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Abstract

Based on Christ—Kiselev’s multi-linear operator techniques, we prove several
spectral results of perturbed periodic Schrédinger operators, including WKB
type solutions, sharp transitions of preservation of absolutely continuous spec-
tra, criteria of absence of singular spectra, and sharp bounds of the Hausdorff
dimension of singular continuous spectra.
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1. Introduction and main results

In quantum mechanics, the time evolution of the state 1) is described by the Schrodinger
equation

i %wm = Hy(1), (1)
where H is a self-adjoint operator on a Hilbert space. The solution of (1) is given by

(1) = e (0).
Let H be the one dimensional Schrodinger operators on L2(R),

Hu = —u" 4+ (V+ Vyu, 2)
where Vj(x) is 1-periodic and V(x) is a decaying perturbation. When V = 0, we have the 1-
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periodic Schrodinger operators,
Hou = —u" + Vyu. (3

Periodic Schrodinger operators have been studied intensively in both mathematics and physics.
We refer readers to a recent survey [19] for details.

The spectral measure associated with the state ¢(0) is closely related to the dynamical
behavior of the time evolution (#) governed by the Schrodinger equation. A classical example
would be the RAGE theorem [[41], chapter 5]. See [21] and references therein for more exam-
ples. In this paper, we focus on the spectral types: absolutely continuous spectrum, pure point
spectrum (eigenvalues) and singular continuous spectrum of Schrodinger operators.

It is known that the spectrum of these periodic operators H, consists of a union of
closed intervals U, [a,, b,], which we refer to as ‘bands’ Moreover, H has purely absolutely
continuous spectrum. Naturally, we would ask the following two questions:

Q1 What are the criteria of perturbations V that leave the absolutely continuous spectrum
unchanged?

Q2 In the case that Hy and H have the same absolutely continuous spectrum, what are the cri-
teria of perturbations V that there are no eigenvalues and/or singular continuous spectrum
embedded into the absolutely continuous spectrum?

The study of those problems has a long history going back to Weidmann in the 1960s [43].
Stimulated by several conjectures posted by Barry Simon at ICMP in 1994 and 2000 [37], the
theory of Schrédinger operators with decaying potentials has seen significant progress in the
past 25 years through the work of Christ, Deift, Denisov, Killip, Kiselev, Last, Molchanov,
Remling, Simon, Stolz and among others. We refer readers to two survey articles [6, 11] and
references therein for details.

When the background periodic potential V is zero, the dynamical properties of (2) are well
understood. In particular, the two aforementioned questions are solved when the perturbed
functions V are in L” spaces or algebraically decaying (V(x) = O(|x|~®), a > 0). However,
those problems are less understood when the periodic functions V are non-zero. The goal of
this paper is to address some of the remaining problems.

For simplicity, we only consider the equation on the half-line R . All the results can be
generalized to the whole line R.

For any p > 1, denote by ¢”(L')(R..) the Banach space of all measurable functions from
R, to R with the norm

0 k1 P\ /P
|f||m1)=(z(/k |f(x)dx>> .

k=0

This Banach space contains L' + L”. If p < g, then ¢’(L") C ¢7(L"). For simplicity, we
always assume V) is in L'0, 1] and periodic.
LetS = UyZ o[an, b,] be the spectrum of the operator (3) and ((x, E) be the Floquet solution.

Theorem 1.1.  [fthe potential V € (P(L") for some 1 < p < 2, then S is an essential support
of the absolutely continuous spectrum of the operator H = Hy + V with any boundary condi-
tion at zero. Moreover, for almost every E € S, there exists a solution u(x, E) of the equation

—u" + (Vo(x) + V(x)u = Eu 4)
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with the asymptotic behavior

u(x, E) = o(x, E) exp (% /0 V()| (1, E)| dt) (1 +o(1)) )

as x — oQ.

Let p’ be the conjugate number to p, namely ;iLl forp > 1.

Theorem 1.2. Suppose |x|"V € °(L") for some 1 < p < 2,y > 0 with yp' < 1. Then for
every E € S, there exists a solution u(x, E) of Hu = Eu satisfying the asymptotic behavior (5),
except for a set of values of E in S with Hausdor{f dimension less than or equal to 1 — ~p'.

As a corollary, we have

Corollary 1.3. Suppose V(x) = SSXL with o € [%, 1]. Then for every E € S, there exists a

solution u(x, E) of Hu = Eu satisfying the asymptotic behavior (5), except for a set of values
of E in S with Hausdorff dimension less than or equal to 2(1 — «).

Now we want to talk about the proof and history of theorems 1.1 and 1.2. Note that the sec-
ond part of theorem 1.1 implies the first part (e.g. [35, 40]). There are two main approaches to
study the spectral theory of Schrodinger operators with decaying potentials. The first approach
is to study the spectral theory of Schrodinger operators via establishing the WKB type eigenso-
lutions, namely eigensolutions with asymptoics (5). If V) = 0, theorems 1.1, 1.2 and corollary
1.3 have been proved by Christ—Kiselev [1-4] and Remling [31, 32] with some partial results
[13, 14]. If Vy =0, Remling [33] and Kriecherbauer—Remling [18] constructed examples
which show that 2(1 — «) in corollary 1.3 is the best bound to be achieved. Under a stronger
assumption on the potential V, that is [x|?V € ¢’(L") for some « > 0, theorem 1.1 was proved
by Christ and Kiselev [1]. For p > 2, it is known that theorem 1.1 is not true even for the case
Vo = 0 (see [16] for example).

Another approach beginning with Deift and Killip aims to study the absolutely continuous
spectrum directly. This approach can handle the critical case p = 2 without asymptotics of the
eigensolutions. For p = 2, the first part of theorem 1.1 was proved by Deift—Killip for the case
Vo = 0 [5] and Killip [10] for non-zero functions Vj.

It is widely believed that for p = 2, the second part of theorem 1.1 holds, which is open
even for Vo = 0.

The proof of theorems 1.1 and 1.2 is largely inspired by Christ—Kiselev’s arguments in
[2—4]. In [2—4], Christ and Kiselev developed a scheme, referred to as the multi-linear operator
technique, to establish the WKB type solutions, which turned out to be a robust approach. We
want to mention that the multilinear operator technique is not extendable to tackle the case
p =2[28].

The multi-linear operator technique to establish the WKB type eigensolutions is based
on writing the differential equation in an integral form and seeking a formal series solution.
Each term of the series is defined by a multi-integral operator. The difficulty lies in a rigorous
definition of improper integrals in a suitable topology, showing the convergence of the series in
a proper measure space, and verifying that the formal series solution is an actual solution. We
establish a more general version of the Christ—Kiselev’s multi-linear operator technique than
that appearing in [2—4] (see section 2). The main scheme of our proofs is definitely developed
from Christ—Kiselev. However, several important technical improvements have been added
to Christ—Kiselev’s scheme. Firstly, we strengthen several conclusions while requiring fewer
assumptions. For example, we proved the conclusion in lemma 2.8 as it appears n [3, 4, 12]
without any lower bound assumptions on the second and third derivatives (see (28)). Secondly,
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we simplify Christ—Kiselev’s original arguments. We define the multi-linear operators as iter-
ations. This is different from Christ—Kiselev’s plan (see the proof of lemma 4.2 in [4]). Our
approach is more natural and makes it easier to verify that the formal series solution is an actual
solution. The price we need to pay is to show the existence of a stronger limit in the definition
of multi-integral operators. See remark 2.6. Thirdly, we give two ways to establish the WKB
type solutions. One way closely follows from Christ—Kiselev’s approach. The new way allows
us to avoid using maximal operators and simplifies the previous proof. See section 5. Our new
proof is based on modifications of norms of a family of Banach spaces.

Now we move to the second question. The sharp transition for (dense) embedded eigenval-
ues was recently obtained by the author and Ong [26] with some partial results in the past [17,
20, 27, 29, 34], so we only focus on the singular continuous spectrum in the following. Let us
review the results for the case V) = O first.

