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Abstract
This work focuses on the development and analysis

of a partitioned numerical method for moving domain,

fluid–structure interaction problems. We model the fluid

using incompressible Navier–Stokes equations, and the

structure using linear elasticity equations. We assume that

the structure is thick, that is, described in the same dimen-

sion as the fluid. We propose a non-iterative, domain

decomposition method where the fluid and the structure

subproblems are solved separately. The method is based on

generalized Robin boundary conditions, which are used in

both fluid and structure subproblems. Using energy esti-

mates, we show that the proposed method applied to a

moving domain problem is unconditionally stable. We also

analyze the convergence of the method and show (
Δt

1

2

)
convergence in time and optimal convergence in space.

Numerical examples are used to demonstrate the perfor-

mance of the method. In particular, we explore the relation

between the combination parameter used in the derivation

of the generalized Robin boundary conditions and the accu-

racy of the scheme. We also compare the performance of

the method to a monolithic solver.
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1 INTRODUCTION

Fluid–structure interaction (FSI) problems arise in many applications, such as aerodynamics, hemo-

dynamics, and geomechanics. They are used to predict flow properties in patient-specific arterial

geometries, microfluidic devices, and in the design of many industrial components. FSI problems are

moving domain problems, characterized by highly nonlinear coupling between fluid flow and struc-

ture deformation. As a result, the development of robust numerical algorithms is a subject of intensive

research.

The solution strategies for FSI problems can be classified as monolithic and partitioned methods.

In monolithic algorithms [8, 9, 22, 30, 32, 36, 42, 47], the coupling conditions are imposed implic-

itly and the entire coupled problem is solved as one system of algebraic equations. However, they may

require long computational time, large memory allocation, and well-designed preconditioners [4, 30,

35]. In partitioned methods [3, 6, 7, 14, 15, 21, 25–27, 33, 40, 41, 44, 45], the fluid flow and struc-

ture deformation are solved separately as smaller and better conditioned subproblems, which reduces

the computational cost. However, they often suffer from numerical instabilities, which makes the

design and analysis of stable and efficient partitioned schemes challenging even for simplified, linear

problems.

The design of partitioned algorithms is especially challenging in blood flow applications due to

numerical instabilities known as the added mass effect [18], which are manifested when the fluid

and structure have comparable densities. Furthermore, design of non-iterative, partitioned methods

is particularly difficult when the dimension of the solid domain is the same as the dimension of

the fluid domain. When the structure is thin, that is, described by a lower-dimensional model, it

serves as a fluid–structure interface with mass, which is exploited in the design of many partitioned

methods [14, 26, 40, 45] where parts of the structure equation are used as a Robin boundary con-

dition for the fluid problem. However, when the structure is thick, no additional mass is present at

the fluid–structure interface, which makes the design of stable, non-iterative partitioned algorithms

especially challenging.

It is well known that classical, Dirichlet–Neumann partitioned methods are unconditionally

unstable when fluid and structure have comparable densities [18], which can be resolved by

sub-iterating between fluid and structure subproblems within each time step. As an alterna-

tive to the Dirichlet–Neumann approach, which can exhibit convergence issues, Robin–Dirichlet,

Robin–Neumann, or Robin–Robin methods were designed in [1, 3, 20, 31, 44]. In the design of

these methods, the coupling conditions are linearly combined to obtain the generalized Robin inter-

face conditions, which are then used in the fluid and/or structure subproblems. We also mention the

fictitious-pressure and fictitious-mass algorithms proposed in [5, 48], in which the added mass effect

is accounted for by incorporating additional terms into governing equations. However, algorithms

proposed in [1, 3, 5, 20, 31, 44, 48] still require sub-iterations between the fluid and the structure

subproblems in order to achieve stability.

A different partitioned scheme was proposed in [16, 17], where the fluid–structure coupling con-

ditions are imposed using Nitsche’s penalty method [33] and some terms are time-lagged to uncouple

the fluid and solid subproblems. It was shown that the scheme is stable under a CFL condition if a

weakly consistent stabilization term that includes pressure variations at the interface is added. The

authors show that the rate of convergence in time is sub-optimal, which is then corrected by proposing

a few defect-correction sub-iterations. A non-iterative, partitioned algorithm based on the so-called

added-mass partitioned Robin conditions was proposed in [7]. It was shown that the algorithm is stable

under a condition on the time step, which depends on the structure parameters. Even though the authors

do not derive the convergence rates, their numerical results indicate that the scheme is second-order



SEBOLDT AND BUKAČ 3

accurate in time. A generalized Robin–Neumann explicit coupling scheme based on an interface oper-

ator accounting for the solid inertial effects within the fluid has been proposed in [28]. The scheme has

been analyzed on a linear FSI problem and shown to be stable under a time-step condition. In our pre-

vious work [11], we developed a partitioned scheme for FSI with a thick, linearly viscoelastic structure

based on an operator-splitting approach. However, the assumption that the structure is viscoelastic was

necessary in the derivation of the scheme, and the solid viscosity was solved implicitly with the fluid

problem. Furthermore, the scheme was shown to be stable only under a condition on the time step [14].

In this work, we propose a partitioned, loosely coupled method for FSI problems with thick

structures. As opposed to the previous work, the method presented here is unconditionally stable,

and sub-iterations or stabilization terms are not needed to achieve stability. Furthermore, a moving

domain problem was considered in the stability analysis. The fluid is modeled using the Navier–Stokes

equations for an incompressible, viscous fluid, and the structure using the equations of linear elasticity.

The deformation of the fluid mesh is treated using the arbitrary Lagrangian–Eulerian approach (ALE)

[23, 37, 42], where the fluid mesh is allowed to deform matching the deformation of the structural

domain. The proposed partitioned method is based on generalized Robin boundary conditions, which

are formulated in a novel way. Unconditional stability is shown on a moving domain, semi-discrete

problem using energy estimates. The proposed method is discretized in space and implemented using

the finite element method. We preform error analysis of the fully discrete method on a linearized

problem and show that the scheme exhibits (
Δt

1

2

)
convergence in time and optimal convergence in

space. The relation between the combination parameter used in the formulation of generalized Robin

boundary conditions and the accuracy of the method is explored in the numerical examples. We also

compare our method to an implicit scheme on a benchmark problem under realistic parameters in blood

flow modeling.

This paper is organized as follows. The nonlinear FSI problem is presented in Section 2, and the

proposed numerical scheme is presented in Section 3. Stability analysis is performed in Section 4 and

error analysis is performed in Section 5. Numerical examples are presented in Section 6. Conclusions

are drawn in Section 7.

2 MATHEMATICAL MODEL

We are interested in modeling fluid flow in a deformable channel, where the channel walls represent an

elastic structure. We assume that the fluid is viscous and incompressible, that the structure is linearly

elastic, and that the fluid and structure are both described in two-dimensional domains. The fluid and

structure are two-ways coupled, resulting in a nonlinear, moving domain problem.

2.1 Computational domains and mappings

We denote the reference fluid domain by Ω̂F and the reference structure domain by Ω̂S (see Figure 1).

The fluid and structure domains at time t are denoted by ΩF(t) and ΩS(t), respectively.

We assume that the structure equations are given in a Lagrangian framework, with respect to the

reference domain Ω̂S. The fluid equations will be described in the ALE formulation. To track the

deformation of the fluid domain in time, we introduce a smooth, invertible, ALE mapping  ∶ Ω̂F ×
[0, T] → ΩF (t) given by

 (X, t) = X + 𝜼F (X, t) , for all X ∈ Ω̂F, t ∈ [0, T] ,
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FIGURE 1 Left: reference domain Ω̂F ∪ Ω̂S. Right: deformed domain ΩF(t)∪ΩS(t)

where 𝜼F denotes the displacement of the fluid domain. We assume that 𝜼F equals the structure

displacement on Γ̂, and is arbitrarily extended into the fluid domain Ω̂F [38]. We denote the fluid

deformation gradient by F = ∇ and its determinant by J.

2.2 Fluid subproblem

To model the fluid flow, we use the Navier–Stokes equations in the ALE formulation [12, 13, 38],

given as follows:

𝜌F

(
𝜕t v|Ω̂F

+ (v − w) ⋅ ∇v
)
= ∇ ⋅ 𝝈F (v, p) + fF in ΩF (t) × (0, T) ,

∇ ⋅ v = 0 in ΩF (t) × (0, T) ,

where v is the fluid velocity, w = 𝜕t x|Ω̂F
= 𝜕t◦−1 is the domain velocity, 𝜌F is the fluid den-

sity, 𝝈F is the fluid stress tensor and f F is the forcing term. For a Newtonian fluid, the stress tensor

is given by 𝝈F(v, p) = − pI+ 2𝜇FD(v), where p is the fluid pressure, 𝜇F is the fluid viscosity, and

D(v) = (∇v+ (∇v)T )/2 is the strain rate tensor. Notation 𝜕t v|Ω̂F
denotes the Eulerian description of the

ALE field 𝜕tv◦ [29], that is,

𝜕t v (x, t)|Ω̂F
= 𝜕tv

(−1 (x, t) , t
)
.

We denote the inlet and outlet of the fluid domain by Γin
F (t) and Γout

F (t), respectively. At the inlet

and outlet sections, we prescribe Neumann boundary conditions:

𝝈FnF = −pin (t) nF on Γin
F (t) × (0, T) , (2.1)

𝝈FnF = −pout (t) nF on Γout
F (t) × (0, T) , (2.2)

where nF is the outward unit normal to the deformed fluid domain. We will also consider the dynamic

pressure inlet and outlet data:

p + 𝜌F
2
|v|2 = pin (t) on Γin

F (t) × (0, T) , (2.3)

p + 𝜌F
2
|v|2 = pout (t) on Γout

F (t) × (0, T) , (2.4)

v × nF = 0 on Γin
F (t) ∪ Γout

F (t) × (0, T) . (2.5)

Here, the fluid flow is driven by a prescribed dynamic pressure drop, and the flow enters and leaves the

fluid domain orthogonally to the inlet and outlet boundary. While Neumann boundary conditions (2.1)

and (2.2) are more convenient to use in numerical simulations, dynamic pressure boundary conditions

(2.3)–(2.5) are used to derive the energy estimates of the fluid problem in a moving domain and in the

stability analysis.



SEBOLDT AND BUKAČ 5

2.3 Structure subproblem

To model the elastic structure, we use the elastodynamics equations written in the first order form as

𝜕t𝜼 = 𝝃 in Ω̂S × (0, T) ,

𝜌S𝜕t𝝃 = ∇ ⋅ 𝝈S (𝜼) + fS in Ω̂S × (0, T) ,

where 𝜼 is the structure displacement, 𝝃 is the structure velocity, 𝜌S is the structure density, 𝝈S is the

solid stress tensor, and f S is the volume force applied to the structure. We assume that the deformations

are small and use the Saint-Venant Kirchhoff elastic model, given as

𝝈S (𝜼) = 2𝜇SD (𝜼) + 𝜆S (∇ ⋅ 𝜼) I,

where 𝜇S and 𝜆S are Lamé constants. We assume that the structure is fixed at the inlet and outlet

boundaries:

𝜼 = 0 on Γ̂
in
S ∪ Γ̂

out
S × (0, T) , (2.6)

and that the external structure boundary Γ̂
ext
S is exposed to zero external ambient pressure:

𝝈SnS = 0 on Γ̂
ext
S × (0, T) , (2.7)

where nS is the outward normal to the reference structure domain.

