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ABSTRACT

We consider the problem of estimating the conditional independence
graph (CIG) of a sparse, high-dimensional proper complex-valued
Gaussian graphical model (CGGM). For CGGMs, the problem re-
duces to estimation of the inverse covariance matrix with more un-
knowns than the sample size. We consider a smoothly clipped ab-
solute deviation (SCAD) penalty instead of the ℓ1-penalty to reg-
ularize the problem, and analyze a SCAD-penalized log-likelihood
based objective function to establish consistency and sparsistency of
a local estimator of inverse covariance in a neighborhood of the true
value. A numerical example is presented to illustrate the advantage
of SCAD-penalty over the usual ℓ1-penalty.

Keywords: Complex Gaussian graphical models; undirected graph;
SCAD penalty; consistency; sparsistency.

1. INTRODUCTION

We consider estimation of the conditional independence graph (CIG)
of a proper complex-valued Gaussian graphical model (GGM).
Given x ∈ Cp with x ∼ Nc(0,Σ), Σ ≻ 0, the conditional
dependency structure among the p components x1, x2, · · · , xp

is represented using an undirected graph G = (V, E), where
V = {1, 2, · · · , p} = [p] is the set of p nodes corresponding to
xis, and E ⊂ [p] × [p] is the set of undirected edges that specify
conditional dependencies among xi’s. In CIG G, edge {i, j} 6∈ E
iff xi and xj are conditionally independent given the remaining p-2
variables xℓ, ℓ ∈ [p], ℓ 6= i, ℓ 6= j. For complex GGM (CGGM),
{i, j} 6∈ E ⇔ Ωij = 0 [1, Theorem 7.1] where Ωij denotes the
(i, j)th component of Ω = Σ

−1.

We consider the sparse, high-dimensional case. Given n i.i.d.
realizations x(t), t = 0, 1, · · · , n − 1, of x ∼ Nc(0,Σ), we wish
to estimate Ω = Σ

−1 when n ≤ p(p − 1)/2 (# of unknowns), or
n is comparable to p, and only a “small” fraction of the elements of
Ω are nonzero (sparse). Sparse high-dimensional real-valued GGMs
(RGGMs) have been extensively studied ( [2–7], others) motivated
by applications to gene networks, fMRI, social networks, etc. Study
of (proper) complex GGM originated with [1] which is restricted
to low-dimensional settings (n ≫ p). In the context of frequency-
domain formulation of graphical modeling of real-valued time series
in high-dimensional settings (also a motivation for this paper, as in
[9]), proper CGGMs have been considered implicitly in [8, 9] using
ℓ1 penalty. In [10, 11] a graphical lasso approach based on an ℓ1-
penalized log-likelihood objective function has been investigated.

In this paper we consider the smoothly clipped absolute devia-
tion (SCAD) penalty instead of ℓ1-penalty, following [4]. The SCAD
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penalty was exploited for real graphical model selection in [4]; work
on complex GGMs is lacking. SCAD penalty can produce sparse set
of solution like lasso, and approximately unbiased coefficients for
large coefficients, unlike lasso. But this penalty is nonconvex, un-
like lasso. Sufficient conditions for consistency (convergence in the

Frobenius norm of the estimator Ω̂ of Ω = Σ
−1) and specification

of its rate of convergence are provided in this paper, following the
corresponding real-valued results of [4] (see also [2, 3]). Sufficient
conditions for sparsistency (the property that all parameters that are
zero are actually estimated as zero with probability tending to one),
following real-valued results of [4], are also investigated.

In Sec. 2 we introduce notation and present the system model.
Theoretical analysis of the proposed SCAD-penalized estimator is
presented in Sec. 3 where we state Theorem 1 (consistency, proved in
Sec. 4) and Theorem 2 (sparsistency, proved in Sec. 5). A numerical
example is presented in Sec. 6.

2. PRELIMINARIES AND BACKGROUND

2.1. Notation

Given A ∈ Cp×p, we use φmin(A), φmax(A), |A|, tr(A) and
etr(A) to denote the minimum eigenvalue, maximum eigenvalue,
determinant, trace, and exponential of trace of A, respectively. For
B ∈ Cp×q , we denote the operator norm, the Frobenius norm and
the vectorized ℓ1 norm, respectively, as ‖B‖ =

√
φmax(BHB),

‖B‖F =
√

tr(BHB) and ‖B‖1 =
∑

i,j |Bij | where Bij is the

(i, j)-th element of B. We also denote Bij by [B]ij . Given A ∈
Cp×p, A+ = diag(A) is a diagonal matrix with the same diagonal
as A, and A− = A − A+ is A with all its diagonal elements set
to zero. We use A−∗ for (A∗)−1 where A∗ is the complex con-
jugate of A, and A−⊤ for (A⊤)−1. For yn,xn ∈ Cp, yn ≍ xn

means that yn = O(xn) and xn = O(yn), where the latter means
there exists 0 < M < ∞ such that ‖xn‖ ≤ M‖yn‖ ∀n ≥ 1.
The notation yn = OP (xn) for random vectors yn,xn ∈ Cp

means that for any ε > 0, there exists 0 < M < ∞ such that
P (‖yn‖ ≤ M‖xn‖) ≥ 1− ε ∀n ≥ 1.