(a) IfV(x) = %, H, + V does not have any positive eigenvalues [9].

(b) Wigner—von Neumann type functions imply that there exist potentials V(x) = % such
that Hy + V has positive eigenvalues [42].

(c) For any given positive function i(x) tending to infinity as x — oo, there exist potentials
V(x) such that |V(x)| < % and Hy + V has dense embedded eigenvalues [30, 36].

(d) If V(x) = %, Hy + V does not have any singular continuous spectrum [15].

(e) For any given positive function i(x) tending to infinity as x — oo, there exist potentials

V(x) such that |V(x)| < L"; and the singular continuous spectrum of Hy + V is non-empty

T+
[15].

Clearly, the above statements from (a) to (e) imply the criteria for the absence of singular
spectra (eigenvalues and singular continuous spectra). It is natural to expect that correspond-
ing criteria are true for any non-zero periodic function V. For embedded eigenvalues, cases
(a)—(c) have been proved for any function V [17, 26]. For the singular continuous spectrum,
we conjecture that (d) and (e) hold for any periodic function V. In this paper, we are able to
prove half of the conjecture.

Theorem 1.4. Suppose V(x) = %. Then the singular continuous spectrum of H = Hy + V
with any boundary condition is empty.

Theorem 1.4 and the case (a) for any function V imply

Corollary 1.5. Suppose V(x) = % Then the spectral measure of Hy + V with any bound-

ary condition at zero is purely absolutely continuous in S.

Define P as
P={EcR:—u"+ (V(x) + Vo(x))u = Euhas an L*(R ) solution }, (6)

It has been proved that P N S is a countable set provided V(x) = % [24]. Therefore, theorem
1.4 also implies

Corollary 1.6. Suppose V(x) = %. Then except for countably many boundary conditions

at zero, the spectral measure of Hy + V is purely absolutely continuous in S.

The proof of theorem 1.4 is inspired by [15], where the case Vy = 0 was treated. Under the
assumption of theorem 1.4, the first observation is that the singular component of the spec-
tral measure is supported on a set of zero Hausdorff dimension (by corollary 1.3). Following
the strategy in [15], four additional steps are needed to prove theorem 1.4. Step 1: establish
the quantitative almost orthogonality among Priifer angles. Step 2: control the total number of
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‘separate energies’!' based on step 1. Step 3: establish spectral measures of Schrodinger opera-
tors with eventually zero potentials. Step 4: use spectral measures of eventually zero potentials
to make approximations.
In our case, periodic potentials are involved so the problem is a lot more compli;:(atg()i, the
X,

steps 1 and 3 in particular. Let us mention that the almost orthogonality is between ==> and

% in Hilbert spaces L([0, B], (1 + x)dx) for large B, where 6(x, E;) (resp. 0(x, E,)) is the
(generalized) Priifer angle with respect to energy E; (resp. E>). In [15], Kiselev established
sharp bounds of the almost orthogonality for perturbed free Schrodinger operators (step 1). In
our case, rather than using the standard Priifer variables, we have to instead use the generalized
Priifer variables. The almost orthogonality of general cases was proved recently in [26] without
quantitative estimates, which is a key ingredient to construct embedded eigenvalues. However,
in order to study the singular continuous spectrum, the quantitative bounds are essential, in par-
ticular, we need to control the blowup when E; approaches E,. In [26], one of the innovations
is the use of Fourier expansions to ensure that some key terms decay sufficiently quickly. The
rest of the terms can be controlled by using oscillatory integration techniques. Even though
we use the full strength of Fourier expansions and oscillatory integral techniques from [26]
in a quantitative way, the bounds are not enough. We overcome the difficulty by splitting the
frequencies into high and low ones, where frequencies come from the quasimomenta of Flo-
quet solutions. For high frequencies, we quantify the oscillatory integral techniques in [26] in
a sharp way. For low frequencies, we combine Fourier expansions in [26] with the techniques
in [15] to establish the sharp bounds.

In the end, we remark that the spectral theory of perturbed periodic operators in higher
dimensions is much more difficult. We refer readers to [19, 25] for recent progress.

2. Christ—Kiselev’s multi-linear operator techniques

Since we only consider operators on the half-line R, all the functions are defined on R.. Let

us introduce the multilinear operator M, acting on n functions g, k = 1,2, ...,n, by
n
My(groga o gn) = | T] gxtods )
X<ty g‘“gfngx/kzl
n
= / Hgk(l‘k)X[o,x/](fk)dl‘k, (8)
x<n<w<m<wk:1

where x is the characteristic function. If there is a single function g such that g, € {g,g}, k =
1,2,...,n, by abusing the notation, we write M, (g, £, - - - » ,)(x, X') by M,,(g)(x, x'). Although
we use M,(g) for all possible (g1, 82, ..,8n) € {g,&}", there should be no ambiguity since
(81,82 --.8,) 1s fixed in our proof.

A collection of subintervals E;” CR4, 1 <j<2" and m € Z is called a martingale
structure [4] if the following is true:

Ry = U,ET for every m.

ETNE] = () forevery i # j.

Ifi < j,x€E"andx' € ET, then x < x'.
For every m, E}' = Eg”]ﬂ U Eg”j*l.

I'See the definition in section 8.
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Denote by x'}' = = XEr- Let B; be the Banach space consisting of all complex-valued
sequences a = a(m, j) indexed by 1 < m < ocoand 1 < j < 2", for which

2"1 1 / 2

lalls, = > m* Zla(mj)\2 < o0.

meZy

Denote by B = B,. For any function g on R, we define a sequence with index m € Z, and

1<j<2m,
{ / g(x)dx} = { / gOX} dX}
E’," Ry

By abusing the notation, denote by

(S

m 2
|g|®:H{/ g(x)dx} Zm S g(X)dx‘ | ©)
E;’ =1 7

Define

M;(81.82,---,8) = sup  |M,(g1.82,---,8)(x,x")|, (10)

0<x<x/ <00

and

My(g)= sup |[M,(g)(x,x")| (11)

0<x<x/ <0

Theorem 2.1 [2].  For any martingale structure ET C Ry, 1 <j < 2" and m € Z., the
following estimates hold,

M;(g1:82- - 8n) < C'[ [ lgill». (12)
and
Mo < 18l (13)
V!

where C is an absolute constant.

A martingale structure £7' C Ry, 1 <j < 2" andm € Z is said to be adapted in (LY to
a function f'if for all possible m, j,

HfXj Hép([‘l) ~ m”fHép(Ll) (14)

Since all the functions are in #/(L'), we omit ‘adapted’ in the rest of this paper.

Lemma 2.2 (p 433, [4]). For any function f € (P(L"), there exists a martingale structure
{Ef CRy:meZy,1<j<2"} t0f.

Let P be a linear or sublinear bounded operator from ¢’ (L") to L4(J), where J C R is a closed
interval. For s > 0, denote by
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Gg()f)(,\) H{P(fX )()‘)}H‘Bx

00 2"1 1/2
=Y m [ Y IPUXHN
m=1 j=l1

Remark 2.3. In the case that P has an integral kernel p(x, \), GE,‘( Hoy = = || p(x, N f ()| 8+,
which is the norm of { [, p(x, \)g(x)dx} in B°.
J
The following statement is from [4]. We include a proof here for completeness.