2.4 The coupled FSI problem

To couple the fluid and structure subproblems, we prescribe the kinematic and dynamic coupling

conditions [13, 38] given as follows:

Kinematic coupling condition describes the continuity of velocity at the fluid–structure interface

(no-slip):

v◦ = 𝝃 on Γ̂ × (0, T) . (2.8)

Dynamic coupling condition describes the continuity of stresses at the fluid–structure interface due

to the action-reaction principle. The condition reads:

J𝝈FF−TnF + 𝝈SnS = 0 on Γ̂ × (0, T) . (2.9)

Hence, the fully coupled fluid–structure interaction problem is given by:

𝜌F

(
𝜕t v|Ω̂F

+ (v − w) ⋅ ∇v
)
= ∇ ⋅ 𝝈F (v, p) in ΩF (t) × (0, T) , (2.10)

∇ ⋅ v = 0 in ΩF (t) × (0, T) , (2.11)

𝜕t𝜼 = 𝝃 in Ω̂S × (0, T) , (2.12)

𝜌S𝜕t𝝃 = ∇ ⋅ 𝝈S (𝜼) in Ω̂S × (0, T) , (2.13)

v◦ = 𝝃 on Γ̂ × (0, T) , (2.14)

J𝝈FF−TnF + 𝝈SnS = 0 on Γ̂ × (0, T) . (2.15)

To update the fluid domain, we extend the solid displacement at the interface using the harmonic

extension, which is a common choice of the extension operator [2]. The fluid domain and domain

velocity are determined, respectively, by

ΩF (t) = (
Ω̂F, t

)
, w = 𝜕t◦−1.
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Initially, the fluid and the structure are assumed to be at rest, with zero displacement from the

reference configuration.

2.5 The weak formulation of the coupled problem

Given an open set S, we consider the usual Sobolev spaces Hk(S), with k≥ 0. For all t∈ [0, T] we

introduce the following functional spaces:

VF (t) =
{
𝝓 ∶ ΩF (t) → R

2|||𝝓 = 𝝓̂◦−1, 𝝓̂ ∈
(

H1
(
Ω̂F

))2
}

,

VF,0 (t) =
{
𝝓 ∈ VF (t)|||𝝓 × n = 0 on Γin

F ∪ Γout
F

}
,

QF (t) =
{
𝜓 ∶ ΩF (t) → R|𝜓 = 𝜓̂◦−1, 𝜓̂ ∈ L2

(
Ω̂F

)}
,

VS =
{
𝜁 ∶ Ω̂S → R

2||| 𝜁 ∈
(

H1(Ω̂S)
)2

, 𝜁 = 0 on Γ̂
in
S ∪ Γ̂

out
S

}
,

VFSI (t) =
{
(𝝓, 𝜁) ∈ VF,0 (t) × VS|||𝝓 = 𝜁◦−1 on Γ (t)

}
.

We define the following bilinear forms associated with the fluid and structure problems:\stop

aF (v,𝝓) = 2𝜇F∫ΩF(t)
D (v) ∶ D (𝝓) 𝑑x, ∀v, 𝝓 ∈ VF (t) ,

bF (v, 𝜓) = ∫ΩF(t)
∇ ⋅ v𝜓dx, ∀v ∈ VF (t) , 𝜓 ∈ QF (t) ,

aS (𝜼, 𝜻) = 2𝜇S∫Ω̂S

D (𝜼) ∶ D (𝜻) 𝑑x + 𝜆S∫Ω̂S

(∇ ⋅ 𝜼) (∇ ⋅ 𝜻) 𝑑x, ∀𝜼, 𝜻 ∈ VS.

We also define norm ||⋅||S associated with the bilinear form aS(⋅, ⋅) as

‖𝜼‖S = (aS (𝜼, 𝜼))
1

2 .

The weak formulation of the coupled fluid–structure interaction problem (2.10)–(2.15) with bound-

ary conditions (2.3)–(2.5) and (2.6)–(2.7) is given as follows: Find (v, 𝝃)∈VFSI(t), p∈QF(t) and 𝜼∈VS

such that 𝜕t𝜼 = 𝝃 and

𝜌F∫ΩF(t)
𝜕tv

|||||Ω̂F

⋅ 𝝓𝑑x + 𝜌F∫ΩF(t)
((v − w) ⋅ ∇) v ⋅ 𝝓𝑑x + 2𝜇F∫ΩF(t)

D (v) ∶ D (𝝓) 𝑑x

− ∫ΩF(t)
p∇ ⋅ 𝝓𝑑x + ∫ΩF(t)

q∇ ⋅ v𝑑x + 𝜌S∫Ω̂S

𝜕t𝝃 ⋅ 𝜻𝑑X + 2𝜇S∫Ω̂S

D (𝜼) ∶ D (𝜻) 𝑑X

+ 𝜆S∫Ω̂S

(∇ ⋅ 𝜼) (∇ ⋅ 𝜻) 𝑑X = −∫Γin
F

pin𝝓 ⋅ nFdx − ∫Γout
F

pout𝝓 ⋅ nFdx + 𝜌F
2 ∫Γin

F ∪Γ
out
F

|v|2𝝓 ⋅ nFdx,

for all (𝝓, 𝜻)∈VFSI(t), q∈QF(t).
To derive the energy of the coupled FSI problem, we take 𝝓 = v, q = p, and 𝜻 = 𝝃. We transform

∫ΩF(t)
𝜌F𝜕t v|Ω̂F

⋅ v𝑑x on the reference domain Ω̂F as follows:

∫ΩF(t)
𝜌F𝜕t v|Ω̂F

⋅ v𝑑x = ∫Ω̂F

𝜌FJ𝜕t (v◦) ⋅ (v◦) 𝑑x̂

= 1

2∫Ω̂F

𝜌F𝜕t
(
J|v◦|2) 𝑑x̂ − 1

2∫Ω̂F

𝜌F𝜕tJ|v◦|2𝑑x̂.
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Using the Euler expansion formula,

𝜕t J|Ω̂F
= J∇ ⋅ w,

we have

∫ΩF(t)
𝜌F𝜕t v|Ω̂F

⋅ v𝑑x = 1

2∫Ω̂F

𝜌F𝜕t
(
J|v◦|2) 𝑑x̂ − 1

2∫Ω̂F

𝜌FJ∇ ⋅ (w◦) |v◦|2𝑑x̂

= 1

2

𝑑
dt∫Ω̂F

𝜌FJ|v◦|2𝑑x̂ − 1

2∫Ω̂F

𝜌FJ∇ ⋅ (w◦) |v◦|2𝑑x̂

= 1

2

𝑑
dt∫ΩF(t)

𝜌F|v|2𝑑x − 1

2∫ΩF(t)
𝜌F∇ ⋅ w|v|2𝑑x.

To handle the convective term, after integration by parts and taking into account ∇ ⋅ v = 0, we have

𝜌F∫ΩF(t)
((v − w) ⋅ ∇) v ⋅ v𝑑x = 𝜌F

2 ∫ΩF(t)
∇ ⋅ w|v|2𝑑x + 𝜌F

2 ∫Γ(t)
((v − w) ⋅ nF) |v|2dS

+ 𝜌F
2 ∫Γin

F (t)∪Γ
out
F (t)

((v − w) ⋅ nF) |v|2dS.

Since w = u on Γ(t) and w = 0 on Γin
F ∪ Γout

F , the following energy equality holds:

𝜌F
2

𝑑
dt

‖v‖2
L2(ΩF(t)) + 2𝜇F ‖D (v)‖2

L2(ΩF(t)) +
𝜌S
2

𝑑
dt

‖𝝃‖2

L2(Ω̂S)
+ 1

2

𝑑
dt

‖𝜼‖2
S

= −∫Γin
F

pin (t) v ⋅ ndS − ∫Γout
F

pout (t) v ⋅ ndS.

3 NUMERICAL METHOD

Let Δt be the time step and tn = nΔt for n = 0, … , N. We denote by zn the approximation of a

time-dependent function z at time level tn. We define the discrete backward difference operator dtzn+ 1

and the average zn+ 1

2 as

𝑑tzn+1 = zn+1 − zn

Δt
, zn+ 1

2 = zn+1 + zn

2
.

Similarly as in [2, 3], we consider a linear combination of FSI coupling conditions (2.8) and (2.9)

𝛼𝝃 + 𝝈SnS = 𝛼v◦ (t) − J𝝈FF−TnF on Γ̂ × (0, T) , (3.1)

where 𝛼 > 0 is a combination parameter. Using (2.9) again, we introduce the following two

time-discrete transmission conditions of Robin type:

𝛼𝝃n+1 + 𝝈n+1
S nS = 𝛼vn◦ (tn) − Jn𝝈n

F(Fn)−Tnn
F on Γ̂ × (0, T) , (3.2)

𝛼𝝃n+1 − Jn+1𝝈n+1
F

(
Fn+1

)−Tnn+1
F = 𝛼vn+1◦ (

tn+1
)
− Jn𝝈n

F(Fn)−Tnn
F on Γ̂ × (0, T) . (3.3)

Condition (3.2) will serve as a Robin-type boundary condition for the structure subproblem, and

condition (3.3) will serve as a Robin-type boundary condition for the fluid subproblem. To discretize

the fluid and structure subproblems in time, we use the Backward Euler scheme. The fluid and structure

subproblems, semi-discretized in time, are now given as follows:

Structure subproblem: Find 𝜼n+ 1 and 𝝃n+ 1 such that

𝑑t𝜼
n+1 = 𝝃n+1 in Ω̂S,
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𝜌S𝑑t𝝃
n+1 = ∇ ⋅ 𝝈S

(
𝜼n+1

)
in Ω̂S,

𝛼𝝃n+1 + 𝝈n+1
S nS = 𝛼vn◦ (tn) − Jn𝝈n

F(Fn)−Tnn
F on Γ̂.

Geometry subproblem: Find 𝜼n+1
F such that

− Δ𝜼n+1
F = 0 in Ω̂F,

𝜼n+1
F = 0 on Γ̂

in
F ∪ Γ̂

out
F ,

𝜼n+1
F = 𝜼n+1 on Γ̂,

and wn+ 1 such that

wn+1◦ (
tn+1

)
= 𝑑t𝜼

n+1
F in Ω̂F.

Compute ΩF(tn+ 1) as ΩF
(
tn+1

)
=
(
I + 𝜼n+1

F
) (

Ω̂F

)
. Set vn◦ (tn) = wn+1◦ (

tn+1
)

on Γ̂.

Fluid subproblem: Find vn+ 1 and pn+ 1 such that

𝜌F

(
Jn vn+1◦ (

tn+1
)
− vn◦ (tn)

Δt
+ Jn+ 1

2

(
vn◦ (tn) − wn+1◦ (

tn+1
))

⋅ ∇vn+1◦ (
tn+1

))
= Jn+1∇ ⋅ 𝝈F

(
vn+1, pn+1

)
◦ (

tn+1
)

in Ω̂F,

Jn+1∇ ⋅ vn+1 = 0 in Ω̂F,

𝛼𝝃n+1 − Jn+1𝝈n+1
F

(
Fn+1

)−Tnn+1
F = 𝛼vn+1◦ (

tn+1
)
− Jn𝝈n

F(Fn)−Tnn
F on Γ̂.

We note that the continuous formulation of the fluid subproblem is written on the reference domain

due to the use of different time discretizations of the computational domain for different terms in the

equation. However, the deformed domains, as described in (3.5), are considered in practice.