2.2. SCAD-Penalized Log-Likelihood

Let x(t) ∈ Cpn , t = 0, 1, · · · , n − 1, be n i.i.d. observa-
tions of x ∼ Nc(0,Σ), with Σ ≻ 0. The dimension pn of
x(t) is a non-decreasing function of the sample size n. Define

X = [x(0) x(1) · · · x(n− 1)]H . Define the sample covariance
matrix

Σ̂ =
1

n
X

H
X =

1

n

n−1∑

t=0

x(t)xH(t). (1)
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The joint pdf of X can be expressed as [10]

fX(X) =
|Ω|n
πnpn

etr(−nΣ̂Ω) (2)

=
|Ω|n/2|Ω∗|n/2

πnpn
etr
(

−n

2
(Σ̂Ω+ Σ̂

∗
Ω

∗)
)

. (3)

We wish to estimate Ω given X .
We have the negative log-likelihood (up to some constants)

− ln fX(X) = tr(Σ̂Ω+ Σ̂
∗
Ω

∗)− ln |Ω| − ln |Ω∗| . (4)

In [10, 11], an ℓ1-penalized cost function L1(.) is minimized,

L1(X;Ω,Ω∗) = − ln fX(X) + λn ‖Ω−‖1 , (5)

where λn > 0 is a tuning parameter and we estimate Ω ≻ 0. This is
the lasso penalty, leading to the term graphical lasso [5]. An alterna-
tive [4] (in the real-valued case) is to use the SCAD penalty function
Pλn

(|Ωij |) to modify (5) as

Ls(X;Ω,Ω∗) = − ln fX(X) +
∑

i 6=j

Pλn
(|Ωij |) , (6)

where, for some a > 2, the SCAD penalty is defined as

Pλ(θ) =







λ|θ| for |θ| ≤ λ
2aλ|θ|−|θ|2−λ2

2(a−1)
for λ < |θ| < aλ

λ2(a+1)
2

for |θ| ≥ aλ

. (7)

The first-order derivative of Pλ(θ) w.r.t. |θ| is

P ′
λ(θ) =







λ for |θ| ≤ λ
aλ−|θ|
a−1

for λ < |θ| < aλ
0 for |θ| ≥ aλ

, (8)

and its second-order derivative is

P ′′
λ (θ) =







0 for |θ| ≤ λ
−1
a−1

for λ < |θ| < aλ
0 for |θ| ≥ aλ

. (9)

The SCAD penalty was proposed by [12] and exploited for real
graphical model selection in [4]. As a function of θ, the SCAD
penalty is continuously differentiable on (−∞, 0) ∪ (0,∞) but sin-
gular at 0, with its derivatives zero outside the range [−aλ, aλ].
Compared to lasso (ℓ1 penalty), this results in small coefficients be-
ing set to zero, a few other coefficients being shrunk towards zero
while leaving large coefficients unchanged. Thus, SCAD can pro-
duce sparse set of solution like lasso, and approximately unbiased
coefficients for large coefficients, unlike lasso. But this penalty is
nonconvex, unlike lasso.

Remark 1: Note that unlike the formulations in [5–7] where
Ω is real-valued, we have complex-valued Ω (as in [11]). So, as
in [11], we use Wirtinger calculus [13, Appendix 2] coupled with
corresponding definition of subdifferential/subgradients [14], to an-
alyze and minimize Ls(X;Ω,Ω∗) w.r.t. complex Ω using the nec-
essary and sufficient conditions for a local optimum. Consider a
complex-valued z = x + jy ∈ Cp, x,y reals, and a real-valued
scalar function g(z) = g(z, z∗) = g(x,y). In Wirtinger calcu-
lus, one views g(z, z∗) as a function of two independent vectors z
and z∗, instead of a function a single z. For g(z) one defines its
subdifferential ∂g(z0) at a point z0 as [14]

∂g(z0) =
{

s ∈ C
p : g(z) ≥ g(z0) + 2Re

(

s
H(z − z0)

)

for all z ∈ C
p
}

. (10)

Similarly, with hk(x) := g(z1, z2, · · · , zk−1, x, zk+1, · · · , zp),
x ∈ C, the partial subdifferential ∂gz0k (z) := ∂hk(z0k) is the
subdifferential ∂hk(z0k) of hk(x) at z0k. Also [14]

∂g(z0) =
∂g(z)

∂z∗

∣
∣
∣
z=z0

(11)

when this partial derivative exists and g is convex. �

3. THEORETICAL ANALYSIS

We make following two assumptions.

