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Abstract

This work focuses on the development and analysis
of a partitioned numerical method for moving domain,
fluid—structure interaction problems. We model the fluid
using incompressible Navier—Stokes equations, and the
structure using linear elasticity equations. We assume that
the structure is thick, that is, described in the same dimen-
sion as the fluid. We propose a non-iterative, domain
decomposition method where the fluid and the structure
subproblems are solved separately. The method is based on
generalized Robin boundary conditions, which are used in
both fluid and structure subproblems. Using energy esti-
mates, we show that the proposed method applied to a
moving domain problem is unconditionally stable. We also
analyze the convergence of the method and show O (At% )
convergence in time and optimal convergence in space.
Numerical examples are used to demonstrate the perfor-
mance of the method. In particular, we explore the relation
between the combination parameter used in the derivation
of the generalized Robin boundary conditions and the accu-
racy of the scheme. We also compare the performance of
the method to a monolithic solver.
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1 | INTRODUCTION

Fluid—structure interaction (FSI) problems arise in many applications, such as aerodynamics, hemo-
dynamics, and geomechanics. They are used to predict flow properties in patient-specific arterial
geometries, microfluidic devices, and in the design of many industrial components. FSI problems are
moving domain problems, characterized by highly nonlinear coupling between fluid flow and struc-
ture deformation. As a result, the development of robust numerical algorithms is a subject of intensive
research.

The solution strategies for FSI problems can be classified as monolithic and partitioned methods.
In monolithic algorithms [8, 9, 22, 30, 32, 36, 42, 47], the coupling conditions are imposed implic-
itly and the entire coupled problem is solved as one system of algebraic equations. However, they may
require long computational time, large memory allocation, and well-designed preconditioners [4, 30,
35]. In partitioned methods [3, 6, 7, 14, 15, 21, 25-27, 33, 40, 41, 44, 45], the fluid flow and struc-
ture deformation are solved separately as smaller and better conditioned subproblems, which reduces
the computational cost. However, they often suffer from numerical instabilities, which makes the
design and analysis of stable and efficient partitioned schemes challenging even for simplified, linear
problems.

The design of partitioned algorithms is especially challenging in blood flow applications due to
numerical instabilities known as the added mass effect [18], which are manifested when the fluid
and structure have comparable densities. Furthermore, design of non-iterative, partitioned methods
is particularly difficult when the dimension of the solid domain is the same as the dimension of
the fluid domain. When the structure is thin, that is, described by a lower-dimensional model, it
serves as a fluid—structure interface with mass, which is exploited in the design of many partitioned
methods [14, 26, 40, 45] where parts of the structure equation are used as a Robin boundary con-
dition for the fluid problem. However, when the structure is thick, no additional mass is present at
the fluid—structure interface, which makes the design of stable, non-iterative partitioned algorithms
especially challenging.

It is well known that classical, Dirichlet—-Neumann partitioned methods are unconditionally
unstable when fluid and structure have comparable densities [18], which can be resolved by
sub-iterating between fluid and structure subproblems within each time step. As an alterna-
tive to the Dirichlet—-Neumann approach, which can exhibit convergence issues, Robin—Dirichlet,
Robin—Neumann, or Robin—Robin methods were designed in [1, 3, 20, 31, 44]. In the design of
these methods, the coupling conditions are linearly combined to obtain the generalized Robin inter-
face conditions, which are then used in the fluid and/or structure subproblems. We also mention the
fictitious-pressure and fictitious-mass algorithms proposed in [5, 48], in which the added mass effect
is accounted for by incorporating additional terms into governing equations. However, algorithms
proposed in [1, 3, 5, 20, 31, 44, 48] still require sub-iterations between the fluid and the structure
subproblems in order to achieve stability.

A different partitioned scheme was proposed in [16, 17], where the fluid—structure coupling con-
ditions are imposed using Nitsche’s penalty method [33] and some terms are time-lagged to uncouple
the fluid and solid subproblems. It was shown that the scheme is stable under a CFL condition if a
weakly consistent stabilization term that includes pressure variations at the interface is added. The
authors show that the rate of convergence in time is sub-optimal, which is then corrected by proposing
a few defect-correction sub-iterations. A non-iterative, partitioned algorithm based on the so-called
added-mass partitioned Robin conditions was proposed in [7]. It was shown that the algorithm is stable
under a condition on the time step, which depends on the structure parameters. Even though the authors
do not derive the convergence rates, their numerical results indicate that the scheme is second-order
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accurate in time. A generalized Robin—Neumann explicit coupling scheme based on an interface oper-
ator accounting for the solid inertial effects within the fluid has been proposed in [28]. The scheme has
been analyzed on a linear FSI problem and shown to be stable under a time-step condition. In our pre-
vious work [11], we developed a partitioned scheme for FSI with a thick, linearly viscoelastic structure
based on an operator-splitting approach. However, the assumption that the structure is viscoelastic was
necessary in the derivation of the scheme, and the solid viscosity was solved implicitly with the fluid
problem. Furthermore, the scheme was shown to be stable only under a condition on the time step [14].

In this work, we propose a partitioned, loosely coupled method for FSI problems with thick
structures. As opposed to the previous work, the method presented here is unconditionally stable,
and sub-iterations or stabilization terms are not needed to achieve stability. Furthermore, a moving
domain problem was considered in the stability analysis. The fluid is modeled using the Navier—Stokes
equations for an incompressible, viscous fluid, and the structure using the equations of linear elasticity.
The deformation of the fluid mesh is treated using the arbitrary Lagrangian—Eulerian approach (ALE)
[23, 37, 42], where the fluid mesh is allowed to deform matching the deformation of the structural
domain. The proposed partitioned method is based on generalized Robin boundary conditions, which
are formulated in a novel way. Unconditional stability is shown on a moving domain, semi-discrete
problem using energy estimates. The proposed method is discretized in space and implemented using
the finite element method. We preform error analysis of the fully discrete method on a linearized
problem and show that the scheme exhibits © (At% ) convergence in time and optimal convergence in
space. The relation between the combination parameter used in the formulation of generalized Robin
boundary conditions and the accuracy of the method is explored in the numerical examples. We also
compare our method to an implicit scheme on a benchmark problem under realistic parameters in blood
flow modeling.

This paper is organized as follows. The nonlinear FSI problem is presented in Section 2, and the
proposed numerical scheme is presented in Section 3. Stability analysis is performed in Section 4 and
error analysis is performed in Section 5. Numerical examples are presented in Section 6. Conclusions
are drawn in Section 7.

2 | MATHEMATICAL MODEL

We are interested in modeling fluid flow in a deformable channel, where the channel walls represent an
elastic structure. We assume that the fluid is viscous and incompressible, that the structure is linearly
elastic, and that the fluid and structure are both described in two-dimensional domains. The fluid and
structure are two-ways coupled, resulting in a nonlinear, moving domain problem.

2.1 | Computational domains and mappings

We denote the reference fluid domain by ﬁp and the reference structure domain by ﬁs (see Figure 1).
The fluid and structure domains at time ¢ are denoted by Qr(¢) and Qg(¢), respectively.

We assume that the structure equations are given in a Lagrangian framework, with respect to the
reference domain ﬁs. The fluid equations will be described in the ALE formulation. To track the
deformation of the fluid domain in time, we introduce a smooth, invertible, ALE mapping A : ﬁp X
[0,T] — QF (¢) given by

AX,)=X+nsX,1), for all X€Qp, 10,71,
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FIGURE 1 Left: reference domain QF U fls. Right: deformed domain Q () U Q(7)

where 77 denotes the displacement of the fluid domain. We assume | that nr equals the structure
displacement on F and is arbitrarily extended into the fluid domain QF [38]. We denote the fluid
deformation gradient by F = V.A and its determinant by J.