3.1 Weak formulation of the semi-discrete partitioned scheme

We define the following bilinear forms associated with the fluid problem:

an
F (v,𝝓) = 2𝜇F∫ΩF(tn)

D (v) ∶ D (𝝓) 𝑑x, bn
F (p,𝝓) = ∫ΩF(tn)

p∇ ⋅ 𝝓𝑑x,

for all v, 𝝓∈VF(tn) and p∈QF(tn). To simplify the notation moving forward, we will write

∫Ω(tm)
vn instead of ∫Ω(tm)

vn◦ (tn) ◦−1 (tm)

whenever we need to integrate vn on a domain Ω(tm), for m≠ n. The weak formulation of the fluid and

structure subproblems is given as:

Structure subproblem: Find 𝝃n+ 1 ∈VS and 𝜼n+ 1 ∈VS, where 𝝃n+ 1 = dt𝜼
n+ 1, such that for all

𝜻 ∈VS we have

𝜌S∫Ω̂S

𝑑t𝝃
n+1 ⋅ 𝜻𝑑x + aS

(
𝜼n+1, 𝜻

)
+ 𝛼∫Γ̂

(
𝝃n+1 − vn) ⋅ 𝜻𝑑x = −∫Γ̂

Jn𝝈n
F(Fn)−Tnn

F ⋅ 𝜻𝑑x. (3.4)

Fluid subproblem: Find vn+ 1 ∈VF(tn+ 1) and pn+ 1 ∈QF(tn+ 1) such that for all 𝝓∈VF(tn+ 1) and

𝜓 ∈QF(tn+ 1) we have

𝜌F∫ΩF(tn)

vn+1 − vn

Δt
⋅ 𝝓𝑑x + 𝜌F∫ΩF

(
tn+ 1

2

) ((
vn − wn+1

)
⋅ ∇

)
vn+1 ⋅ 𝝓𝑑x + an+1

F
(
vn+1,𝝓

)
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− bn+1
F

(
pn+1,𝝓

)
+ bn+1

F
(
𝜓, vn+1

)
+ 𝛼∫Γ(tn+1)

(
vn+1 − 𝝃n+1

)
⋅ 𝝓𝑑x

= ∫Γ(tn)
𝝈F (vn, pn) nn

F ⋅ 𝝓𝑑x + ∫Γin
F ∪Γ

out
F

𝝈F
(
vn+1, pn+1

)
nn+1

F ⋅ 𝝓𝑑x. (3.5)

We note that the boundary conditions in the fluid subproblem are not specified. Conditions (2.1) and

(2.2) will be used in numerical simulations in Section 6, while conditions (2.3)–(2.5) will be used in

stability analysis in Section 4.

4 STABILITY ANALYSIS

Let n denote the sum of the kinetic energy of the fluid and the kinetic and elastic energy of the solid,

given by

n = 𝜌F
2

‖vn‖2
L2(ΩF(tn)) +

𝜌S
2
‖𝝃n‖2

L2(Ω̂S)
+ 1

2
‖𝜼n‖2

S ,

let n denote the fluid viscous dissipation, given by

n = 𝜇FΔt
n∑

k=1

‖‖‖D
(
vk)‖‖‖2

L2(ΩF(tk))
,

and let  n
1 and  n

2 denote terms due to numerical dissipation, given by

 n
1 = 𝛼Δt

2
‖vn‖2

L2(Γ̂) +
Δt
2𝛼

‖‖‖Jn𝝈n
F(Fn)−Tnn

F
‖‖‖2

L2(Γ̂)
,

 n
2 = 𝜌S

2

n−1∑
k=0

‖‖‖𝝃k+1 − 𝝃k‖‖‖2

L2(Ω̂S)
+ 1

2

n−1∑
k=0

‖‖‖𝜼k+1 − 𝜼k‖‖‖2

S
+ 𝜌F

2

n−1∑
k=0

‖‖‖vk+1 − vk‖‖‖2

L2(ΩF(tk))

+ 𝛼Δt
2

n−1∑
k=0

‖‖‖𝝃k+1 − vk‖‖‖2

L2(Γ̂)
.

The stability of method (3.4) and (3.5) is presented in the following theorem.

Theorem 4.1 Let (𝝃n, 𝜼n, vn, pn) be the solution of (3.4) and (3.5). Assume boundary
conditions (2.3)–(2.5) are imposed. Then, the following a priori energy estimate holds:

N +N + N
1 + N

2 ≤ 0 + 0
1 +

ΔtC2
PC2

K
2𝜇F

‖pin‖2
L2(Γin

F ) +
ΔtC2

PC2
K

2𝜇F
‖pout‖2

L2(Γin
F ) .

Proof. Take 𝜻 = Δt𝝃n+ 1 in (3.4) and 𝝓 = Δtvn+ 1, 𝜓 = Δtpn+ 1 in (3.5). Adding

the equations and recasting the interface integrals in the fluid problem on the reference

domain, we have

𝜌S
2

(||𝝃n+1||2
L2(Ω̂S)

− ||𝝃n||2
L2(Ω̂S)

+ ||𝝃n+1 − 𝝃n||2
L2(Ω̂S)

)
+ 1

2

(||𝜼n+1||2S − ||𝜼n||2S + ||𝜼n+1 − 𝜼n||2S)
+ 𝜌F∫ΩF(tn)

(
vn+1 − vn) ⋅ vn+1𝑑x + 𝜌FΔt∫ΩF

(
tn+ 1

2

) ((
vn − wn+1

)
⋅ ∇

)
vn+1 ⋅ vn+1𝑑x

+ 2𝜇FΔt||D (
vn+1

) ||2L2(ΩF(tn+1)) +
𝛼Δt

2

(||vn+1||2L2(Γ̂) − ||vn||2L2(Γ̂)

)
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+ 𝛼Δt
2

(||𝝃n+1 − vn||2L2(Γ̂) + ||vn+1 − 𝝃n+1||2L2(Γ̂)

)
= Δt∫Γ̂

Jn𝝈n
F(Fn)−Tnn

F ⋅
(
vn+1 − 𝝃n+1

)
𝑑x − Δt∫Γin

F

pinvn+1 ⋅ nn+1
F dx

− Δt∫Γout
F

poutvn+1 ⋅ nn+1
F dx + 𝜌FΔt

2 ∫Γin
F ∪Γ

out
F

|||vn+1|||2vn+1 ⋅ nn+1
F dx. (4.1)

We transform the integral containing the time-derivative of the fluid velocity to the

reference domain as follows:

𝜌F∫ΩF(tn)

(
vn+1 − vn) ⋅ vn+1𝑑x = 𝜌F∫Ω̂F

Jn (vn+1 − vn) ⋅ vn+1𝑑x.

Using identity

∫Ω̂F

Jn (vn+1 − vn) ⋅ vn+1𝑑x

= 1

2∫Ω̂F

(
Jn+1|||vn+1|||2 − Jn|vn|2) 𝑑x − 1

2∫Ω̂F

(
Jn+1 − Jn) |||vn+1|||2𝑑x

+ 1

2∫Ω̂F

Jn|||vn+1 − vn|||2𝑑x,

we obtain

𝜌F∫ΩF(tn)

(
vn+1 − vn) ⋅ vn+1𝑑x = 𝜌F

2

(||vn+1||2L2(ΩF(tn+1)) − ||vn||2L2(ΩF(tn)) + ||vn+1 − vn||2L2(ΩF(tn))
)

− 𝜌F
2 ∫Ω̂F

(
Jn+1 − Jn) |||vn+1|||2𝑑x. (4.2)

To handle the last term in (4.2), we use the geometric conservation law [10, 24, 40, 43]

given as

||vn+1||2L2(ΩF(tn+1)) − ||vn+1||2L2(ΩF(tn)) = ∫
tn+1

tn

(
∫ΩF(t)

|||vn+1|||2∇ ⋅ w𝑑x
)

dt.

Since we consider a linear time variation for the displacement of the points of the fluid

domain, the domain velocity is constant in time interval [tn, tn+ 1]. In that case, it has

been shown in [39] that the geometric conservation law is exactly satisfied if the midpoint

formula is used for time-integration in two-dimensions, yielding

||vn+1||2L2(ΩF(tn+1)) − ||vn+1||2L2(ΩF(tn)) = Δt∫ΩF

(
tn+ 1

2

)|||vn+1|||2∇ ⋅ wn+ 1

2 𝑑x.

As in [44], we note that since the domain velocity is piecewise constant, we have wn+ 1

2 =
wn+1. Therefore, Equation (4.2) can be written as

𝜌F∫ΩF(tn)

(
vn+1 − vn) ⋅ vn+1𝑑x = 𝜌F

2

(||vn+1||2L2(ΩF(tn+1)) − ||vn||2L2(ΩF(tn)) + ||vn+1 − vn||2L2(ΩF(tn))
)

− 𝜌FΔt
2 ∫ΩF

(
tn+ 1

2

)|||vn+1|||2∇ ⋅ wn+1𝑑x. (4.3)
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For the advection term, we proceed as follows:

𝜌FΔt∫ΩF

(
tn+ 1

2

) ((
vn − wn+1

)
⋅ ∇

)
vn+1 ⋅ vn+1𝑑x = 𝜌FΔt

2 ∫ΩF

(
tn+ 1

2

)∇ ⋅ wn+1|||vn+1|||2𝑑x

+ 𝜌FΔt
2 ∫Γin

F ∪Γ
out
F

|||vn+1|||2vn+1 ⋅ nn+1
F dx. (4.4)

To handle the interface term in (4.1), using (3.1), we have

Δt∫Γ̂
Jn𝝈n

F(Fn)−Tnn
F ⋅

(
vn+1 − 𝝃n+1

)
𝑑x

= Δt
𝛼 ∫Γ̂

Jn𝝈n
F(Fn)−Tnn

F ⋅
(

Jn𝝈n
F(Fn)−Tnn

F − Jn+1𝝈n+1
F

(
Fn+1

)−Tnn+1
F

)
= Δt

2𝛼

(||Jn𝝈n
F(Fn)−Tnn

F||2L2(Γ̂) − ||Jn+1𝝈n+1
F

(
Fn+1

)−Tnn+1
F ||2L2(Γ̂)

)
+ Δt

2𝛼
||Jn𝝈n

F(Fn)−Tnn
F − Jn+1𝝈n+1

F
(
Fn+1

)−Tnn+1
F ||2L2(Γ̂)

= Δt
2𝛼

(||Jn𝝈n
F(Fn)−Tnn

F||2L2(Γ̂) − ||Jn+1𝝈n+1
F

(
Fn+1

)−Tnn+1
F ||2L2(Γ̂)

)
+ 𝛼Δt

2
||vn+1 − 𝝃n+1||2L2(Γ̂). (4.5)

To estimate the forcing terms, we use the Cauchy–Schwarz, Young’s, Poincare, and

Korn’s inequalities as follows:

− Δt∫Γin
F

pinvn+1
h ⋅ nF − Δt∫Γout

F

poutvn+1
h ⋅ nF

≤ ΔtC2
PC2

K
2𝜇F

||pin||2L2(Γin
F ) +

ΔtC2
PC2

K
2𝜇F

||pout||2L2(Γin
F ) + Δt𝜇F||D (

vn+1
) ||2L2(ΩF(tn+1)). (4.6)

Using (4.3)–(4.6) in (4.1) and summing from n = 0 to N − 1 completes the proof. ▪

Remark 4.1 Similarly as in [1, 3, 31, 44], the method proposed here is developed

using generalized Robin boundary conditions. However, in this work, generalized Robin

boundary conditions are designed and discretized in a novel way, leading to an uncondi-

tionally stable scheme which does not require sub-iterations. As opposed to the previous

work, where two combination parameters are introduced, we have only one combination

parameter, 𝛼.

This method also exhibits similarities to the method proposed in [16]. In particular,

the weak form of the partitioned scheme presented in this work is similar to the incom-

plete version of the explicit method presented in [16], which was obtained by enforcing

coupling conditions using Nitsche’s penalty method. However, only conditional stability

was proved for the method presented in [16] after a stabilization term was added.