(A1) Define the true edge set E0 = {{i, j} : Ω0ij 6= 0, i 6=
j} where Ω0 ∈ Cpn×pn denotes the true inverse covariance
matrix. Then card(E0) ≤ sn0.

(A2) The minimum and maximum eigenvalues of the true covari-
ance matrix Σ0 = Ω

−1
0 ≻ 0 satisfy

0 < βmin ≤ φmin(Σ0) ≤ φmax(Σ0) ≤ βmax < ∞ .

Here βmin and βmax are not functions of n.

Define the estimator Ω̂λ as minimizer of (6)

Ω̂λ = arg min
Ω≻0

Ls(X;Ω,Ω∗) . (12)

Theorem 1 establishes convergence in the Frobenius norm of the es-

timator Ω̂λ to the true value, and also provides a rate of convergence.
It is proved in Sec. 4. Its proof follows that of [4, Theorem 1] (see
also [2]) pertaining to real GGMs.

Theorem 1 (Consistency): For τ > 2, let

C0 = 80 max
i

(Σ0ii)
√

2 (τ + ln(16)/ ln(pn)) . (13)

Given real numbers α1 ∈ (0, 1) and “small’ α2 > 0, let

M = (2 + α2)(1 + α1)
2C0/β

2
min . (14)

Suppose the regularization parameter λn is selected as

λn = max(2C0,M)rn , (15)

where, with sn0 as in assumption (A1),

rn =

√

(pn + sn0) ln(pn)

n
= o(1), (i.e. → 0 as n → ∞),

(16)

assumptions (A1)-(A2) hold true, and min{i,j}∈E0
|Ω0ij | ≥ aλn,

with a > 2 as in (7). Let

N1 =2 (ln(16) + τ ln(pn)) (17)

N2 =argmin

{

n : rn ≤ α1βmin

(1 + α1)2(2 + α2)C0

}

(18)

N3 =argmin

{

n : λn <
min{i,j}∈E0

|Ω0ij |
a

}

. (19)

If the sample size n > max{N1, N2, N3}, then there exists a local

minimizer Ω̂λ of Ls(X;Ω,Ω∗) such that

‖Ω̂λ −Ω0‖F ≤ Mrn (20)



with probability > 1− 1/pτ−2
n . In terms of rate of convergence,

‖Ω̂λ −Ω0‖F = OP

(√

(pn + sn0) ln(pn)/n
)

• (21)

Theorem 2 regarding sparsistency of Ω̂λ is stated below. Its
proof closely follows that of [11, Theorem 2] pertaining to ℓ1
penalty, which, in turn, follows that of [4, Theorem 2] pertaining to
real GGMs.

Theorem 2 (Sparsistency): Suppose all assumptions and condi-

tions of Theorem 1 hold true so that ‖Ω̂λ − Ω0‖F = OP (rn). In
addition, suppose that there exists a sequence ηn → 0 such that

‖Ω̂λ − Ω0‖ = OP (ηn) and
√

ln(pn)/n + ηn = O(λn). Then

with probability tending to one, Ω̂λij = 0 for all (i, j) ∈ Ē0 =
{{i, j} : Ω0ij = 0, i 6= j}. •

Remark 2: Since ‖Ω̂λ − Ω0‖ ≤ ‖Ω̂λ − Ω0‖F , the choice

ηn = rn satisfies ‖Ω̂λ −Ω0‖ = OP (ηn) as well as
√

ln(pn)/n+
ηn = O(λn). This allows for sn0 = O(p2n) so long as rn =
√

(pn + sn0) ln(pn)/n = o(1). This result is significantly better
than that in [11] where the best one can do is sn0 = O(pn) or
sn0 = O(1) (see [11, Remark 2]). �

4. PROOF OF THEOREM 1

First we need to introduce some notation, recall some existing re-
sults, and develop several auxiliary results. Lemmas 1-3 stated be-
low are from [11]. Lemma 1, regarding a tail bound on the sample
covariance of (1), follows from the real-valued results of [3, Lemma
1].
Lemma 1: Under Assumption (A2), Σ̂ defined in (1) satisfies the tail
bound

P

(

max
k,l

∣
∣
∣[Σ̂−Σ0]kl

∣
∣
∣ > C0

√

ln(pn)

n

)

≤ 1

pτ−2
n

(22)

for τ > 2, if the sample size n > N1, where C0 is defined in (13)
and N1 is defined in (17). •

Lemma 2 deals with a Taylor series expansion using Wirtinger
calculus; its proof is omitted for lack of space.
Lemma 2: For Ω = Ω

