
2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21-24, 2020, ESPOO, FINLAND

GRAPH LEARNING FROM MULTI-ATTRIBUTE SMOOTH SIGNALS

Jitendra K. Tugnait

Department of Electrical & Computer Engineering
Auburn University, Auburn, AL 36849, USA

tugnajk@auburn.edu

ABSTRACT

We consider the problem of estimating the structure of an undi-
rected weighted graph underlying a set of smooth multi-attribute
signals. Most existing methods for graph estimation are based on
single-attribute models where one associates a scalar data variable
with each node of the graph, and the problem is to infer the graph
topology that captures the relationships between these variables. An
example is image graphs for grayscale texture images for model-
ing dependence of a pixel on neighboring pixels. In multi-attribute
graphical models, each node represents a vector, as for example, in
color image graphs where one has three variables (RGB color com-
ponents) per pixel node. In this paper, we extend the single attribute
approach of Kalofolias (2016) to multi-attribute data. An alternating
direction method of multipliers (ADMM) algorithm is presented to
optimize the objective function to infer the graph topology. Numer-
ical results based on synthetic as well as real data are presented.

Keywords: Sparse graph learning; graph estimation; graph Lapla-
cian; undirected graph; multi-attribute data.

1. INTRODUCTION

An undirected simple weighted graph is denoted G = (V, E ,W)
where V = {1, 2, · · · , p} = [p] is the set of p nodes, E ⊆ [p]× [p]
is the set of undirected edges, and W ∈ R

p×p stores the nonnega-
tive weights Wij ≥ 0 associated with the undirected edges. If there
is an edge between nodes i and j, then edge {i, j} ∈ E and Wij > 0.
If there is no edge between nodes i and j, then edge {i, j} 6∈ E and
Wij = 0. In a simple graph there are no self-loops or multiple edges,
so E consists of distinct pairs {i, j}, i 6= j and Wii = 0. In an undi-
rected graph, if {i, j} ∈ E , then {j, i} ∈ E . In graphical models of
data variables x1, x1, · · · , xp, (x = [x1 x2 · · · xp]

⊤), a weighted
graph G = (V, E ,W) (or unweighted G = (V, E)) with |V | = p
is used to capture relationships between the p variables xis [1–3]. If
{i, j} ∈ E , then xi and xj are related (similar or dependent) in some
sense, with higher Wij indicating stronger similarity or dependence.

Graphical models provide a powerful tool for analyzing mul-
tivariate data [1–3]. In a statistical graphical model, the con-
ditional statistical dependency structure among p random vari-
ables x1, x1, · · · , xp, is represented using an undirected graph
G = (V, E). The graph G then is a conditional independence graph
(CIG) where there is no edge between nodes i and j (i.e., {i, j} 6∈ E)
iff xi and xj are conditionally independent given the remaining p-2
variables xℓ, ℓ ∈ [p], ℓ 6= i, ℓ 6= j. In particular, Gaussian graph-
ical models (GGMs) are CIGs where x is multivariate Gaussian.
Suppose x has positive-definite covariance matrix Σ with inverse

This work was supported by NSF Grants CCF-1617610 and ECCS-
2040536.

covariance matrix Ω = Σ
−1. Then Ωij , the (i, j)-th element of Ω,

is zero iff xi and xj are conditionally independent. Such models
for x have been extensively studied. Given n samples of x, in
high-dimensional settings where p ≫ 1 and/or n is of the order of
p, one estimates Ω under some sparsity constraints; see [4–8]. In
these graphs each node represents a scalar random variable. In many
applications, there may be more than one random variable associ-
ated with a node. This class of graphical models has been called
multi-attribute graphical models in [9–11]. In [12, 13] image graphs
for grayscale texture images are inferred for modeling dependence
of a pixel on neighboring pixels; here one has one variable per pixel
node. These approaches do not apply to color images where one
has three variables (RGB color components) per pixel node. Image
graphs for color images is an example of multi-attribute graphical
models.

Graphical models for data variables have been inferred from
consideration other than statistical, depending upon the intended ap-
plication, nature of data and available prior information [1]. One
class of graphical models are based on signal smoothness [1,14,15].
Suppose we are given n samples {x(t)}nt=1 of the p data variables
x1, x1, · · · , xp, with x(t) = [x1(t) x2(t) · · · xp(t)]

⊤. Define the
p× n matrix

X =











x1(1) x1(2) · · · x1(n)
x2(1) x2(2) · · · x2(n)

...
...