2.2 | Fluid subproblem

To model the fluid flow, we use the Navier—Stokes equations in the ALE formulation [12, 13, 38],
given as follows:

oF (0,v|ﬁF+(v—w)-Vv) =V.ormp) +fr in Q@) x0,T),
V-v=0 in Qr (1) x(0,7T),

where v is the fluid velocity, w = 0,x| o, = 0;AoA~! is the domain velocity, pr is the fluid den-
sity, o is the fluid stress tensor and f is the forcing term. For a Newtonian fluid, the stress tensor
is given by or(v, p) = —pl +2urD(v), where p is the fluid pressure, ur is the fluid viscosity, and
D(®v) = (Vv + (Vv)T)/2 is the strain rate tensor. Notation 0, v| 8, denotes the Eulerian description of the
ALE field 0,v0.A4 [29], that is,

0y (x.0lg, = 0w (A7 (x,0).1).

We denote the inlet and outlet of the fluid domain by I'7 (£) and T'%* (£), respectively. At the inlet
and outlet sections, we prescribe Neumann boundary conditions:

ornp = —pi (Nnp on T (1) % (0,7), 2.1)
Orr = —pou (Hnp on I ()X (0,7), 2.2

where n is the outward unit normal to the deformed fluid domain. We will also consider the dynamic
pressure inlet and outlet data:

+ ”7F|v|2 =pin @ on I (1) x(0,T), 2.3)
+ "Z—FW = Pout (1) on TP (1) X (0, 7), 2.4)
vXnp=0 on T (HUT (£)x (0,T). (2.5)

Here, the fluid flow is driven by a prescribed dynamic pressure drop, and the flow enters and leaves the
fluid domain orthogonally to the inlet and outlet boundary. While Neumann boundary conditions (2.1)
and (2.2) are more convenient to use in numerical simulations, dynamic pressure boundary conditions
(2.3)—(2.5) are used to derive the energy estimates of the fluid problem in a moving domain and in the
stability analysis.
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2.3 | Structure subproblem

To model the elastic structure, we use the elastodynamics equations written in the first order form as
om=¢& in Qsx(0,7),
psdf =V -os(m+fs in Qsx(0.7),

where 7 is the structure displacement, & is the structure velocity, pg is the structure density, o is the
solid stress tensor, and f's is the volume force applied to the structure. We assume that the deformations
are small and use the Saint-Venant Kirchhoff elastic model, given as

os(m) =2usD(m) + As (V- m1,

where pg and Ag are Lamé constants. We assume that the structure is fixed at the inlet and outlet
boundaries: .
AN ~out
n=0 onIsuUly x(0,7), (2.6)

~ext | .
and that the external structure boundary I ;X is exposed to zero external ambient pressure:
~ext
osns =0 on I's x(0,7), 2.7

where ng is the outward normal to the reference structure domain.

2.4 | The coupled FSI problem

To couple the fluid and structure subproblems, we prescribe the kinematic and dynamic coupling
conditions [13, 38] given as follows:
Kinematic coupling condition describes the continuity of velocity at the fluid—structure interface
(no-slip):
yoAd=¢& on ['x(0,7). (2.8)

Dynamic coupling condition describes the continuity of stresses at the fluid—structure interface due
to the action-reaction principle. The condition reads:

JorF Tnp +65ns =0 on I'x(0,7T). (2.9)

Hence, the fully coupled fluid—structure interaction problem is given by:

oF (a,v|§F+(v—w)-vV> —V.6r(p) in Q) x0,T), (2.10)
Ver=0 in QF (1) % (0,T), @.11)
on=¢& in Q5% (0,7), (2.12)
psdE =V - o5(1) in Qg% (0,7), (2.13)
yod =& on I'x(0,7), (2.14)
JorF Tnp + osns =0 on I'x(0,7). (2.15)

To update the fluid domain, we extend the solid displacement at the interface using the harmonic
extension, which is a common choice of the extension operator [2]. The fluid domain and domain
velocity are determined, respectively, by

Q) =A (ﬁp, t) . w=0,A0A.
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Initially, the fluid and the structure are assumed to be at rest, with zero displacement from the
reference configuration.

2.5 | The weak formulation of the coupled problem

Given an open set S, we consider the usual Sobolev spaces H*(S), with k> 0. For all r€[0, T] we
introduce the following functional spaces:

VF (1) = {¢ L Qr () > R p=doa!, de (H' (ﬁp))z}
VFO (1) = {¢ e V (0| éxn=0on T} ur;“'},
0" 0={w: 20— Rlw=poa", jer*(&)},
VS = {g 105 RYce (Hl(fzs)>2, £=0on I uf?‘”},
VESI () = {(qb, &) € VFO () x VS| p = goa™ on F(t)}.
We define the following bilinear forms associated with the fluid and structure problems:\stop

ar (v, ) = ZMF/ D) :D(dx, W, eV (0,

Qp (1)

br (v, ) =/ Vevpdx, WweVi@, yed @,
Qp (1)

as(m,§) = 2#8/ D) : D(C)dx+/15[ (V-m(V-{dx, vn.§e Ve
ol O
We also define norm ||-||s associated with the bilinear form as(-, -) as

lnlls = (as (. m))>.

The weak formulation of the coupled fluid—structure interaction problem (2.10)—(2.15) with bound-
ary conditions (2.3)—(2.5) and (2.6)—(2.7) is given as follows: Find (v, &) € VFS/(¢),p € QF (f) and n € VS
such that 9,7 = & and

pp/ o -¢dx+pp/ ((v—w)-V)v-¢dx+2/4p/ D) : D(¢)dx
%0 |a, Q1) )
—/ pV-¢dx+/ qV -vdx+p5[ 6,§'§dX+2yS/A D) : D()dX
Q1) Q1) o8 ol
+ ﬂs[ V-m(V-§dXx= —/ pmtl)-npdx—/ Pour® - npdx + %F v[*¢ - npdx,
QS ]"i’} l—*f;ut

in out
rirury

for all (¢, &) € V¥ (1), g € 07 (1).
To derive the energy of the coupled FSI problem, we take ¢p = v, g = p, and { = &. We transform
/QF o ppa,vlﬁp - vdx on the reference domain Qf as follows:

/ prov|g -vdx = [ prJ0; (vo A) - (vo A) dx
Q) F Qr

= l/ pro; (JIvoA|*) d% — l/ proJ|vo A|2dz.
2 /s, 2Js,
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Using the Euler expansion formula,
atJ|§F =JV.w,

we have

/ prol;, -vdx=1/ prdy (JIvoAJ?) d£—1/ PRIV - (WoA) [vo A[2dR
Qp (1) i 2Ja 2 O

;;’t ppJ|v0A| 4% - 2/F,;FJV - (woA) [voA|2dE
_ld prlv*dx — l/ prV - wiv|*dx.
2dt Jo,q 2 Ja,w

To handle the convective term, after integration by parts and taking into account V - v = 0, we have

pp/ ((v—w)-V)v-vdx=p—F/ V-w|v|2dx+'0—F (v —w) - np) |v|*dS
0 2 Ja0 2 Jro

+ p—F/ ((v—=w)-np) |v|2dS.
2 Jringuron

Since w = u on F(t) andw = 0 on T UT%, the following energy equality holds:

2 df ” ”LZ(Q (Z)) + Z#F ”D (V)HLZ(Q (t)) + 2 dt ”§”L2(Q ) 2% ”n”S

—/ Pin () v - ndS — / Pou (1) V - ndS.
r rou

3 | NUMERICAL METHOD

Let At be the time step and " = nAt forn =0, ..., N. We denote by 7" the approximation of a
time-dependent function z at time level *. We define the discrete backward difference operator d,z"+!

