlet pressure, µ is the fluid viscosity and R and L are the
tube’s radius and length, respectively. Since we do not have the inlet and outlet pressure data, to calculate the
steady-state solution of our problem in which Dirichlet data are prescribed at the inlet, and zero normal stress
at the outlet, we use the conservation of mass principle to recover the pressure drop (p0 − pL) from the inlet
and outlet data, and from the form of the solution we just obtained. Thus, we set the flow rate determined by
the inlet Dirichlet data to be equal to the flow rate of the steady-state solution inside the tube:∫ R

0

umax
R2

(R2 − r2) dr =

∫ R

0

(
p0 − pL

2µL

(
R2 − r2

)
+ α

R

L
(p0 − pL)

)
dr

and calculate an expression that determines the pressure gradient p0 − pL:

2umax =
(p0 − pL)R

L

(
R

µ
+ 3α

)
.

Once the pressure drop is calculated from umax, R,L, µ and α, we can plug it into the formula for the exact
solution, to obtain the following results, plotted in Figure 8.

One can see that the exact solutions are in a very good agreement with the numerically calculated solutions.
The biggest difference can be observed for µ = 100 poise in the slip at the wall, which is slightly bigger in
the rigid case. This makes sense, since in the case µ = 100 poise, the structure displacement is bigger than in
the case µ = 0.035 poise, and so more of the kinetic energy of the fluid is spent on the kinetic energy of the
structure, and less on slip friction, which gives a smaller slip at the wall in the numerically calculated solution,
as compared to the rigid wall exact solution.



28 M. BUKAČ AND S. ČANIĆ

Figure 8. Exact solution for the Poiseuille flow with the Navier slip condition in a 2D cylinder
with fixed walls . Velocity profiles for µF = 0.035 poise (left), and for µF = 100 poise (right), for
different slip rates. This should be compared with Figure 7 to observe that for µ = 100 poise,
the slip at the wall in the exact solution is visibly larger than in the moving wall case when
more energy is spent on fluid domain motion, rather than on slip friction.

Based on the comparison with an exact solution in this example, as well as the convergence study in Examples
1 and 2, we note that the operator splitting error does not contribute significantly to the differences between
the results obtained using different viscosities shown in this example.

6.4. Example 4

In the last example of this manuscript, we model the flow of a viscous, incompressible fluid through a bottle-
shaped domain, while the bottle is being squeezed using a time-periodic forcing, and the flow is additionally
driven by gravity ρFg. The case with no-slip and the case with slip prescribed at the lateral wall of the bottle
are compared. The slip condition at the wall can be used to model the no-stick surface coating. We observe
significantly different solutions, and show that the mass flow rate is, indeed, increased with the application of
the no-stick coating. This approach can be used to, e.g., optimize surface coating depending on the type of
viscous fluid considered.

The model. The bottle-shaped fluid domain is obtained by transforming the rectangular fluid domain [0, 5]×
[0, 0.5] using the following transformation:

(x, y)→
(
x,

y

1 + 0.001e−(12−8x)
+ 0.8y

)
, (x, y) ∈ [0, 5]× [0, 0.5].

The bottle-shaped fluid domain is then rotated by −π/4 about the x−axis to obtain a tilted bottle, with gravity
acting in the vertical, y direction. See Figure 9.

To describe the deformation of the wall, we use the linearly elastic membrane model proposed in [28, 39].
The model, written in weak formulation, is given by the following:

ωρS

∫
Γ

∂ttη · ζds+ ω

∫
Γ

Πγ(η) : ∇γζds+

∫
Γ

C0(η · n)(ζ · n)ds =

∫
Γ

f · ζds, ∀ζ ∈ H1(Γ). (6.12)
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Figure 9. Pressure obtained with no-slip and slip conditions at times t = 4, 4.25, 4.5 and 4.75 s.
Based on the external force, given by (6.13), maximum squeezing is applied at time t = 4.5 s.

Here, Πγ denotes the (surface) stress tensor, which, for a linearly elastic, isotropic structure reads:

Πγ(η) =
E

1 + σ2

∇γη + (∇γη)T

2
+

Eσ

1− σ2
∇γ · η,

and ∇γ(·) denotes the surface gradient, which can be computed using [9, 28]:

∇γη = ∇η(I − n⊗ n).

The symbol ⊗ denotes the tensor product, and I is the identity operator.
To model the time-periodic squeezing of the bottle at the lower, wider half, we use the following external

forcing applied to the external surface of the linearly elastic membrane in the normal direction:

fext = 2× 104| sin(πt)|e−(x−1.5)2n, x ∈ (0, 5). (6.13)

Now, the dynamic coupling condition is given by equation (6.12), with the forcing term f replaced by the
jump in the normal stress exerted by the fluid on one side, and the external forcing on the other:

f = −σn+ fext. (6.14)

The dynamic condition is split between the fluid and structure sub-problems as described in (3.4)–(3.9), with
the integral containing the forcing term fext used in the structure sub-problem (3.15) as the forcing in (3.4).

The other parameters used in this example are described in Table 3.

