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Abstract
Based on Christ–Kiselev’s multi-linear operator techniques, we prove several
spectral results of perturbed periodic Schrödinger operators, including WKB
type solutions, sharp transitions of preservation of absolutely continuous spec-
tra, criteria of absence of singular spectra, and sharp bounds of the Hausdorff
dimension of singular continuous spectra.
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1. Introduction and main results

In quantum mechanics, the time evolution of the state ψ is described by the Schrödinger
equation

i
d
dt
ψ(t) = Hψ(t), (1)

where H is a self-adjoint operator on a Hilbert space. The solution of (1) is given by

ψ(t) = e−itH ψ(0).

Let H be the one dimensional Schrödinger operators on L2(R),

Hu = −u′′ + (V + V0)u, (2)

where V0(x) is 1-periodic and V(x) is a decaying perturbation. When V ≡ 0, we have the 1-
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periodic Schrödinger operators,

H0u = −u′′ + V0u. (3)

Periodic Schrödinger operators have been studied intensively in both mathematics and physics.
We refer readers to a recent survey [19] for details.

The spectral measure associated with the state ψ(0) is closely related to the dynamical
behavior of the time evolutionψ(t) governed by the Schrödinger equation. A classical example
would be the RAGE theorem [[41], chapter 5]. See [21] and references therein for more exam-
ples. In this paper, we focus on the spectral types: absolutely continuous spectrum, pure point
spectrum (eigenvalues) and singular continuous spectrum of Schrödinger operators.

It is known that the spectrum of these periodic operators H0 consists of a union of
closed intervals ∪n[an, bn], which we refer to as ‘bands’ Moreover, H0 has purely absolutely
continuous spectrum. Naturally, we would ask the following two questions:

Q1 What are the criteria of perturbations V that leave the absolutely continuous spectrum
unchanged?

Q2 In the case that H0 and H have the same absolutely continuous spectrum, what are the cri-
teria of perturbations V that there are no eigenvalues and/or singular continuous spectrum
embedded into the absolutely continuous spectrum?

The study of those problems has a long history going back to Weidmann in the 1960s [43].
Stimulated by several conjectures posted by Barry Simon at ICMP in 1994 and 2000 [37], the
theory of Schrödinger operators with decaying potentials has seen significant progress in the
past 25 years through the work of Christ, Deift, Denisov, Killip, Kiselev, Last, Molchanov,
Remling, Simon, Stolz and among others. We refer readers to two survey articles [6, 11] and
references therein for details.

When the background periodic potential V0 is zero, the dynamical properties of (2) are well
understood. In particular, the two aforementioned questions are solved when the perturbed
functions V are in Lp spaces or algebraically decaying (V(x) = O(|x|−α), α > 0). However,
those problems are less understood when the periodic functions V0 are non-zero. The goal of
this paper is to address some of the remaining problems.

For simplicity, we only consider the equation on the half-line R+. All the results can be
generalized to the whole line R.

For any p � 1, denote by �p(L1)(R+) the Banach space of all measurable functions from
R+ to R with the norm

‖ f ‖�p(L1) =

( ∞∑
k=0

(∫ k+1

k
| f (x)| dx

)p
)1/p

.

This Banach space contains L1 + Lp. If p � q, then �p(L1) ⊂ �q(L1). For simplicity, we
always assume V0 is in L1[0, 1] and periodic.

Let S = ∪∞
n=0[an, bn] be the spectrum of the operator (3) andϕ(x, E) be the Floquet solution.

Theorem 1.1. If the potential V ∈ �p(L1) for some 1 � p < 2, then S is an essential support
of the absolutely continuous spectrum of the operator H = H0 + V with any boundary condi-
tion at zero. Moreover, for almost every E ∈ S, there exists a solution u(x, E) of the equation

−u′′ + (V0(x) + V(x))u = Eu (4)

1289



Nonlinearity 34 (2021) 1288 W Liu

with the asymptotic behavior

u(x, E) = ϕ(x, E) exp

(
i

2 
(ϕϕ′)

∫ x

0
V(t)|ϕ2(t, E)| dt

)
(1 + o(1)) (5)

as x →∞.

Let p′ be the conjugate number to p, namely p
p−1 for p > 1.

Theorem 1.2. Suppose |x|γV ∈ �p(L1) for some 1 < p � 2, γ > 0 with γp′ � 1. Then for
every E ∈ S, there exists a solution u(x, E) of Hu = Eu satisfying the asymptotic behavior (5),
except for a set of values of E in S with Hausdorff dimension less than or equal to 1 − γp′.

As a corollary, we have

Corollary 1.3. Suppose V(x) = O(1)
1+xα with α ∈ [ 1

2 , 1]. Then for every E ∈ S, there exists a
solution u(x, E) of Hu = Eu satisfying the asymptotic behavior (5), except for a set of values
of E in S with Hausdorff dimension less than or equal to 2(1 − α).

Now we want to talk about the proof and history of theorems 1.1 and 1.2. Note that the sec-
ond part of theorem 1.1 implies the first part (e.g. [35, 40]). There are two main approaches to
study the spectral theory of Schrödinger operators with decaying potentials. The first approach
is to study the spectral theory of Schrödinger operators via establishing the WKB type eigenso-
lutions, namely eigensolutions with asymptoics (5). If V0 ≡ 0, theorems 1.1, 1.2 and corollary
1.3 have been proved by Christ–Kiselev [1–4] and Remling [31, 32] with some partial results
[13, 14]. If V0 ≡ 0, Remling [33] and Kriecherbauer–Remling [18] constructed examples
which show that 2(1 − α) in corollary 1.3 is the best bound to be achieved. Under a stronger
assumption on the potential V, that is |x|γV ∈ �p(L1) for some γ > 0, theorem 1.1 was proved
by Christ and Kiselev [1]. For p > 2, it is known that theorem 1.1 is not true even for the case
V0 ≡ 0 (see [16] for example).

Another approach beginning with Deift and Killip aims to study the absolutely continuous
spectrum directly. This approach can handle the critical case p = 2 without asymptotics of the
eigensolutions. For p = 2, the first part of theorem 1.1 was proved by Deift–Killip for the case
V0 ≡ 0 [5] and Killip [10] for non-zero functions V0.

It is widely believed that for p = 2, the second part of theorem 1.1 holds, which is open
even for V0 ≡ 0.

The proof of theorems 1.1 and 1.2 is largely inspired by Christ–Kiselev’s arguments in
[2–4]. In [2–4], Christ and Kiselev developed a scheme, referred to as the multi-linear operator
technique, to establish the WKB type solutions, which turned out to be a robust approach. We
want to mention that the multilinear operator technique is not extendable to tackle the case
p = 2 [28].

The multi-linear operator technique to establish the WKB type eigensolutions is based
on writing the differential equation in an integral form and seeking a formal series solution.
Each term of the series is defined by a multi-integral operator. The difficulty lies in a rigorous
definition of improper integrals in a suitable topology, showing the convergence of the series in
a proper measure space, and verifying that the formal series solution is an actual solution. We
establish a more general version of the Christ–Kiselev’s multi-linear operator technique than
that appearing in [2–4] (see section 2). The main scheme of our proofs is definitely developed
from Christ–Kiselev. However, several important technical improvements have been added
to Christ–Kiselev’s scheme. Firstly, we strengthen several conclusions while requiring fewer
assumptions. For example, we proved the conclusion in lemma 2.8 as it appears n [3, 4, 12]
without any lower bound assumptions on the second and third derivatives (see (28)). Secondly,
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we simplify Christ–Kiselev’s original arguments. We define the multi-linear operators as iter-
ations. This is different from Christ–Kiselev’s plan (see the proof of lemma 4.2 in [4]). Our
approach is more natural and makes it easier to verify that the formal series solution is an actual
solution. The price we need to pay is to show the existence of a stronger limit in the definition
of multi-integral operators. See remark 2.6. Thirdly, we give two ways to establish the WKB
type solutions. One way closely follows from Christ–Kiselev’s approach. The new way allows
us to avoid using maximal operators and simplifies the previous proof. See section 5. Our new
proof is based on modifications of norms of a family of Banach spaces.

