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odern Internet-enabled smart

lights promise energy efficiency

and many additional capabilities

over traditional bulbs. However,
these connected lights also expose a new
attack surface, which can be maliciously used
to violate users’ privacy and security. We
design and evaluate novel inference attacks
that take advantage of the light emitted by
these smart lights to infer sensitive user
data and preferences.

A popular feature of modern smart
lighting systems is the ability to remotely
control its functionality over a Wi-Fi,
Bluetooth, or ZigBee network. Many
current generation smart lights (such as
LIFX and Philips Hue) are also LED-based,

which enables fine-grained customization
of color and intensity of the emitted light.
Some advanced smart lights (such as
LIFX+) are also equipped with infrared
capabilities. Given these new capabilities,
this article aims to highlight the susceptible
state of personal information of smart
light users by outlining specific system
vulnerabilities and privacy threats that could
take advantage of these vulnerabilities.
We first focus on exploiting a new
feature of modern smart lights, known as
multimedia-visualization (Sections 1 and 2).
Multimedia-visualization is intended for use
in conjunction with a song or video playing
on a nearby or connected media player,
which results in a vibrant lighting effect that
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is synchronized with the tones present in the
audio or the dominant colors in the video
stream, respectively. However, consider a
scenario where a curious adversary is able
to observe the changing light intensities/
colors of a multimedia-visualizing smart
light installed inside a user’s residence (likely
through a window). Can the adversary
determine what song/video is being played by
only analyzing the changing light intensities/
colors of the smart light? Such attacks, if
successful, can have significant privacy
implications for smart light users.

Further, we also study the feasibility of an
adversary exploiting a smart light’s infrared
functionality to invisibly exfiltrate a user’s
private data out of his/her secured personal
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device or network (Section 3). We show
that such an attack can be accomplished by
controlling and carefully manipulating the
light emitted by the infrared bulb on these
systems to create a “covert-channel” to the
adversary on which sensitive data can be
exfiltrated.

ADVERSARY MODEL

For the inference threats on the audio-
visualizing and video-visualizing function-
alities of smart lights, we assume a passive
adversary whose goal is to infer a target
user’s media consumption by visually
eavesdropping on the light emitted by their
smart bulb, without actively attacking the
user’s wireless network or appliances. The

user’s wireless network is assumed to be
secured against eavesdropping attacks,

for example using WPA2, so the adversary
cannot perform direct analysis of the
packets sent to the smart bulb. For the data
exfiltration threat using infrared-enabled
smart lights, we assume an adversary whose
goal is to exfiltrate data out of a target user’s
network or personal device. For the data
exfiltration attack to work, the adversary has
to additionally install a malicious software
agent on the target user’s device (for example,
their smartphone or computer) that connects
to the same network as their infrared-capable
smart bulbs. This can be achieved by social
engineering attacks, or by tricking the user
in to installing a Trojan application. The

[HIGHLIGHTS]

malicious software agent is responsible for
encoding target user’s private data (accessible
on-device or on the network) in a format
suitable for infrared communication, and
transmits the encoded data using the user’s
infrared-enabled smart light.

AUDIO INFERENCE THREAT

In the audio-visualization mode, a smart bulb
reacts to the high and low tones present in the
input audio stream by fluctuating its output
light brightness. It became evident from our
exploratory experimentation that there
exists a clear correlation between the audio
waveform of the song and its corresponding
“luminance-profile” recorded using a
luminance meter. Another observation
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FIGURE 1. (a) Audio inference framework; (b) Video inference framework.
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was that for a given song, although the
luminance-profile suffers minor distortions
across multiple recordings, the similarity
between them is generally very high. We
utilize these properties to design our audio
inference framework, which is based on
elastic time-series matching [5] and is
immune to minor distortions.

AUDIO INFERENCE FRAMEWORK
Based on the above understanding of audio-
visualization properties, we can design an
inference framework for inferring a source
audio from its corresponding luminance-
profile as follows (Figure la):

Capturing Luminance-Profile. The infer-
ence attack starts with the adversary record-
ing the luminance-profile of an unknown
target song using a luminance meter (such
as Yoctopuce V3). The observed luminance-
profile is a time-series of the observed
luminance values.