The inlet and outlet data. At the inlet, zero fluid velocity is prescribed umax = 2.5 cm/s, while at the outlet
we prescribe “free outflow” by imposing the zero normal stress data, as in the previous examples.

Computation. The mesh is discretized using 4000 elements; P1-bubble/P1 elements are used to discretize the
fluid problem and P1 elements are used to discretize the solid problem. The simulations are run until the final
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Table 3. Parameters used in Example 4.

Parameters Values Parameters Values

Fluid viscosity µF (poise) 10 Young’s mod. E(dyn/cm2) 106

Fluid density ρF (g/cm3) 1 Poisson’s ratio σ 0.5
Wall density ρS(g/cm3) 1.1 Wall thickness ω (cm) 0.1
Gravitational constant g (cm/s) 98.0665e2 Spring coefficient C0 (dyn/cm3) 8.23× 104

Figure 10. Velocity magnitude obtained with no-slip and slip conditions at times t =
4, 4.25, 4.5 and 4.75 s. The large magnitude at t = 4 corresponds to backward flow, as can
be seen in Figure 11 below. Backward flow appears at both t = 4 and t = 4.75 sec.

time T = 5 s is reached using ∆t = 5× 10−4. We solve the problem by imposing both the no-slip condition, and
the Navier slip condition with slip rate α = 10−1.

Results. Figure 9 shows the pressure in the bottle obtained using simulations with the no-slip and slip lateral
boundary condition at times t = 4, 4.25, 4.5 and 4.75 s. As expected, we observe higher pressure during the
squeezing part of the external force cycle, which, based on formula (6.13) corresponds to 4 < t ≤ 4.5. Notice,
however, that since the squeezing rate is higher at t = 4.25 than at t = 4.5, the pressure at t = 4.25 is higher
than at t = 4.5. Figure 10 shows the corresponding velocity magnitudes. This figure should be compared to
Figure 11 where the velocity profiles along the bottle are shown. We observe that during the squeezing part
of the cycle, the velocity is positive, while during the relaxation part of the cycle, the velocities are negative.
Higher velocity occurs in the throat of the bottle, as expected.

Velocity profiles at x = 1, 2.5 and 4 cm, at times t = 4, 4.25, 4.5 and 4.75 s, obtained using slip and no-slip
conditions are shown in Figure 11. We observe that larger deviations in velocity close to the wall and in the
middle of domain occur with no-slip condition, while slip condition gives rise to profiles more similar to plug
velocity profile.

We calculated the corresponding mass flow rates at the outlet of the bottle for both the no-slip and the
slip case, and obtained that the mass flow rate for the Navier-slip case is bigger than for the no-slip case. In
particular, the positive mass flow rate at the outlet of the bottle for the slip case was 1.55 cm2/s and for the
no-slip case 1.23 cm2/s. Thus the Navier slip boundary condition increases the mass flow rate at the outlet by
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Figure 11. Velocity profiles obtained with no-slip (red line) and slip (blue line) conditions at
times t = 4, 4.25, 4.5 and 4.75 s.

21%, for the flow mostly driven by gravity in the bottle angled at 45 degrees, with a slightly squeezed wall near
the bottom, causing the change in the radius at the squeezing location of less than 15%.

7. Conclusions

We presented a novel numerical method for the interaction between an incompressible, viscous fluid and
a thin structure (described in a lower-dimensional space), where the two are coupled by imposing balance of
contact forces, continuity of velocities in the normal direction (no penetration), and the Navier slip condition in
the tangential direction. The energy estimates showed that the proposed numerical method is unconditionally
stable. We also presented error analysis showing first-order convergence in time and optimal convergence in space,
obtained under a time-step condition. The theoretical results were computationally verified in Example 1, where
the predicted rates of convergence in time were obtained by comparing the numerical solution with an exact,
time-dependent solution of a simplified manufactured problem, and in Example 2, where the rates were computed
on a moving domain problem. The third example was focused on a study of a viscous, incompressible fluid flow
in a straight 2D cylinder with deformable walls, and the Navier slip condition at the lateral boundary, with
different slip rates α for two different fluid viscosities (µf = 0.035 poise (water), and µf = 100 poise (honey)).
We showed, among other things, that our numerical method produces solutions that approach, as the slip rate
α approaches zero, the solution of the FSI problem with no-slip. Furthermore, in this case we derived the exact
solution in a 2D rigid tube with the Navier slip condition, and showed that our numerical solution compares
very well with the exact solution, with the differences attributed to structure displacement (which is more
pronounced in the case µf = 100 poise), captured by the numerical solution. In the fourth example we studied
the flow of a viscous fluid in a ketchup bottle with and without a no-sick coating, i.e., with the Navier slip
and with the no-slip boundary condition. The flow was driven mostly by gravity, with a slight push due to
the squeezing of the bottle at the wider end. We showed how the solutions differ in pressure and velocity, and
showed that at the outlet of the bottle, the mass flow rate with the Navier slip is higher (by 21%) than the
mass flow rate in the bottle with the no-slip boundary condition.
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Appendix

Lemma A.1 (Consistency errors). Assume S ∈ {Ω,Γ}. The following inequalities hold:

∆t
N−1∑
n=0

‖dtϕn+1 − ∂tϕn+1‖2L2(S) . ∆t2‖∂ttϕ‖2L2(0,T ;L2(S)),

∆t
N−1∑
n=0

‖ϕn+1 −ϕn‖2L2(S) . ∆t2‖∂tϕ‖2L2(0,T ;L2(S)).