Now we move to the second question. The sharp transition for (dense) embedded eigenval-
ues was recently obtained by the author and Ong [26] with some partial results in the past [17,
20, 27, 29, 34], so we only focus on the singular continuous spectrum in the following. Let us
review the results for the case V0 ≡ 0 first.

(a) If V(x) = o(1)
1+x , H0 + V does not have any positive eigenvalues [9].

(b) Wigner–von Neumann type functions imply that there exist potentials V(x) = O(1)
1+x such

that H0 + V has positive eigenvalues [42].
(c) For any given positive function h(x) tending to infinity as x →∞, there exist potentials

V(x) such that |V(x)| � h(x)
1+x and H0 + V has dense embedded eigenvalues [30, 36].

(d) If V(x) = O(1)
1+x , H0 + V does not have any singular continuous spectrum [15].

(e) For any given positive function h(x) tending to infinity as x →∞, there exist potentials
V(x) such that |V(x)| � h(x)

1+x and the singular continuous spectrum of H0 + V is non-empty
[15].

Clearly, the above statements from (a) to (e) imply the criteria for the absence of singular
spectra (eigenvalues and singular continuous spectra). It is natural to expect that correspond-
ing criteria are true for any non-zero periodic function V0. For embedded eigenvalues, cases
(a)–(c) have been proved for any function V0 [17, 26]. For the singular continuous spectrum,
we conjecture that (d) and (e) hold for any periodic function V0. In this paper, we are able to
prove half of the conjecture.

Theorem 1.4. Suppose V(x) = O(1)
1+x . Then the singular continuous spectrum of H = H0 + V

with any boundary condition is empty.

Theorem 1.4 and the case (a) for any function V0 imply

Corollary 1.5. Suppose V(x) = o(1)
1+x . Then the spectral measure of H0 + V with any bound-

ary condition at zero is purely absolutely continuous in S.

Define P as

P = {E ∈ R : −u′′ + (V(x) + V0(x))u = Eu has an L2(R+) solution }, (6)

It has been proved that P ∩ S is a countable set provided V(x) = O(1)
1+x [24]. Therefore, theorem

1.4 also implies

Corollary 1.6. Suppose V(x) = O(1)
1+x . Then except for countably many boundary conditions

at zero, the spectral measure of H0 + V is purely absolutely continuous in S.

The proof of theorem 1.4 is inspired by [15], where the case V0 ≡ 0 was treated. Under the
assumption of theorem 1.4, the first observation is that the singular component of the spec-
tral measure is supported on a set of zero Hausdorff dimension (by corollary 1.3). Following
the strategy in [15], four additional steps are needed to prove theorem 1.4. Step 1: establish
the quantitative almost orthogonality among Prüfer angles. Step 2: control the total number of
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‘separate energies’1 based on step 1. Step 3: establish spectral measures of Schrödinger opera-
tors with eventually zero potentials. Step 4: use spectral measures of eventually zero potentials
to make approximations.

In our case, periodic potentials are involved so the problem is a lot more complicated, the
steps 1 and 3 in particular. Let us mention that the almost orthogonality is between θ(x,E1)

1+x and
θ(x,E2)

1+x in Hilbert spaces L2([0, B], (1 + x)dx) for large B, where θ(x, E1) (resp. θ(x, E2)) is the
(generalized) Prüfer angle with respect to energy E1 (resp. E2). In [15], Kiselev established
sharp bounds of the almost orthogonality for perturbed free Schrödinger operators (step 1). In
our case, rather than using the standard Prüfer variables, we have to instead use the generalized
Prüfer variables. The almost orthogonality of general cases was proved recently in [26] without
quantitative estimates, which is a key ingredient to construct embedded eigenvalues. However,
in order to study the singular continuous spectrum, the quantitative bounds are essential, in par-
ticular, we need to control the blowup when E1 approaches E2. In [26], one of the innovations
is the use of Fourier expansions to ensure that some key terms decay sufficiently quickly. The
rest of the terms can be controlled by using oscillatory integration techniques. Even though
we use the full strength of Fourier expansions and oscillatory integral techniques from [26]
in a quantitative way, the bounds are not enough. We overcome the difficulty by splitting the
frequencies into high and low ones, where frequencies come from the quasimomenta of Flo-
quet solutions. For high frequencies, we quantify the oscillatory integral techniques in [26] in
a sharp way. For low frequencies, we combine Fourier expansions in [26] with the techniques
in [15] to establish the sharp bounds.

In the end, we remark that the spectral theory of perturbed periodic operators in higher
dimensions is much more difficult. We refer readers to [19, 25] for recent progress.

2. Christ–Kiselev’s multi-linear operator techniques

Since we only consider operators on the half-line R+, all the functions are defined on R+. Let
us introduce the multilinear operator Mn, acting on n functions gk, k = 1, 2, . . . , n, by

Mn(g1, g2, . . . , gn)(x, x′) =
∫

x�t1�···�tn�x′

n∏
k=1

gk(tk)dtk (7)

=

∫
x�t1�···�tn<∞

n∏
k=1

gk(tk)χ[0,x′](tk)dtk, (8)

where χ is the characteristic function. If there is a single function g such that gk ∈ {g, g}, k =
1, 2, . . . , n, by abusing the notation, we write Mn(g1, g2, . . . , gn)(x, x′) by Mn(g)(x, x′). Although
we use Mn(g) for all possible (g1, g2, . . . , gn) ∈ {g, ḡ}n, there should be no ambiguity since
(g1, g2, . . . , gn) is fixed in our proof.

A collection of subintervals Em
j ⊂ R+, 1 � j � 2m and m ∈ Z+ is called a martingale

structure [4] if the following is true:

• R+ = ∪ jEm
j for every m.

• Em
j ∩ Em

i = ∅ for every i �= j.
• If i < j, x ∈ Em

i and x′ ∈ Em
j , then x < x′.

• For every m, Em
j = Em+1

2 j−1 ∪ Em+1
2 j .

1 See the definition in section 8.

1292



Nonlinearity 34 (2021) 1288 W Liu

Denote by χm
j = χEm

j
. Let Bs be the Banach space consisting of all complex-valued

sequences a = a(m, j) indexed by 1 � m < ∞ and 1 � j � 2m, for which

‖a‖Bs =
∑

m∈Z+

ms

⎛
⎝ 2m∑

j=1

|a(m, j)|2
⎞
⎠

1/2

< ∞.

Denote by B = B1. For any function g on R+, we define a sequence with index m ∈ Z+ and
1 � j � 2m, {∫

Em
j

g(x)dx

}
=

{∫
R+

g(x)χm
j dx

}
.