Theorem 2.4 [[4], proposition 3.3].  Given a functionf € (’(L"), fix a martingale structure
to f. Suppose P is a linear or sublinear bounded operator from ¢’ (L") to L(J), where 1 < p <
2 < gandJ C Ris a closed interval. Then

1G5 0 ls) < €.y s IPDIF Nlweer -

Proof. Let
om 1/2
) = | D IPUXV]
j=1
By the definition,
1/2
Gy = Z m' Z IPOEXTYN
m=1
== Z mstm(>\). (15)

m=1

Let us give an inequality first, for v > 1

N v N
(Zd,’) éN"’fIZ\a,»P. (16)
i=1 i=1

Direct computations imply
q/2
2"1

/J%(A)dxz / SOIPGAIOE | da

j=1
by (16)
<

omta/2-1) / Z IPCF O] d

om

< 20N X,

j=1

2"1
by (14)
<l 1)22 p”fH;P(Ll
Jj=1
I’Il —I’Ilz
CHf”/"(Ll 7, (17)
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where the second inequality holds by the boundedness of P.
Finally, we have

o0
by (15) B
1GS oy =1 m tw(Nlawy
m=1

(o @]

<l tmWVleey

m=1

by (17) X2 5
< CZ m'2" 7m/p“f||z"(L1)

m=1

< CHf“z"(Ll)-

Denote by
Bugign g = [ [ / TTe/epdn .. (1)
x il In-1 j—1|

If there is a single function g such that g, € {g.g}, k=1,2,...,n, we write
B(81: 82, - - - 8,)(x) by By(g)(x).

Theorem 2.5. Assume that g;, j=1,2,...,n is locally integrable. Suppose for j =
1,2,...,n,

limsup [[g ;Xm0 =0, (19)
M—00

and there is a constant C (does not depend on I) such that for any closed interval I C R,

lgxlls < C. (20)

Then (18) is well defined as the limit

Bi(gingn.-.g)(®) = lim / / / [Te s a...an, @1
..... Vn—00 fn i
and
xl_ig B.(g1,82,---,8)(x) = 0. (22)

Moreover, for almost every x

dBn(gl, 82; M gﬂ)('x)
dx

Proof. In order to prove the existence of the limit, it suffices to show that

—81(0)By-1(82, - - -, gn)(X). (23)

m sup |Ba(81X10511> 82X[0321> - - - » 8n X101 )(X)

L 12,...n
— Bu(81X10.21> 82X[05215 - - - » &nX[02,1)(X)| = 0. (24)
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Assume M <y, < zx, k= 1,2,...,n. By telescoping techniques,

IBi(81X[0.511> 82X[015 - - - » 8n X105 (X) — Bu(81X[0.211> 82X 10,2215 - - - » 8nX[0.22](X)]

n
< Z |Bu(81X10,115 - - - » 8k—1 X105 11> 8kXlygezi]> 8k-+1X[0z5 1115 - - - » 8nX[02,1) (X))
k=1

n
<> llgrxomills - - N8k X0yl 8kXise i llss 81 X011l - - - 1gnx1020 18
k=1

n
<CY llgixialls

k=1
<> llgkximoo |- (25)
k=1

where the second inequality holds by (12) and (8), and the third inequality holds by (20). Now
(24) follows from (19).
By (21), one has

lim |B, (g1, .., 8a)(X)|
X—00

X px! X n
= lim lim
x—00 x'—o00 X 1 .

gj(tpdry dr, .. .ds,
1

In—1 j=
x x X n

= lim lim / / / H ()Xo dty dty .. .dt,
xX—00 x'—00 x f [ =1

by
< CXIL?OH |85 X1x.00) |18
k=1

byil‘))o

This completes the proof of (22). Direct computations imply
im Bn(gl, e ,gn)()’) - Bn(gl, e agn)(x)

li
yx— y—Xx
1 X 00 oo N
zilim — | gi(t))dfy / gj(tyde .. .dt,
o= y - X y 1 -1 j=2

:_gl(x)/ / ng(tj)dl‘z...dtn.

h—1 j=2
Similarly,
B - —B,(g1,...,8n
hm n(gla ,gﬂ)(y) B (gl 8 )(x)
y—=x+ y—Xx
:_gl(x)/ / gj(tj)dtz...dt,,.
X th—1 j=2
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The last two equalities imply (23). ([

Remgrk 2.6. In [[4], proposition 4.1], Christ and Kiselev proved the existence of a weaker
limit B, (g1, g2, - - -, &n)(x), where

y y
Bn(glag2a~~~agn)(x):vlj>m/ /
Y70 x n

Let p(x, A) be a measurable function on R} x J. Define the integral operator P:

y
gj(tydty dry .. .dt,.
1

In—1 Jj=

P(fH)N) = / p(x, A)f (x)dx,

R

and the maximal operator P*:

P (f)(N) = sup

yER

/ p(x, ) f (x)dx
y

Lemma 2.7 [[2], Christ—Kiselev lemma]. Ler 1 <p < g < oo. Suppose P is a bounded
operator from (P(L") to L1(J). Then P* is also a bounded operator from ' (L") to L(J).

In our situation (see next section), s(x, \) = w(x, \)e "™V where h is a real-valued
function. We obtain two operators

SO = [ e e W (a, (26)
Ry
and
S*(f)N) = sup / h w(x, Ne "N £ (x)dx . (27)
yeRy |y

Lemma 2.8. As~sume I1<p<2 Supgose there exist a constant C and a closed interval J
such that J C Int J and for any \ € Int J

[x — |
c

|OA[ACx, ) — h(y, V]| = (28)

and
|03[h(x, \) — h(y, V]| < Clx —y[, i=1,2,3, (29)
provided |x — y| > C. Suppose
2
sup Z |0 w(x, V)| < C.
xeR+,)\€j i=1
Let p = ﬁ be the conjugate exponent to p (p' = oo when p = 1). Then

HSf”[jI/(J,d)\) < O(I)Hfol’(Ll)’

and

HS*fHLp’(j,d)\) < 0(1)||fH£’P(L1)’
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where O(1) depends on C, J, J and p.

Proof. By lemma 2.7, we only need to prove the boundedness of S. By the interpolation
theorem, it suffices to prove the cases p = 1 and p = 2. The case p = 1 is trivial since % is a
real-valued function, so we only need to consider the case p = 2. Let £(\) be a positive function
so that £ = 1 on J and supp & C Int J. Then one has

2
I1Sf 20y = / | / w(x, Ne "N f(x)dx| dA

<
J

_ / l / wix, Aye D f(X)dx] [ / By, N0 F(y)dy | £
J IRy Ry

= / F)f (y)dx dy / e HENFIOD e, Ny (y, NEN)DN. (30)
]Ra_ J

2

/ w(x, Ne N £ (xdx| €A
Ry

Multiplying —idy(h(x, \) — h(y, A)), dividing —id)(h(x, \) — h(y, \)) and integrating by part
twice, we have for |x — y| > C,

[ Ao NEIN
J

_ [T A) = BOLA)) ingentingy _
_/y —10N(h(x N) — h(y. \) w(x, Nw(y, NEA)AA

| i iR w(x, Nw(y, MDEN) )
- /;e O (—iBA(h(x, N —hooy ) P

o 1 w(, My, VEN)
o ih(x,\)+ih(y,\)
‘/ye . Lmh(x, NETRY (—@(h(x, A) = hy, M))] °

_ 0(1)2, a1
lx =y

where the last equality holds by the assumptions of lemma 2.8.
By (30) and (31), we have

1S 1oy < /

[x=y[>C

FEOFO)dx dy / e HENHION e Nyip(y, MENA.
J

+ / FEOFO)x dy / e NN e Ny(y, NENIA
r—yl<C J

o[ Mwro

dx d
r2 1+ [x —y[? Y
+
= 0| f lewn, (32)
where the last equality holds by direct calculation (for convenience, we include the details in
the appendix A). This completes the proof. (]
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Remark 2.9. The formulation and proof of lemma 2.8 closely follow from the corresponding
parts appearing in [3, 4, 12].

3. Technical preparations
We set up the basics in this section. By the Floquet theory, ¢ (x, E) has the form
o(x,E) = J(x, E)e*®*, or (x,E) = J(x,E)e *B", (33)
where k(E) € [0, 7] is the quasimomentum, and J(x, E) is 1-periodic.
Without loss of generality, assume @(x, E) = J(x, E)e*®*, Since ((x, E) and B(x, E) are

two linearly independent solutions of —u’ + Vou = Eu, the Wronskian W(, ¢) is a non-zero
constant and

W(@, ¢) = )¢ (x) — F(0)p(x) = 2iS[ER)¢ (0)]. (34)
Let us study the solutions of the equation
—u" + (Vo(x) + V(x))u = Eu.