5 CONVERGENCE ANALYSIS

To analyze the convergence of the fully discrete proposed method, we assume that the fluid is described

by the time-dependent Stokes equations, that the structure deformation is infinitesimal and that the

fluid–structure interaction is linear. These assumptions are common in the analysis of partitioned
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schemes for FSI problems as the main difficulties related to the splitting between the fluid and struc-

ture subproblems are still present [7, 14, 16, 28]. Therefore, to simplify the notation, in the following

we will omit the hat notation. The resulting numerical method is given by:

Structure subproblem: Find 𝜼n+ 1 and 𝝃n+ 1 = dt𝜼
n+ 1 such that

𝜌S𝑑t𝝃
n+1 = ∇ ⋅ 𝝈S

(
𝜼n+1

)
in ΩS, (5.1)

𝛼𝝃n+1 + 𝝈S
(
𝜼n+1

)
nS = 𝛼vn − 𝝈F (vn, pn) nF on Γ. (5.2)

Fluid subproblem: Find vn+ 1 and pn+ 1 such that

𝜌F𝑑tvn+1 = ∇ ⋅ 𝝈F
(
vn+1, pn+1

)
in ΩF, (5.3)

∇ ⋅ vn+1 = 0 in ΩF, (5.4)

𝛼vn+1 + 𝝈F
(
vn+1, pn+1

)
nF = 𝛼𝝃n+1 + 𝝈F (vn, pn) nF on Γ. (5.5)

To discretize (5.1)–(5.5) in space, we use the finite element method. The finite element spaces are

defined as the subspaces VF
h ⊂ VF, QF

h ⊂ QF, and VS
h ⊂ VS based on a conforming finite element

triangulation with maximum triangle diameter h. We assume that spaces VF
h and QF

h are inf-sup stable

and that the fluid boundary conditions are (2.1) and (2.2). The weak formulation of the scheme is given

as follows:

Structure subproblem: Find 𝝃n+1
h ∈ VS

h and 𝜼n+1
h ∈ VS

h , where 𝝃n+1
h = 𝑑t𝜼

n+1
h , such that for all

𝜻h ∈ VS
h we have

𝜌S∫ΩS

𝑑t𝝃
n+1
h ⋅ 𝜻h𝑑x + aS

(
𝜼n+1

h , 𝜻h
)
+ 𝛼∫Γ

(
𝝃n+1

h − vn
h
)
⋅ 𝜻h𝑑x = −∫Γ

𝝈F
(
vn

h, pn
h
)

nF ⋅ 𝜻h𝑑x. (5.6)

Fluid subproblem: Find vn+1
h ∈ VF

h and pn+1
h ∈ QF

h such that for all 𝝓h ∈ VF
h and 𝜓h ∈ QF

h we have

𝜌F∫ΩF

𝑑tvn+1
h ⋅ 𝝓h𝑑x + aF

(
vn+1

h ,𝝓h
)
− bF

(
pn+1

h ,𝝓h
)
+ bF

(
𝜓h, vn+1

h
)
+ 𝛼∫Γ

(
vn+1

h − 𝝃n+1
h

)
⋅ 𝝓h𝑑x

= ∫Γ
𝝈F

(
vn

h, pn
h
)

nF ⋅ 𝝓h𝑑x − ∫Γin
F

pin (t)𝝓h ⋅ nFdx − ∫Γout
F

pout (t)𝝓h ⋅ nFdx. (5.7)

For spatial discretization, we use the Lagrangian finite elements of polynomial degree k for all

variables except for the fluid pressure for which we use elements of degree r < k. Assume that the

continuous solution satisfies the following assumptions:

v ∈ L∞ (
0, T;Hk+1 (ΩF)

)
∩ H1

(
0, T;Hk+1 (ΩF)

)
∩ H2

(
0, T; L2 (ΩF)

)
, (5.8)

v|Γ ∈ L∞ (
0, T;Hk+1 (Γ)

)
∩ H1

(
0, T;Hk+1 (Γ)

)
, (5.9)

p ∈ L2
(
0, T;Hr+1 (ΩF)

)
, p|Γ ∈ H1

(
0, T; L2 (Γ)

)
, (5.10)

𝜼 ∈ W1,∞ (
0, T;Hk+1 (ΩS)

)
∩ H2

(
0, T;Hk+1 (ΩS)

)
∩ H3

(
0, T; L2 (ΩS)

)
. (5.11)

Let a≲ (≳)b denote that there exists a positive constant C, independent of h and Δt, such that

a≤ (≥)Cb. We introduce the following time discrete norms:

||𝝋||L2(0,T;X) =

(
Δt

N−1∑
n=0

||𝝋n+1||2X)
1

2

, ||𝝋||L∞(0,T;X) = max
0≤n≤N

||𝝋n||X ,
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where X ∈ {Hk(ΩF), Hk(ΩS), Hk(Γ), S}. Note that they are equivalent to the continuous norms since

we use piecewise constant approximations in time. Furthermore, the following inequality holds:

Δt
N−1∑
n=1

||𝑑t𝝋
n+1||2X ≲ ||𝜕t𝝋||2L2(0,T;X).

Let Ph be the Lagrangian interpolation operator onto VS
h . Then, Ih ≔Ph|Γ is a Lagrangian interpo-

lation operator. Similar as in [14, 26], we introduce a Stokes-like projection operator (Sh,Rh) ∶ VF →
VF

h × QF
h , defined for all v∈VF by

(Shv,Rhv) ∈ VF
h × QF

h ,

(Shv)|Γ = Ih (v|Γ) ,
aF

(
Shv,𝝋h

)
− bF

(
Rhv,𝝋h

)
= aF

(
v,𝝋h

)
, ∀𝝋h ∈ VF

h such that 𝝋h
||Γ = 0,

bF (q, Shv) = 0, ∀q ∈ QF
h . (5.12)

Projection operators Sh and Ih satisfy the following approximation properties (see [15, 19]):||D (v − Shv) ||L2(ΩF) ≲ hk||v||Hk+1(ΩF) for all v ∈ VF, (5.13)

||𝝃 − Ih𝝃||L2(Γ) + h||𝝃 − Ih𝝃||H1(Γ) ≲ hk+1||𝝃||Hk+1(Γ) for all 𝝃 ∈ VS. (5.14)

Let Πh be a projection operator onto QF
h such that||p − Πhp||L2(ΩF) ≲ hr+1||p||Hr+1(ΩF), for all p ∈ QF. (5.15)

Let Rh be the Ritz projector onto VS
h such that for all 𝜼∈VS,

aS
(
𝜼 − Rh𝜼,𝝌h

)
= 0 for all 𝝌h ∈ VS

h . (5.16)

Then, the finite element theory for Ritz projections [19] gives||𝜼 − Rh𝜼||S ≲ hk||𝜼||Hk+1(Γ) for all 𝜼 ∈ VS. (5.17)

In the following, in addition to standard inequalities [15], we will also use the discrete trace-inverse

inequality: For a triangular domain ΩF ⊂R2 there exists a positive constant CTI depending on the

angles in the finite element mesh such that

‖vh‖2
L2(Γ) ≤ CTIk2

h
‖vh‖2

L2(ΩF) , (5.18)

for all vh ∈Vh.

We assume that the continuous fluid velocity belongs to the space VFD = {v∈VF | ∇ ⋅ v = 0}.

Since the test functions for the partitioned scheme do not satisfy the kinematic coupling condition, we

start by deriving the monolithic variational formulation with the test functions in VS
h × VF

h × QF
h : Find

(𝝃n+ 1 = 𝜕t𝜼
n+ 1, vn+ 1, pn+ 1)∈VS ×VF ×QF with vn+ 1 = 𝝃n+ 1 onΓ such that for all

(
𝜻h,𝝓h

)
∈ VS

h×VF
h

we have

𝜌F∫ΩF

𝜕tvn+1 ⋅ 𝝓h + aF
(
vn+1,𝝓h

)
− bF

(
pn+1,𝝓h

)
+ 𝜌S∫ΩS

𝜕t𝝃
n+1
h ⋅ 𝜻h + aS

(
𝜼, 𝜻h

)
= ∫Γ

𝝈F
(
vn+1, pn+1

)
nF ⋅

(
𝝓h − 𝜻h

)
− ∫Γin

pin
(
tn+1

)
𝝓h ⋅ n − ∫Γout

pout
(
tn+1

)
𝝓h ⋅ n. (5.19)

Subtracting (5.6) and (5.7) from (5.19), we obtain the following error equation:

𝜌F∫ΩF

𝑑t
(
vn+1 − vn+1

h
)
⋅ 𝝓h + aF

(
vn+1 − vn+1

h ,𝝓h
)
− bF

(
pn+1 − pn+1

h ,𝝓h
)
− bF

(
𝜓h, vn+1

h
)
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+ 𝜌S∫ΩS

𝑑t
(
𝝃n+1 − 𝝃n+1

h
)
⋅ 𝜻h + aS

(
𝜼n+1 − 𝜼n+1

h , 𝜻h
)
+ 𝛼∫Γ

(
𝝃n+1 − 𝝃n+1

h − vn + vn
h
)
⋅ 𝜻h𝑑x

+ 𝛼∫Γ

(
vn+1 − vn+1

h − 𝝃n+1 + 𝝃n+1
h

)
⋅ 𝝓h𝑑x

= ∫Γ
𝝈F

(
vn − vn

h, pn − pn
h
)

nF ⋅
(
𝝓h − 𝜻h

)
+1

(
𝝓h, 𝜻h

)
, (5.20)

for all
(
𝜻h,𝝓h, 𝜓h

)
∈ VS

h × VF
h × QF

h , where, since vn+ 1 = 𝝃n+ 1 on Γ,

1

(
𝝓h, 𝜻h

)
= 𝜌F∫ΩF

(
𝑑tvn+1 − 𝜕tvn+1

)
⋅ 𝝓h + 𝜌S∫ΩS

(
𝑑t𝝃

n+1 − 𝜕t𝝃
n+1

)
⋅ 𝜻h

+ 𝛼∫Γ

(
vn+1 − vn) ⋅ 𝜻h𝑑x + ∫Γ

𝝈F
(
vn+1 − vn, pn+1 − pn)nF ⋅

(
𝝓h − 𝜻h

)
.

We split the error of the method as a sum of the approximation error, 𝜃n+1
r , and the truncation error,

𝛿n+1
r , for r ∈ {F, P, 𝜂, 𝜉} as follows:

en+1
F = vn+1 − vn+1

h =
(
vn+1 − Shvn+1

)
+
(
Shvn+1 − vn+1

h
)
= 𝜽n+1

F + 𝜹n+1
F , (5.21)

en+1
P = pn+1 − pn+1

h =
(
pn+1 − Πhpn+1

)
+
(
Πhpn+1 − pn+1

h
)
= 𝜃n+1

P + 𝛿n+1
P , (5.22)

en+1
𝜂 = 𝜼n+1 − 𝜼n+1

h =
(
𝜼n+1 − Rh𝜼

n+1
)
+
(
Rh𝜼

n+1 − 𝜼n+1
h

)
= 𝜽n+1

𝜂 + 𝜹n+1
𝜂 , (5.23)

en+1
𝜉 = 𝝃n+1 − 𝝃n+1

h =
(
𝝃n+1 − Ph𝝃

n+1
)
+
(
Ph𝝃

n+1 − 𝝃n+1
h

)
= 𝜽n+1

𝜉 + 𝜹n+1
𝜉 . (5.24)

The main result of this section is stated in the following theorem.