By abusing the notation, denote by

‖g‖Bs =

∥∥∥∥
{∫

Em
j

g(x)dx

}∥∥∥∥
Bs

=

∞∑
m

ms

⎛
⎝ 2m∑

j=1

∣∣∣∣∣
∫

Em
j

g(x)dx

∣∣∣∣∣
2
⎞
⎠

1
2

. (9)

Define

M∗
n(g1, g2, . . . , gn) = sup

0<x�x′<∞
|Mn(g1, g2, . . . , gn)(x, x′)|, (10)

and

M∗
n(g) = sup

0<x�x′<∞
|Mn(g)(x, x′)|. (11)

Theorem 2.1 [2]. For any martingale structure Em
j ⊂ R+, 1 � j � 2m and m ∈ Z+, the

following estimates hold,

M∗
n(g1, g2, . . . , gn) � Cn

n∏
i=1

‖gi‖B, (12)

and

M∗
n(g) � Cn ‖g‖n

B√
n!

, (13)

where C is an absolute constant.

A martingale structure Em
j ⊂ R+, 1 � j � 2m and m ∈ Z+ is said to be adapted in �p(L1) to

a function f if for all possible m, j,

‖ f χm
j ‖

p
�p(L1)

� 2−m‖ f ‖p
�p(L1)

. (14)

Since all the functions are in �p(L1), we omit ‘adapted’ in the rest of this paper.

Lemma 2.2 (p 433, [4]). For any function f ∈ �p(L1), there exists a martingale structure
{Em

j ⊂ R+ : m ∈ Z+, 1 � j � 2m} to f.

Let P be a linear or sublinear bounded operator from �p(L1) to Lq(J), where J ⊂ R is a closed
interval. For s > 0, denote by
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G(s)
P( f )(λ) = ‖{P( f χm

j )(λ)}‖Bs

=

∞∑
m=1

ms

⎛
⎝ 2m∑

j=1

|P( f χm
j )(λ)|

⎞
⎠

1/2

.

Remark 2.3. In the case that P has an integral kernel p(x,λ), G(s)
P( f )(λ) = ‖p(x,λ) f (x)‖Bs ,

which is the norm of {
∫

Em
j

p(x,λ)g(x)dx} in Bs.

The following statement is from [4]. We include a proof here for completeness.

Theorem 2.4 [ [4] , proposition 3.3] . Given a function f ∈ �p(L1), fix a martingale structure
to f. Suppose P is a linear or sublinear bounded operator from �p(L1) to Lq(J), where 1 � p <
2 < q and J ⊂ R is a closed interval. Then

‖G(s)
P( f )(λ)‖Lq(J) � C(p, q, s, ‖P‖)‖ f ‖�p(L1).

Proof. Let

tm(λ) =

⎛
⎝ 2m∑

j=1

|P( f χm
j )(λ)|

⎞
⎠

1/2

.

By the definition,

G(s)
P( f )(λ) =

∞∑
m=1

ms

⎛
⎝ 2m∑

j=1

|P( f χm
j )(λ)|

⎞
⎠

1/2

=

∞∑
m=1

mstm(λ). (15)

Let us give an inequality first, for γ � 1(
N∑

i=1

ai

)γ

� Nγ−1
N∑

i=1

|ai|γ . (16)

Direct computations imply∫
J
tq
m(λ)dλ =

∫
J

⎛
⎝ 2m∑

j=1

|P( f χm
j )(λ)|2

⎞
⎠

q/2

dλ

by (16)
� 2m(q/2−1)

∫
J

2m∑
j=1

|P( f χm
j )(λ)|q dλ

� C2m(q/2−1)
2m∑
j=1

‖ f χm
j ‖

q
�

p(L1)

by (14)
� C2m(q/2−1)

2m∑
j=1

2−m q
p‖ f ‖q

�
p(L1)

� C‖ f ‖q
�

p
(L1)

2m q
2−m q

p , (17)

1294



Nonlinearity 34 (2021) 1288 W Liu

where the second inequality holds by the boundedness of P.
Finally, we have

‖G(s)
S( f )(λ)‖Lq(J)

by (15)
= ‖

∞∑
m=1

mstm(λ)‖Lq(J)

�
∞∑

m=1

ms‖tm(λ)‖Lq(J)

by (17)
� C

∞∑
m=1

ms2m/2−m/p‖ f ‖�p
(L1)

� C‖ f ‖�p(L1).

�
Denote by

Bn(g1, g2, . . . , gn)(x) =
∫ ∞

x

∫ ∞

t1

. . .

∫ ∞

tn−1

n∏
j=1

g j(t j)dt1 dt2 . . . dtn. (18)

If there is a single function g such that gk ∈ {g, ḡ}, k = 1, 2, . . . , n, we write
Bn(g1, g2, . . . , gn)(x) by Bn(g)(x).

Theorem 2.5. Assume that gj, j = 1, 2, . . . , n is locally integrable. Suppose for j =
1, 2, . . . , n,

lim sup
M→∞

‖g jχ[M,∞)‖B = 0, (19)

and there is a constant C (does not depend on I) such that for any closed interval I ⊂ R+,

‖g jχI‖B � C. (20)

Then (18) is well defined as the limit

Bn(g1, g2, . . . , gn)(x) = lim
y1,...,yn→∞

∫ y1

x

∫ y2

t1

. . .

∫ yn

tn−1

n∏
j=1

g j(t j)dt1 dt2 . . . dtn, (21)

and

lim
x→∞

Bn(g1, g2, . . . , gn)(x) = 0. (22)

Moreover, for almost every x

dBn(g1, g2, . . . , gn)(x)
dx

= −g1(x)Bn−1(g2, . . . , gn)(x). (23)

Proof. In order to prove the existence of the limit, it suffices to show that

lim
yk ,zk→∞
k=1,2,...n

sup
x

|Bn(g1χ[0,y1], g2χ[0,y2], . . . , gnχ[0,yn])(x)

− Bn(g1χ[0,z1], g2χ[0,z2], . . . , gnχ[0,zn])(x)| = 0. (24)
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Assume M < yk < zk, k = 1, 2, . . . , n. By telescoping techniques,

|Bn(g1χ[0,y1], g2χ[0,y2], . . . , gnχ[0,yn])(x) − Bn(g1χ[0,z1], g2χ[0,z2], . . . , gnχ[0,zn](x)|

�
n∑

k=1

|Bn(g1χ[0,y1], . . . , gk−1χ[0,yk−1], gkχ[yk ,zk ], gk+1χ[0,zk+1], . . . , gnχ[0,zn])(x)|

� C
n∑

k=1

‖g1χ[0,y1]‖B . . . ‖gk−1χ[0,yk−1]‖B‖gkχ[yk ,zk ]‖B‖gk+1χ[0,zk+1]‖B . . . ‖gnχ[0,zn]‖B

� C
n∑

k=1

‖gkχ[yk ,zk ]‖B

� C
n∑

k=1

‖gkχ[M,∞)‖B, (25)

where the second inequality holds by (12) and (8), and the third inequality holds by (20). Now
(24) follows from (19).

By (21), one has

lim
x→∞

|Bn(g1, . . . , gn)(x)|

= lim
x→∞

lim
x′→∞

∫ x′

x

∫ x′

t1

. . .

∫ x′

tn−1

n∏
j=1

g j(t j)dt1 dt2 . . . dtn

= lim
x→∞

lim
x′→∞

∫ x′

x

∫ x′

t1

. . .

∫ x′

tn−1

n∏
j=1

g j(t j)χ[x,∞)dt1 dt2 . . . dtn

by (12)
� C lim

x→∞

n∏
k=1

‖gkχ[x,∞)‖B

by (19)
= 0.