H ≻ 0, define a real scalar function

c(Ω,Ω∗) = ln |Ω|+ ln |Ω∗| . (23)

Let Ω = Ω0 +∆ with Ω0 = Ω
H
0 ≻ 0 and ∆ = ∆

H . Then using
Wirtinger calculus, the Taylor series expansion of c(Ω,Ω∗) is given
by

c(Ω,Ω∗) = c(Ω0,Ω
∗
0) + tr(Ω−1

0 ∆+Ω
−∗
0 ∆

∗)

− 1

2
(vec(∆))H(Ω−∗

0 ⊗Ω
−1
0 )vec(∆)

− 1

2
(vec(∆∗))H(Ω−1

0 ⊗Ω
−∗
0 )vec(∆∗) + h.o.t. (24)

where h.o.t. stands for higher-order terms in ∆ and ∆
∗. •

Lemma 2 regarding Taylor series expansion immediately leads
to Lemma 3 regarding Taylor series with integral remainder, needed
to follow the proof of [2, 4] pertaining to the real-valued case.

Lemma 3: With c(Ω,Ω∗) and Ω = Ω0 + ∆ as in Lemma 2,
the Taylor series expansion of c(Ω,Ω∗) in integral remainder form
is given by (v is real)

c(Ω,Ω∗) = c(Ω0,Ω
∗
0) + tr(Ω−1

0 ∆+Ω
−∗
0 ∆

∗)

− g
H(∆)

(∫ 1

0

(1− v)H(Ω0,∆, v) dv

)

g(∆) (25)

where

g(∆) =

[
vec(∆)
vec(∆∗)

]

, H(Ω0,∆, v) =

[
H11 0

0 H22

]

(26)
H11 = (Ω0 + v∆)−∗ ⊗ (Ω0 + v∆)−1

(27)

and
H22 = (Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−∗ • (28)

We now turn to the proof of Theorem 1.
Proof of Theorem 1: Let

Q(Ω) := Ls(X;Ω,Ω∗)− Ls(X;Ω0,Ω
∗
0) . (29)

By (4), (6) and (23), we have

Q(Ω) = tr
(

Σ̂Ω+ Σ̂
∗
Ω

∗
)

− c(Ω,Ω∗) +
∑

i6=j

Pλn
(|Ωij |)

−tr
(

Σ̂Ω0 + Σ̂
∗
Ω

∗
0

)

+ c(Ω0,Ω
∗
0)−

∑

i6=j

Pλn
(|Ω0ij |) . (30)

The estimate Ω̂λ, denoted by Ω̂ hereafter suppressing dependence

upon λ, minimizes Q(Ω), or equivalently, ∆̂ = Ω̂−Ω0 minimizes
G(∆) := Q(Ω0 +∆).

We will follow, for the most part, the proof of [4, Theorem 1]
pertaining to real GGMs. Consider the set

Θn(M) :=
{

∆ : ∆ = ∆
H , ‖∆‖F = Mrn

}

(31)

where M is a constant defined in (14), and

rn =
√

(pn + sn0) ln(pn)/n, lim
n→∞

rn = 0 . (32)

Observe that G(∆̂) ≤ G(0) = 0. Therefore, if we can show that

inf
∆

{G(∆) : ∆ ∈ Θn(M)} > 0 , (33)

the minimizer ∆̂ must be inside Θn(M), and hence

‖∆̂‖F ≤ Mrn . (34)

Using Lemma 3 and noting that Ω−1 = Σ, we rewrite G(∆) as

G(∆) = A1 +A2 +A3 , (35)

A1 =tr
(

(Σ̂−Σ0)∆+ (Σ̂−Σ0)
∗
∆

∗
)

, (36)

A2 =g
H(∆)

(∫ 1

0

(1− v)H(Ω0,∆, v) dv

)

g(∆) , (37)

A3 =
∑

i 6=j

(
Pλn

(|Ω0ij +∆ij |)− Pλn
(|Ω0ij |)

)
. (38)

By the structure of Hermitian H(Ω0,∆, v), we have

φmin(H(Ω0,∆, v)) = φmin(H11) = φmin(H22)

= φ2
min((Ω0 + v∆)−1) = φ−2

max(Ω0 + v∆) . (39)

Since xHAx ≥ φmin(A)‖x‖2, we have

A2 ≥ ‖g(∆)‖2φmin

(∫ 1

0

(1− v)H(Ω0,∆, v) dv

)

≥ 2‖vec(∆)‖2
∫ 1

0

(1− v) dv min
0≤v≤1

φmin(H(Ω0,∆, v))

= ‖∆‖2F min
0≤v≤1

φ−2
max(Ω0 + v∆) , (40)



where we have used the facts that
∫ 1

0
(1− v) dv = 1/2. Since

φmax(Ω0 + v∆) ≤ ‖Ω0 + v∆‖ ≤ ‖Ω0‖+ v‖∆‖ , (41)

we have, for 0 ≤ v ≤ 1,

φ−2
max(Ω0 + v∆) ≥ (‖Ω0‖+ v‖∆‖)−2 ≥ (‖Ω0‖+ ‖∆‖)−2 .