1
and the average 7'*2 as

Zn+l -7 ZVH'% _ Zn+1 + 7"
At 2

Similarly as in [2, 3], we consider a linear combination of FSI coupling conditions (2.8) and (2.9)

dl‘Zn-H —

a& + osng = avo A () — JopF Tnr on ['x(0,7), 3.1

where a >0 is a combination parameter. Using (2.9) again, we introduce the following two
time-discrete transmission conditions of Robin type:

aE™! 4 O'"Hns = av"o A (") - J"oh (F")_TnF on ['x 0,7), (3.2)

af™ — e (F) Tt = avto A (1Y) - el (FY Th on Tx(0.7).  (3.3)

Condition (3.2) will serve as a Robin-type boundary condition for the structure subproblem, and
condition (3.3) will serve as a Robin-type boundary condition for the fluid subproblem. To discretize
the fluid and structure subproblems in time, we use the Backward Euler scheme. The fluid and structure
subproblems, semi-discretized in time, are now given as follows:

Structure subproblem: Find " +! and £"*! such that

+1 _ gn+l - A
d[nn - § mn QSs
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psd & =V o5 (1) in Qg,
a4 o’@“ns =av"o A (") — J”G%(F”)_Tnﬁ on [

Geometry subproblem: Find n’;“ such that

At =0 in Qp,
+1 ~in  ~out
1]’;; =0 on I'r UT'F ,
F+1 - nn+l on F,

and w"* ! such that
w'tloA () = dmfit'  in Qp.

Compute Qp("*1) as Qp (1) = (I +mi!) <§Alp> Set V"o A (") = w0 A (1) on f.
Fluid subproblem: Find v**! and p"*! such that

vn+1 A tn+l — v A tn)
PF <Jn ° ( ) ° (

v +Jn+% (V"OA (") —w'tloA (tn+l)) . Vytlog (tn+l)>
= Jrtly . or (vn+1,pn+1) oA (In+1) in ﬁF’
JHY oyl =0 in ﬁp,
a§n+l _Jn+lo_r;7+1(Fn+l)_Tn;+l = av"™loA (tn+l) _Jno_}(Fn)—Tn; on [
We note that the continuous formulation of the fluid subproblem is written on the reference domain

due to the use of different time discretizations of the computational domain for different terms in the
equation. However, the deformed domains, as described in (3.5), are considered in practice.

3.1 | Weak formulation of the semi-discrete partitioned scheme
We define the following bilinear forms associated with the fluid problem:
ap (v, ¢) =2ur D) :D(P)dx, Dbp(p,¢p)= / pV - ¢dx,
Qu(m) Q)

for all v, ¢ € VF(¢") and p € QF (). To simplify the notation moving forward, we will write

/ v" instead of / VoA (") o A7 (™)
Q(rm) Q(rm)

whenever we need to integrate v" on a domain Q(1"), for m # n. The weak formulation of the fluid and
structure subproblems is given as:

Structure subproblem: Find €"+' € VS and "*! € V5, where &"*! = d,q"*!, such that for all
¢ € VS we have

pS/A di&™" - Cdx +ag (7, ¢) + a/ (& —v") - Ldx = —/J”a;(F")‘Tn; “Cdx. (34)
o, f f

Fluid subproblem: Find v**1 € VF(#**1) and p"*! € QF (7" *1) such that for all ¢ € VF(#**!) and
w € 0F (") we have

1
pF/ U-¢dx+pp/ ] ((vn_wn+l)‘v)vn+l‘¢dx+ail1:+l (vn+1’¢)
Q. At QF( )

/3
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_ b;’;-H (pn+l’¢) +b;f~+l (Wa vn+l) + (X/ (vn+l _ §n+1) . ¢dx
r(m)

= / or 0", p")n} - dx + / or (" p ) it - . (35)
r(m)

in | yout
ryury

We note that the boundary conditions in the fluid subproblem are not specified. Conditions (2.1) and
(2.2) will be used in numerical simulations in Section 6, while conditions (2.3)—(2.5) will be used in
stability analysis in Section 4.

4 | STABILITY ANALYSIS

Let £" denote the sum of the kinetic energy of the fluid and the kinetic and elastic energy of the solid,
given by
n 4 ny2 P ny 2 1 n2
& = LIV oy + ZNE W + 5 5.
let D" denote the fluid viscous dissipation, given by

D = w3 [0 (4
k=1

12(2(#))”

and let N and N7 denote terms due to numerical dissipation, given by

aAt At

NI =2 VW + o |0k

Fllea@y?
ln_l k+1 1k !)Fn_1 k+1 k
zn S
+O{At§‘l§k+l P
P

NI = PSZ “§k+1 gk

';mfw))

’Lz(f) ’

The stability of method (3.4) and (3.5) is presented in the following theorem.
Theorem 4.1 Let (£", i, v", p") be the solution of (3.4) and (3.5). Assume boundary
conditions (2.3)—(2.5) are imposed. Then, the following a priori energy estimate holds:

ArC3C2 AtCEC2

EV+ DY+ NN + WY < 04 NP 4 22K Wpinllz2 oy + = WPourl ey
2urp 2ur

Proof. Take ¢ = At&"*! in (3.4) and ¢ = A", w = Ap"*! in (3.5). Adding
the equations and recasting the interface integrals in the fluid problem on the reference
domain, we have

n n 1 J 7 7 7
B (1 I, = 1812, + €™ = &% )+ 5 (I 1 =l I + ™ = I3)

+PF/ (vn+l _ vn) . vn+ldx + pFAl/ ( y— wn+l) )vn+1 . vn+ldx
Qp(rm) Q (”* )

alt " n
+2MFAI||D( ) ||L2(Q (tn+l)) + — 2 (” +1||L2(F) - ” ||L2(F)>
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(XA[ 1 1 1
(g = g+ I = R )

— AI/J"O' (Fn)_anFl‘ . (vn+1 _§n+1> dx — At/ pinvn+1 -n'}“dx
r

At
_ At/ pautvn +1 n+1dx+ pFZ
ry rpurg

We transform the integral containing the time-derivative of the fluid velocity to the
reference domain as follows:

pF/ (vn+1 _ vn) . vn+1dx — pF/ Jn (vn+1 _ vn) . vn+1dx'
Q. () 19)

r

2
n+1 n+1 n+l1
v | v ng dx. “.1

Using identity

[ J" (vn+1 _ vn) . vn+ldx
Q

F
2
— 1/ (Jn+l vn+l| _Jnlvn|2> dx — 1/ (Jn+l _Jn) y
2 /s, 2/a,
+ 1/ J" vn+l
2Js,

n+l _ n) | ntl _pl n+1 n+1
pF/QF(l‘” (V v ) vViTldx = > <||v ”LZ(Q (1) — " ||L2(Q (t,,))-i- [V — v ||L2(Q (z"))>

PF n+1 n
—PE (g
2 /ﬁF( )

To handle the last term in (4.2), we use the geometric conservation law [10, 24, 40, 43]
given as

tn+l
e o = 2 / < /
(Q(+1)) L2(Qp(m) — Q0

Since we consider a linear time variation for the displacement of the points of the fluid
domain, the domain velocity is constant in time interval [",#"*!]. In that case, it has
been shown in [39] that the geometric conservation law is exactly satisfied if the midpoint
formula is used for time-integration in two-dimensions, yielding

n+1

2
dx

2
dx,

_Vn

we obtain

2
v"+1| dx. (4.2)

vn+l

2
\Y -wdx) dt.

2 1
v"+1| V-w'tadx.