This completes the proof of (22). Direct computations imply

lim
y→x−

Bn(g1, . . . , gn)(y) − Bn(g1, . . . , gn)(x)
y − x

= lim
y→x−

1
y − x

∫ x

y
g1(t1)dt1

∫ ∞

t1

. . .

∫ ∞

tn−1

n∏
j=2

g j(t j)dt2 . . . dtn

=− g1(x)
∫ ∞

x
. . .

∫ ∞

tn−1

n∏
j=2

g j(t j)dt2 . . . dtn.

Similarly,

lim
y→x+

Bn(g1, . . . , gn)(y) − Bn(g1, . . . , gn)(x)
y − x

= −g1(x)
∫ ∞

x
. . .

∫ ∞

tn−1

n∏
j=2

g j(t j)dt2 . . . dtn.
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The last two equalities imply (23). �

Remark 2.6. In [[4], proposition 4.1], Christ and Kiselev proved the existence of a weaker
limit B̃n(g1, g2, . . . , gn)(x), where

B̃n(g1, g2, . . . , gn)(x) = lim
y→∞

∫ y

x

∫ y

t1

. . .

∫ y

tn−1

n∏
j=1

g j(t j)dt1 dt2 . . . dtn.

Let p(x,λ) be a measurable function on R+ × J. Define the integral operator P:

P( f )(λ) =
∫
R+

p(x,λ) f (x)dx,

and the maximal operator P∗:

P∗( f )(λ) = sup
y∈R+

∣∣∣∣
∫ ∞

y
p(x,λ) f (x)dx

∣∣∣∣ .
Lemma 2.7 [[2], Christ–Kiselev lemma]. Let 1 � p < q < ∞. Suppose P is a bounded
operator from �p(L1) to Lq(J). Then P∗ is also a bounded operator from �p(L1) to Lq(J).

In our situation (see next section), s(x,λ) = w(x,λ)e−ih(x,λ), where h is a real-valued
function. We obtain two operators

S( f )(λ) =
∫
R+

w(x,λ)e−ih(x,λ) f (x)dx, (26)

and

S∗( f )(λ) = sup
y∈R+

∣∣∣∣
∫ ∞

y
w(x,λ)e−ih(x,λ) f (x)dx

∣∣∣∣ . (27)

Lemma 2.8. Assume 1 � p � 2. Suppose there exist a constant C and a closed interval J̃
such that J ⊂ Int J̃ and for any λ ∈ Int J̃

|∂λ[h(x,λ) − h(y,λ)]| � |x − y|
C

(28)

and

|∂ i
λ[h(x,λ) − h(y,λ)]| � C|x − y|, i = 1, 2, 3, (29)

provided |x − y| � C. Suppose

sup
x∈R+ ,λ∈J̃

2∑
i=1

|∂ i
λw(x,λ)| � C.

Let p′ = p
p−1 be the conjugate exponent to p (p′ = ∞ when p = 1). Then

‖S f ‖Lp′ (J,dλ) � O(1)‖ f ‖�p(L1),

and

‖S∗ f ‖Lp′ (J,dλ) � O(1)‖ f ‖�p(L1),
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where O(1) depends on C, J, J̃ and p.

Proof. By lemma 2.7, we only need to prove the boundedness of S. By the interpolation
theorem, it suffices to prove the cases p = 1 and p = 2. The case p = 1 is trivial since h is a
real-valued function, so we only need to consider the case p = 2. Let ξ(λ) be a positive function
so that ξ ≡ 1 on J and supp ξ ⊂ Int J̃. Then one has

‖S f ‖2
L2(J,dλ) =

∫
J

∣∣∣∣∣
∫
R+

w(x,λ)e−ih(x,λ) f (x)dx

∣∣∣∣∣
2

dλ

�
∫

J̃

∣∣∣∣∣
∫
R+

w(x,λ)e−ih(x,λ) f (x)dx

∣∣∣∣∣
2

ξ(λ)dλ

=

∫
J̃

[∫
R+

w(x,λ)e−ih(x,λ) f (x)dx

][∫
R+

w̄(y,λ)eih(y,λ) f̄ (y)dy

]
ξ(λ)dλ

=

∫
R

2
+

f (x) f̄ (y)dx dy
∫

J̃
e−ih(x,λ)+ih(y,λ)w(x,λ)w̄(y,λ)ξ(λ)dλ. (30)

Multiplying −i∂λ(h(x,λ) − h(y,λ)), dividing −i∂λ(h(x,λ) − h(y,λ)) and integrating by part
twice, we have for |x − y| � C,∫

J̃
e−ih(x,λ)+ih(y,λ)w(x,λ)w̄(y,λ)ξ(λ)dλ

=

∫
J̃

−i∂λ(h(x,λ) − h(y,λ))
−i∂λ(h(x,λ) − h(y,λ))

e−ih(x,λ)+ih(y,λ) w(x,λ)w̄(y,λ)ξ(λ)dλ

=

∫
J̃
e−ih(x,λ)+ih(y,λ)∂λ

(
w(x,λ)w̄(y,λ)ξ(λ)

−i∂λ(h(x,λ) − h(y,λ))

)
dλ

=

∫
J̃
e−ih(x,λ)+ih(y,λ)∂λ

[
1

−i∂λ(h(x,λ) − h(y,λ))
∂λ

(
w(x,λ)w̄(y,λ)ξ(λ)

−i∂λ(h(x,λ) − h(y,λ))

)]
dλ

=
O(1)

|x − y|2 , (31)

where the last equality holds by the assumptions of lemma 2.8.
By (30) and (31), we have

‖S f ‖2
L2(J,dλ) �

∫
|x−y|>C

f (x) f̄ (y)dx dy
∫

J̃
e−ih(x,λ)+ih(y,λ) w(x,λ)w̄(y,λ)ξ(λ)dλ.

+

∫
|x−y|�C

f (x) f̄ (y)dx dy
∫

J̃
e−ih(x,λ)+ih(y,λ) w(x,λ)w̄(y,λ)ξ(λ)dλ

= O(1)
∫
R

2
+

| f (x) f (y)|
1 + |x − y|2 dx dy

= O(1)‖ f ‖�2(L1), (32)

where the last equality holds by direct calculation (for convenience, we include the details in
the appendix A). This completes the proof. �

1298



Nonlinearity 34 (2021) 1288 W Liu

Remark 2.9. The formulation and proof of lemma 2.8 closely follow from the corresponding
parts appearing in [3, 4, 12].

3. Technical preparations

We set up the basics in this section. By the Floquet theory, ϕ(x, E) has the form

ϕ(x, E) = J(x, E)eik(E)x , or ϕ(x, E) = J̄(x, E)e−ik(E)x , (33)

where k(E) ∈ [0, π] is the quasimomentum, and J(x, E) is 1-periodic.
Without loss of generality, assume ϕ(x, E) = J(x, E)eik(E)x . Since ϕ(x, E) and ϕ(x, E) are

two linearly independent solutions of −u′ + V0u = Eu, the Wronskian W(ϕ,ϕ) is a non-zero
constant and

W(ϕ,ϕ) = ϕ(x)ϕ′(x) − ϕ′(x)ϕ(x) = 2i
[ϕ(x)ϕ′(x)]. (34)

Let us study the solutions of the equation

−u′′ + (V0(x) + V(x))u = Eu.