Theorem 5.1 Consider the solution (𝝃h, 𝜼h, vh, ph) of (5.6) and (5.7), with discrete
initial data given by

(
𝝃0

h, 𝜼
0
h, v0

h, p0
h
)
=

(
Ph𝝃

0,Rh𝜼
0, Shv0,Πhp0

)
. Assume that the exact

solution satisfies assumptions (5.8)–(5.11) and that the following inequality is satisfied:

Δt ≤ 𝜌F
𝛼CTIk2

h. (5.25)

Then, the following estimate holds:

𝜌F
2
||eN

F ||2L2(ΩF) +
𝜌S
2
||eN

𝜉 ||2L2(ΩS) +
1

2
||eN

𝜂 ||2S + 𝛼Δt
2

||eN
F ||2L2(Γ) + 𝜇FΔt

N−1∑
n=0

||D (
eN

F
) ||2L2(ΩF)

≲ eT (h2k+20 + h2r+21 + h2k2 + Δt2h2k+23 + Δt24 + Δt5

)
,

where

0 = 𝜌S||𝝃||2L∞(0,T;Hk+1(ΩS)) + 𝜌S||𝜕t𝝃||2L2(0,T;Hk+1(ΩS)),

1 = 1

𝜇F
||p||2L2(0,T;Hr+1(ΩF)),

2 = 𝜌F||v||2L∞(0,T;Hk+1(ΩF)) + ||𝜼||2L∞(0,T;Hk+1(ΩS)) + ||𝝃||2L2(0,T∶Hk+1(ΩS))

+
𝜌2

F
𝜇F

||𝜕tv||2L2(0,T∶Hk+1(ΩF)) + 𝜇F||v||2L2(0,T;Hk+1(ΩF)),

3 =
(
𝛼2

𝜇F
+ 𝛼

) ||𝜕tv||2L2(0,T;Hk+1(Γ)),
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4 =
𝜌2

F
𝜇F

||𝜕ttv||2L2(0,T;L2(ΩF)) + 𝜌S||𝜕tt𝝃||2L2(0,T;L2(ΩS)) + 𝛼

(
𝛼

2𝜇F
+ 1

) ||𝜕tv||2L2(0,T;L2(Γ))

+ 1

𝛼
||𝜕t𝝈FnF||2L2(0,T∶L2(Γ)) + ||𝜕tt𝜼||2L2(0,T;S),

5 = 1

𝛼
||𝜕t𝝈FnF||2L2(0,T;L2(Γ)).

Proof. Rearranging the error equation (5.20), using 𝜽n+1
F = 𝜽n+1

𝜉 on Γ, and taking the

property (5.16) of the Ritz projection operator into account, we obtain

𝜌F∫ΩF

𝑑t𝜹
n+1
F ⋅ 𝝓h + aF

(
𝜹n+1

F ,𝝓h
)
− bF

(
𝛿n+1

P ,𝝓h
)
− bF

(
𝜓h, vn+1

h
)
+ 𝜌S∫ΩS

𝑑t𝜹
n+1
𝜉 ⋅ 𝜻h

+ aS
(
𝜹n+1
𝜂 , 𝜻h

)
+ 𝛼∫Γ

(
𝜹n+1
𝜉 − 𝜹n

F
)
⋅ 𝜻h𝑑x + 𝛼∫Γ

(
𝜹n+1

F − 𝜹n+1
𝜉

)
⋅ 𝜙h𝑑x

= ∫Γ
𝝈F

(
en

F, en
P
)

nF ⋅
(
𝝓h − 𝜻h

)
− 𝜌F∫ΩF

𝑑t𝜽
n+1
F ⋅ 𝝓h − aF

(
𝜽n+1

F ,𝝓h
)

+ bF
(
𝜃n+1

P ,𝝓h
)
− 𝜌S∫ΩS

𝑑t𝜽
n+1
𝜉 ⋅ 𝜻h − 𝛼∫Γ

(
𝜽n+1
𝜉 − 𝜽n

F
)
⋅ 𝜻h𝑑x +1

(
𝝓h, 𝜻h

)
. (5.26)

Let 𝝓h = Δt𝜹n+1
F , 𝜻h = Δt𝜹n+1

𝜉 , and 𝜓h = Δt𝛿n+1
P . Thanks to (5.12), the pressure terms

simplify as follows:

−ΔtbF
(
𝛿n+1

P , 𝜹n+1
F

)
− ΔtbF

(
𝛿n+1

P , vn+1
h

)
= −ΔtbF

(
𝛿n+1

P , Shvn+1
)
= 0.

Equation (5.26) now becomes

𝜌F
2

(||𝜹n+1
F ||2L2(ΩF) − ||𝜹n

F||2L2(ΩF) + ||𝜹n+1
F − 𝜹n

F||2L2(ΩF)
)
+ 2𝜇FΔt||D (

𝜹n+1
F

) ||2L2(ΩF)

+ 𝜌S
2

(||𝜹n+1
𝜉 ||2L2(ΩS) − ||𝜹n

𝜉 ||2L2(ΩS) + ||𝜹n+1
𝜉 − 𝜹n

𝜉 ||2L2(ΩS)
)
+ ΔtaS

(
𝜹n+1
𝜂 , 𝜹n+1

𝜉

)
+ 𝛼Δt

2

(||𝜹n+1
F ||2L2(Γ) − ||𝜹n

F||2L2(Γ) + ||𝜹n+1
𝜉 − 𝜹n

F||2L2(Γ) + ||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ)
)

= Δt∫Γ
𝝈F

(
en

F, en
P
)

nF ⋅
(
𝜹n+1

F − 𝜹n+1
𝜉

)
− Δt𝜌F∫ΩF

𝑑t𝜽
n+1
F ⋅ 𝜹n+1

F

− ΔtaF
(
𝜽n+1

F , 𝜹n+1
F

)
+ ΔtbF

(
𝜃n+1

P , 𝜹n+1
F

)
− Δt𝜌S∫ΩS

𝑑t𝜽
n+1
𝜉 ⋅ 𝜹n+1

𝜉

− 𝛼Δt∫Γ

(
𝜽n+1
𝜉 − 𝜽n

F
)
⋅ 𝜹n+1

𝜉 + Δt1

(
𝜹n+1

F , 𝜹n+1
𝜉

)
. (5.27)

For term ΔtaS
(
𝜹n+1
𝜂 , 𝜹n+1

𝜉

)
we proceed as follows:

ΔtaS
(
𝜹n+1
𝜂 , 𝜹n+1

𝜉

)
= ΔtaS

(
𝜹n+1
𝜂 , 𝑑t𝜹

n+1
𝜂 + Ph𝝃

n+1 − Rh𝑑t𝜼
n+1

)
= 1

2
||𝜹n+1

𝜂 ||2S − 1

2
||𝜹n

𝜂||2S
+ Δt2

2
||𝑑t𝜹

n+1
𝜂 ||2S + ΔtaS

(
𝜹n+1
𝜂 ,Ph𝝃

n+1 − Rh𝑑t𝜼
n+1

)
.

Note that Ph𝝃
n+1−Rh𝑑t𝜼

n+1 = Ph𝝃
n+1−𝝃n+1+𝝃n+1−Rh𝑑t𝜼

n+1 = −𝜽n+1
𝜉 +𝑑t𝜽

n+1
𝜂 +𝜕t𝜼

n+1−
𝑑t𝜼

n+1. Hence, using property (5.16) of the Ritz projection operator, Cauchy–Schwartz

and Young’s inequalities, we have

ΔtaS
(
𝜹n+1
𝜂 ,Ph𝝃

n+1 − Rh𝑑t𝜼
n+1

) ≤ Δt||𝜽n+1
𝜉 ||2S + Δt

4
||𝜹n+1

𝜂 ||2S + Δt2

(
𝜹n+1
𝜂

)
,

where 2

(
𝜹n+1
𝜂

)
= aS

(
𝜹n+1
𝜂 , 𝜕t𝜼

n+1 − 𝑑t𝜼
n+1

)
.
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To estimate the first term on the right-hand side of (5.27), similarly as in [14], we

note that 𝜹n+1
F − 𝜹n+1

𝜉 = −
(
vn+1

h − 𝝃n+1
h

)
on Γ. Furthermore, adding and subtracting the

continuous velocity and pressure in (5.5), the following relation holds on Γ:

𝜹n+1
F − 𝜹n+1

𝜉 = 1

𝛼

(
𝝈F

(
en

F, en
P
)

nF − 𝝈F(en+1
F , en+1

P )nF + 𝝈F(vn+1 − vn, pn+1 − pn)nF
)
. (5.28)

Employing identity (5.28), we have

Δt∫Γ
𝝈F

(
en

F, en
P
)

nF ⋅
(
𝜹n+1

F − 𝜹n+1
𝜉

)
= Δt

𝛼 ∫Γ
𝝈F

(
en

F, en
P
)

nF ⋅
(
𝝈F

(
en

F, en
P
)

nF − 𝝈F(en+1
F , en+1

P )nF
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1

+ Δt
𝛼 ∫Γ

𝝈F
(
en

F, en
P
)

nF ⋅ 𝝈F
(
vn+1 − vn, pn+1 − pn)nF.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2

Using the polarized identity, 1 is given as

1 = −Δt
2𝛼

||𝝈F
(
en+1

F , en+1
P

)
nF||2L2(Γ) +

Δt
2𝛼

||𝝈F
(
en

F, en
P
)

nF||2L2(Γ)

+ Δt
2𝛼

||𝝈F
(
en+1

F , en+1
P

)
nF − 𝝈F

(
en

F, en
P
)

nF||2L2(Γ). (5.29)

To estimate the last term in (5.29), we again use identity (5.28) and Young’s inequality

as follows:

Δt
2𝛼

‖‖‖𝝈F
(
en+1

F , en+1
P

)
nF − 𝝈F(en

F, en
P)nF

‖‖‖2

L2(Γ)

= Δt
2𝛼

‖‖‖𝝈F
(
vn+1 − vn, pn+1 − pn) nF − 𝛼

(
𝜹n+1

F − 𝜹n+1
𝜉

)‖‖‖2

L2(Γ)

= Δt
2𝛼

‖‖‖𝝈F
(
vn+1 − vn, pn+1 − pn) nF

‖‖‖2

L2(Γ)
+ 𝛼Δt

2
||𝜹n+1

F − 𝜹n+1
𝜉 ||2L2(Γ)

− Δt∫Γ

(
𝜹n+1

F − 𝜹n+1
𝜉

)
⋅ 𝝈F

(
vn+1 − vn, pn+1 − pn)nF

≤ Δt
2𝛼

‖‖‖𝝈F
(
vn+1 − vn, pn+1 − pn) nF

‖‖‖2

L2(Γ)
+ 𝛼Δt

2
||𝜹n+1

F − 𝜹n+1
𝜉 ||2L2(Γ)

+ 𝛼Δt
12

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ) +
3Δt
𝛼

‖‖‖𝝈F
(
vn+1 − vn, pn+1 − pn)nF

‖‖‖2

L2(Γ)
.

Finally, we estimate 2 using the Cauchy–Schwartz inequality and Young’s inequality as

2 ≤ Δt2

2𝛼
‖‖‖𝝈F

(
en

F, en
P
)

nF
‖‖‖2

L2(Γ)
+ 1

2𝛼
‖‖‖𝝈F

(
vn+1 − vn, pn+1 − pn)nF

‖‖‖2

L2(Γ)
.

We bound the remaining terms in (5.27) as follows. Using Cauchy–Schwartz, Young’s,

Poincaré-Friedrichs, and Korn’s inequalities, we have

− Δt𝜌F∫ΩF

𝑑t𝜽
n+1
F ⋅ 𝜹n+1

F − ΔtaF
(
𝜽n+1

F , 𝜹n+1
F

)
+ ΔtbF

(
𝜃n+1

P , 𝜹n+1
F

)
− Δt𝜌S∫ΩS

𝑑t𝜽
n+1
𝜉 ⋅ 𝜹n+1

𝜉

≲
Δt𝜌2

F
𝜇F

||𝑑t𝜽
n+1
F ||2L2(ΩF) + Δt𝜇F||D (

𝜽n+1
F

) ||2L2(ΩF) +
Δt
𝜇F

||𝜃n+1
P ||2L2(ΩF) +

𝜇FΔt
4

||D (
𝜹n+1

F
) ||2L2(ΩF)

+ Δt𝜌S||𝑑t𝜽
n+1
𝜉 ||2L2(ΩS) +

Δt𝜌S
4

||𝜹n+1
𝜉 ||2L2(ΩS).
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Next, noting that 𝜽n+1
F = 𝜽n+1

𝜉 on Γ and adding and subtracting 𝜹n+1
F , we have

− 𝛼Δt∫Γ

(
𝜽n+1
𝜉 − 𝜽n

F
)
⋅ 𝜹n+1

𝜉

= −𝛼Δt∫Γ

(
𝜽n+1

F − 𝜽n
F
)
⋅ 𝜹n+1

F − 𝛼Δt∫Γ

(
𝜽n+1

F − 𝜽n
F
)
⋅
(
𝜹n+1
𝜉 − 𝜹n+1

F
)

≲ Δt3

(
𝛼2

𝜇F
+ 𝛼

) ||𝑑t𝜽
n+1
F ||2L2(Γ) +

𝜇FΔt
4

||D (
𝜹n+1

F
) ||2L2(ΩF) +

𝛼Δt
12

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ).