We rewrite this equation as a linear system

uy = 0 D) 4
1= \Vo+V—-E 0)""

. u
where u; is the vector (u’) . Introduce

[ (nE) B(xE)
a (@'(x,E) 7. E)) -
Then
b V()| o(x, E)|? V(x)@(x,Ef)
2= 23e7) (—V(x)go(x,E)2 Ve, B)E) " (35)

In the following discussion, E is always the energy. For a two-variable function f(x, E), denote
by f” the derivative of f with respect to the non-energy variable, namely f'(x, E) = 9. f(x, E).
Define

1
- 23(py)

Let us apply another transformation,

5, E) /0 Vo)t E)P dy.

_ [exp(ip(x, E)) 0 i
- 0 exp(—ip(x,E)) )
We obtain the equation for u3:
o 0 V(0)p(x, E)? exp(—2ip(x, E))
"= 233007) (—wx)go(x,E)2 expQip(x, E)) 0 )“3' (36)
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Lemma 3.1.  Suppose there exists a solution of (36) satisfying

uz(x, E) = (é) + o(1)

as x — oo. Then there exists a solution u(x, E) of (2) satisfying (5).

Proof. The proof is straightforward by substitutions. (]

Let Y = u3. Let ¢(x, E) be so that e!?™5) = x(x, E). We note that ¢(x, E) is a complex-
valued function.
Denote by

i

'IU(X, E) = W’

(37
and
V()

In the following, w and & are always given by (37) and (38) respectively. The operators S
and S* are given by (26) and (27) respectively. Denote by

F(x, E) = w(x, E)e "B y(x). (39)

Under this notation and following the calculations in p 249 and p 250 in [3], (36) becomes

, (0 weVN_ (0 F
(ol ) (5 7

For convenience, we include a verification of (40) in the appendix A.

Denote by
0 F
D= (F O).

The linear equation (40) becomes Y’ = DY. We are going to find a solution of

Y(x) = (é) - / D(y)Y(y)dy, (41)

and we obtain a series solution by iterations

=o)L
k=1 ISHKD S <0

X D(t1)D(ty) . .. D(t;) <(1)> dey, dey_y ... dr, dty. 42)

Let

Tu(F)(x, X', E) = My(F (-, E)(x, X).
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Under the above notation, one has

1
/ s / D(t1)D(t;) . .. D(ty) (O) dty .. .dr dfy
X<t Kty Kt KX

Tox(F)(x,x', E)
0 ,

and

1
/' ‘ / D(t1)D(t) . . . D(t2k+1) (O) dtyeyr ... dey dy
X< <1 St <Y

0
B <T2k+1(-7:)(x, X, E)) '

The series solution (42) becomes

1 > Ton(F)(x, 00, E)
Y(x) = (0) + mst . (43)
= Tt (F)(x, 00, E)

m=0

We will show (43) is well defined and gives an actual solution of (40).

4. Proof of theorem 1.1

Fix amartingale structure {E C Ry :m € Zy, 1 < j < 2"} to the potential V. Choose a spec-
tral band (a,, b,) and let K C (a,, b,) be an arbitrary closed interval. We will apply theorem
2.5 to complete our proof.

Lemmad.1. ForanyE € (a,,b,), there exists a constant C = C(E) (depends on E uniformly
in any compact subset of (a,, b,)) such that

|0p[h(x, E) — h(y, B)]| =2 w (44)
and fori=1,2,3

|Op1h(x. E) = h(y. E)I| < Clx — ] (45)
provided |x — y| > C.
Proof. We will prove (44) first. By the definition of ¢ and (33), one has

R ¢ =k(E)x+ S log J(x,E), (46)
with k(E) € (0, 7). By the Floquet theory,

dk(E

% £0. (47)

By the fact that J(x, E) is 1-periodic, one has
S log J(x+ 1,E) — & log J(x, E) = 2qm, (48)
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for some g € Z. It implies
Op( log J(x + 1,E) — & log J(x,E)) = 0. (49)
By (47) and (49), we have

[x — |

IR ¢(x, E) = R ¢(v, E)| > C

(50)

Since V(x) € (L"), one has that 9 /. NV gy goes to zero as N — oo. It implies

N  ®IGCE
R0
%K%d@mm

asy — x goes to 0co. Now (44) follows from (50) and (51). The proof of (45) can be completed
in a similar way. U

= o(y — x) + 0(1), (51)

Lemma 4.2. Let p' be the number conjugate to p with 1 < p < 2. Then
Gy € L7 (K, dE).
In particular (s = 1),
Gs-vyp € L7 (K,dE).
Proof. By lemmas 4.1 and 2.8, and applying P = S* in theorem 2.4, we have
G € L (K, dE). (52)
|

Corollary 4.3. Let p' be the number conjugate to p with 1 < p < 2. Then for almost every
E € K and any closed interval I,

[FCE)xills < C(E), (53)
and
limsup || F(-, E)X{m00)|| = O. (54)
M—00

Proof. By direct computation, one has

{ Fx, E)Xl(x)dx}
Er %5

- { / w(x, E)e"™E V(x)x,(x)dx}
E"

J

= { / w(x, E)e" B V()" dx}
1

L2/ {S VXDE ) ||

| FC, E)xills

B

H‘B

= 2Gsvyp)-
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Now (53) follows since Gg«vyr) € LYK,dE) by lemma 4.2. Applying P=S and f=
V(X)X[p.00) In theorem 2.4 and recalling that

H]:(',E)X[M,oc)”% = GS(VX[MJ@))’

one has

1/q
lim sup ( / ||]'"(',E)X[M,oo)|q%dE> = 1151 Sup [|Gsvpuon e
J 00

M—00

< O(Mlimsup [[VX ooty
M—o0

=0. (55)
This implies that for almost every E € K,
limsup [|F(-, E)Xm.50)||s = 0.
M—00
This leads to (54). U

Proof of theorem 1.1. Under the assumption of theorem 1.1, oes(H) = 0ess(Hp) [22, 39].
This yields that o, (H) C S. Itis well known that the boundedness of the eigensolution implies
purely absolutely continuous spectrum (e.g. [35, 40]). Then the second part of theorem 1.1
implies the first part. If p = 1 (V € L'(R,)), one has that for every E € K, 5 e given by
(40) is in L'. In this case, it is well known (see [7] for example) that (40) has a solution Y (x)
satisfying

Y(x) = (é) +o(l),

as x — oo. By lemma 3.1, theorem 1.1 is true for p = 1. So we assume 1 < p < 2.
By corollary 4.3 and theorem 2.5, for almost every E € K the following limit is well defined,

Ton(F)(x,00, E) = lim Ty, (F)(x, x', E).
X' =00

By (13) and (53), we have

| Tom(F)(x, 00, E)| < C(éi; (56)
Thus
EOO: Tom(F)(x,00,E) (57)
m=1
is absolutely convergent for almost every E € K. Similarly,
f: Tomt1(F)(x, 00, E) (58)

m=0

is absolutely convergent for almost every E € K. Therefore, the series in (43) is well defined
for almost every E € K. Based on (23), it is easy to check that for almost every E € K, the
series in (43) actually gives a solution of (40). The WKB behavior (5) follows from (22) and
lemma 3.1. ([
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5. An alternative proof of theorems 1.1 and 1.2

We will give a new proof of theorem 1.1. By the arguments in the previous section, it suffices
to prove corollary 4.3. We will give a proof without using the maximal operator.