We rewrite this equation as a linear system

u′
1 =

(
0 1

V0 + V − E 0

)
u1,

where u1 is the vector

(
u
u′

)
. Introduce

u1 =

(
(x, E) ϕ(x, E)
ϕ′(x, E) ϕ′(x, E)

)
u2.

Then

u′
2 =

i
2
(ϕϕ′)

(
V(x)|ϕ(x, E)|2 V(x)ϕ(x, E)2

−V(x)ϕ(x, E)2 −V(x)|ϕ(x, E)|2
)

u2. (35)

In the following discussion, E is always the energy. For a two-variable function f(x, E), denote
by f ′ the derivative of f with respect to the non-energy variable, namely f ′(x, E) = ∂x f(x, E).
Define

p(x, E) =
1

2
(ϕϕ′)

∫ x

0
V(y)|ϕ(y, E)|2 dy.

Let us apply another transformation,

u2 =

(
exp(ip(x, E)) 0

0 exp(−ip(x, E))

)
u3.

We obtain the equation for u3:

u′
3 =

i
2
(ϕϕ′)

(
0 V(x)ϕ(x, E)2 exp(−2ip(x, E))

−V(x)ϕ(x, E)2 exp(2ip(x, E)) 0

)
u3. (36)
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Lemma 3.1. Suppose there exists a solution of (36) satisfying

u3(x, E) =

(
1
0

)
+ o(1)

as x →∞. Then there exists a solution u(x, E) of (2) satisfying (5).

Proof. The proof is straightforward by substitutions. �

Let Y = u3. Let φ(x, E) be so that eiφ(x,E) = ϕ(x, E). We note that φ(x, E) is a complex-
valued function.

Denote by

w(x, E) =
i

2Rφ′ , (37)

and

h(x, E) = 2Rφ−
∫ x

0

V(t)
Rφ′(t, E)

dt. (38)

In the following, w and h are always given by (37) and (38) respectively. The operators S
and S∗ are given by (26) and (27) respectively. Denote by

F (x, E) = w(x, E)e−ih(x,E) V(x). (39)

Under this notation and following the calculations in p 249 and p 250 in [3], (36) becomes

Y ′ =

(
0 w e−ihV

w̄ eihV 0

)
Y =

(
0 F
F̄ 0

)
Y. (40)

For convenience, we include a verification of (40) in the appendix A.
Denote by

D =

(
0 F
F̄ 0

)
.

The linear equation (40) becomes Y ′ = DY . We are going to find a solution of

Y(x) =

(
1
0

)
−
∫ ∞

x
D(y)Y(y)dy, (41)

and we obtain a series solution by iterations

Y(x) =

(
1
0

)
+

∞∑
k=1

(−1)k
∫

· · ·
∫

x�t1�t2...�tk<∞

× D(t1)D(t2) . . .D(tk)

(
1
0

)
dtk dtk−1 . . . dt2 dt1. (42)

Let

Tn(F )(x, x′, E) = Mn(F (·, E))(x, x′).
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Under the above notation, one has∫
· · ·

∫
x�t1�t2...�t2k�x′

D(t1)D(t2) . . .D(t2k)

(
1
0

)
dt2k . . . dt2 dt1

=

(
T2k(F )(x, x′, E)

0

)
,

and ∫
· · ·

∫
x�t1�t2...�t2k+1�x′

D(t1)D(t2) . . .D(t2k+1)

(
1
0

)
dt2k+1 . . . dt2 dt1

=

(
0

T2k+1(F )(x, x′, E)

)
.

The series solution (42) becomes

Y(x) =

(
1
0

)
+

⎛
⎜⎜⎜⎝

∞∑
m=1

T2m(F )(x,∞, E)

−
∞∑

m=0

T2m+1(F )(x,∞, E)

⎞
⎟⎟⎟⎠ . (43)

We will show (43) is well defined and gives an actual solution of (40).

4. Proof of theorem 1.1

Fix a martingale structure {Em
j ⊂ R+ : m ∈ Z+, 1 � j � 2m} to the potential V . Choose a spec-

tral band (an, bn) and let K ⊂ (an, bn) be an arbitrary closed interval. We will apply theorem
2.5 to complete our proof.

Lemma 4.1. For any E ∈ (an, bn), there exists a constant C = C(E) (depends on E uniformly
in any compact subset of (an, bn)) such that

|∂E[h(x, E) − h(y, E)]| � |x − y|
C

(44)

and for i = 1, 2, 3

|∂ i
E[h(x, E) − h(y, E)]| � C|x − y| (45)

provided |x − y| � C.

Proof. We will prove (44) first. By the definition of φ and (33), one has

R φ = k(E)x + 
 log J(x, E), (46)

with k(E) ∈ (0, π). By the Floquet theory,

dk(E)
dE

�= 0. (47)

By the fact that J(x, E) is 1-periodic, one has


 log J(x + 1, E) −
 log J(x, E) = 2qπ, (48)
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for some q ∈ Z. It implies

∂E(
 log J(x + 1, E) −
 log J(x, E)) = 0. (49)

By (47) and (49), we have

|R φ(x, E) −R φ(y, E)| � |x − y|
C

. (50)

Since V(x) ∈ �p(L1), one has that ∂E

∫ N+1
N

V(t)
R φ′(t,E) dt goes to zero as N →∞. It implies

∣∣∣∣∂E

∫ y

x

V(t)
R φ′(t, E)

dt

∣∣∣∣ = o(y − x) + O(1), (51)

as y − x goes to ∞. Now (44) follows from (50) and (51). The proof of (45) can be completed
in a similar way. �

Lemma 4.2. Let p′ be the number conjugate to p with 1 � p < 2. Then

G(s)
S∗(V)(E) ∈ Lp′(K, dE).

In particular (s = 1),

GS∗(V)(E) ∈ Lp′(K, dE).

Proof. By lemmas 4.1 and 2.8, and applying P = S∗ in theorem 2.4, we have

G(s)
S∗(V)(E) ∈ Lp′(K, dE). (52)

�

Corollary 4.3. Let p′ be the number conjugate to p with 1 � p < 2. Then for almost every
E ∈ K and any closed interval I,

‖F (·, E)χI‖B � C(E), (53)

and

lim sup
M→∞

‖F (·, E)χ[M,∞)‖B = 0. (54)

Proof. By direct computation, one has

‖F (·, E)χI‖B =

∥∥∥∥
{∫

Em
j

F (x, E)χI(x)dx

}∥∥∥∥
B

=

∥∥∥∥
{∫

Em
j

w(x, E)eih(x,E) V(x)χI(x)dx

}∥∥∥∥
B

=

∥∥∥∥
{∫

I
w(x, E)eih(x,E) V(x)χm

j dx

}∥∥∥∥
B

� 2‖
{

S∗(Vχm
j )(E)

}
‖B

= 2GS∗(V)(E).
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Now (53) follows since GS∗(V)(E) ∈ Lq(K, dE) by lemma 4.2. Applying P = S and f =
V(x)χ[M,∞) in theorem 2.4 and recalling that

‖F (·, E)χ[M,∞)‖B = GS(Vχ[M,∞)),

one has

lim sup
M→∞

(∫
J
‖F (·, E)χ[M,∞)‖q

B
dE

)1/q

= lim sup
M→∞

‖GS(Vχ[M,∞))‖Lq(J)

� O(1) lim sup
M→∞

‖Vχ[M,∞)‖�p(L1)

= 0. (55)

This implies that for almost every E ∈ K,

lim sup
M→∞

‖F (·, E)χ[M,∞)‖B = 0.