Combining the estimates above with Equation (5.27), summing from n = 0, … , N − 1

and taking into account the assumption on the initial data, we have

𝜌F
2
||𝜹N

F ||2L2(ΩF) +
𝜌S
2
||𝜹N

𝜉 ||2L2(ΩS) +
1

2
||𝜹N

𝜂 ||2S + 𝛼Δt
2

||𝜹N
F ||2L2(Γ) +

Δt
2𝛼

||𝝈F
(
eN

F , eN
P
)

nF||2L2(Γ)

+ 3

2
𝜇FΔt

N−1∑
n=0

||D (
𝜹n+1

F
) ||2L2(ΩF) +

𝜌FΔt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
F ||2L2(ΩF) +

𝜌SΔt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
𝜉 ||2L2(ΩS)

+ Δt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
𝜂 ||2S + 𝛼Δt

2

N−1∑
n=0

||𝜹n+1
𝜉 − 𝜹n

F||2L2(Γ)

≲ Δt
N−1∑
n=0

||𝜽n+1
𝜉 ||2S + Δt𝜌2

F
𝜇F

N−1∑
n=0

||𝑑t𝜽
n+1
F ||2L2(ΩF) + Δt𝜇F

N−1∑
n=0

||D (
𝜽n+1

F
) ||2L2(ΩF) +

Δt
𝜇F

N−1∑
n=0

||𝜃n+1
P ||2L2(ΩF)

+ Δt𝜌S

N−1∑
n=0

||𝑑t𝜽
n+1
𝜉 ||2L2(ΩS) + Δt3

(
𝛼2

𝜇F
+ 𝛼

) N−1∑
n=0

||𝑑t𝜽
n+1
F ||2L2(Γ)

+ Δt + 1

𝛼

N−1∑
n=0

‖‖‖𝝈F
(
vn+1 − vn, pn+1 − pn)nF

‖‖‖2

L2(Γ)

+ Δt2

2𝛼

N−1∑
n=0

‖‖‖𝝈F
(
en

F, en
P
)

nF
‖‖‖2

L2(Γ)
+ 𝛼Δt

6

N−1∑
n=0

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ) +
Δt𝜌S

4

N−1∑
n=0

||𝜹n+1
𝜉 ||2L2(ΩS)

+ Δt
4

N−1∑
n=0

||𝜹n+1
𝜂 ||2S + Δt

N−1∑
n=0

1

(
𝜹n+1

F , 𝜹n+1
𝜉

)
+ Δt

N−1∑
n=0

2

(
𝜹n+1
𝜂

)
.

To estimate the approximation and consistency errors, we use Lemmas 5.1 and 5.3,

leading to the following inequality:

𝜌F
2
||𝜹N

F ||2L2(ΩF) +
𝜌S
2
||𝜹N

𝜉 ||2L2(ΩS) +
1

2
||𝜹N

𝜂 ||2S + 𝛼Δt
2

||𝜹N
F ||2L2(Γ) +

Δt
2𝛼

||𝝈F
(
eN

F , eN
P
)

nF||2L2(Γ)

+ 𝜇FΔt
N−1∑
n=0

||D (
𝜹n+1

F
) ||2L2(ΩF) +

𝜌FΔt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
F ||2L2(ΩF) +

𝜌SΔt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
𝜉 ||2L2(ΩS)

+ Δt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
𝜂 ||2S + 𝛼Δt

2

N−1∑
n=0

||𝜹n+1
𝜉 − 𝜹n

F||2L2(Γ)

≲ h2k||𝝃||2L2(0,T∶Hk+1(ΩS)) +
𝜌2

F
𝜇F

h2k||𝜕tv||2L2(0,T∶Hk+1(ΩF)) + 𝜇Fh2k||v||2L2(0,T;Hk+1(ΩF))

+ 1

𝜇F
h2r+2||p||2L2(0,T;Hr+1(ΩF)) + 𝜌Sh2k+2||𝜕t𝝃||2L2(0,T;Hk+1(ΩS))

+ Δt2

(
𝛼2

𝜇F
+ 𝛼

)
h2k+2||𝜕tv||2L2(0,T;Hk+1(Γ)) +

Δt2𝜌2
F

𝜇F
||𝜕ttv||2L2(0,T;L2(ΩF))
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+ Δt2𝜌S||𝜕tt𝝃||2L2(0,T;L2(ΩS)) + 𝛼Δt2

(
𝛼
𝜇F

+ 1

) ||𝜕tv||2L2(0,T;L2(Γ))

+ Δt (Δt + 1)
𝛼

||𝜕t𝝈FnF||2L2(0,T∶L2(Γ)) + Δt2||𝜕tt𝜼||2L2(0,T;S) +
Δt2

2𝛼

N−1∑
n=0

‖‖‖𝝈F
(
en

F, en
P
)

nF
‖‖‖2

L2(Γ)

+ 𝛼Δt
4

N−1∑
n=0

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ) +
Δt𝜌S

2

N−1∑
n=0

||𝜹n+1
𝜉 ||2L2(ΩS) +

Δt
2

N−1∑
n=0

||𝜹n+1
𝜂 ||2S. (5.30)

We estimate term
𝛼Δt

4

∑N−1

n=0 ||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ) by adding and subtracting 𝜹n
F and using

trace-inverse inequality (5.18) as follows:

𝛼Δt
4

N−1∑
n=0

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ) =
𝛼Δt

4

N−1∑
n=0

||𝜹n+1
F − 𝜹n

F + 𝜹n
F − 𝜹n+1

𝜉 ||2L2(Γ)

≤ 𝛼Δt
2

N−1∑
n=0

||𝜹n+1
F − 𝜹n

F||2L2(Γ) +
𝛼Δt

2

N−1∑
n=0

||𝜹n+1
𝜉 − 𝜹n

F||2L2(Γ)

≤ 𝛼CTIk2Δt
2h

N−1∑
n=0

||𝜹n+1
F − 𝜹n

F||2L2(ΩF) +
𝛼Δt

2

N−1∑
n=0

||𝜹n+1
𝜉 − 𝜹n

F||2L2(Γ). (5.31)

Combining (5.31) with (5.30), we get

𝜌F
2
||𝜹N

F ||2L2(ΩF) +
𝜌S
2
||𝜹N

𝜉 ||2L2(ΩS) +
1

2
||𝜹N

𝜂 ||2S + 𝛼Δt
2

||𝜹N
F ||2L2(Γ) +

Δt
2𝛼

||𝝈F
(
eN

F , eN
P
)

nF||2L2(Γ)

+ 𝜇FΔt
N−1∑
n=0

||D (
𝜹n+1

F
) ||2L2(ΩF) +

Δt2

2

(
𝜌F − 𝛼CTIk2Δt

h

) N−1∑
n=0

||𝑑t𝜹
n+1
F ||2L2(ΩF)

+ 𝜌SΔt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
𝜉 ||2L2(ΩS) +

Δt2

2

N−1∑
n=0

||𝑑t𝜹
n+1
𝜂 ||2S

≲ h2k||𝝃||2L2(0,T∶Hk+1(ΩS)) +
𝜌2

F
𝜇F

h2k||𝜕tv||2L2(0,T∶Hk+1(ΩF)) + 𝜇Fh2k||v||2L2(0,T;Hk+1(ΩF))

+ 1

𝜇F
h2r+2||p||2L2(0,T;Hr+1(ΩF)) + 𝜌Sh2k+2||𝜕t𝝃||2L2(0,T;Hk+1(ΩS))

+ Δt2

(
𝛼2

𝜇F
+ 𝛼

)
h2k+2||𝜕tv||2L2(0,T;Hk+1(Γ)) +

Δt2𝜌2
F

𝜇F
||𝜕ttv||2L2(0,T;L2(ΩF))

+ Δt2𝜌S||𝜕tt𝝃||2L2(0,T;L2(ΩS)) + 𝛼Δt2

(
𝛼
𝜇F

+ 1

) ||𝜕tv||2L2(0,T;L2(Γ))

+ Δt (Δt + 1)
𝛼

||𝜕t𝝈FnF||2L2(0,T∶L2(Γ)) + Δt2||𝜕tt𝜼||2L2(0,T;S) +
Δt2

2𝛼

N−1∑
n=0

‖‖‖𝝈F
(
en

F, en
P
)

nF
‖‖‖2

L2(Γ)

+ Δt𝜌S
2

N−1∑
n=0

||𝜹n+1
𝜉 ||2L2(ΩS) +

Δt
2

N−1∑
n=0

||𝜹n+1
𝜂 ||2S.

We recall that the error between the exact and the discrete solution is the sum of

the approximation error and the truncation error. Thus, using the triangle inequality,

approximation properties (5.13)–(5.17) and the Gronwall lemma, we prove the desired

estimate. ▪
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Using Taylor-Hood elements, that is, k = 2, r = 1, for the fluid problem and piecewise quadratic

elements for the solid problem, we have the following estimate.

Corollary 5.1 Consider algorithm (5.6) and (5.7). Suppose that
(
VF

h ,QF
h
)

is given
by P2 −P1 Taylor-Hood approximation elements and VS

h is given by P2 approximation
elements. Under the assumptions of Theorem 5.1, we have

𝜌F
2
||eN

F ||2L2(ΩF) +
𝜌S
2
||eN

𝜉 ||2L2(ΩS) +
1

2
||eN

𝜂 ||2S + 𝛼Δt
2

||eN
F ||2L2(Γ) + 𝜇FΔt

N−1∑
n=0

||D (
eN

F
) ||2L2(ΩF)

≲ eT (h4 + Δt
)
.

The following lemmas are used in the proof of Theorem 5.1.

Lemma 5.1 The following estimate holds:

Δt
N−1∑
n=0

(1

(
𝜹n+1

F , 𝜹n+1
𝜉

)
+2

(
𝜹n+1
𝜂

))
≲ Δt2

(
𝜌2

F
𝜇F

||𝜕ttv||2L2(0,T;L2(ΩF)) + 𝜌S||𝜕tt𝝃||2L2(0,T;L2(ΩS)) + 𝛼

(
𝛼
𝜇F

+ 1

) ||𝜕tv||2L2(0,T;L2(Γ))

+ 1

𝛼
||𝜕t𝝈FnF||2L2(0,T;L2(Γ)) + ||𝜕tt𝜼||2L2(0,T;S)

)
+ 𝜇FΔt

2

N−1∑
n=0

||D (
𝜹n+1

F
) ||2L2(ΩF)

+ Δt𝜌S
4

||𝜹n+1
𝜉 ||2L2(ΩS) +

𝛼Δt
10

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ) +
Δt
4

N−1∑
n=0

||𝜹n+1
𝜂 ||2S.