. . .
...

xp(1) xp(2) · · · xp(n)











. (1)

A measure of smoothness of signal x(t) under which the signal takes
“similar” values at “neighboring” vertices of a given weighted undi-
rected graph, is the function [1, 14]

1

2

p
∑

i,j=1

Wij‖Xi. −Xj.‖
2
2 = tr(X⊤

LX) (2)

where Xi. denotes the ith row of X , L = D −W is the (combi-
natorial) graph Laplacian (matrix), and D is the diagonal weighted
degree matrix with Dii =

∑p

j=1 Wij . In the words of [14], if two
vectors Xi. and Xj. from a smooth set of signals are associated
with two well-connected nodes i and j (i.e., Wij is large), they are
expected to have a small distance ‖Xi.−Xj.‖2 so that tr(X⊤LX)
is small. In particular, if Xi. does not vary with i, tr(X⊤LX) = 0.
Based on the smoothness constraint, graph learning from data X

becomes equivalent to estimation of the graph Laplacian matrix L

[1, 14]. The approaches given in [1, 14, 15] apply only to single
attribute models. In this paper our objective is learn graphs from
multi-attribute data.

Graph Laplacian matrix has been extensively used for em-
bedding, manifold learning, clustering and semi-supervised learn-

978-1-7281-6662-9/20/$31.00 c©2020 IEEE

ing [16, 17]; see [1, 14] for further references to applications to
web page categorization with graph information, graph regular-
ized sparse coding, and matrix completion. Graph-based transform
coding and its potential application to signal/image compression is
discussed in [18] where learning of the graph Laplacian matrix plays
a key role.

Another set of approaches are based on statistical considerations
under the graph Laplacian constraint [1, 12, 13] where Laplacian L,
after regularization, plays the role of inverse covariance Ω; L is a
symmetric, nonnegative-definite matrix but with non-positive off-
diagonal entries. These approaches too apply only to single attribute
models (and when off-diagonal entries of inverse covariance are non-
positive).

In this paper, we extend the single attribute approach of Kalofo-
lias (2016) to multi-attribute data. An alternating direction method
of multipliers (ADMM) algorithm is presented to optimize the ob-
jective function to infer the graph topology. Numerical results based
on synthetic as well as real data are presented.

Notation: Given a matrix A ∈ R
p×p, tr(A) denotes its trace.

For a matrix B ∈ R
p×q , we define its Frobenius norm as ‖B‖F =

√

tr(B⊤B), and denote its (i, j)-th element by Bij . We also denote
Bij by [B]ij . Also, Bi. and B.j denote column vectors comprising
ith row and jth column, respectively, of B. Notation 1p denotes a
column of p ones, B+ = max(B, 0), B− = max(−B, 0) and
abs(B) = B+ +B−, where “max” operation is elementwise.

2. BACKGROUND AND SYSTEM MODELS

2.1. Statistical Models

The conditional dependency structure among p random variables
x1, x1, · · · , xp, components of x ∈ R

p, is represented using an
undirected graph G = (V, E), where V = [1, p] is the set of p nodes
corresponding to the p random variables xis, and E ⊆ V × V is the
set of undirected edges describing conditional dependencies among
xis. There is no edge between nodes i and j iff xi and xj are condi-
tionally independent given the remaining p-2 variables xℓ, ℓ ∈ [1, p],
ℓ 6= i, ℓ 6= j [3, p. 60]. We will call G a single-attribute graphical

model for x.
Now consider p jointly Gaussian random vectors zi ∈ R

m,
i = 1, 2, · · · , p. We associate zi with the ith node of an undi-
rected graph G = (V, E) where V = [1, p] is the set of p nodes,
and E ⊆ V × V is the set of edges that describe the conditional
dependencies among vectors {zi, i ∈ V }. As in the scalar case
(m = 1), there is no edge between node i and node j in G (i.e.,
{i, j} 6∈ E) iff random vectors zi and zj are conditionally inde-
pendent given all the remaining random vectors zℓ corresponding to
the remaining p − 2 nodes in V , i.e., for ℓ ∈ V \{j, k} [10, 11].
This is the multi-attribute Gaussian graphical model. The term
multi-attribute Gaussian graphical model has been used in [9] for
such models. In this paper, we will use a similar set-up under a
smoothness constraint, but without statistical considerations.