Lemma 5.1 [2]. Let {E;” CRy:meZi,1 <j<2"} be a martingale structure. Then
there exists an absolute constant C such that for any closed interval I,

llgxillss < Cllgllgs+1-
In particular,

lgxills < Cllgll - (59)

A new proof of corollary 4.3 without using S*. The proof of (54) does not use S*, so
we keep it. We only need to show that (53) is true for almost every E € K. Applying P = §
and f = V(x) in theorem 2.4 and recalling that

IFC Bl = G
one has

| F( E)|lg2 € LI(UJ). 60)
Now (53) follows from (59) and (60). 0

Suppose the assumptions of theorem 1.2 hold for some 1 < p < 2 and v > 0. Let 8 be any
positive number bigger than 1 — p/~. Denote by H” the 3-dimensional Hausdorff measure. Let

Ac={E€K:||F(,E)XNoo)llm2 = ¢ forevery N > 0}.
Lemma 5.2. Foranyc > 0, we have
HA(A) = 0.

Proof. The lemma follows from the arguments in [3]. Actually, lemma 5.2 is a particular
case of what was studied in section 8 of [3]. U

Proof of theorem 1.2. By lemma 5.2, we have for every E in K except for a set of H”
measure zero and any ¢ > 0, there exists N > 0 such that

| FC E)Xvoo |2 < C. (61)

Fix such E. Let Ny be such that (61) holds for ¢ = 1. By changing x to x — Ny, we can assume
Ny = 0. Therefore, by (59), one has

sup [|FC, E)xulls < C.
1CR+

For any € > 0, let N(¢) be large enough so that (61) holds for ¢ = ¢. For any M > N(¢), by
(59) again,

[FCE)Ximoolls < | FC E)Xiveyoolls + IFCs E)Xive).an s
< FC E)Xive)colls + CIIFC E)Xive).oo [l 52
< Ce.
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This implies (54). Now the rest of the proof of theorem 1.2 follows from the proof of theorem
1.1. O

6. Sharp estimates for almost orthogonality among generalized Priifer angles

In this section, we always assume that for some B > 0,

V)| < (62)

1+x
Without loss of generality, we only consider the Dirichlet boundary condition.

For any spectral band [ay, b,], let ¢, be the unique number such that k(c,) = 7. Let I be a
closed interval in (a,, ¢,) or (c,, b,). All the energies E in this section are in / and the estimates
are uniform with respect to E € I.

For z € C\R, denote by 0(x,z) (U2(x,z)) the solution of Hy + V with boundary condi-
tions ©1(0,z) = 1 and v7(0, z) = 0 (v2(0,z) = 0 and 75(0, z) = 1). The Weyl m-function m(z)
(well defined on z € C\RR) is given by the unique complex number m(z) so that 0,(x,z) +
m(z)0a2(x,z) € L>(R.). The spectral measure x on R, is given by the following formula, for
ze€ C\R

m(z)=C+/[ ! —x] du(x),

x—z 14x2

where C is a constant.

Denote by 1. the singular continuous component of x. It is well known that o.(Hy + V)
= () if and only if g = 0.

Recall that ¢(x, E) = J(x, E)e*®* and define a continuous function y(x, E) such that

o(x, E) = |p(x, E)| e"™B), (63)

By [[17], proposition 2.1], we know that there exists some constant C > 0 such that

% <4 (x,E)<C, Or% < —'(x,E) < C. (64)
Let u(x, E) be an arbitrary solution of —u” + Vou + Vu = Eu and define p(x, E) € C by
u(x,E)y _ 1 o(x, E) — P(x, E)
(u’oc, E)) =% {p("’ 2 (w’(x,E) BN\ Gam) | (63)
Define R(x, E) and 6(x, E) by
R(x,E) = |p(x, E)[; 0(x, E) = v(x, E) + Arg(p(x, E)). (66)
Proposition 6.1 [17]. Suppose u is a real solution of (2). Then the real functions R(x) > 0
and 0(x) satisfy
Vix) .
In R(x,E)] = ——— 2 E
[In R(x, E)] 27 (x.E) sin 20(x, E) (67)
and
e By — Y E) G
0(x,E) =~ (x,E) o E) sin” O(x, E). (68)
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Before we establish the almost orthogonality among Priifer angles, some preparation is
necessary.

Lemma 6.2 [15]. Suppose the function G(x) satisfies |G'(x)| = 10$3 and v # 0. Then

/L sin(yx + G(x))
0 1 + X
We remark that O(1) in (69) and also throughout the following proof does not depend on L.

Lemma 6.3 [26]. Suppose the function G(x) satisfies |G'(x)| = ?_& and v # 0. Then

dx’ < o(log |y '+ o). (69)

+o(1).

/L sin(yx + G(x)) ’ o(1)
— L 7 dx
0 1 —+ x ‘ |

Lemma 6.4. Suppose 0 < v < 2w and the function G(x) satisfies |G'(x)| = ?J(rli Then we
have for k = —1,0, 1,

0 1 —+ X

dx’ <0 log v '+ 0(1)log2m — )1 4+ 0(1),

and for k € Z\{—1,0,1},

/L (2riks sin(yx + G(x))
0 1 + x

dx‘ = 0(1).
Proof. By the trigonometric identity, one has

2 ™% gin(yx 4+ G(x)) = sin(yx + 2mkx + G(x)) + sin(yx — 2wkx + G(x))
+1 cos(mk — vx — G(x)) — 1 cosQmk + vx + G(x))
Now the proof follows from lemmas 6.2 and 6.3. (]
Denote by T = R/Z.
Theorem 6.5. Suppose f € L*(T). Then the following estimates hold

/ fx )cos 49(x E) ‘ — o). (70)

= 0(1)log + 0(1), (71)

sin 26(x, E1) sin 29(x Ez) 1
/ 1 ‘ B~ B

where O(1) only depends on I, B, f and V).

Proof. We give the proof of (71) first. By (68) and (62), we obtain the differential equations
of O(x, Ey) and 0(x, E,),

o(l)

OB =/ B + (72)
and
o(1
0/ (x, Ex) = '(x. Ey) + # (73)
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By (33) and (63), we have
Y(x, E) = k(E)x + n(x, E), (74)
where n(x, E) mod 27 is a function that is 1-periodic in x.
By basic trigonometry,
—2 sin 260(x, Ey)sin 20(x, E;) = cos(20(x, E) + 20(x, E»))
—cos(20(x, Ey) — 20(x, E»)), (75)
it suffices to bound
L 20(x, Ey) £ 20(x, E
/ £ cos(20(x, Ey) (x, E2)) dr.
0 1 + x
Without loss of generality, we only bound
L 20(x, Ey) — 260(x, E
/ B~ B o 76
0 +x
By (72)—(74), we have
d o(l)
(60 Ev) = 1 En)] = [60x, E) = (. En)] = K(ED) — K(E2) + 1 (77)

Let
6(x,E) = 6(x, E) — n(x, E).

By trigonometry again, one has

cos(20(x, Ey) — 20(x, E5)) = cos(20(x, Ey) — 20(x, E) + 21)(x, E1) — 2n(x, E))
= cos(2n(x, Ey) — 2n(x, E»)) cos(20(x, E1) — 20(x, E»))
— sin(2n(x, Ey) — 2n(x, E»)) sin(20(x, E;) — 20(x, E»)).

Thus

L
/ £ cos(20(x, Ey) — 20(x, E»)) d
0 I+x

_ /OLf(x) cos2n(x, Er) — 2n(x, Es)) cos(20(x, Ey) — 20(x, E»)) e

1+x

L sinQn(x, Ey) — 2n(x, E2)) sin(20(x, Ey) — 20(x, E»))
- / £ ax.
0

14+ x

Without loss of generality, we only give the estimate of

L sin@n(x, Er) — 2n(x, E2)) sin(20(x, Ey) — 20(x, E2))
/ f(x) dx.
0

1+ x
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We proceed by Fourier expansion of f(x) sin(2n(x, E;) — 2n(x, E»)) (1-periodic function) and
obtain that

€o

5+ > " cos(2mkx) + dy sin(2mkx). (79)

k=1

J (%) sin(2n(x, E1) — 2n(x, Ez)) =

By (79) and (78), we obtain

L p ) Y]

(78):/ co sin20(x, E1) — 20(x, Ey)) dx
0 2 1+x

sin(20(x, Ey) — 20(x, E»)) dx
1+x

+ Z cx cos(2mkx)
k=1

sin(20(x, Ey) — 20(x, E»)) d

+ Z di sin(2mkx) L

k=1

(80)

Since k(E1), k(E>) € (0, %) or k(E)), k(E,) € (5, ) depending on either I C (a,,c,) or I C
(¢u» by), and k(Ey) # k(E5), we have

0 < |K(E)) — k(E>)| < g (81)

Since f € L*(T), one has Y ¢} + d? < oo. Now (71) follows from lemma 6.4, (80) and (81).
The proof of (70) is similar to the estimate of (76). We omit the details.
|

7. Spectral analysis of Schrédinger operators with eventually periodic
potentials

In this section, we establish the spectral measure with eventually periodic potentials in terms of
the Priifer variables, which is likely known. However, we did not find this in the literature. We
thus present a calculation. See [8] for a calculation for the eventually periodic Jacobi operators.