" Wi ey = I i) = At/g ()

1
As in [44], we note that since the domain velocity is piecewise constant, we have w"*2 =
w"*1_ Therefore, Equation (4.2) can be written as

n+l _ n\ | ntl _ Pr n+1 ny 2 n+
PF‘/Q " (V 4 ) vViTldx = 2 <||V ||L2(Q (1)) — v ||LQ(QF([,,)) + | =y ”L2(9 (l“))>
F

_ PFAf/
2 Jo, (z”*z)

n+12 Lt tl
v V-w'dx. “4.3)
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For the advection term, we proceed as follows:
pFAf/ 1 ((vn _ wn+l) . V) vn+1 . vn+ldx — LN/ 1 V. wn+1
QF<IH+§) 2 QF<tn+7>

prAt /
2 rirure

To handle the interface term in (4.1), using (3.1), we have

+1]?
V" ’dx

2
n+1 n+1 n+1
v ‘ v ng dx. 4.4

At / e (F" T - (v - £ dx
r

_ar

t
At T +1 __n+1 +1 +1
—%(n "R I g, — 1 o () T2 )

At n _n n\— n n n n n
+%”] O'F(F ) TnF—J +10.F+1(F +1) nF+l”2

(Fn)—T n <Jn0'?(Fn) _ Jn+lo_;+l (Fn+1)_Tn2+l>

2
_ Ar n n n n+1 __n+l n+1\ =T n+1))2
= S (W or ) T, = o () T I g )
alAt 1 1
+ THVH - ”Lz(r) 4.5)

To estimate the forcing terms, we use the Cauchy—Schwarz, Young’s, Poincare, and
Korn’s inequalities as follows:

n+1 n+1
- At/ DinVy,  -RF — At/ DoutVy *RF
rm out

AiCC3 AC3C3
TK”pm”Lz(rm ﬁ”pout”l‘z(rm + AIMF”D( ) ||L2(Q (tn+])) (46)

Using (4.3)-(4.6) in (4.1) and summing from n = 0 to N — 1 completes the proof. ]

Remark 4.1 Similarly as in [1, 3, 31, 44], the method proposed here is developed
using generalized Robin boundary conditions. However, in this work, generalized Robin
boundary conditions are designed and discretized in a novel way, leading to an uncondi-
tionally stable scheme which does not require sub-iterations. As opposed to the previous
work, where two combination parameters are introduced, we have only one combination
parameter, a.

This method also exhibits similarities to the method proposed in [16]. In particular,
the weak form of the partitioned scheme presented in this work is similar to the incom-
plete version of the explicit method presented in [16], which was obtained by enforcing
coupling conditions using Nitsche’s penalty method. However, only conditional stability
was proved for the method presented in [16] after a stabilization term was added.

5 | CONVERGENCE ANALYSIS

To analyze the convergence of the fully discrete proposed method, we assume that the fluid is described
by the time-dependent Stokes equations, that the structure deformation is infinitesimal and that the
fluid—structure interaction is linear. These assumptions are common in the analysis of partitioned
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schemes for FSI problems as the main difficulties related to the splitting between the fluid and struc-
ture subproblems are still present [7, 14, 16, 28]. Therefore, to simplify the notation, in the following
we will omit the hat notation. The resulting numerical method is given by:

Structure subproblem: Find 5"+ ! and £"*! = d,f"*! such that

psdi£ =V a5 (") in Qs, (5.1)
a&™!' + oy (’7n+1) ng=av" —op (v",p")np on I. (5.2)

Fluid subproblem: Find v**! and p"*! such that

prdy"™ =V op (vt p™!) in Qp, (5.3)
Vot =0 in Qp, (5.4)
"™+ op (v p™ ) np = a8 + 6p (", p")np on T. (5.5)

To discretize (5.1)—(5.5) in space, we use the finite element method. The finite element spaces are
defined as the subspaces VI c VF, QF ¢ QF, and V; C V* based on a conforming finite element
triangulation with maximum triangle diameter 4. We assume that spaces V/ and QF are inf-sup stable
and that the fluid boundary conditions are (2.1) and (2.2). The weak formulation of the scheme is given
as follows:

Structure subproblem: Find &' € V3 and qj*' € V3, where &' = d,n*!, such that for all
¢, € V5 we have

ps/ di&it - Cdx + as (m.¢) +a/( i =vh) - &dx = —/O'F (vioPh) mr - Spdx. (5.6)
Q r r

S

Fluid subproblem: Find vi*! € VI and pi*! € QF such that for all ¢, € V} and y;, € Q} we have

or / v - dudx +ap (V@) — br (B @) + br (v V™) +a / (4 — &) - gydx
Q r

F

r r

= /O'F (Vi.ph) g - dydx — / Pin (O @, - npdx — / Pout (1) @), - npdx. 5.7
; rge

For spatial discretization, we use the Lagrangian finite elements of polynomial degree k for all
variables except for the fluid pressure for which we use elements of degree » <k. Assume that the
continuous solution satisfies the following assumptions:

v € L® (0,T; H*' (Qp)) nH' (0,T; H* (Qp)) N H? (0, T; L* (QF)) (5.8)
v|p € L* (0, T; H*' () nH' (0, T; ' (), (5.9)
peL*(0,T;H* (Qp)), plreH (0,T;L* (1)), (5.10)

ne€ Whe (0,T; H* (Qg)) n H* (0, T; H*' (Qs)) n H? (0, T; L* (Q)) . (5.11)

Let a S (2)b denote that there exists a positive constant C, independent of /& and At, such that
a < (>)Cb. We introduce the following time discrete norms:

N-1 2
12
l@ll20.rx) = AIZIH(P"Jr Ix | » l@ll=©rx = max |e"|x,
= 0<n<N

<n<
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where X € {H*(Qr), H*(Qs), H(T"), S}. Note that they are equivalent to the continuous norms since
we use piecewise constant approximations in time. Furthermore, the following inequality holds:

N-1
12 2
AN ldi @ (F S 100010 7.1

n=1
Let P;, be the Lagrangian interpolation operator onto V,f . Then, I, := Pyl is a Lagrangian interpo-
lation operator. Similar as in [14, 26], we introduce a Stokes-like projection operator (Sj,, Ry) : VI —
VE x QF, defined for all v € V¥ by
(Swv, Riv) € Vi X Of
Sl =1 (vIp),
ar (Sw.,@;) — br (R, @,) =ar (v.@,), Ve, € V) such that ¢,|. =0,

br(q.Sw) =0, Vg€ Q. (5.12)

Projection operators Sj, and I, satisfy the following approximation properties (see [15, 19]):
ID ¥ = Sw) ll2(e,) S hk||v||Hk+,(QF) forall v € VF, (5.13)
€ = Inéllizay + RIE = Inlliary S K IEll oy for all & € VS, (5.14)

Let I, be a projection operator onto Q such that
Ip = Tipll 2,y S K IPllg(a,),  for all pe Q. (5.15)
Let R, be the Ritz projector onto V;f such that for all n € V5,
as (n—R;,rl, )(h) =0 for all y, €V;. (5.16)
Then, the finite element theory for Ritz projections [19] gives
lin = Rumlls S A lInllprqry  for all ne Vo (5.17)

In the following, in addition to standard inequalities [15], we will also use the discrete trace-inverse
inequality: For a triangular domain Q C R? there exists a positive constant C7; depending on the
angles in the finite element mesh such that

Crik?
Wil < == Wallfq,) » (5.18)

for all v, € V.