Proof. Rearranging and using Cauchy–Schwartz, Young’s, Poincaré-Friedrichs, and

Korn’s inequalities, we have

Δt1

(
𝜹n+1

F , 𝜹n+1
𝜉

)
= Δt𝜌F∫ΩF

(
𝑑tvn+1 − 𝜕tvn+1

)
⋅ 𝜹n+1

F + Δt𝜌S∫ΩS

(
𝑑t𝝃

n+1 − 𝜕t𝝃
n+1

)
⋅ 𝜹n+1

𝜉

+ 𝛼Δt∫Γ

(
vn+1 − vn) ⋅ 𝜹n+1

F 𝑑x + 𝛼Δt∫Γ

(
vn+1 − vn) ⋅ (𝜹n+1

𝜉 − 𝜹n+1
F

)
𝑑x,

+ Δt∫Γ
𝝈F

(
vn+1 − vn, pn+1 − pn)nF ⋅

(
𝜹n+1

F − 𝜹n+1
𝜉

)
≲

Δt𝜌2
F

𝜇F
||𝑑tvn+1 − 𝜕tvn+1||2L2(ΩF) +

𝜇FΔt
2

||D (
𝜹n+1

F
) ||2L2(ΩF)

+ Δt𝜌S||𝑑t𝝃
n+1 − 𝜕t𝝃

n+1||2L2(ΩS) +
Δt𝜌S

4
||𝜹n+1

𝜉 ||2L2(ΩS)

+ 𝛼Δt
(

𝛼
𝜇F

+ 1

) ||vn+1 − vn||2L2(Γ) +
𝛼Δt
12

||𝜹n+1
F − 𝜹n+1

𝜉 ||2L2(Γ)

+ Δt
𝛼
||𝝈F

(
vn+1 − vn, pn+1 − pn)nF||2L2(Γ).

Furthermore, using Cauchy–Schwartz and Young’s inequalities, we have

Δt2

(
𝜹n+1
𝜂

)
= ΔtaS

(
𝜹n+1
𝜂 , 𝜕t𝜼

n+1 − 𝑑t𝜼
n+1

)
≤ Δt||𝑑t𝜼

n+1 − 𝜕t𝜼
n+1||2S + Δt

4
||𝜹n+1

𝜂 ||2S.
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The final estimate follows by summing from n = 0 to N − 1 and applying Lemma 5.2. ▪

Lemma 5.2 (Consistency errors). Assume X ∈ {Ω,Γ}. The following inequalities hold:

Δt
N−1∑
n=0

||𝑑t𝝋
n+1 − 𝜕t𝝋

n+1||2L2(X) ≲ Δt2||𝜕tt𝝋||2L2(0,T;L2(X)),

Δt
N−1∑
n=0

||𝝋n+1 − 𝝋n||2L2(X) ≲ Δt2||𝜕t𝝋||2L2(0,T;L2(X)).

Proof. See [14] for proof. ▪

Lemma 5.3 (Interpolation errors). The following inequalities hold:

Δt
N−1∑
n=0

||𝑑t𝜽
n+1
F ||2L2(ΩF) ≤ ||𝜕t𝜽F||2L2(0,T;L2(ΩF)) ≲ h2k||𝜕tv||2L2(0,T;Hk+1(ΩF)),

Δt
N−1∑
n=0

||𝑑t𝜽
n+1
𝜉 ||2L2(ΩS) ≤ ||𝜕t𝜽𝜉||2L2(0,T;L2(ΩS)) ≲ h2k+2||𝜕t𝝃||2L2(0,T;Hk+1(ΩS)),

Δt
N−1∑
n=0

||D (
𝜽n+1

F
) ||2L2(ΩF) ≲ Δt

N−1∑
n=0

h2k||vn+1||2Hk+1(ΩF) ≲ h2k||v||2L2(0,T;Hk+1(ΩF)),

Δt
N−1∑
n=0

||𝜽n+1
𝜂 ||2S ≲ h2k||𝜼||2L2(0,T;Hk+1(ΩS)), Δt

N−1∑
n=0

||𝜃n+1
p ||2L2(ΩF) ≲ h2r+2||p||2L2(0,T;Hr+1(ΩF)).

Proof. The last three inequalities follow directly from approximation proper-

ties (5.13)–(5.17). For other inequalities, see [14] for more details. ▪

Remark 5.1 The sub-optimal order of convergence in time that is shown in this paper is

often obtained in partitioned methods for the interaction between a fluid and thick struc-

ture. In particular, sub-optimal accuracy has been shown for the partitioned method based

on Nitsche’s approach in [16] and for the Robin-Neumann method in [28]. Extending the

algorithm to optimal accuracy could be achieved by using higher-order extrapolations in

the design of the generalized Robin coupling conditions, but it is out of scope of this paper.

6 NUMERICAL EXAMPLES

To demonstrate the performance of the proposed numerical scheme, we present three numerical exam-

ples. In the first example, we investigate the accuracy of the linearized FSI problem (5.1)–(5.5)

considered in Section 5 and compare the approximated solution to a manufactured one. We con-

sider the same benchmark problem in the second example, but apply it to a moving domain FSI

problem (2.10)–(2.15). In both of these examples, the convergence rates are calculated using different

combination parameters, 𝛼, in order to show the theory is satisfied and in some cases, exceeded. In

our final example, we model pressure propagation in a two-dimensional channel with physiologically

realistic parameters for blood flow and show the comparison of the results obtained using the proposed

partitioned scheme and a monolithic method.



SEBOLDT AND BUKAČ 21

6.1 Example 1

In the first numerical example, we use the method of manufactured solutions to verify the theoretical

convergence results from Section 5. We define the structure and fluid domains as upper and lower

parts of the unit square, respectively, that is, ΩS = (0, 1) ×
(

1

2
, 1
)

and ΩF = (0, 1) ×
(

0, 1

2

)
. The true

solutions for the structure displacement, 𝜼, the fluid velocity, v, and the fluid pressure, p, are defined as:[
𝜂x

𝜂y

]
=

[
10−32x (1 − x) y (1 − y) et

10−3x (1 − x) y (1 − y) et

]
, (6.1)

[
vx

vy

]
=

[
10−32x (1 − x) y (1 − y) et

10−3x (1 − x) y (1 − y) et

]
, (6.2)

p = −10−3et𝜆S (2 (1 − 2x) y (1 − y) + x (1 − x) (1 − 2y)) . (6.3)

We note that the fluid velocity is not divergence-free. Therefore, we add a forcing term to the conserva-

tion of mass equation. We also add forcing terms in both the fluid and structure equations (5.1)–(5.5),

resulting in the following system:

𝜌F𝜕tv = ∇ ⋅ 𝝈F (v, p) + fF in ΩF × (0, T) ,
∇ ⋅ v = s in ΩF × (0, T) ,
𝜕t𝜼 = 𝝃 in ΩS × (0, T) ,
𝜌S𝜕t𝝃 = ∇ ⋅ 𝝈S (𝜼) + fS in ΩS × (0, T) ,
v = 0 on 𝜕ΩF∕Γ × (0, T) ,
𝜼 = 0 on 𝜕ΩS∕Γ × (0, T) .

Using the exact solutions, we compute forcing terms f F, f S, and s.

Implementing our methodology using finite elements was facilitated through the use of the

FreeFem++ software [34]. For space discretization, P1 elements were used for both the structure veloc-

ity and displacement, where P1 bubble –P1 elements were used for the fluid velocity and pressure,

respectively. We set parameters 𝜆S, 𝜌S, 𝜇S, 𝜌F, and 𝜇F equal to one. The simulations were performed

until the final time T = 0.3 s was reached. Figure 2 shows the comparison of the computed and exact

fluid velocity (top) and structure displacement (bottom) obtained with 𝛼 = 10. An excellent agreement

is observed.

In conjunction with comparing the numerical results to the actual solution, we compute conver-

gence rates as described in Theorem 5.1 in addition to analyzing how well the coupling conditions are

satisfied at the interface. In particular, we compute the following errors for the structure displacement

and velocity, and fluid velocity:

e𝜼 =
‖‖‖𝜼 − 𝜼ref

‖‖‖2

S‖‖‖𝜼ref
‖‖‖2

S

, e𝝃 =

‖‖‖𝝃 − 𝝃ref
‖‖‖L2(ΩS)‖‖‖𝝃ref

‖‖‖L2(ΩS)
, eF =

‖‖v − vref‖‖L2(ΩF)‖‖vref‖‖L2(ΩF)
,

as well as the error for the kinematic coupling condition:

eke =
‖v − 𝝃‖Γ‖v‖Γ ,
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FIGURE 2 Example 1: a comparison of the computed and exact fluid velocity (top) and structure displacement (bottom) at

T = 0.3 s [Color figure can be viewed at wileyonlinelibrary.com]

and error for the dynamic coupling condition:

e𝝈 = ‖𝝈FnF − 𝝈SnF‖Γ‖𝝈FnF‖Γ .

In order to compute the convergence rates, we start with an initial time step Δt = 0.01 and mesh size

h= 0.1, and divide them by two for four iterations. Each variable is then evaluated with differing alphas

equaling 1, 10, 100, 200, and 500.

Figure 3 shows the convergence rates for the structure displacement (top left), structure velocity

(top right), and fluid velocity (bottom) computed at the final time. We observe that the convergence

rates for the structure displacement are close to one across all values of 𝛼. The convergence rates for the

structure velocity are first-order, or better, when 𝛼 is equal to 1 and 10. As 𝛼 increases, the convergence

rates begin to decrease, compromising condition (5.25) used in the convergence analysis. Similar holds

for the fluid velocity, which has the best convergence rates for 𝛼 values of 10 and 100, and the worst

when 𝛼 increases to 500.

In addition to the errors related to Theorem 5.1, we investigate the relation between the combination

parameter 𝛼 and how well the coupling conditions are satisfied. In particular, the generalized Robin

boundary condition (3.1) will turn into the dynamic coupling condition (2.9) as 𝛼→ 0, and it will

approach the kinematic coupling condition (2.8) as 𝛼→ ∞ . Therefore, we compute errors eke and e𝝈 as

we take 𝛼 = 1,10,100,200, and 500. In this case, to better approximate the fluid and structure stresses,

we used P2 elements for fluid and structure velocities and the structure displacement, and P1 elements

for pressure. Figure 4 shows errors eke (left) and e𝝈 (right) computed with the following time and mesh

sizes:

(Δt, h) ∈
{(

10−2

2k ,
0.0625

2k

)}3

k=0

. (6.4)

We observe that, with the exception of 𝛼 = 1, the convergence rates are closer to one for smaller val-

ues of 𝛼, and they decrease to 0.5 as 𝛼 increases to 500. We also note that the error in the kinematic

coupling condition decreases as 𝛼 increases, while the opposite holds for the dynamic coupling con-

dition. However, for all the considered cases, the relative error in the kinematic coupling condition is

significantly smaller than the relative error in the dynamic coupling condition.

http://wileyonlinelibrary.com
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FIGURE 3 Example 1: errors for the solid displacement 𝜼 (top-left), solid velocity 𝝃 (top-right), and fluid velocity v (bottom)

at the final time T = 0.3 s [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Example 1: kinematic (left) and dynamic (right) coupling condition errors at the final time T = 0.3 s [Color

figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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6.2 Example 2

In the second example, we study the accuracy of the proposed method applied to a moving domain

FSI problem (2.10)–(2.15). We use the same manufactured solutions, (6.1)–(6.3), as in Example 1.

Furthermore, we define the true solution for the fluid domain displacement to be 𝜼F = 𝜼, and the true

solution for the fluid domain velocity to be w = 𝜕t𝜼F. Similar to Example 1, we add forcing terms to

Equations (2.10), (2.11), and (2.13). To update the fluid domain, we solve

− Δ𝜼n+1
F = fD in Ω̂F,

𝜼n+1
F = 0 on Γ̂

in
F ∪ Γ̂

out
F ,

𝜼n+1
F = 𝜼n+1 on Γ̂.