For L > 0, let Vi(x) = V(x)x[o(x). Let pi;, be the spectral measure of the operator -D* +
Vo+ V5.

Theorem 7.1. Ler u(x, E) be the solution of —u" + Vou + Vu = Eu with initial conditions
u(0) = 0 and u'(0) = 1. Then the following formula holds,

du(E) 2 1
dE 7|W(P,¢)| RA(L,E)

(82)

forE € S.

Proof. ForE € Sande > 0,let z = E + ie. By the Floquet theory, —u’ + Vou = zu has two
linearly independent solutions:

Q1(x,2) = J1(x, )M OFTEN o (x, 2) = J(x, g)e KOO, (83)

where J(x, z) and J»(x, z) are 1-periodic, k(z) € [0, 7] and 7(E + ic) # 0 for any € > 0.
If 7(E + ie) > O for any € > 0, then k(E) = k(E), p,(x, E) = p(x, E) (up to a constant) and
J1(x,z) = J(x, E) (up to a constant).
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If 7(E + ie) < 0 for any € > 0, then INc(E) = —k(E), p1(x,E) = ¢(x, E) (up to a constant)
and J;(x,z) = J(x, E) (up to a constant).
Without loss of generality, assume

ST(E +ie) > 0 for any € > 0.

Define u(x, z) = Ji(x, z)ei(’z(Z)Jrir(z))x = p1(x,z)forx > Landextend zt(x,2)to 0 < x < L by
solving equation

—i"(x,2) + (Vo(x) + Vi(x) — 2ii(x, z) = 0.

Since i(x,z) € L>(R.), by basic facts of spectral theory (we refer the readers to [38] and
references therein for details), we have

iy — 10D
YT 0,2
and
d,uL 1 . .
—— = — lim Sm(E . 4
g = i, SnE &

Let T(z) be the transfer matrix of Hy + V, from O to L, that is

ONEE0
(o) = (+0)

for any solution ¢ of (—=D* + Vo + V)¢ = z¢.

Denote by
_ (a@ b()
I@) = (c(z) d(z))'

Clearly,
00,2\ (ak) bR\ ' [L.z)
#0,2))  \c) d@) i'(L,z)

_ [ d@ —b2)) (ulL,z)
T\ —c(z) a(z) iW(L,z))"

Direct computation implies that (using ad — bc = 1)
ap (L, E) — co1 (L, E)
doi(LE) — by (L, E)
_ (\} a(p/(La E) - CSO(L, E)
dp(L,E) — by (L, E)
A1 sin Bl

Iim S m(E 4 ie) =
=0+

= , 85
(d—bA1 Ccos Bl)z+(bA1 sin 31)2 ( )
where A > 0 and B, are defined by
/
L .
AC (86)
(L)
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By the assumption of theorem 7.1, one has
wl,E)\ u(0)
<u’(L, E)) =1® <u’(0)>
0 b
1o (%) - (1), @)
Let
p(L)yp(L) = A, B and A, > 0. (88)
By (65) and (87), we have
b e iB, A] eiBl
<‘1> = \242 € 1
o /42 sin 132
o <A1A2 Sil’l(B] +Bz)> ’ (89)
Therefore,
b =A, sin By;d = AA, sin(B; + B). (90)
By (85) and (90),
lim Sm(E +ie)= 5 - o1
0+ ~ AA3 sin By
It is easy to see that (see p 295 in [17] for example)
/ W —’
%) 2
By (86), (88), (91) and (92), one has
. . 1
h{)r}r Sm(E + ie) = ) )
A X L)
PP S (48)
2 1
_ 2 . (93)
(W@, )| R(L, E)*
Now the theorem follows from (84) and (93). U

8. Proof of theorem 1.4

In this section, we indicate the dependence of parameters explicitly except for Vy, since V is

fixed all the time.

Let L = ¢ ' with o > 0. Let C; = C,(B, I), which will be determined later.
We say a subset A C [ is (e, N) separate if the following two conditions hold:
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Forany E € A,

L .
/ Vi) 20 E) 4L (- By D log ¢ (94)
0 ’Y,(X,E)

Forany E1,E; € A and E, # E»,

IK(Ey) — k(Ep)| = /N (95)

Lemma 8.1 [[16],lemma 4.4]. Let {ei}ﬂvzl be a set of unit vectors in a Hilbert space H so
that

a =N sup [{e;, e;)] < 1.

i
Then forany g € H,
N
> g e <+ a8l (96)

i=1

Theorem 8.2. There exist €,(B,1,0,3) > 0 and C(B, 1,0, 3) such that for any € < ¢ and
N > C(B, 1,0, 3), any (¢, N) separate set A satisfies #4 < N.

Proof. We consider the Hilbert space

H = L*((0,L), (1 + x)dx).

In H, by (62) we have

VI3 < B* log(1 + L). 97)
Let
L sin 260(x, E;)
VA; 7', EN(1 + x)
where A; is chosen so that ¢; is an unit vector in H. Direct computation implies

. /B.f sin® 20(x, E;)
Yo WL E)PA 4 )

ei(x) = X10.3(x), (98)

L 1 L cos 46(x,E)
= dx—/ — = T (dx. (99)
/0 2y (x, EDPF(L + x) o [V EDPP( 4 x)
By (70), one has

/L cos 40(x, E;)
o Y (x, ED*(1 4 x)

dx‘ — o). (100)
Direct computation shows that
L 1 L-1 n+1 1
———— dx=0() + / o e X
/0 17/ (x, En (1 + x) ; w o Y OGE)P( +n)

= 0(1)+ T'(E)log L, (101)
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where T(E) = [ W dx (does not depend on n, e.g., [[17], proposition 2.1]).

n

By (99)—(101), we have
1
A= ST(E)log L+ 0(1). (102)

We should mention that O(1) in (100)—(102) only depend on B and 1.
By (71) and (98), we have

[(eiej) < H_%C(I, B)N"% + lgg’i)l. (103)

The first condition (94) implies
2

(Ve > ;1= log €' = C(L,B). (104)
By (96) and (103), one has

N N 2 _, NC{.B)

;|<v,ez>ﬂ| < (1 1 CLBNT + log 1 ) V|5 (105)
By (97), (104) and (105), we have

N <W log ' —C(, B)) < (1 + H_%C(I, BN~' + ﬁgt?)

x B*(1 +o)log €.