We assume that the continuous fluid velocity belongs to the space VP = {ve VFl V .v = 0}.
Since the test functions for the partitioned scheme do not satisfy the kinematic coupling condition, we
start by deriving the monolithic variational formulation with the test functions in V; x V¥ x QF: Find
(=0t prtly e VS x VI x OF withy"+! = £+ 1 onT such thatforall (¢, ¢,) € VixVF
we have

o / o™ - byt ar (V) — br (0. ) + ps / & - ¢ +as (1.8))
Qp Qg

=/FGF (v"+1,p"+1)np.(¢h_gh)_/p,.,, (t”+l)¢h.n—/ Pou ("71) @y, - . (5.19)

I T

in out

Subtracting (5.6) and (5.7) from (5.19), we obtain the following error equation:

PF/ dt (vn+1 _ vz+1) . ¢h +ap (vn+1 _ vz+1’¢h) _ bF (pn+1 _p2+1,¢h) _ bF (V/h,VZH)
Qp



14_|_Wl LEY SEBOLDT AND BUKAC

+Ps/ d, (§n+1 gn+1) Ch + ag (”n+1 _nh+l gh) +(X/ (§n+1 _52+1 — +VZ) . Chdx
Q r
+ a/ (vn+1 _v;zl+1 _ 5n+l + §n+l) thdx
r
= /r"F (V" = Vi p" = ph) e (1= &3) + Ra (b1 ) (5.20)
for all (), ;. wn) € Vi X VI x OF, where, since v'+! = &+ on I’

R (¢h’Ch) = pF/ (dtv”“ — atv”"']) P, + pS/ (dt§n+l _ at§n+1) ¢,

Qp Qg
Ny Ry S -
r r

We split the error of the method as a sum of the approximation error, #7!, and the truncation error,
M1 for re (F, P, n, &) as follows:

eftt =yttt = (v — st 4 (St -t = o + 8 (5.21)
n+1 =t pn+1 ( n+l _ pn+1) + (th n+1) — 9}1“ + 5;+1’ (5.22)
e’é“ =t =t = (! = Rt + (R ) = 07t 4+ 57 (5.23)

_ §n+1 §n+1 (§n+l _Ph§n+l) (P §n+1 n+1) _ 92+1 + 52“- (5.24)

The main result of this section is stated in the following theorem.

Theorem 5.1 Consider the solution (&, Ny, v, pn) of (5.6) and (5.7), with discrete
initial data given by ({;’2, ng,vg,pg) = (tho,RhnO,Sth, tho). Assume that the exact
solution satisfies assumptions (5.8)—(5.11) and that the following inequality is satisfied:

PF
At < aCrl h. (5.25)

Then, the following estimate holds:
! N-1
||eF||L2(Q ) %”e ||L2(Q ) 5”951\,”% ”eF”LZ(r) + MFAIZ”D eF ”LZ(Q )
el (W2 Ao+ h" 2 A + W Ay + At2h2k+2A3 + AP AL+ AtAs) ,

where

AO ps”‘f”iw(o,T;HkH(QS)) + ps||a’§||i2(O,T;H’<+‘(QS))’

ST
A] U ”p”l‘z(o’T;le(QF))’
— 2 2 2
A2 - pF”v”L‘”(O,T;H""”(QF)) + ”n”Loo(O’T;HkH(QS)) + ”§”L2(0,TZH"+1(QS))
PF 2 2
+ r ”a[v”Lz(O,T:H“"”(QF)) + MF“v”LZ(O,T;H"”(QF))’

2
04
A3 = </4F + a) ”atv”Lz(OTH/‘“(l"))
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2
- P 2 2 a 2
Ay = r ||attv”L2(0’T;L2(QF)) + PS||azz§||Lz(0’T;Lz(gs)) t+a <2HF + 1> ”atvlle(O!T;LZ(r))
100 o2y + 10l 751
o 2(0.7:12(I)) 12(0.T5S)
As = Lo, pnp?
5= a” l‘O-FnF”LZ(()’T;LZ(F))‘

Proof.  Rearranging the error equation (5.20), using 9}“ = 0’5’“ on I, and taking the
property (5.16) of the Ritz projection operator into account, we obtain

PF/ dz5’13-+1 ¢ +ar (5?1’ ¢h) —br (5;5“, ¢h) —br (lllh’VZH) + /’s/ dz5g+1 “Cn
Qp

S

+as (8;7.¢,) + a/ (84" = 8F) - ¢pdx + a/ (8" =8 - ppdx
T T

= /FO'F (92»4) Rf - (¢h - Ch) - PF/ dt9;+1 ¢y —ar (97;1"15/1)

F

+bp (05 ) — ps/ der' ¢, - a/ (0 —0}) - hdx + Ry (. ) - (5.26)

Qs r

Let ¢, = AtSFH, ¢, = Atég“, and y;, = Ar)5T!. Thanks to (5.12), the pressure terms
simplify as follows:

—Atbp (8571, 8F") — Atbp (8371 vit) = —Atbp (557, S™t!) = 0.
Equation (5.26) now becomes
2 (188 120,y = 18H Iy + 1657 = 811, ) + 206D (851) I g

+ 2 (11817 12 o) — 182112 + 185 = B2, g ) + Atas (87,8271

alt +192 2 +1 2 +1 +1)2
+ T (”6? ||L2(F) - ”6,15““1}(1") + ”62 - 6;“[12(1") + ”6; - 62 ||L2(F))

= A[/O'F (g},eﬁ) ng - (6'}1;*'1 _ 6’§1+1) _ Ath/ dtG?;-H . 6;1:+1
T Q

‘F

— Atap (07, 851) + Arbp (05, 851) — Atps / 40" - 8!

QS
- aAt/F (0 —0r) - 8 + AR, (87, 8. (5.27)
For term Atag (62“, 62’“) we proceed as follows:
Arag (87,82"1) = Arag (87, d,8y + Prg™! = Ridar™) = 21185113 = S 183113
Atz n+1112 n+1 n+1 n+1
+ = 11d:8; 15 + Ata (8, Pu&™! — Ryd"™") .

Note that Ph§n+1 _thtnn+l - Ph§n+l _§n+l +§n+1 _thtnn+l - _92+1 +dt0}:1+l +at']n+l _
d.n"*'. Hence, using property (5.16) of the Ritz projection operator, Cauchy—Schwartz
and Young’s inequalities, we have

U n 1 At U U
Atag (85", Ph&™" = Ryd™™') < Al 025 + leén“llé + AR, (81,

where R, (8;*') = as (8, o+ — dt!).
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To estimate the first term on the right-hand side of (5.27), similarly as in [14], we

note that 87" — &' = — (vi*' — &;*') on I'. Furthermore, adding and subtracting the

continuous velocity and pressure in (5.5), the following relation holds on I':
Y 1 n: 1 n n n n
&t -8t = o (oF (€F€p) np — op(ert et np + op (™ —v", p"™ — ping) . (5.28)

Employing identity (5.28), we have
At/ap (ef.ep)mp- (85 —81)
r

= %/GF (e ep) nr - (or (e ep) nr — op(er* e nr)
r

. ~ J
T
H non n+l _ n n+l _ n
+ |oF (ef.ep)np - oF (v Vi p p")ng.
. r ~ 7
7
Using the polarized identity, 7; is given as
At 1 1 At
T = _%“6 ( ?— ’113+ ) "F”Lz(r) + ”O'F (eF’ eP) nF”LZ(r)
At
+ Z”GF( ?_H n+l)np—0'p (eF,eP) nplle(r) (5.29)
To estimate the last term in (5.29), we again use identity (5.28) and Young’s inequality
as follows:
At H n+1 n+1 no_n 2
— |lo np —op(ey, ep)n
2q |OF \€F - ep ) np — op(ef; P)FLZ(F)
t n+1 n n+l n n+1 7+ 1 2
— |lop (VT =", - np—a(éy =06
e ( P =p) e —a (8 =8|
_ At n+1 n _n+l n alt n+1 n+1
_ A “o'p e LS I LA A
_ Al/ (6?“ _ 6g+l) - OF (vn+1 _vn,pn+1 _pn)n
r
At n+1 n n+l n 2 aAf n+1 n+1
< —Hap (=t —p )np ILZ(F)+—||6 - & ||L2(F)
aAt 2
”6n+1 _ 6n+l ||L2(r‘) + ”O' vn+l _ vn’pn+l _pn) nr . .