(42)

Thus,

A2 ≥ ‖∆‖2F
(‖Ω0‖+ ‖∆‖)2 ≥ ‖∆‖2F

(
β−1
min +Mrn

)−2
(43)

where we have used the fact that ‖Ω0‖ = ‖Σ−1
0 ‖ = φmax(Σ

−1
0 ) =

(φmin(Σ0))
−1 ≤ β−1

min and ‖∆‖ ≤ ‖∆‖F = Mrn = O(rn).

We now consider A1 in (36). Define the set Ẽ0 = E0 ∪ {{i, j} :
i = j}. Let Ē0 denote the complement of E0, given by Ē0 =
{{i, j} : Ω0ij = 0, i 6= j}. Also, for an index set B and a
matrix C ∈ Cp×p, we write CB to denote a matrix in Cp×p such
that [CB ]ij = Cij if (i, j) ∈ B, and [CB ]ij = 0 if (i, j) 6∈ B.
Then, by definition, ∆− = ∆

−
E0

+∆
−
Ē0

, and ‖∆−‖1 = ‖∆−
E0
‖1 +

‖∆−
Ē0

‖1. We have

A1 = L1 + L2 (44)

where (note that tr((Σ̂−Σ0)Ω) = tr((Σ̂−Σ0)
∗
Ω

∗))

L1 = 2
∑

{i,j}∈E0

[Σ̂−Σ0]ij∆ji + 2
∑

i

[Σ̂−Σ0]ii∆ii , (45)

L2 = 2
∑

{i,j}∈Ē0

[Σ̂−Σ0]ij∆ji . (46)

To bound L1, using Lemma 1, with probability > 1− 1/pτ−2
n ,

|L1| ≤ 2‖∆−
E0

+∆
+‖1 max

i,j

∣
∣[Σ̂−Σ0]ij

∣
∣

≤ 2‖∆−
E0

+∆
+‖1 C0

√

ln(pn)/n . (47)

By Cauchy-Schwartz inequality, with gn :=
√
sn0 + pn ,

‖∆−
E0

+∆
+‖1 ≤gn ‖∆−

E0
+∆

+‖F ≤ gn ‖∆‖F . (48)

Therefore,

|L1| ≤ 2C0 ‖∆‖F
√

(pn + sn0) ln(pn)/n . (49)

We will consider L2 with part of A3, where

A3 = L3 + L4 , (50)

L3 =
∑

{i,j}∈E0

(Pλn
(|Ω0ij +∆ij |)− Pλn

(|Ω0ij |)) , (51)

L4 =
∑

{i,j}∈Ē0

Pλn
(|∆ij |) , (52)

and we have used the fact that Ω0ij = 0 for {i, j} ∈ Ē0 and
Pλn

(0) = 0. Since ‖∆‖F = Mrn, we must have |∆ij | ≤ Mrn.
For λn ≥ Mrn, Pλn

(|∆ij |) = λn|∆ij | for |∆ij | ≤ Mrn. Con-
sider L4 with L2. By Lemma 1, with probability > 1− 1/pτ−2

n ,

L4 − |L2| ≥
∑

{i,j}∈Ē0

(

λn|∆ij | − 2|[Σ̂−Σ0]ij | · |∆∗
ij |
)

≥
∑

{i,j}∈Ē0

(

λn − 2C0

√

ln(pn)/n
)

|∆ij |

=λn

(

1− 2
C0

λn

√

ln(pn)/n

)
∑

{i,j}∈Ē0

|∆ij | > 0 (53)

since 2C0

λn

√
ln(pn)/n < 1 for λn selected as in (15).

It remains to bound |L3|. A Taylor series expansion of Pλn
(θ)

for θ > 0, around θ0 > 0, is given by

Pλn
(θ) = Pλn

(θ0) +P ′
λn

(θ0)(θ− θ0) +P ′′
λn

(θ̃)
(θ − θ0)

2

2
(54)

where θ̃ = θ0 + γ(θ − θ0) for some γ ∈ [0, 1]. Setting θ0 = |Ω0ij |
and θ = |Ω0ij + ∆ij |, and noting that P ′′

λn
(θ̃) ≤ 0 for any θ̃ > 0,

and |Ω0ij | > 0 for {i, j} ∈ E0, we have

Pλn
(|Ω0ij +∆ij |) ≤ Pλn

(|Ω0ij |)
+ P ′

λn
(|Ω0ij |)(|Ω0ij +∆ij | − |Ω0ij |) . (55)

Therefore

|L3| ≤
∑

{i,j}∈E0

∣
∣P ′

λn
(|Ω0ij |)

∣
∣ ·
∣
∣|Ω0ij +∆ij | − |Ω0ij |

∣
∣

≤
∑

{i,j}∈E0

∣
∣P ′

λn
(|Ω0ij |)

∣
∣ ·
∣
∣∆ij

∣
∣ = 0 for n ≥ N3 , (56)

where we have used the properties of P ′
λ(θ) for θ > 0.