This leads to (54). �
Proof of theorem 1.1. Under the assumption of theorem 1.1, σess(H ) = σess(H0) [22, 39].
This yields that σac(H ) ⊂ S. It is well known that the boundedness of the eigensolution implies
purely absolutely continuous spectrum (e.g. [35, 40]). Then the second part of theorem 1.1
implies the first part. If p = 1 (V ∈ L1(R+)), one has that for every E ∈ K, iV

2 R φ′ eih given by

(40) is in L1. In this case, it is well known (see [7] for example) that (40) has a solution Y(x)
satisfying

Y(x) =

(
1
0

)
+ o(1),

as x →∞. By lemma 3.1, theorem 1.1 is true for p = 1. So we assume 1 < p < 2.
By corollary 4.3 and theorem 2.5, for almost every E ∈ K the following limit is well defined,

T2m(F )(x,∞, E) = lim
x′→∞

T2m(F )(x, x′, E).

By (13) and (53), we have

|T2m(F )(x,∞, E)| � C(E)2m

√
(2m)!

. (56)

Thus
∞∑

m=1

T2m(F )(x,∞, E) (57)

is absolutely convergent for almost every E ∈ K. Similarly,

∞∑
m=0

T2m+1(F )(x,∞, E) (58)

is absolutely convergent for almost every E ∈ K. Therefore, the series in (43) is well defined
for almost every E ∈ K. Based on (23), it is easy to check that for almost every E ∈ K, the
series in (43) actually gives a solution of (40). The WKB behavior (5) follows from (22) and
lemma 3.1. �
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5. An alternative proof of theorems 1.1 and 1.2

We will give a new proof of theorem 1.1. By the arguments in the previous section, it suffices
to prove corollary 4.3. We will give a proof without using the maximal operator.

Lemma 5.1 [2]. Let {Em
j ⊂ R+ : m ∈ Z+, 1 � j � 2m} be a martingale structure. Then

there exists an absolute constant C such that for any closed interval I,

‖gχI‖Bs � C‖g‖Bs+1 .

In particular,

‖gχI‖B � C‖g‖B2 . (59)

A new proof of corollary 4.3 without using S∗. The proof of (54) does not use S∗, so
we keep it. We only need to show that (53) is true for almost every E ∈ K. Applying P = S
and f = V(x) in theorem 2.4 and recalling that

‖F (·, E)‖B2 = G(2)
S(V)(E),

one has

‖F (·, E)‖B2 ∈ Lq(J). (60)

Now (53) follows from (59) and (60). �
Suppose the assumptions of theorem 1.2 hold for some 1 < p � 2 and γ > 0. Let β be any

positive number bigger than 1 − p′γ. Denote byHβ the β-dimensional Hausdorff measure. Let

Λc = {E ∈ K : ‖F (·, E)χ[N,∞)‖B2 � c for every N � 0}.
Lemma 5.2. For any c > 0, we have

Hβ(Λc) = 0.

Proof. The lemma follows from the arguments in [3]. Actually, lemma 5.2 is a particular
case of what was studied in section 8 of [3]. �

Proof of theorem 1.2. By lemma 5.2, we have for every E in K except for a set of Hβ

measure zero and any c > 0, there exists N > 0 such that

‖F (·, E)χ[N,∞)‖B2 � c. (61)

Fix such E. Let N0 be such that (61) holds for c = 1. By changing x to x − N0, we can assume
N0 = 0. Therefore, by (59), one has

sup
I⊂R+

‖F (·, E)χI‖B � C.

For any ε > 0, let N(ε) be large enough so that (61) holds for c = ε. For any M > N(ε), by
(59) again,

‖F (·, E)χ[M,∞)‖B � ‖F (·, E)χ[N(ε),∞)‖B + ‖F (·, E)χ[N(ε),M)‖B
� ‖F (·, E)χ[N(ε),∞)‖B + C‖F (·, E)χ[N(ε),∞)‖B2

� Cε.
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This implies (54). Now the rest of the proof of theorem 1.2 follows from the proof of theorem
1.1. �

6. Sharp estimates for almost orthogonality among generalized Prüfer angles

In this section, we always assume that for some B > 0,

|V(x)| � B
1 + x

. (62)

Without loss of generality, we only consider the Dirichlet boundary condition.
For any spectral band [an, bn], let cn be the unique number such that k(cn) = π

2 . Let I be a
closed interval in (an, cn) or (cn, bn). All the energies E in this section are in I and the estimates
are uniform with respect to E ∈ I.

For z ∈ C\R, denote by ṽ1(x, z) (ṽ2(x, z)) the solution of H0 + V with boundary condi-
tions ṽ1(0, z) = 1 and ṽ′1(0, z) = 0 (ṽ2(0, z) = 0 and ṽ′2(0, z) = 1). The Weyl m-function m(z)
(well defined on z ∈ C\R) is given by the unique complex number m(z) so that ṽ1(x, z) +
m(z)ṽ2(x, z) ∈ L2(R+). The spectral measure μ on R, is given by the following formula, for
z ∈ C\R

m(z) = C +

∫ [
1

x − z
− x

1 + x2

]
dμ(x),

where C is a constant.
Denote by μsc the singular continuous component of μ. It is well known that σsc(H0 + V)

= ∅ if and only if μsc = 0.
Recall that ϕ(x, E) = J(x, E)eik(E)x and define a continuous function γ(x, E) such that

ϕ(x, E) = |ϕ(x, E)| eiγ(x,E). (63)

By [[17], proposition 2.1], we know that there exists some constant C > 0 such that

1
C

� γ ′(x, E) � C, or
1
C

� −γ ′(x, E) � C. (64)

Let u(x, E) be an arbitrary solution of −u′′ + V0u + Vu = Eu and define ρ(x, E) ∈ C by(
u(x, E)
u′(x, E)

)
=

1
2i

[
ρ(x, E)

(
ϕ(x, E)
ϕ′(x, E)

)
− ρ(x, E)

(
ϕ(x, E)
ϕ′(x, E)

)]
. (65)

Define R(x, E) and θ(x, E) by

R(x, E) = |ρ(x, E)|; θ(x, E) = γ(x, E) + Arg(ρ(x, E)). (66)

Proposition 6.1 [17]. Suppose u is a real solution of (2). Then the real functions R(x) > 0
and θ(x) satisfy

[ln R(x, E)]′ =
V(x)

2γ ′(x, E)
sin 2θ(x, E) (67)

and

θ(x, E)′ = γ ′(x, E) − V(x)
2γ ′(x, E)

sin2 θ(x, E). (68)
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Before we establish the almost orthogonality among Prüfer angles, some preparation is
necessary.

Lemma 6.2 [15]. Suppose the function G(x) satisfies |G′(x)| = O(1)
1+x and γ �= 0. Then∣∣∣∣

∫ L

0

sin(γx + G(x))
1 + x

dx

∣∣∣∣ � O(1) log |γ−1|+ O(1). (69)

We remark that O(1) in (69) and also throughout the following proof does not depend on L.

Lemma 6.3 [26]. Suppose the function G(x) satisfies |G′(x)| = O(1)
1+x and γ �= 0. Then∣∣∣∣

∫ L

0

sin(γx + G(x))
1 + x

dx

∣∣∣∣ � O(1)
|γ| + O(1).