Luminance Normalization. Once the entire
luminance-profile is recorded for a chosen
observation duration, the next step is to
normalize it to achieve amplitude invariance,
which aids in the similarity search later [2].
Creating a Reference Library. Before
matching the normalized luminance-profile
against a library (of songs), the adversary has
to create a reference library of luminance-
profiles corresponding to a comprehensive
set of songs. Template luminance-profiles
can be created by sampling the amplitudes
in waveform audio files, and converting

them to absolute values. These template
luminance-profiles serve as an approximate
representation of how an audio-visualizing
smart bulb will react.

Similarity Search. The final step for

the adversary is to match the observed
luminance-profile to songs in the reference
library. A classification method based

on algorithms that measure similarity
between temporal sequences, which are
misaligned and vary in time or speed,

for example, Dynamic Time Warping
(DTW) [5] and Optimal Subsequence
Bijection (OSB) [3], can be employed for
this purpose. The framework outputs the
song (as a prediction), whose template
yields the minimal distance between the
observed luminance-profile and template
luminance-profiles in the reference library.

AUDIO INFERENCE EVALUATION
We complied a reference library of 400
chart-topping songs, which is analogous
to password cracking using a dictionary
of most commonly used passwords. We
test in an outdoor setting (Figure 2) where
the observation point was at 50 meters
away from the bulb and a 80 mm 45-225x
telescope was used to focus observed light
on a luminance meter. For 100 test songs,
we measured the accuracy of the framework
based on the rank of predicted songs
matched against the entire reference library
(rank of 1 being the correct prediction).
Some of the key observations were:
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o The mean predicted song rank was as
low as 1.20 when the adversary is able
to record the target song-visualization
for 120 sec, which implies very high
inference accuracy.

o There exists a higher confusion within
the same genre of songs, which implies
that even if an adversary is unable to
match accurately the audio-visualized
data to its corresponding song, the
adversary can still infer the user’s media
or genre preference.

VIDEO INFERENCE THREAT

The video-visualization feature enables a
smart bulb to react to the colors present
in the input video stream by changing

its output light color to the average RGB
composition of the current frame in the
video. Our preliminary observations
brought us to two similar conclusions as
before. First, the observed RGB color from
the bulb has some correlation with the
average RGB color in the current frame of
the video stream, which is expected. As a
result, the RGB “color-profile” of a video
observed on a video-visualizing bulb is
unique to the video, and the probability
that a completely different video also has
the same color-profile is small. Second,
similar to luminance-profiles in audio-
visualization, even though color-profiles
suffers minor distortions across multiple
recordings, the similarity between them
is generally very high.
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FIGURE 3. Covert data exfiltration framework.
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Video Inference Framework

With the above understanding of video-
visualizing light properties, we can now
design a video inference framework
(Figure 1b).

Capturing Color-Profile. The inference
attack starts with the adversary recording
the observed color-profile of an unknown
target video using some RGB color sensor,
such as Vernier GDX-LC. The observed color-
profile is the time-series of observed RGB
values, recorded at a constant sampling rate.
Color Normalization and Interpolation.
Once the entire color-profile is recorded for
a chosen observation duration, the adver-
sary next normalizes and interpolates it to
create the corresponding normalized and
interpolated color-profile. The normalized

and interpolated color-profile is amplitude
invariant and accounts for imperfect bright-
ness scaling, which aids in similarity search.
Creating a Reference Library. The adver-
sary next creates a library of template
color-profiles corresponding to video files
in a reference library by sampling the RGB
composition in these video files. These tem-
plate color-profiles serve as an approximate
representation of how a video-visualizing
smart bulb will react.

Similarity Search. The final step for the
adversary is to match the color-profile against
the template color-profiles corresponding
to the reference library of videos using a
time-series similarity computing technique
such as Multidimensional Dynamic Time
Warping (MDTW) [7]. MDTW is a gener-

alization of DTW for measuring similarity
between temporal sequences, in two or
more dimensions. We compute the 3DTW
distance between the observed color-profile
and template color-profiles in the reference
library, selecting the video (as a prediction)
whose template yields the minimal distance.

Video Inference Evaluation

We complied a reference library of 500
full-length movies released on DVD and
Blu-ray in the last 10 years. We test from
the same outdoor observation point as in
the audio inference evaluation (Figure 2).
Some of the key observations are:

o The mean predicted video rank was as
low as 1.49 when the adversary is able
to record the target video-visualization
for 360 sec, which implies very high
inference accuracy.

o Our attack framework is functional
even when the adversary does not have
direct Line-of-Sight to the smart bulb.
In Non-Line-of-Sight (NLOS) inference
we observed an average difference of
+0.17 in mean rank, which is marginally
less accurate than LOS inference.