This implies theorem 8.2. (]

Proof of theorem 1.4. Once we have theorems 7.1 and 8.2, theorem 1.4 can be proved by
the arguments in [15] (also see [23]). We omit the details here. O
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Appendix A
Proof of (40). By (36) and (40), it suffices to show that
i 2 s | A
2%((,0@’)‘/('0 exp(—2ip) = 2 R e . (106)

By the definition, one has
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Direct computation implies

— . 107
Se7) | Re (107

By the definitions of & and p, we have
v iV . Y A ()]
"= —i2 R —d
29t{qye 2 R exp( i ¢+1/0 R J(.E) t)
: V(t)lw(t,E)2d>
o, a
S(pd)

= —ivw exp(—i2 R @) exp <_i/o

= —iV_———+ exp(—i2 R ¢) exp(—2ip)
S(pe')

It implies (106) and hence (40). O
Proof of (32). Fork € Z., denote by

k
fi= [ 1relax
k—1
Then
1 ey = D S2- (108)
k=1

Direct computations imply

|f () f )] Smfn
/Rzl—t—\x y)? dd—0(1)221+‘m

m=1 n=1
= oMY |l (109)
where the second equality holds by the Young’s convolution inequality. Now (32) follows from
(108) and (109). O
ORCID iDs

Wencai Liu & https://orcid.org/0000-0001-5154-6474

References

[1] Christ M and Kiselev A 1998 Absolutely continuous spectrum for one-dimensional Schrédinger
operators with slowly decaying potentials: some optimal results J. Am. Math. Soc. 11 771-97

1313


https://orcid.org/0000-0001-5154-6474
https://orcid.org/0000-0001-5154-6474
https://doi.org/10.1090/s0894-0347-98-00276-8
https://doi.org/10.1090/s0894-0347-98-00276-8
https://doi.org/10.1090/s0894-0347-98-00276-8
https://doi.org/10.1090/s0894-0347-98-00276-8

Nonlinearity 34 (2021) 1288 W Liu

[2] Christ M and Kiselev A 2001 Maximal functions associated to filtrations J. Funct. Anal. 179 409-25
[3] Christ M and Kiselev A 2001 WKB and spectral analysis of one-dimensional Schrodinger operators
with slowly varying potentials Commun. Math. Phys. 218 245-62
[4] Christ M and Kiselev A 2001 WKB asymptotic behavior of almost all generalized eigenfunctions
for one-dimensional Schrodinger operators with slowly decaying potentials J. Funct. Anal. 179
426-47
[5] Deift P and Killip R 1999 On the absolutely continuous spectrum of one-dimensional Schrédinger
operators with square summable potentials Commun. Math. Phys. 203 341-7
[6] Denisov S A and Kiselev A 2007 Spectral properties of Schrodinger operators with decaying
potentials Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s
60th Birthday (Proceedings of Symposium Pure Mathematics vol 76) (Providence, RI: American
Mathematical Society) pp 565-89
[7] Dollard J D and Friedman C N 1978 Asymptotic behavior of solutions of linear ordinary differential
equations J. Math. Anal. Appl. 66 394—8
[8] Kaluzhny U and Shamis M 2012 Preservation of absolutely continuous spectrum of periodic Jacobi
operators under perturbations of square-summable variation Constr. Approx. 35 89—105
[9] Kato T 1959 Growth properties of solutions of the reduced wave equation with a variable coefficient
Commun. Pure Appl. Math. 12 403-25
[10] Killip R 2002 Perturbations of one-dimensional Schrodinger operators preserving the absolutely
continuous spectrum Int. Math. Res. Not. 2029-61
[11] KillipR 2007 Spectral theory via sum rules Spectral Theory and Mathematical Physics: a Festschrift
in Honor of Barry Simon’s 60th Birthday (Proceedings Symposium Pure Mathematics vol. 76)
(Providence, RI: American Mathematical Society) pp 907-30
[12] Kim A and Kiselev A 2009 Absolutely continuous spectrum of discrete Schrodinger operators with
slowly oscillating potentials Math. Nachr. 282 552—68
[13] Kiselev A 1996 Absolutely continuous spectrum of one-dimensional Schrodinger operators and
Jacobi matrices with slowly decreasing potentials Commun. Math. Phys. 179 377-99
[14] Kiselev A 1998 And a.e. convergence of integral operators Duke Math. J. 94 619-46
[15] Kiselev A 2005 Imbedded singular continuous spectrum for Schrodinger operators J. Am. Math.
Soc. 18 571-603
[16] Kiselev A, Last Y and Simon B 1998 Modified Priifer and EFGP transforms and the spectral analysis
of one-dimensional Schrodinger operators Commun. Math. Phys. 194 1-45
[17] Kiselev A, Remling C and Simon B 1999 Effective perturbation methods for one-dimensional
Schrodinger operators J. Diff. Equ. 151 290-312
[18] Kriecherbauer T and Remling C 2001 Finite gap potentials and WKB asymptotics for one-
dimensional Schrodinger operators Commun. Math. Phys. 223 409-35
[19] Kuchment P 2016 An overview of periodic elliptic operators Bull. Am. Math. Soc. 53 343—-414
[20] Kurasov P and Naboko S 2007 Wigner—von Neumann perturbations of a periodic potential: spectral
singularities in bands Math. Proc. Camb. Phil. Soc. 142 161-83
[21] Last Y 1996 Quantum dynamics and decompositions of singular continuous spectra J. Funct. Anal.
142 406-45
[22] Last Y and Simon B 2006 The essential spectrum of Schrodinger, Jacobi, and CMV operators J.
Anal. Math. 98 183-220
[23] Liu W 2019 Absence of singular continuous spectrum for perturbed discrete Schrodinger operators
J. Math. Anal. Appl. 472 1420-9
[24] Liu W 2019 The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators
Pure Appl. Funct. Anal. 4 589-602
[25] Liu W 2020 Irreducibility of the Fermi variety for discrete periodic Schrodinger operators and
embedded eigenvalues (arXiv:2006.04733)
[26] Liu W and Ong D C Sharp spectral transition for eigenvalues embedded into the spectral bands of
perturbed periodic operators J. Anal. Math. (at press)
[27] Lukic M and Ong D C 2015 Wigner—von Neumann type perturbations of periodic Schrodinger
operators Trans. Am. Math. Soc. 367 707-24
[28] Muscalu C, Tao T and Thiele C 2003 A counterexample to a multilinear endpoint question of Christ
and Kiselev Math. Res. Lett. 10 237-46
[29] Naboko S and Simonov S 2012 Zeroes of the spectral density of the periodic Schrddinger operator
with Wigner—von Neumann potential Math. Proc. Camb. Phil. Soc. 153 33-58