Finally, we estimate 7, using the Cauchy—Schwartz inequality and Young’s inequality as

T, < g—(tj ”o-F (e} ep) np ?

|| n+1

_ oyt ot _ o
vo T A AL S
We bound the remaining terms in (5.27) as follows. Using Cauchy—Schwartz, Young’s,

Poincaré-Friedrichs, and Korn’s inequalities, we have

— Atpr / dOF" - 8 — Atap (05, 81 + Atbr (05T, 8F") — Atps / dey - &+
Q‘F Qg

/"FAt

A p /1 /1 1 71
P )+ At (0F7) W, + o 1057 Mg + P I (85°1)

/1 At 71
+Amm¢e+wy@)+gﬁﬂw+wym)
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Next, noting that @' = 6}™' on I' and adding and subtracting 5}*', we have
- aAt/ (' —or) - 81!
r
= —am/ (05 — o) - 85 — aAt/ (07 — o) - (85 —85)
r r
< At3 <Zi + a> “dtergllllz‘z(r) + FAZ‘“D (6n+1) I|L2(Q ) aAl||6n+1 _ 6n+l”L2(F)

Combining the estimates above with Equation (5.27), summing fromn =0, ... ,N—1
and taking into account the assumption on the initial data, we have

1 At
PG} 12+ 8% Iy + S 1BV + SSE N8N e, + Sl (e ) mlig
3 . A2 AP
+ourB 3 ID (5:) o, + ”FTanta%“ ooy + 25 anf«s"“ Iy
= n=0

1 (ZA[ 1
2||d,6"+ I+ <5 Zua"* Fllz2

n=0
N-1 AL N-1
n+ 1 F 7+ 1 n+1 2 n+l
< At2||9 5+ = ledﬂ IF:0,) +AtuF;IID (65 72, + ZIIG @)
N-1 N-1
+ ArpsZ 102 1 ) + AF (M + a) 3 1405 12
n=0
At+ 1 n+1 _ ot o+l o 2
“ viLp"th = p) np .
AR 2 OCAI utl sntl Atﬂs 41
t oy Z ”GF (ef ch) nr ot Z”‘S =& M + HZO 185" 172 )
N-1 N-1
Zl|6n+1||S+Alle 6n+l 6n+1 + AZZR 6n+l)
n=0 n=0

To estimate the approximation and consistency errors, we use Lemmas 5.1 and 5.3,
leading to the following inequality:

At
”F||6N||27Q +”S||6 [ ||6N||s+ ||6N||Lzr+ o (e o) nrlfaqe
(@) Q) @) ()
N-1
n A2 " Ar? "
+ ur b YD () 1o, + 75 ZMdta“nLZ(Q) B an,«s“np(g)
n=0

N-1
Ar? 112 (ZA[ 1 2
= 2 N8 Is + Zna"* A
n=0

2
h2 ”§”L2(0T HHI(Q )) ”alvllL’(OT H"“(Q )) + MFh ”v”LZ(OTHHl(Q ))

Lo
h2 +2||P||Lz(0 TH*(Q,)) + pgh2k+2||0,§||L2(0 THk+l(Q ))

2

Atp
+ AF <M + a> h2k+2”alv”L’(0THk“(F)) T ||a"V“Lz(OTLz(Q )



18_|_Wl LEY SEBOLDT AND BUKAC

+ Atsz||art€||12‘2((),T;L2(QS)) + (XAtZ <HF ) |I3zV||L7(0 TLZ(F))

N-1
At (A + 1) ) 2 2 AP 0o 2
+ Tll()tGF”F”Lz(QT:Lz(r)) + Ar “attn”LZ((),T;s) + EZO ”O'F (ep, ep) np 2O
AN At Ao
a 11 U U U
2”5 R + ps 2”5 ) + 72”5,;1 I12. (5.30)
n=0
We estimate term O’Tm SN s - s ”iZ(r) by adding and subtracting 85 and using
trace-inverse inequality (5.18) as follows:
aAt aAt ,
2|I5n+] _ 6n+1||L2(F) — Z|I6n+l _ 5:1 + 6n 61+1”L2(F)
aAt - - alt g - -
<= 2”5 8% + 72”5;1 — 82
aCrk? At - aAt - -
<=0 Zna M =8yt Zn«s 8. (53D

Combining (5.31) with (5.30), we get

Pr Al ”SnaNn

1, N2 aAt N At N N 2
Lz(g ) 5”61’] ”S + — ”6 ”LZ(F) + ”O-F (eF7 eP)nF”LZ(r)

N-1

. Ar? Crik*At 0

+urbt Y ID (85) 170 + = <pF "‘T’h> an,é [
n=0

N-1 N-1
AP AP
+ P2 Y B g + %5 D181
n=0 n=0

(%)

2
< h ”§”L2(0T HA-H(Q )) ||atv”L2(0T Hk+l(Q )) + MFh ”v”L”(OTHA-H(Q ))

h2r+2 ”P”Lz(o TH'+1(Q )) + psh2k+ ”al‘glle(o TH"*'I(Q ))

t2
+ Atz <MF + a> h2k+2”atv”L2(0THk+l(r)) ”atlv”LZ(O TLZ(Q ))

a
+ At pS”al‘IguLz(OTLZ(Q )) + aAtz (ﬂF + 1) “atv”iz(o’T;LZ(r))

N—l

AI(AZ‘+ 1) At 2
T”atO-FnF”Lz(OT Lz(r))+At ||atln||L2(0Ts)+ 2 ~ HO-F BF,EP) nrp 2
At N 1
= Zua*’*1 oy + 2 D85 IR.
n=0

We recall that the error between the exact and the discrete solution is the sum of
the approximation error and the truncation error. Thus, using the triangle inequality,
approximation properties (5.13)—(5.17) and the Gronwall lemma, we prove the desired
estimate. n
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Using Taylor-Hood elements, that is, k = 2, r = 1, for the fluid problem and piecewise quadratic
elements for the solid problem, we have the following estimate.

Corollary 5.1 Consider algorithm (5.6) and (5.7). Suppose that (V,f ,OF ) is given
by P, =Py Taylor-Hood approximation elements and V; is given by P, approximation
elements. Under the assumptions of Theorem 5.1, we have

N-1
alt

1
+ DN 1o, + 5 eV I+ 5 lle FanmwFAanD ) 20,

”eF”LZ(Q ) 2(9)

Se (h*+Ar).
The following lemmas are used in the proof of Theorem 5.1.

Lemma 5.1 The following estimate holds:

N-1
MY (R (857 87) + Ra (8571))
n=0

2
2 [ PF 2 2
s At <MF ”dﬂvlle(O,T;Lz(QF)) + pS”a”g”LZ(O,T;LZ(QS)) +a <# > ”aIv”LZ(O T: LZ(F))
| ALy .
=100 g ey + 190l 5 ) + 25 ZHD (871 I7q, )

At At
pS ||6n+1 ”Lz(g ) + ||6n+l 6n+1 ||L2(F) + = Z ”6n+1 ”S

Proof.  Rearranging and using Cauchy—Schwartz, Young’s, Poincaré-Friedrichs, and

Korn’s inequalities, we have

AIRI (6;+1’62+1) — Ath/ (d;VVH_l _ atvn+1) . 67[;+1 + Atps/ (dt§n+1 _ at§n+1) . 6g+1
Qp Q

S

+adt / (vt —v") - 8 dx + at / (vt —vm) - (SpH - 8 ) dx
r r
+ AI/GF (vn+l _ vn,pn+l _pn) np- (6?.1 _ 62+1)
r

Atp2 n n At 1
s—‘”nd,v“ o2 "F D (8:) 112

() T 12(2)

n n At 11
+ Atpslldig™! =0 g + = N8 g

a 1 2 aAry i n+1))2
+aAt| —+ 1) |p"* =" + X2 am — s
<MF ) I Iy + 55165 = 82 I,
At
+ ;”GF (vn+1 _ vn’pn+1 _pn) nF”IZAZ(F)'
Furthermore, using Cauchy—Schwartz and Young’s inequalities, we have

n+1)