COVERT DATA

EXFILTRATION THREAT

Our final attack framework (Figure 3)
enables an adversary to employ a smart
light’s infrared capability to covertly
exfiltrate private data out of a user’s
personal device or network. What makes
this attack interesting is that traditional
light bulbs are normally not perceived (or
monitored) as an attack surface, even in
high security establishments. This attack
methodology not only shows that a smart
light can be used to transmit data, but

it also shows how such an attack when
carried out from within a secure air-gapped
network can become a significant privacy
and security threat. Moreover, unlike
Internet gateways which can be protected
against data exfiltration attacks using a
firewall, an exfiltration gateway made out
of a smart bulb has no such restrictions.
The Covert Channel. We utilize a
multilevel (M-ary) amplitude shift keying
(ASK) [1] encoding technique to implement
an infrared-based covert channel, as our
experimental bulb (LIFX+) supports only
950 nm infrared light. As human eyes are
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Original Text:

A cup of sugar makes sweet fudge

Reconstructed Text: A buq pf!sugbr m kesBMsuees hudfe

FIGURE 4. Text reconstruction using 256-ary ASK at 15 m.

not sensitive to the infrared spectrum,

it can be used to create a covert channel,
which can remain visually undetected.
Private Data Encoding and Transmission.
Once the value of M (number of levels in
M-ary ASK) is decided by the adversary
based on the distance and acceptable level
of reconstruction quality, the next step is
to encode private data of interest (in binary
form) using M-ary ASK. A malicious
software agent installed on the target user’s
device or network undertakes this task.
The encoded data is then transmitted in
blocks by controlling the infrared power
level of the smart bulb connected to the
same device or network.

Adversarial Reconstruction. On the
adversary’s side, he/she observes the target
user’s smart bulb using an infrared sensor
(such as TSOP48). Once a start symbol

is received by the infrared sensor, the
adversary starts recording the observed
infrared amplitudes representing the M-ary
ASK encoded data, until an end symbol is
received. Then the adversary normalizes
the recorded data based on the maximum
amplitude, and decodes it to reconstruct
the private data in binary format.

Data Exfiltration Evaluation

The infrared signal strength reduces as
distance from the bulb increases. As a result,
the boundaries between the M amplitude
levels present in a M-ary ASK signal is also
diminished, leading to higher confusion
between neighboring amplitude levels and
thus errors in the reconstructed data. This
phenomenon was evident in our evaluation
results (Figure 4), especially for higher values
of M. The adversary can potentially improve
reconstruction by employing Forward Error
Correction (FEC), a digital signal processing
technique used to enhance data reliability [6].
Nonetheless, the adversary can still extract
some useful information without using FEC.
Figure 4 shows the example of a reconstructed
sentence where the incorrectly reconstructed
letters are neighboring to the original letters

on the ASCII chart. An adversary can
perform simple syntactical and semantical
analysis on the reconstructed text to improve
its correctness and legibility.

DISCUSSION

Limitations. Setting up a secure observation
point in the neighborhood of the target user
is a prerequisite towards carrying out the
proposed attacks. While it may be difficult
for an adversary to maintain covertness

in rural areas with fewer structures where
he/she can hide, it may be easier to find a
secretive observation point in an urban
setting. Several external factors can also
disrupt or impair observation, which the
adversary must account for. For example,
light from passing-by automobiles can
introduce temporal noise, moving bodies
near the target user’s window can change
light characteristics, and rainy weather can
introduce a high degree of unpredictable
noise in the observation channel.
Countermeasures. A simple mitigation
would be to cover the windows with
opaque curtains and block light leakage to
the outside. Additionally, for the inference
attacks, the maximum brightness of the
bulbs can be reduced, so that the light
leakage is also reduced. To prevent the
exfiltration attack, strong network rules
can be enforced such that unauthorized
computers and smartphones cannot
control smart bulbs over an IP network.

CONCLUSION

We designed and evaluated multiple
sensitive information leakage frameworks
that exploit modern smart lights. These
threats affirm the need for better protection
mechanisms, such as, strong access control
within smart light management protocols.
An extended version of this article is
published in ACM IMWUT [4]. ®
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