Using the bounds on A1 = L1 + L2, A2, and A3 = L3 + L4,
with probability > 1− 1/pτ−2

n , we have

G(∆) ≥ −|L1|+ L4 − |L2| − |L3| + ‖∆‖2F
(
β−1
min +Mrn

)−2

≥− 2C0 ‖∆‖F
√

(pn + sn0) ln(pn)

n
+ ‖∆‖2F

(
β−1
min +Mrn

)−2

(57)

where we have used the fact that L4 − |L2| > 0, and |L3| = 0 for

large n. Using ‖∆‖F = Mrn = M
√

(pn + sn0) ln(pn)/n,

G(∆) ≥ ‖∆‖2F
[
(
β−1
min +Mrn

)−2 − 2
C0

M

]

. (58)

For n ≥ N2, if we pick M as specified in (14), we obtain Mrn ≤
MrN2

≤ α1/βmin. It then follows that

(
β−1
min +Mrn

)−2 ≥ β2
min

(1 + α1)2
=

(2 + α2)C0

M
> 2

C0

M
,

implying G(∆) > 0. This proves the desired result. �

5. PROOF OF THEOREM 2

As noted in Remark 1, the notation ∂Ω̂λik
L(X;Ω,Ω∗) denotes the

partial subdifferential of Ls(X;Ω,Ω∗) at the (i, k)th component

Ωλik = Ω̂λik. When the corresponding partial derivative exists,
we have

∂Ω̂λik
Ls(X;Ω,Ω∗) =

∂Ls(X;Ω,Ω∗)

∂Ω∗
ik

∣
∣
∣
Ω=Ω̂λ

.

Using (4), (6) and (7), we have

∂Ω̂λik
Ls(X;Ω,Ω∗) = Σ̂∗

ki − [Ω̂−∗
λ ]ki +

t

2
P ′
λn

(|Ω̂λik|)

= Σ̂ik − Σ̌λik +
t

2
P ′
λn

(|Ω̂λik|) where Σ̌λ := Ω̂
−1
λ (59)

and t is given by

t =

{
Ω̂λik/|Ω̂λik| =: sign(Ω̂λik) if Ω̂λik 6= 0

∈ {u : |u| ≤ 1, u ∈ C} if Ω̂λik = 0 .
(60)



To prove the desired result, the term
P ′

λn
(|Ω̂λik|)

2
Ω̂λik/|Ω̂λik|

on the right-side of (59) must dominate the term Σ̂ik − Σ̌λik when-
ever true value Ω0ij = 0. Note that for Ωik in a small neigh-
borhood of 0 (but excluding 0), Pλn

(|Ωik|) = λn|Ωik| > 0 and
P ′
λn

(|Ωik|) = λn > 0. Then sign of the left-side of (59) is the

same as sign(Ω̂λik) with probability tending to one, which yields
the desired result, as is shown in what follows. At the optimal so-
lution, by the KKT conditions, one must have (59) equal to zero.

Suppose that for (i, k) ∈ Ē0, one has Ω̂ik 6= 0 when Σ̂ik − Σ̌λik +
P ′

λn
(|Ω̂λik|)

2
Ω̂λik/|Ω̂λik| = 0. Therefore, with Ω̂λikR = Re(Ω̂λik)

and Ω̂λikI = Im(Ω̂λik), Ω̂ik 6= 0 implies that Ω̂λikR 6= 0 and/or

Ω̂λikI 6= 0. Suppose that Ω̂λikR < 0, implying that for some

δ > 0, Ω̂λikR + δ < 0, since, by Theorem 1, Ω̂λikR converges to

Ω0ikR = 0 for (i, j) ∈ Ē0. Since Ω̂λijR minimizes Ls(X;Ω,Ω∗),

and ∂Ω̂λik
Ls(X;Ω,Ω∗) = 1

2

(
∂Ls(X;Ω,Ω∗)

∂Ω̂λikR

+ j ∂Ls(X;Ω,Ω∗)

∂Ω̂λikI

)

=

0, we have I1 := ∂Ls(X;Ω,Ω∗)