Define the mp-vector

x = [z⊤
1 z

⊤
2 · · · z⊤

p]⊤ ∈ R
mp . (3)

Suppose we have n i.i.d. observations x(t), t = 1, 2, · · · , n, of x.
The objective in statistical multi-attribute graph learning is to esti-
mate the inverse covariance matrix (E{xx⊤})−1 and to determine
if {i, j} ∈ E , given data {x(t)}nt=1.

Let us associate x with an “enlarged” graph Ḡ = (V̄ , Ē), where
V̄ = [1,mp] and Ē ⊆ V̄ × V̄ . Now [zj]ℓ, the ℓth component of
zj associated with node j of G = (V, E), is the random variable

xq = [x]q , where q = (j − 1)m + ℓ, j = 1, 2, · · · , p and ℓ =
1, 2, · · · ,m. The random variable xq is associated with node q of
Ḡ = (V̄ , Ē). Corresponding to the edge {j, k} ∈ E in the multi-
attribute G = (V, E), there are m2 edges {q, r} ∈ Ē specified by
q = (j−1)m+s and r = (k−1)m+t, where s = 1, 2, · · · ,m and
t = 1, 2, · · · ,m. The graph Ḡ = (V̄ , Ē) is a single-attribute graph.
In order for Ḡ to reflect the conditional independencies encoded in
G, we must have the equivalence

{j, k} 6∈ E ⇔ Ē(jk) ∩ Ē = ∅ , where (4)

Ē(jk) =
{

{q, r}
∣

∣ q = (j − 1)m+ s, r = (k − 1)m+ t,

s, t = 1, 2, · · · ,m
}

. (5)

Let Rxx = E{xx⊤} ≻ 0 and Ω = R−1
xx . Define the (j, k)th

m×m subblock Ω
(jk) of Ω as

[Ω(jk)]st = [Ω](j−1)m+s,(k−1)m+t , s, t = 1, 2, · · · ,m . (6)

It is established in [11, Sec. 2.1] that

Ω
(jk) = 0⇔ zj and zk are conditionally independent

⇔ {j, k} 6∈ E . (7)

Since Ω
(jk) = 0 is equivalent to [Ω]qr = 0 for every {q, r} ∈

Ē(jk), and since, by [2, Proposition 5.2], [Ω]qr = 0 iff xq and xr

are conditionally independent, hence, iff {q, r} 6∈ Ē , it follows that
equivalence (4) holds true.

2.2. Smoothness-Based Graph Learning: Single-Attribute Mod-

els

Here we review [14]. With reference to (1) and (2), it is established
in [14] that

tr(X⊤
LX) =

1

2
tr(WZ) (8)

where W ,Z ∈ R
p×p, Zij = ‖Xi. −Xj.‖

2
2 (9)

and W is the weight matrix (or the weighted adjacency matrix) with
L = D−W , W = W⊤, Wij ≥ 0 and Wii = 0 for 1 ≤ i, j ≤ p.
Instead of performing a penalized minimization of tr(X⊤LX) to
estimate L, [14] minimizes a penalized tr(WZ) w.r.t. W for graph
learning. Given W , one has unique L and the edge-set E . [14] shows
that minimization of tr(WZ) is computationally more efficient than
minimizing tr(X⊤LX) (as is done in [15]).

Define the spaceWp of all valid p× p weight matrices W

Wp =
{

W ∈ R
p×p : W = W

⊤, Wij ≥ 0,

Wii = 0, 1 ≤ i, j ≤ p
}

(10)

The following optimization problem is solved in [14]:

min
W∈Wp

tr(WZ) +
β

2
‖W ‖2F − α

p
∑

i=1

ln
(

p
∑

j=1

Wij

)

(11)

with parameters α > 0 and β ≥ 0 controlling the “shape” (num-
ber and weights) of the edges. In (11), tr(WZ) is the main cost
but minimizing it alone w.r.t. W is ill-posed (W = 0 minimizes
it). The sum

∑p

j=1 Wij is the node degree at node i and the term

ln
(

∑p

j=1 Wij

)

is the logarithmic barrier on the node degrees. This

implies that the degrees are forced to be positive but do not prevent
individual edges to vanish. It is noted in [14] that using only the
logarithmic barrier (β = 0) leads to very sparse graphs, and chang-
ing α only changes the scale of the solution, not the sparsity pattern.
Therefore, the term β

2
‖W ‖2F is added to control the graph sparsity:

larger values of β lead to more dense connectivity. In [14], optimiza-
tion is carried for fixed α = 1 (search over β to a get a desired edge
density) and then one scales W to obtain a desired ‖W ‖; we refer
the reader to [14] for further details.