Lemma 6.4. Suppose 0 < γ < 2π and the function G(x) satisfies |G′(x)| = O(1)
1+x . Then we

have for k = −1, 0, 1,∣∣∣∣
∫ L

0
e2πikx sin(γx + G(x))

1 + x
dx

∣∣∣∣ � O(1) log γ−1 + O(1) log (2π − γ)−1 + O(1),

and for k ∈ Z\{−1, 0, 1},∣∣∣∣
∫ L

0
e2πikx sin(γx + G(x))

1 + x
dx

∣∣∣∣ = O(1).

Proof. By the trigonometric identity, one has

2 e2πikx sin(γx + G(x)) = sin(γx + 2πkx + G(x)) + sin(γx − 2πkx + G(x))

+ i cos(2πk − γx − G(x)) − i cos(2πk + γx + G(x))

Now the proof follows from lemmas 6.2 and 6.3. �
Denote by T = R/Z.

Theorem 6.5. Suppose f ∈ L2(T). Then the following estimates hold∣∣∣∣
∫ L

0
f (x)

cos 4θ(x, E)
1 + x

dx

∣∣∣∣ = O(1), (70)

and ∣∣∣∣
∫ L

0
f (x)

sin 2θ(x, E1) sin 2θ(x, E2)
1 + x

dx

∣∣∣∣ = O(1) log
1

|E1 − E2|
+ O(1), (71)

where O(1) only depends on I, B, f and V0.

Proof. We give the proof of (71) first. By (68) and (62), we obtain the differential equations
of θ(x, E1) and θ(x, E2),

θ′(x, E1) = γ ′(x, E1) +
O(1)
1 + x

, (72)

and

θ′(x, E2) = γ ′(x, E2) +
O(1)
1 + x

. (73)
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By (33) and (63), we have

γ(x, E) = k(E)x + η(x, E), (74)

where η(x, E) mod 2π is a function that is 1-periodic in x.
By basic trigonometry,

−2 sin 2θ(x, E1) sin 2θ(x, E2) = cos(2θ(x, E1) + 2θ(x, E2))

− cos(2θ(x, E1) − 2θ(x, E2)), (75)

it suffices to bound∫ L

0
f (x)

cos(2θ(x, E1) ± 2θ(x, E2))
1 + x

dx.

Without loss of generality, we only bound

∫ L

0
f (x)

cos(2θ(x, E1) − 2θ(x, E2))
1 + x

dx. (76)

By (72)–(74), we have

d
dx

([θ(x, E1) − η(x, E1)] − [θ(x, E2) − η(x, E2)] = k(E1) − k(E2) +
O(1)
1 + x

. (77)

Let

θ̃(x, E) = θ(x, E) − η(x, E).

By trigonometry again, one has

cos(2θ(x, E1) − 2θ(x, E2)) = cos(2θ̃(x, E1) − 2θ̃(x, E2) + 2η(x, E1) − 2η(x, E2))

= cos(2η(x, E1) − 2η(x, E2)) cos(2θ̃(x, E1) − 2θ̃(x, E2))

− sin(2η(x, E1) − 2η(x, E2)) sin(2θ̃(x, E1) − 2θ̃(x, E2)).

Thus ∫ L

0
f (x)

cos(2θ(x, E1) − 2θ(x, E2))
1 + x

dx

=

∫ L

0
f (x)

cos(2η(x, E1) − 2η(x, E2)) cos(2θ̃(x, E1) − 2θ̃(x, E2))
1 + x

dx

−
∫ L

0
f (x)

sin(2η(x, E1) − 2η(x, E2)) sin(2θ̃(x, E1) − 2θ̃(x, E2))
1 + x

dx.

Without loss of generality, we only give the estimate of

∫ L

0
f (x)

sin(2η(x, E1) − 2η(x, E2)) sin(2θ̃(x, E1) − 2θ̃(x, E2))
1 + x

dx. (78)
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We proceed by Fourier expansion of f(x) sin(2η(x, E1) − 2η(x, E2)) (1-periodic function) and
obtain that

f (x) sin(2η(x, E1) − 2η(x, E2)) =
c0

2
+

∞∑
k=1

ck cos(2πkx) + dk sin(2πkx). (79)

By (79) and (78), we obtain

(78) =
∫ L

0

c0

2
sin(2θ̃(x, E1) − 2θ̃(x, E2))

1 + x
dx

+

∞∑
k=1

ck cos(2πkx)
sin(2θ̃(x, E1) − 2θ̃(x, E2))

1 + x
dx

+

∞∑
k=1

dk sin(2πkx)
sin(2θ̃(x, E1) − 2θ̃(x, E2))

1 + x
dx. (80)

Since k(E1), k(E2) ∈ (0, π
2 ) or k(E1), k(E2) ∈ ( π2 , π) depending on either I ⊂ (an, cn) or I ⊂

(cn, bn), and k(E1) �= k(E2), we have

0 < |k(E1) − k(E2)| < π

2
. (81)

Since f ∈ L2(T), one has
∑

c2
k + d2

k < ∞. Now (71) follows from lemma 6.4, (80) and (81).
The proof of (70) is similar to the estimate of (76). We omit the details.

�

7. Spectral analysis of Schrödinger operators with eventually periodic
potentials

In this section, we establish the spectral measure with eventually periodic potentials in terms of
the Prüfer variables, which is likely known. However, we did not find this in the literature. We
thus present a calculation. See [8] for a calculation for the eventually periodic Jacobi operators.

For L > 0, let VL(x) = V(x)χ[0,L](x). Let μL be the spectral measure of the operator −D2 +
V0 + VL.

Theorem 7.1. Let u(x, E) be the solution of −u′′ + V0u + Vu = Eu with initial conditions
u(0) = 0 and u′(0) = 1. Then the following formula holds,

dμL(E)
dE

=
2

π|W(ϕ,ϕ)|
1

R2(L, E)
(82)

for E ∈ S.

Proof. For E ∈ S and ε � 0, let z = E + iε. By the Floquet theory, −u′ + V0u = zu has two
linearly independent solutions:

ϕ1(x, z) = J1(x, z)ei(̃k(z)+iτ (z))x , ϕ2(x, z) = J2(x, z)e−i(̃k(z)+iτ (z))x , (83)

where J1(x, z) and J2(x, z) are 1-periodic, k̃(z) ∈ [0, π] and τ (E + iε) �= 0 for any ε > 0.
If τ (E + iε) > 0 for any ε > 0, then k̃(E) = k(E), ϕ1(x, E) = ϕ(x, E) (up to a constant) and

J1(x, z) = J(x, E) (up to a constant).
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If τ (E + iε) < 0 for any ε > 0, then k̃(E) = −k(E), ϕ1(x, E) = ϕ̄(x, E) (up to a constant)
and J1(x, z) = J̄(x, E) (up to a constant).

Without loss of generality, assume


τ (E + iε) > 0 for any ε > 0.

Define ũ(x, z) = J1(x, z)ei(̃k(z)+iτ (z))x = ϕ1(x, z) for x � L and extend ũ(x, z) to 0 � x � L by
solving equation

−ũ′′(x, z) + (V0(x) + VL(x) − z)ũ(x, z) = 0.

Since ũ(x, z) ∈ L2(R+), by basic facts of spectral theory (we refer the readers to [38] and
references therein for details), we have

m(z) =
ũ′(0, z)
ũ(0, z)

,

and

dμL

dE
=

1
π

lim
ε→0+


m(E + iε). (84)

Let T(z) be the transfer matrix of H0 + VL from 0 to L, that is

T(z)

(
φ(0)
φ′(0)

)
=

(
φ(L)
φ′(L)

)

for any solution φ of (−D2 + V0 + VL)φ = zφ.
Denote by

T(z) =

(
a(z) b(z)
c(z) d(z)

)
.