∂(Ω̂λikR+δ)
> 0 for δ > 0. If λn (=P ′

λn
(|Ω̂λik|))

dominates Σ̂ik − Σ̌λik in (59), I1 > 0 implies that Ω̂λikR + δ >

0, contradicting the assumption that Ω̂λikR + δ < 0. Therefore,

Ω̂λikR ≮ 0. Now suppose that Ω̂λikR > 0, implying that for some

δ > 0, Ω̂λikR − δ > 0, since, by Theorem 1, Ω̂λikR converges to

Ω0ikR = 0 for (i, j) ∈ Ē0. Since Ω̂λijR minimizes Ls(X;Ω,Ω∗),

hence
∂Ls(X;Ω,Ω∗)

∂Ω̂λikR

= 0, we have I2 := ∂Ls(X;Ω,Ω∗)

∂(Ω̂λikR−δ)
< 0 for

δ > 0. If λn (=P ′
λn

(|Ω̂λik|)) dominates Σ̂ik − Σ̌λik in (59), I2 < 0

implies that Ω̂λikR − δ < 0, contradicting the assumption that

Ω̂λikR − δ > 0. Therefore, Ω̂λikR = 0 for (i, k) ∈ Ē0, with

probability tending to one. Similar arguments prove that Ω̂λikI = 0

for (i, k) ∈ Ē0, thus Ω̂λik = 0, with probability tending to one, if

λn dominates Σ̂ik − Σ̌λik.
It remains to investigate the conditions under which λn

(=P ′
λn

(|Ω̂λik|) for small nonzero Ω̂λik) dominates Σ̂ik − Σ̌λik.
Rewrite

Σ̂ik − Σ̌λik = Σ̂ik − Σ0ik
︸ ︷︷ ︸

=:I3

+Σ0ik − Σ̌λik
︸ ︷︷ ︸

=:I4

. (61)

By Lemma 2, maxi,k |I3| = OP

(√
ln(pn)

n

)

. By [4, Lemma 1],

|I4| ≤‖Σ0 − Σ̌λ‖ = ‖Σ̌λ(Ω̂λ −Ω0)Σ0‖
≤‖Σ̌λ‖ · ‖(Ω̂λ −Ω0)‖ · ‖Σ0‖ . (62)

By Assumption (A2), ‖Σ0‖ = O(1). Furthermore,

‖Σ̌λ‖ =‖Ω̂−1
λ ‖ = φ−1

min(Ω̂λ)

≤
(

φmin(Ω0) + φmin(Ω̂λ −Ω0)
)−1

=(OP (1) +OP (ηn))
−1 = OP (1) , (63)

where we have used the fact that since ‖Ω̂λ − Ω0‖ = OP (ηn),

φmin(Ω̂λ−Ω0) ≤ ‖Ω̂λ−Ω0‖ = OP (ηn), and by Weyl’s inequal-
ity, φmin(A+B) ≥ φmin(A) + φmin(B). Hence,

max
i,k

|I4| = OP

(

‖Ω̂λ −Ω0‖
)

= OP (ηn) . (64)

It then follows that

|Σ̂ik − Σ̌λik| ≤ |I3|+ |I4| = OP

(√

ln(pn)

n
+ ηn

)

. (65)

Suppose O(λn) =
√

ln(pn)/n + ηn. Then λn

2
Ω̂λik/|Ω̂λik|

(=
P ′

λn
(|Ω̂λik|)

2
Ω̂λik/|Ω̂λik|) dominates |Σ̂ik − Σ̌λik| with proba-

bility tending to one. This completes the proof. �

6. SIMULATION EXAMPLE

We use the example from [11] (similar to a real-valued example
in [7]), where Hermitian Ω̌ has ones on its diagonal. With probabil-
ity q, off-diagonal elements of Ω̌ are complex random variables with
independent real and imaginary parts, uniformly distributed over
{[−0.4 − 0.1] ∪ [0.1 0.4]}, otherwise zero (probability 1− q). Set
Ω = Ω̌ + βI with β picked to make Ω ≻ 0. With ΦΦ

H = Ω
−1,

we generate x = Φw with w ∼ Nc(0, 2I). As in [11], we pick
q = 0.05, leading to a sparse Erdös-Rényi graph with only about
5% of connected edges.

We used an AM (alternating minimization) method [15, 16]
based on variable splitting and penalty technique as detailed in
[10, 11], using two “passes”. As recommended in [4], since SCAD
penalty is nonconvex, in first pass use ℓ1 penalty (ρ > 0 is “large”)
to estimate Ω and W via

(Ω̂(1), Ŵ (1)) = arg min
Ω≻0,W

{

tr(Σ̂Ω+ Σ̂
∗
Ω

∗)− ln(|Ω|)

− ln(|Ω∗|) + λn ‖W−‖1 + ρ‖Ω−W ‖2F
}

. (66)

This estimator is globally convergent [10, 11]. Then linearize the

SCAD penalty around Ω = Ŵ (1) and solve the convex problem

(Ω̂(2), Ŵ (2)) = arg min
Ω≻0,W

{

tr(Σ̂Ω+ Σ̂
∗
Ω

∗)− ln(|Ω|)

− ln(|Ω∗|) +
∑

i 6=j

P ′
λn

(|Ŵ (1)
ij |)|Wij |+ ρ‖Ω−W ‖2F

}

. (67)

Convergence criterion was picked to be fractional improvement in
cost (66) (or (67)) ≤ 0.001 . Since the sparsity penalty is on W ,
it was used to compute the error norm and to determine the edges:
{i, j} ∈ E if |Wij | > 0, else {i, j} 6∈ E .