Proof. See [17] for proof.

Lemma A.2 (Interpolation errors). The following inequalities hold:

∆t

N−1∑
n=0

‖dtθn+1
f ‖2L2(Ω) ≤ ‖∂tθf‖

2
L2(0,T ;L2(Ω)) . h2k‖∂tu‖2L2(0,T ;Hk+1(Ω)),

∆t
N−1∑
n=0

‖dtθn+1
ξ ‖2L2(Γ) ≤ ‖∂tθξ‖

2
L2(0,T ;L2(Γ)) . h2k+2‖∂tξ‖2L2(0,T ;Hk+1(Γ)),

∆t
N−1∑
n=0

‖D(θn+1
f )‖2L2(Ω) . ∆t

N−1∑
n=0

h2k‖un+1‖2Hk+1(Ω) . h2k‖u‖2L2(0,T ;Hk+1(Ω)),

∆t

N−1∑
n=0

‖θn+1
ξ ‖2E . h2k‖ξ‖2L2(0,T ;Hk+1(Γ)), ∆t

N−1∑
n=0

‖θn+1
p ‖2L2(Ω) . h2s+2‖p‖2L2(0,T ;Hs+1(Ω)).

Proof. The last three inequalities follow directly from approximation properties (5.12)–(5.16). See [17] for more
details.

Lemma A.3. The following estimate holds for ε > 0 and ε1 > 0:

∆t
N−1∑
n=0

(
R1(δn+1

f , δn+1
ξ ) + R2(δn+1

η )
)

. ∆t2
(
ρ2
F

µF
‖∂ttu‖2L2(0,T,L2(Ω)) +

1

α2ρSω
‖Pτ (∂tu

n+1)‖2L2(0,T,L2(Γ)) + ρ2
Sω

2

(
1

µF
+

1

ρS

)
‖∂ttξ · n‖2L2(0,T,L2(Γ))

+ρSω‖Pτ (∂ttξ)‖2L2(0,T,L2(Γ)) +
1

ρSω
‖∂tσn‖2L2(0,T ;L2(Γ)) + ‖∂ttη‖2L2(0,T ;E)

)
+
µF∆t

2

N−1∑
n=0

‖D(δn+1
f )‖2L2(Ω)

+
ρSω

4

N−1∑
n=0

‖Pτδn+1
ξ ‖2L2(Γ) +

∆tρSω

8

N−1∑
n=0

‖(δn+1
f − δn+1

ξ ) · n‖2L2(Γ) +
∆t

4

N−1∑
n=0

‖δn+1
η ‖2E .

Proof. Rearranging and using Cauchy–Schwartz, Young’s, Poincaré–Friedrichs, and Korn’s inequalities, we have

∆tR1(δn+1
f , δn+1

ξ ) = ρF∆t

∫
Ω

(dtu
n+1 − ∂tun+1) · δn+1

f − ∆t

α

∫
Γ

Pτ (un+1 − un) · Pτδn+1
ξ ,

− ρSω∆t

∫
Γ

(∂tξ
n+1 · n− dtξn+1 · n)(δn+1

f · n)− ρSω∆t

∫
Γ

Pτ (∂tξ
n+1 − dtξn+1) · Pτδn+1

ξ

+ ∆t

∫
Γ

(σ(un+1 − un, pn+1 − pn)n · n− ρSω(∂tξ
n+1 · n− dtξn+1 · n))(δn+1

f · n− δn+1
ξ · n)
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.
2∆tρ2

F

µF
‖dtun+1 − ∂tun+1‖2L2(Ω) +

µF∆t

2
‖D(δn+1

f )‖2L2(Ω) +
2∆t

α2ρSω
‖Pτ (un+1 − un)‖2L2(Γ)

+
ρSω∆t

4
‖Pτδn+1

ξ ‖2L2(Γ) + ρ2
Sω

2∆t

(
1

µF
+

4

ρS

)
‖(∂tξn+1 − dtξn+1) · n‖2L2(Γ)

+ 2∆tρSω‖Pτ (∂tξ
n+1 − dtξn+1)‖2L2(Γ) +

2∆t

ρSω
‖σ(un+1 − un, pn+1 − pn)n · n‖2L2(Γ)

+
∆tρSω

8
‖(δn+1

f − δn+1
ξ ) · n‖2L2(Γ).

Furthermore, using Cauchy–Schwartz and Young’s inequalities, we have

∆tR2(δn+1
η ) = ∆taE(δn+1

η , ∂tη
n+1 − dtηn+1)

≤ ∆t‖dtηn+1 − ∂tηn+1‖2E +
∆t

4
‖δn+1

η ‖2E .

The final estimate follows by applying Lemma A.1.
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