Clearly, (
ũ(0, z)
ũ′(0, z)

)
=

(
a(z) b(z)
c(z) d(z)

)−1 (
ũ(L, z)
ũ′(L, z)

)

=

(
d(z) −b(z)
−c(z) a(z)

)(
ũ(L, z)
ũ′(L, z)

)
.

Direct computation implies that (using ad − bc = 1)

lim
ε→0+


 m(E + iε) = 
 aϕ′
1(L, E) − cϕ1(L, E)

dϕ1(L, E) − bϕ′
1(L, E)

= 
 aϕ′(L, E) − cϕ(L, E)
dϕ(L, E) − bϕ′(L, E)

=
A1 sin B1

(d − bA1 cos B1)2 + (bA1 sin B1)2
, (85)

where A1 > 0 and B1 are defined by

ϕ′(L)
ϕ(L)

= A1 eiB1 . (86)
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By the assumption of theorem 7.1, one has(
u(L, E)
u′(L, E)

)
= T(E)

(
u(0)
u′(0)

)

= T(E)

(
0
1

)
=

(
b
d

)
. (87)

Let

ρ(L)ϕ(L) = A2 eiB2 and A2 > 0. (88)

By (65) and (87), we have(
b
d

)
= 
A2 eiB2

(
A1 eiB1

1

)

=

(
A2 sin B2

A1A2 sin(B1 + B2)

)
. (89)

Therefore,

b = A2 sin B2; d = A1A2 sin(B1 + B2). (90)

By (85) and (90),

lim
ε→0+


m(E + iε) =
1

A1A2
2 sin B1

. (91)

It is easy to see that (see p 295 in [17] for example)

|ϕ|2 
ϕ′

ϕ
=

|W(ϕ,ϕ)|
2

. (92)

By (86), (88), (91) and (92), one has

lim
ε→0+


m(E + iε) =
1

|ρ(L)ϕ(L)|2 

(

ϕ′(L)
ϕ(L)

)

=
2

|W(ϕ,ϕ)|
1

R(L, E)2
. (93)

Now the theorem follows from (84) and (93). �

8. Proof of theorem 1.4

In this section, we indicate the dependence of parameters explicitly except for V0, since V0 is
fixed all the time.

Let L = ε−1−σ with σ > 0. Let C1 = C1(B, I), which will be determined later.
We say a subset A ⊂ I is (ε, N) separate if the following two conditions hold:
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For any E ∈ A,∣∣∣∣
∫ L

0
V(x)

sin 2θ(x, E)
γ ′(x, E)

dx

∣∣∣∣ � (1 − β)C1(B, I) log ε−1. (94)

For any E1, E2 ∈ A and E1 �= E2,

|k(E1) − k(E2)| � ε1/N2
. (95)

Lemma 8.1 [[16], lemma 4.4]. Let {ei}N
i=1 be a set of unit vectors in a Hilbert space H so

that

α = N sup
i �= j

|〈ei, e j〉| < 1.

Then for any g ∈ H,

N∑
i=1

|〈g, ei〉|2 � (1 + α)‖g‖2. (96)

Theorem 8.2. There exist ε1(B, I, σ, β) > 0 and C(B, I, σ, β) such that for any ε < ε1 and
N � C(B, I, σ, β), any (ε, N) separate set A satisfies #A � N.

Proof. We consider the Hilbert space

H = L2((0, L), (1 + x)dx).

In H, by (62) we have

‖V‖2
H � B2 log(1 + L). (97)

Let

ei(x) =
1√
Ai

sin 2θ(x, Ei)
γ ′(x, Ei)(1 + x)

χ[0,L](x), (98)

where Ai is chosen so that ei is an unit vector in H. Direct computation implies

Ai =

∫ B j

0

sin2 2θ(x, Ei)
|γ ′(x, Ei)|2(1 + x)

dx

=

∫ L

0

1
2|γ ′(x, Ei)|2(1 + x)

dx −
∫ L

0

cos 4θ(x, Ei)
|γ ′(x, Ei)|2(1 + x)

dx. (99)

By (70), one has∣∣∣∣
∫ L

0

cos 4θ(x, Ei)
|γ ′(x, Ei)|2(1 + x)

dx

∣∣∣∣ = O(1). (100)

Direct computation shows that

∫ L

0

1
|γ ′(x, Ei)|2(1 + x)

dx = O(1) +
L−1∑
n=0

∫ n+1

n

1
|γ ′(x, Ei)|2(1 + n)

dx

= O(1) + Γ(Ei) log L, (101)
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where Γ(E) =
∫ n+1

n
1

|γ′(x,E)|2 dx (does not depend on n, e.g., [[17], proposition 2.1]).
By (99)–(101), we have

Ai =
1
2
Γ(Ei) log L + O(1). (102)

We should mention that O(1) in (100)–(102) only depend on B and I.
By (71) and (98), we have

|〈ei, e j〉 � 2
1 + σ

C(I, B)N−2 +
C(I, B)
log ε−1

. (103)

The first condition (94) implies

|〈V , ei〉|2 � C2
1

1 + σ
log ε−1 − C(I, B). (104)

By (96) and (103), one has

N∑
i=1

|〈V , ei〉H|2 �
(

1 +
2

1 + σ
C(I, B)N−1 +

NC(I, B)
log ε−1

)
‖V‖H. (105)

By (97), (104) and (105), we have

N

(
C2

1(1 − β)2

1 + σ
log ε−1 − C(I, B)

)
�

(
1 +

2
1 + σ

C(I, B)N−1 +
NC(I, B)
log ε−1

)

× B2(1 + σ) log ε−1.

This implies theorem 8.2. �

Proof of theorem 1.4. Once we have theorems 7.1 and 8.2, theorem 1.4 can be proved by
the arguments in [15] (also see [23]). We omit the details here. �
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Appendix A

Proof of (40). By (36) and (40), it suffices to show that

i
2
(ϕϕ′)

Vϕ2 exp(−2ip) =
−iV

2 Rφ′ e−ih. (106)

By the definition, one has

φ′ = −i
ϕ′

ϕ
.
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Direct computation implies

|ϕ|2

(ϕϕ̄′)

= − 1
Rφ′ . (107)

By the definitions of h and p, we have

iV
2 Rφ′ e−ih =

iV
2 Rφ′ exp

(
−i2 Rφ+ i

∫ x

0

V(t)
R φ′(t, E)

dt

)

= −iV
|ϕ|2

2 
(ϕϕ̄′)
exp(−i2 R φ) exp

(
−i

∫ x

0

V(t)|ϕ(t, E)|2

(ϕϕ̄′)

dt

)

= −iV
|ϕ|2

2 
(ϕϕ̄′)
exp(−i2 R φ) exp(−2ip)

= −iV
ϕ̄2

2 
(ϕϕ̄′)
exp(−2ip).

It implies (106) and hence (40). �
Proof of (32). For k ∈ Z+, denote by

fk =

∫ k

k−1
| f (x)| dx.

Then

‖ f ‖2
�2(L1) =

∞∑
k=1

f 2
k . (108)

Direct computations imply∫
R2
+

| f (x) f (y)|
1 + |x − y|2 dx dy = O(1)

∞∑
m=1

∞∑
n=1

fm fn

1 + |m − n|2

= O(1)
∞∑

n=1

| fn|2, (109)

where the second equality holds by the Young’s convolution inequality. Now (32) follows from
(108) and (109). �
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