AR, (8;*") = Atag (85, 0™ — diy
1 /1 At 71
< At||ldiy o o + ||§ + ?”611-“”%-
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The final estimate follows by summing from n = 0to N — 1 and applying Lemma 5.2. =

LemmaS5.2 (Consistency errors). Assume X € {Q,I'}. The following inequalities hold:

1 12 2 2
Al2|ld1¢n+ - az(Pn+ ||L2(X) S At ”an¢”L2(O,T;L2(X))’

N-1

A "™ = @Iy S AP0 011200
n=0

Proof.  See [14] for proof. [

Lemma 5.3 (Interpolation errors). The following inequalities hold:

N-1
Athdte"“uLz(g ) < 10OF 1720720,y S M0N0 1010, )

N-1

AtZ”dtenH ||L2(Q ) < ”atefllLZ(OTLZ(Q )) ~ h2k+2||at§||L2(0THk+l(Q ))
N-1 N-1

AanD (651) 20, S Az2h2k||v"+'||mﬂ(g ) ST 0 pses o, )
N-1

A1 21057 I8 S PN e A’Z”""“ 1oy S # WP o a3y
n=0

Proof. The last three inequalities follow directly from approximation proper-
ties (5.13)—(5.17). For other inequalities, see [14] for more details. [

Remark 5.1 The sub-optimal order of convergence in time that is shown in this paper is
often obtained in partitioned methods for the interaction between a fluid and thick struc-
ture. In particular, sub-optimal accuracy has been shown for the partitioned method based
on Nitsche’s approach in [16] and for the Robin-Neumann method in [28]. Extending the
algorithm to optimal accuracy could be achieved by using higher-order extrapolations in
the design of the generalized Robin coupling conditions, but it is out of scope of this paper.

6 | NUMERICAL EXAMPLES

To demonstrate the performance of the proposed numerical scheme, we present three numerical exam-
ples. In the first example, we investigate the accuracy of the linearized FSI problem (5.1)-(5.5)
considered in Section 5 and compare the approximated solution to a manufactured one. We con-
sider the same benchmark problem in the second example, but apply it to a moving domain FSI
problem (2.10)—(2.15). In both of these examples, the convergence rates are calculated using different
combination parameters, «, in order to show the theory is satisfied and in some cases, exceeded. In
our final example, we model pressure propagation in a two-dimensional channel with physiologically
realistic parameters for blood flow and show the comparison of the results obtained using the proposed
partitioned scheme and a monolithic method.
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6.1 | Example 1

In the first numerical example, we use the method of manufactured solutions to verify the theoretical
convergence results from Section 5. We define the structure and fluid domains as upper and lower

parts of the unit square, respectively, that is, Qg = (0, 1) X (%, 1)and QF =(0,1) X (O, %) The true
solutions for the structure displacement, 7, the fluid velocity, v, and the fluid pressure, p, are defined as:

o S ~ N
me| _ [1072x(A =)y =y)e ’ ©.1)
| 7y | | 1073x (1 = x)y(1 -ye |
o S _ o
el _ 1072x (1 —x)y(1 —y)e ’ 62)
| [107x—x)y(I—y)e |

p= —10_3e%s CQA-2x)yd -y +x(1-x)(1-2y)). (6.3)

We note that the fluid velocity is not divergence-free. Therefore, we add a forcing term to the conserva-
tion of mass equation. We also add forcing terms in both the fluid and structure equations (5.1)—(5.5),
resulting in the following system:

proy =V -op(v,p) +ff in Qrx(0,7),
Veov=sys in QrF x(0,7),
om=2¢& in Q¢x(0,7),
ps0& =V -os5(m) +fs in Qg x(0,T),
v=20 on 0Qr/T'x(0,T),
n=0 on 0Qg/I'x (0,T).

Using the exact solutions, we compute forcing terms fr, fs, and s.

Implementing our methodology using finite elements was facilitated through the use of the
FreeFem++ software [34]. For space discretization, IP; elements were used for both the structure veloc-
ity and displacement, where IP; bubble —P; elements were used for the fluid velocity and pressure,
respectively. We set parameters As, ps, Us, pr, and pp equal to one. The simulations were performed
until the final time T = 0.3 s was reached. Figure 2 shows the comparison of the computed and exact
fluid velocity (top) and structure displacement (bottom) obtained with & = 10. An excellent agreement
is observed.

In conjunction with comparing the numerical results to the actual solution, we compute conver-
gence rates as described in Theorem 5.1 in addition to analyzing how well the coupling conditions are
satisfied at the interface. In particular, we compute the following errors for the structure displacement
and velocity, and fluid velocity:

2

0 = H'l T M|\ e = ”5 ey p@) [ = vrerll 2
2 ’ | ’
Mref || Eref L2(Q) ”vref”Lz(QF)

as well as the error for the kinematic coupling condition:

_ v —&llr

Che =
Ivilr

)
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FIGURE 2 Example 1: a comparison of the computed and exact fluid velocity (top) and structure displacement (bottom) at
T = 0.3 s [Color figure can be viewed at wileyonlinelibrary.com]

displacement
(cm)

and error for the dynamic coupling condition:

_ lornr — osnellp
= ————— > T
llornr|lr

In order to compute the convergence rates, we start with an initial time step Az = 0.01 and mesh size
h=0.1, and divide them by two for four iterations. Each variable is then evaluated with differing alphas
equaling 1, 10, 100, 200, and 500.

Figure 3 shows the convergence rates for the structure displacement (top left), structure velocity
(top right), and fluid velocity (bottom) computed at the final time. We observe that the convergence
rates for the structure displacement are close to one across all values of a. The convergence rates for the
structure velocity are first-order, or better, when a is equal to 1 and 10. As « increases, the convergence
rates begin to decrease, compromising condition (5.25) used in the convergence analysis. Similar holds
for the fluid velocity, which has the best convergence rates for a values of 10 and 100, and the worst
when « increases to 500.

In addition to the errors related to Theorem 5.1, we investigate the relation between the combination
parameter a and how well the coupling conditions are satisfied. In particular, the generalized Robin
boundary condition (3.1) will turn into the dynamic coupling condition (2.9) as a — 0, and it will
approach the kinematic coupling condition (2.8) as « — oo . Therefore, we compute errors e, and e, as
we take @ = 1,10,100,200, and 500. In this case, to better approximate the fluid and structure stresses,
we used PP, elements for fluid and structure velocities and the structure displacement, and IP; elements
for pressure. Figure 4 shows errors ¢, (left) and e, (right) computed with the following time and mesh

sizes:
1072 0.0625\ \°
(At,h) € {(7,T>} . (6.4)
k=0

We observe that, with the exception of a = 1, the convergence rates are closer to one for smaller val-
ues of @, and they decrease to 0.5 as « increases to 500. We also note that the error in the kinematic
coupling condition decreases as a increases, while the opposite holds for the dynamic coupling con-
dition. However, for all the considered cases, the relative error in the kinematic coupling condition is
significantly smaller than the relative error in the dynamic coupling condition.
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FIGURE 3 Example 1: errors for the solid displacement n (top-left), solid velocity & (top-right), and fluid velocity v (bottom)
at the final time 7' = 0.3 s [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Example 1: kinematic (left) and dynamic (right) coupling condition errors at the final time 7 = 0.3 s [Color

figure can be viewed at wileyonlinelibrary.com]
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6.2 | Example 2

In the second example, we study the accuracy of the proposed method applied to a moving domain
FSI problem (2.10)—(2.15). We use the same manufactured solutions, (6.1)—(6.3), as in Example 1.
Furthermore, we define the true solution for the fluid domain displacement to be nF = 1, and the true
solution for the fluid domain velocity to be w = d,nr. Similar to Example 1, we add forcing terms to
Equations (2.10), (2.11), and (2.13). To update the fluid domain, we solve

n+l __ . A
A =, in Oy,
ain  ~out
1]?'—1 =0 on I'rUIlF,
F+1 — nn+1 on F

As for fr, fs, and s, we compute fp using the exact solution. Every other aspect of this example
remains unchanged, meaning the error calculations, space and time discretization specifications, and
parameters are the same as in Example 1.