As for f F, f S, and s, we compute f D using the exact solution. Every other aspect of this example

remains unchanged, meaning the error calculations, space and time discretization specifications, and

parameters are the same as in Example 1.

Figure 5 shows the errors for the structure displacement (top left), structure velocity (top right),

and fluid velocity (bottom) obtained at T = 0.3 s. Similar behavior is observed as in Example 1. For

all values of 𝛼, the convergence rates for the solid displacement are close to one, while the errors are

roughly the same with the very slight exception of when 𝛼 = 500. The convergence rates for solid

velocity decrease from 1 to 0.5 as the values of 𝛼 increase, while the errors themselves grow as 𝛼

increases with the exception of 𝛼 = 1. In a similar trend, the rates for the fluid velocity decrease and

the errors increase as 𝛼 grows, with the exception of 𝛼 = 1. For all variables, the best convergence rates

and the smallest errors are obtained with 𝛼 = 10.

Likewise to Example 1, we calculate the errors in approximating coupling conditions using a P1

space discretization for pressure and P2 for all other variables. The temporal and spatial discretization

parameters are the same as described in (6.4). Figure 6 shows the kinematic coupling condition error

(left) and the dynamic coupling condition error (right) at T = 0.3 s obtained using different values of

𝛼. Similar to what we observed in Example 1, as 𝛼 increases, the error decreases for the kinematic

coupling condition with the reversed result for the dynamic coupling condition. As for convergence

rates, we obtain values around 0.5 using 𝛼 = 1 and values very close to one using 𝛼 = 10, which then

decrease back down to 0.5 as 𝛼 increases.

6.3 Example 3

The third example focuses on a classical benchmark problem used in the validation of FSI solvers

[11]. We consider the fluid flow in a two-dimensional channel interacting with a deformable wall. The

reference fluid and structure domains are defined as Ω̂F = (0, 6) × (0,0.5) and Ω̂S = (0, 6) × (0.5,0.6),
respectively. We consider the moving domain FSI problem (2.10)–(2.15), where we add a linearly

elastic spring term, 𝛾𝜼, to the elastodynamic equation, yielding:

𝜌S𝜕t𝝃 + 𝛾𝜼 = ∇ ⋅ 𝝈S (𝜼) in Ω̂S × (0, T) .

Term 𝛾𝜼 is obtained from the axially symmetric model, and it represents a spring keeping the top and

bottom boundaries in a two-dimensional model connected [11].

The parameters used in this example, 𝜌F = 1 g/cm3, 𝜇F = 0.035 g/cm s, 𝜌S = 1.1 g/cm3,

𝜇S = 5.75 ⋅ 105 dyne/cm4, 𝛾 = 4 ⋅ 106 dyne/cm4, and 𝜆S = 1.7 ⋅ 106 dyne/cm2, are within physiologi-

cally realistic values of blood flow in compliant arteries. In this example, we use 𝛼 = 100. The flow

is driven by prescribing a time-dependent pressure drop at the inlet and outlet sections, as defined in
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FIGURE 5 Example 2: errors for the solid displacement 𝜼 (top-left), solid velocity 𝝃 (top-right), and fluid velocity v (bottom)

at the final time T = 0.3 s [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Example 2: kinematic (left) and dynamic (right) coupling condition errors at the final time T = 0.3 s [Color

figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 7 Fluid flowrate versus x-axis compared with a monolithic scheme [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 8 Fluid pressure versus x-axis compared with a monolithic scheme [Color figure can be viewed at

wileyonlinelibrary.com]

(2.1) and (2.2), where

pin (t) =
⎧⎪⎨⎪⎩

pmax

2

[
1 − cos

(
2𝜋t
tmax

)]
, if t ≤ tmax

0, if t > tmax

, pout = 0 ∀t ∈ (0, T) .

The pressure pulse is in effect for tmax = 0.03 s with maximum pressure pmax = 1.333× 104 dyne/cm2.

The final time is T = 12 ms. We use P1 bubble–P1 elements for the fluid velocity and pressure,

http://wileyonlinelibrary.com
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FIGURE 9 Fluid–structure interface displacement versus x-axis compared with a monolithic scheme [Color figure can be

viewed at wileyonlinelibrary.com]

respectively, and P1 elements for the structure velocity and displacement. The results are obtained

using Δt = 10−5 on a mesh containing 7500 elements in the fluid domain and 1200 elements in the

structure domain.

Figures 7–9 show a comparison of the flowrate, mean pressure, and fluid–structure interface dis-

placement obtained using the proposed numerical method and a monolithic scheme used in [11, 46] at

times t = 4, 8, and 12 ms. A good agreement is observed in all cases, even with small discrepancies in

the interface displacement. We note that the time step used in the simulations obtained with a mono-

lithic solver is Δt = 10−4. As expected, due to the splitting error, a smaller time-step was needed in the

partitioned scheme.

7 CONCLUSIONS

We present a novel partitioned, non-iterative method for FSI problems with thick structures. The pre-

sented method is based on generalized Robin boundary conditions, which are designed by linearly

combining kinematic and dynamic coupling conditions using a combination parameter, 𝛼. Thanks

to a novel design of Robin boundary conditions used in the fluid and structure subproblems, we

prove unconditional stability of the semi-discrete numerical method applied to a moving domain

FSI problem. Convergence analysis was performed for a fully-discrete, linearized problem, yield-

ing (Δt
1

2

)
accuracy in time and optimal accuracy in space. The theoretically obtained results are

verified in numerical examples. In particular, using the method of manufactured solutions, we com-

pute the relative errors between the numerical and exact solutions on both fixed domain and moving

domain problems. In particular, we compute the convergence rates for different values of the combi-

nation parameter 𝛼, and note that increasing values of 𝛼 will lead to a decrease of convergence rates

from 1 to 0.5 for a fixed Δt. We also compare our results to the ones obtained using a monolithic

scheme on a benchmark problem of pressure propagation in a two-dimensional channel, obtaining a

http://wileyonlinelibrary.com
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good agreement. However, due to the splitting error and sub-optimal accuracy, a smaller time step was

used in the partitioned scheme. An extension of the proposed method to higher-order accuracy will be

considered in our future work.

One of the drawbacks of the proposed method is its dependence on the combination parameter

𝛼, which is, generally, problem dependent. In other work where similar combination parameters are

introduced, such as [31], the authors suggest to use

𝛼 = 𝜌SHS
Δt

+ 𝛽HSΔt, (7.1)

where HS is the height of the solid domain and

𝛽 = E
1 − 𝜈2

(
4𝜌2

1 − 2 (1 − 𝜈) 𝜌2
2

)
,

with E denoting the Young’s modulus, 𝜈 denoting the Poisson’s ratio, and 𝜌1 and 𝜌2 denoting the mean

and Gaussian curvatures of the fluid–structure interface, respectively. However, this choice of 𝛼 is

proposed to ensure convergence of a subiterative solution procedure when solving strongly coupled FSI

problems. Since we do not need subiterations to achieve stability, we do not require similar conditions

on 𝛼. Indeed, using (7.1) to compute 𝛼 in our method gives results that are not optimally accurate.

Therefore, 𝛼 needs to be estimated separately for each problem.
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[15] M. Bukač, I. Yotov, and P. Zunino, An operator splitting approach for the interaction between a fluid and a
multilayered poroelastic structure, Numer. Methods Partial Differ. Eq. 31 (2015), 1054–1100.

[16] E. Burman and M. Fernández, Stabilization of explicit coupling in fluid–structure interaction involving fluid
incompressibility, Comput. Methods Appl. Mech. Eng. 198 (2009), 766–784.

[17] E. Burman and M. Fernández, An unfitted Nitsche method for incompressible fluid–structure interaction using
overlapping meshes, Comput. Methods Appl. Mech. Eng. 279 (2014), 497–514.

[18] P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid–structure
problems, Comput. Methods Appl. Mech. Eng. 194 (2005), 4506–4527.

[19] P. Ciarlet, The finite element method for elliptic problems, Vol 4, North Holland, Netherlands, 1978.

[20] J. Degroote, On the similarity between Dirichlet–Neumann with interface artificial compressibility and
Robin–Neumann schemes for the solution of fluid–structure interaction problems, J. Comput. Phys. 230 (2011),

6399–6403.

[21] J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels, Stability of a coupling technique for partitioned
solvers in FSI applications, Comput. Struct. 86 (2008), 2224–2234.

[22] S. Deparis, M. Fernández, and L. Formaggia, Acceleration of a fixed point algorithm for fluid–structure interaction
using transpiration conditions, ESAIM: Math. Model. Numer. Anal. 37 (2003), 601–616.

[23] J. Donea, Arbitrary Lagrangian–Eulerian finite element methods, in Computational Methods for Transient
Analysis, North-Holland, Amsterdam, 1983.

[24] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodrguez-Ferran, Arbitrary Lagrangian–Eulerian methods, in Encyclo-
pedia of Computational Mechanics, John Wiley & Sons, United States, 2004.

[25] C. Farhat, K. Van der Zee, and P. Geuzaine, Provably second-order time-accurate loosely-coupled solution algo-
rithms for transient nonlinear computational aeroelasticity, Comput. Methods Appl. Mech. Eng. 195 (2006),

1973–2001.

[26] M. Fernández, Incremental displacement-correction schemes for incompressible fluid–structure interaction:
Stability and convergence analysis, Numer. Math. 123 (2012), 210–265.

[27] M. A. Fernández and M. Landajuela, A fully decoupled scheme for the interaction of a thin-walled structure with
an incompressible fluid, C. R. Math. 351 (2013), 161–164.

[28] M. Fernández, J. Mullaert, and M. Vidrascu, Generalized Robin–Neumann explicit coupling schemes for incom-
pressible fluid–structure interaction: Stability analysis and numerics, Int. J. Numer. Methods Eng. 101 (2015),

199–229.

[29] L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular mathematics: Modeling and simulation of the
circulatory system, Vol 1, Springer Science & Business Media, Germany, 2010.

[30] M. Gee, U. Küttler, and W. Wall, Truly monolithic algebraic multigrid for fluid–structure interaction, Int. J. Numer.

Methods Eng. 85 (2011), 987–1016.

[31] L. Gerardo-Giorda, F. Nobile, and C. Vergara, Analysis and optimization of Robin–Robin partitioned procedures
in fluid–structure interaction problems, SIAM J. Numer. Anal. 48 (2010), 2091–2116.

[32] J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid–structure interaction
problems in blood flows, ESAIM: Math. Model. Numer. Anal. 37 (2003), 631–647.

[33] P. Hansbo, Nitsche’s method for interface problems in computational mechanics, GAMM-Mitt. 28 (2005),

183–206.

[34] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), 251–266.

[35] M. Heil, A. Hazel, and J. Boyle, Solvers for large-displacement fluid–structure interaction problems: Segregated
versus monolithic approaches, Comput. Mech. 43 (2008), 91–101.

[36] J. Hron and S. Turek, A monolithic FEM/multigrid solver for an ALE formulation of fluid–structure interaction

with applications in biomechanics, in Fluid–Structure Interaction, Lecture Notes in Computational Science and

Engineering, Vol 53, Springer, Berlin Heidelberg, 2006, 146–170.

[37] T. Hughes, W. Liu, and T. Zimmermann, Lagrangian–Eulerian finite element formulation for incompressible
viscous flows, Comput. Methods Appl. Mech. Eng. 29 (1981), 329–349.

[38] U. Langer and H. Yang, Numerical simulation of fluid–structure interaction problems with hyperelastic models: A
monolithic approach, Math. Comput. Simul. 145 (2018), 186–208.

[39] M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems with moving boundaries and
deformable meshes, and their impact on aeroelastic computations, Comput. Methods Appl. Mech. Eng. 134

(1996), 71–90.



30 SEBOLDT AND BUKAČ
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