1314


https://doi.org/10.1006/jfan.2000.3687
https://doi.org/10.1006/jfan.2000.3687
https://doi.org/10.1006/jfan.2000.3687
https://doi.org/10.1006/jfan.2000.3687
https://doi.org/10.1007/pl00005556
https://doi.org/10.1007/pl00005556
https://doi.org/10.1007/pl00005556
https://doi.org/10.1007/pl00005556
https://doi.org/10.1006/jfan.2000.3688
https://doi.org/10.1006/jfan.2000.3688
https://doi.org/10.1006/jfan.2000.3688
https://doi.org/10.1006/jfan.2000.3688
https://doi.org/10.1007/s002200050615
https://doi.org/10.1007/s002200050615
https://doi.org/10.1007/s002200050615
https://doi.org/10.1007/s002200050615
https://doi.org/10.1016/0022-247X(78)90242-1
https://doi.org/10.1016/0022-247X(78)90242-1
https://doi.org/10.1016/0022-247X(78)90242-1
https://doi.org/10.1016/0022-247X(78)90242-1
https://doi.org/10.1007/s00365-011-9126-y
https://doi.org/10.1007/s00365-011-9126-y
https://doi.org/10.1007/s00365-011-9126-y
https://doi.org/10.1007/s00365-011-9126-y
https://doi.org/10.1002/cpa.3160120302
https://doi.org/10.1002/cpa.3160120302
https://doi.org/10.1002/cpa.3160120302
https://doi.org/10.1002/cpa.3160120302
https://doi.org/10.1155/s1073792802204250
https://doi.org/10.1155/s1073792802204250
https://doi.org/10.1155/s1073792802204250
https://doi.org/10.1002/mana.200810754
https://doi.org/10.1002/mana.200810754
https://doi.org/10.1002/mana.200810754
https://doi.org/10.1002/mana.200810754
https://doi.org/10.1007/bf02102594
https://doi.org/10.1007/bf02102594
https://doi.org/10.1007/bf02102594
https://doi.org/10.1007/bf02102594
https://doi.org/10.1215/s0012-7094-98-09425-x
https://doi.org/10.1215/s0012-7094-98-09425-x
https://doi.org/10.1215/s0012-7094-98-09425-x
https://doi.org/10.1215/s0012-7094-98-09425-x
https://doi.org/10.1090/s0894-0347-05-00489-3
https://doi.org/10.1090/s0894-0347-05-00489-3
https://doi.org/10.1090/s0894-0347-05-00489-3
https://doi.org/10.1090/s0894-0347-05-00489-3
https://doi.org/10.1007/s002200050346
https://doi.org/10.1007/s002200050346
https://doi.org/10.1007/s002200050346
https://doi.org/10.1007/s002200050346
https://doi.org/10.1006/jdeq.1998.3514
https://doi.org/10.1006/jdeq.1998.3514
https://doi.org/10.1006/jdeq.1998.3514
https://doi.org/10.1006/jdeq.1998.3514
https://doi.org/10.1007/s002200100550
https://doi.org/10.1007/s002200100550
https://doi.org/10.1007/s002200100550
https://doi.org/10.1007/s002200100550
https://doi.org/10.1090/bull/1528
https://doi.org/10.1090/bull/1528
https://doi.org/10.1090/bull/1528
https://doi.org/10.1090/bull/1528
https://doi.org/10.1017/s0305004106009583
https://doi.org/10.1017/s0305004106009583
https://doi.org/10.1017/s0305004106009583
https://doi.org/10.1017/s0305004106009583
https://doi.org/10.1006/jfan.1996.0155
https://doi.org/10.1006/jfan.1996.0155
https://doi.org/10.1006/jfan.1996.0155
https://doi.org/10.1006/jfan.1996.0155
https://doi.org/10.1007/bf02790275
https://doi.org/10.1007/bf02790275
https://doi.org/10.1007/bf02790275
https://doi.org/10.1007/bf02790275
https://doi.org/10.1016/j.jmaa.2018.11.083
https://doi.org/10.1016/j.jmaa.2018.11.083
https://doi.org/10.1016/j.jmaa.2018.11.083
https://doi.org/10.1016/j.jmaa.2018.11.083
https://arxiv.org/abs/2006.04733
https://doi.org/10.1090/s0002-9947-2014-06365-4
https://doi.org/10.1090/s0002-9947-2014-06365-4
https://doi.org/10.1090/s0002-9947-2014-06365-4
https://doi.org/10.1090/s0002-9947-2014-06365-4
https://doi.org/10.4310/mrl.2003.v10.n2.a10
https://doi.org/10.4310/mrl.2003.v10.n2.a10
https://doi.org/10.4310/mrl.2003.v10.n2.a10
https://doi.org/10.4310/mrl.2003.v10.n2.a10
https://doi.org/10.1017/s030500411100079x
https://doi.org/10.1017/s030500411100079x
https://doi.org/10.1017/s030500411100079x
https://doi.org/10.1017/s030500411100079x

Nonlinearity 34 (2021) 1288 W Liu

[30] Naboko S N 1986 On the dense point spectrum of Schrodinger and Dirac operators Teoret. Mat. Fiz.
68 18-28

[31] Remling C 1998 The absolutely continuous spectrum of one-dimensional Schrédinger operators
with decaying potentials Commun. Math. Phys. 193 151-70

[32] Remling C 2000 Bounds on embedded singular spectrum for one-dimensional Schrédinger opera-
tors Proc. Am. Math. Soc. 128 161-71

[33] Remling C 2000 Schrodinger operators with decaying potentials: some counterexamples Duke
Math. J. 105 463-96

[34] Rofe-Beketov F S 1964 A finiteness test for the number of discrete levels which can be introduced
into the gaps of the continuous spectrum by perturbations of a periodic potential Dokl. Akad.
Nauk SSSR 156 515-8

[35] Simon B 1996 Bounded eigenfunctions and absolutely continuous spectra for one-dimensional
Schrodinger operators Proc. Am. Math. Soc. 124 3361-9

[36] Simon B 1997 Some Schrodinger operators with dense point spectrum Proc. Am. Math. Soc. 125
203-8

[37] Simon B 2000 Schrodinger operators in the twenty-first century Mathematical Physics (London:
Imperial College Press) pp 283-8

[38] Simon B 2004 Analogs of the m-function in the theory of orthogonal polynomials on the unit circle
J. Comput. Appl. Math. 171 411-24

[39] Stolz G 1991 On the absolutely continuous spectrum of perturbed Sturm—Liouville operators J.
Reine Angew. Math. 416 1-23

[40] Stolz G 1992 Bounded solutions and absolute continuity of Sturm-Liouville operators J. Math.
Anal. Appl. 169 210-28

[41] Teschl G 2014 Mathematical Methods in Quantum Mechanics (Graduate Studies in Mathemat-
ics vol. 157) 2nd edn (Providence, RI: American Mathematical Society) With applications to
Schrodinger operators

[42] von Neumann J and Wigner E 1929 Uber merkwiirdige diskrete Eigenwerte; Uber das Verhalten
von Eigenwerten bei adiabatischen Prozessen Phys. Zeitschrift 30 467470

[43] Weidmann J 1967 Zur spektraltheorie von Sturm—Liouville-Operatoren Math. Z. 98 268—-302

1315


https://doi.org/10.1007/bf01017793
https://doi.org/10.1007/bf01017793
https://doi.org/10.1007/bf01017793
https://doi.org/10.1007/bf01017793
https://doi.org/10.1007/s002200050322
https://doi.org/10.1007/s002200050322
https://doi.org/10.1007/s002200050322
https://doi.org/10.1007/s002200050322
https://doi.org/10.1090/s0002-9939-99-05110-2
https://doi.org/10.1090/s0002-9939-99-05110-2
https://doi.org/10.1090/s0002-9939-99-05110-2
https://doi.org/10.1090/s0002-9939-99-05110-2
https://doi.org/10.1215/s0012-7094-00-10534-0
https://doi.org/10.1215/s0012-7094-00-10534-0
https://doi.org/10.1215/s0012-7094-00-10534-0
https://doi.org/10.1215/s0012-7094-00-10534-0
https://doi.org/10.1090/s0002-9939-96-03599-x
https://doi.org/10.1090/s0002-9939-96-03599-x
https://doi.org/10.1090/s0002-9939-96-03599-x
https://doi.org/10.1090/s0002-9939-96-03599-x
https://doi.org/10.1090/s0002-9939-97-03559-4
https://doi.org/10.1090/s0002-9939-97-03559-4
https://doi.org/10.1090/s0002-9939-97-03559-4
https://doi.org/10.1090/s0002-9939-97-03559-4
https://doi.org/10.1016/j.cam.2004.01.022
https://doi.org/10.1016/j.cam.2004.01.022
https://doi.org/10.1016/j.cam.2004.01.022
https://doi.org/10.1016/j.cam.2004.01.022
https://doi.org/10.1515/crll.1991.416.1
https://doi.org/10.1515/crll.1991.416.1
https://doi.org/10.1515/crll.1991.416.1
https://doi.org/10.1515/crll.1991.416.1
https://doi.org/10.1016/0022-247x(92)90112-q
https://doi.org/10.1016/0022-247x(92)90112-q
https://doi.org/10.1016/0022-247x(92)90112-q
https://doi.org/10.1016/0022-247x(92)90112-q
https://doi.org/10.1007/bf01112407
https://doi.org/10.1007/bf01112407
https://doi.org/10.1007/bf01112407
https://doi.org/10.1007/bf01112407

	Revisiting the Christ–Kiselev's multi-linear operator technique and its applications to Schrödinger operators
	1.  Introduction and main results
	2.  Christ–Kiselev's multi-linear operator techniques
	3.  Technical preparations
	4.  Proof of theorem 
	5.  An alternative proof of theorems and 
	6.  Sharp estimates for almost orthogonality among generalized Prüfer angles
	7.  Spectral analysis of Schrödinger operators with eventually periodic potentials
	8.  Proof of theorem 
	Acknowledgments
	Appendix  A
	ORCID iDs
	References