Figure 5 shows the errors for the structure displacement (top left), structure velocity (top right),
and fluid velocity (bottom) obtained at 7 = 0.3 s. Similar behavior is observed as in Example 1. For
all values of a, the convergence rates for the solid displacement are close to one, while the errors are
roughly the same with the very slight exception of when @ = 500. The convergence rates for solid
velocity decrease from 1 to 0.5 as the values of a increase, while the errors themselves grow as a
increases with the exception of @ = 1. In a similar trend, the rates for the fluid velocity decrease and
the errors increase as a grows, with the exception of « = 1. For all variables, the best convergence rates
and the smallest errors are obtained with a = 10.

Likewise to Example 1, we calculate the errors in approximating coupling conditions using a P
space discretization for pressure and P, for all other variables. The temporal and spatial discretization
parameters are the same as described in (6.4). Figure 6 shows the kinematic coupling condition error
(left) and the dynamic coupling condition error (right) at 7 = 0.3 s obtained using different values of
a. Similar to what we observed in Example 1, as a increases, the error decreases for the kinematic
coupling condition with the reversed result for the dynamic coupling condition. As for convergence
rates, we obtain values around 0.5 using @ = 1 and values very close to one using o = 10, which then
decrease back down to 0.5 as a increases.

6.3 | Example 3

The third example focuses on a classical benchmark problem used in the validation of FSI solvers
[11]. We consider the fluid flow in a two-dimensional channel interacting with a deformable wall. The
reference fluid and structure domains are defined as ﬁp = (0,6) x (0,0.5) and ﬁs = (0,6) x (0.5,0.6),
respectively. We consider the moving domain FSI problem (2.10)—(2.15), where we add a linearly
elastic spring term, yn, to the elastodynamic equation, yielding:

psOE+yn=V-os(m in Qsx(0,T).

Term yn is obtained from the axially symmetric model, and it represents a spring keeping the top and
bottom boundaries in a two-dimensional model connected [11].

The parameters used in this example, pr = 1 g/lem?, ur = 0.035 glem s, pg = 1.1 g/em?,
us = 5.75-10° dyne/cm?, y = 4-10° dyne/cm*, and Ag = 1.7 - 10° dyne/cm?, are within physiologi-
cally realistic values of blood flow in compliant arteries. In this example, we use @ = 100. The flow
is driven by prescribing a time-dependent pressure drop at the inlet and outlet sections, as defined in
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FIGURE 5 Example 2: errors for the solid displacement n (top-left), solid velocity & (top-right), and fluid velocity v (bottom)
at the final time 7' = 0.3 s [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Example 2: kinematic (left) and dynamic (right) coupling condition errors at the final time 7 = 0.3 s [Color

figure can be viewed at wileyonlinelibrary.com]


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

26_|_Wl LEY SEBOLDT AND BUKAC

t=4ms
o 20 = = monolithic
g 10 — partitioned
3 o
“__10 1 1 1 1 1 |
0 1 2 3. 4 5 6
X axis
t=8ms
201
Q
‘5 10 -
B 0—\/\
-10 L L L L L |
0 1 2 3. 5 6
X axis
t=12ms
201
(0]
T 107
“__10 1 1 1 1 1 |
0 1 2 4 5 6

3.
x axis

FIGURE 7 Fluid flowrate versus x-axis compared with a monolithic scheme [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 8 Fluid pressure versus x-axis compared with a monolithic scheme [Color figure can be viewed at
wileyonlinelibrary.com]

(2.1) and (2.2), where

s 1—cos(2’”>], if 1<t
pn® =1 2 [ ’ " pew =0 Vte(0,7).

0, if > tpax

The pressure pulse is in effect for 7,5, = 0.03 s with maximum pressure ppax = 1.333 X 10* dyne/cm?.
The final time is 7 = 12 ms. We use P; bubble-P; elements for the fluid velocity and pressure,


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

SEBOLDT AND BUKAC WI LEY 27

£ 004 t=4ms
c
g ' = = monolithic
® 0.02 — partitioned
K] 0
o
2-0.02 ‘
4 5 6
é 0.04r
g 0.02+ - _
8 0 ’
o
2-0.02 :
0 1 2 3. 4 5 6
X axis
— t=12ms
é 0.04r
5 0.02¢ -
(8] rd
< 0 - .
Q. -
K] -0.02 | | | | | )
© 0 1 2 3 4 5 6
X axis [cm]

FIGURE 9 Fluid-structure interface displacement versus x-axis compared with a monolithic scheme [Color figure can be
viewed at wileyonlinelibrary.com]

respectively, and PP; elements for the structure velocity and displacement. The results are obtained
using At = 1073 on a mesh containing 7500 elements in the fluid domain and 1200 elements in the
structure domain.

Figures 7-9 show a comparison of the flowrate, mean pressure, and fluid—structure interface dis-
placement obtained using the proposed numerical method and a monolithic scheme used in [11, 46] at
times ¢ = 4, 8, and 12 ms. A good agreement is observed in all cases, even with small discrepancies in
the interface displacement. We note that the time step used in the simulations obtained with a mono-
lithic solver is Az = 10~*. As expected, due to the splitting error, a smaller time-step was needed in the
partitioned scheme.

7 | CONCLUSIONS

We present a novel partitioned, non-iterative method for FSI problems with thick structures. The pre-
sented method is based on generalized Robin boundary conditions, which are designed by linearly
combining kinematic and dynamic coupling conditions using a combination parameter, «. Thanks
to a novel design of Robin boundary conditions used in the fluid and structure subproblems, we
prove unconditional stability of the semi-discrete numerical method applied to a moving domain
FSI problem. Convergence analysis was performed for a fully-discrete, linearized problem, yield-
ing O(At%) accuracy in time and optimal accuracy in space. The theoretically obtained results are
verified in numerical examples. In particular, using the method of manufactured solutions, we com-
pute the relative errors between the numerical and exact solutions on both fixed domain and moving
domain problems. In particular, we compute the convergence rates for different values of the combi-
nation parameter «, and note that increasing values of a will lead to a decrease of convergence rates
from 1 to 0.5 for a fixed Ar. We also compare our results to the ones obtained using a monolithic
scheme on a benchmark problem of pressure propagation in a two-dimensional channel, obtaining a
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good agreement. However, due to the splitting error and sub-optimal accuracy, a smaller time step was
used in the partitioned scheme. An extension of the proposed method to higher-order accuracy will be
considered in our future work.

One of the drawbacks of the proposed method is its dependence on the combination parameter
a, which is, generally, problem dependent. In other work where similar combination parameters are
introduced, such as [31], the authors suggest to use

psHs
= =— + fH A1, 7.1
=== BHs (7.1)

where Hy is the height of the solid domain and

__E
b=1"n

= (41 =20 =v)p3),

with E denoting the Young’s modulus, v denoting the Poisson’s ratio, and p; and p, denoting the mean
and Gaussian curvatures of the fluid—structure interface, respectively. However, this choice of « is
proposed to ensure convergence of a subiterative solution procedure when solving strongly coupled FSI
problems. Since we do not need subiterations to achieve stability, we do not require similar conditions
on «. Indeed, using (7.1) to compute a in our method gives results that are not optimally accurate.
Therefore, a needs to be estimated separately for each problem.
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