Simulation results based on 100 runs are shown in Fig. 1 for
p = 400, with varying n =50, 100, 200, 400, 800, 1600, 3200
and 6400. We compare the SCAD solution with the solution to ℓ1-
penalized cost (5). The performance metrics used are:

• The F1-score defined as

F1 = 2× precision × recall/(precision + recall) ,

precision = |Ê ∩ E0|/|Ê |, recall = |Ê ∩ E0|/|E0|, E0 and Ê
denote the true and estimated edge sets, respectively. If we
denote TP= true positive (fraction of connected edges picked
as connected), FP= false positive (fraction of missing edges
picked as connected) and FN= false negative, then alterna-
tively precision=TP/(TP+FP) and recall=TP/(TP+FN).

• Frobenius error norm = ‖Ŵ − Ω0‖F where Ŵ = Ŵ (2)

for SCAD penalty and Ŵ = Ŵ (1) for ℓ1 penalty. The error
norm is labeled as “SCAD error” or “lasso error” in Fig. 1.

For (5), we set λn = Cℓ

√
log(p)/n (as suggested by [11, The-

orem 1]), ρ = 2, and we set λn = Cs

√
(p+ s0) log(p)/n for

(66)-(67), with s0 = 0.05 p(p− 1), number of off-diagonal nonzero
elements in Ω0, (as suggested by Theorem 1), ρ = 2 and a = 3.7
in (7). Several values of Cℓ and Cs were tried. The results for three
choices for each of these two approaches are displayed in Fig. 1.



In particular, the tuning parameter λn for ℓ1-penalized cost (5) was
picked as λn = λℓ0

√
25 ln(p)/(n ln(100)); i.e., when n = 25 and

p = 100, λn = λℓ0, and for other values of n, p, it is scaled accord-
ing to [11, Theorem 1]. The results for three values λℓ0 = 0.3, 0.45,
0.6, (labeled “lasso, ... , λ = 0.3” or 0.45 or 0.6) are shown in Fig.
1. The tuning parameter λn for the proposed SCAD cost (66)-(67),
was picked as λn = λs0

√
25(p+ s0) ln(p)/(9900n ln(100)); i.e.,

when n = 25 and p = 100, λn = λs0, and for other values of n, p,
it is scaled according to (15) in Theorem 1. The results for three
values λs0 = 0.08, 0.10, 0.12, (labeled “SCAD, ... , λ = 0.08” or
0.10 or 0.12) are shown in Fig. 1.
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Fig. 1: Error norm ‖Ŵ − Ω0‖F and corresponding F1 values;

p =400. The λ values shown refer to λn when (p, n) = (100, 25);
for other values, it is scaled according to (15) for SCAD, and [11,

Theorem 1] for lasso; see the text.

It is seen that for comparable F1 values (a widely used measure
of classification performance), the SCAD-penalized approach yields
significantly smaller errors in estimating the inverse covariance ma-
trix compared to the ℓ1-penalized approach. For a given n, as penalty
parameter is increased, both F1-score and error norm increase, the
former is desirable while the latter is not. It is desirable to maximize
TP subject to FP ≤ some threshold value (say, 0.05). It is seen that
for comparable values of F1-score, the error norm in estimating Ω0

is significantly smaller for SCAD-penalized approach compared to
the lasso approach. We also see that as number of samples n in-
creases, F1-score values (generally) increase while the error norm
values decrease, as expected.

7. CONCLUSIONS

We considered the problem of inferring the conditional indepen-
dence graph of complex-valued, proper, multivariate Gaussian vec-
tors in high dimensions, which is tantamount to estimating the in-
verse covariance with more unknowns than the sample size. We
analyzed a SCAD-penalized log-likelihood based objective function
to establish consistency and sparsistency of a local estimator of the
inverse covariance in a neighborhood of the true value. An AM al-
gorithm based on variable splitting and penalty method was used
to optimize the objective function. A numerical examples was pre-
sented to illustrate the advantage of SCAD-penalty over the usual
ℓ1-penalty. However, SCAD penalty is nonconvex and therefore,
can yield only a local optimum, unlike lasso.
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