In the next section we modify optimization problem (11) to ap-
ply to multi-attribute data using the enlarged graph Ḡ = (V̄ , Ē) dis-
cussed in Sec. 2.1.

3. GRAPH LEARNING FROM MULTI-ATTRIBUTE DATA

Consider (similar to Sec. 2.1, but without any probabilistic model-
ing) p data vector sequences zi(t) ∈ R

m, i = 1, 2, · · · , p, each
vector with n samples t = 1, 2, · · · , n. We associate zi with the
ith node of a weighted undirected graph G = (V, E ,W) where
V = [1, p], E ⊆ V × V and W ∈ Wp (defined in (10)). De-
fine x(t) ∈ R

mp based on zi(t)s, as in (3). Then we have n sam-
ples {x(t)}nt=1. Based on G = (V, E ,W), construct an enlarged
weighted undirected graph Ḡ = (V̄ , Ē , W̄) with W̄ ∈ Wmp, sim-
ilar to the enlarged graph (V̄ , Ē) based on (V, E) as discussed in
Sec. 2.1. Then the ℓth component [zj(t)]ℓ of the data vector zj(t)
associated with node j of graph G = (V, E ,W) is now the scalar
data variable xq(t) = [x(t)]q associated with node q of the enlarged
graph Ḡ = (V̄ , Ē , W̄), where q = (j − 1)m + ℓ, j = 1, 2, · · · , p
and ℓ = 1, 2, · · · ,m. Corresponding to each edge {j, k} in G, there
are m2 edges in Ḡ (see (4) and (5)).

Define the mp× n matrix

X̄ =











x1(1) x1(2) · · · x1(n)
x2(1) x2(2) · · · x2(n)

...
...

. . .
...

xmp(1) xmp(2) · · · xmp(n)











(12)

=











z1(1) z1(2) · · · z1(n)
z2(1) z2(2) · · · z2(n)

...
...

. . .
...

zp(1) zp(2) · · · zp(n)











. (13)

Define Z̄ ∈ R
(mp)×(mp) with (i, j)th elements Z̄ij = ‖X̄i. −

X̄j.‖
2
2. Following (8) and (9), and using the graph Ḡ = (V̄ , Ē , W̄),

consider

tr(X̄⊤
L̄X̄) =

1

2
tr(W̄ Z̄) =

1

2

mp
∑

i=1

mp
∑

j=1

W̄ijZ̄ij (14)

=
1

2

p
∑

i=1

p
∑

j=1

[

m
∑

s=1

m
∑

k=1

W̄qrZ̄qr

]

,
q = (i− 1)m+ s,
r = (j − 1)m+ k .

(15)

Now observe that the underlying graph for multi-attribute data is
a p-node graph G, not the enlarged mp-node graph Ḡ, implying that
the strength of edge {i, j} between nodes i and j of G which is Wij ,
should be the strength of connection of all m2 edges between nodes
q = (i − 1)m + s and r = (j − 1)m + k, (s, k = 1, 2, · · · ,m),
of the enlarged graph Ḡ, corresponding to nodes i and j of G. We
enforce this by requiring that for any {i, j},

W̄qr = Wij for
q = (i− 1)m+ s, r = (j − 1)m+ k,
s, k = 1, 2, · · · ,m .

(16)

Then we have

tr(W̄ Z̄) =

p
∑

i=1

p
∑

j=1

Wij

[

m
∑

s=1

m
∑

k=1

Z̄qr

]

= tr(WZ̃) (17)

where Z̃ ∈ R
p×p with (i, j)th component

Z̃ij =
m
∑

s,k=1

‖X̄q. − X̄r.‖
2
2 =

m
∑

s,k=1

(

1

n

n
∑

t=1

(xq(t)− xr(t))
2

)

(18)
and q, r are as in (16).

Following [14], we have the regularized/penalized optimization
problem (as in (11))

min
W∈Wp

tr(WZ̃) +
β

2
‖W ‖2F − α

p
∑

i=1

ln
(

p
∑

j=1

Wij

)

(19)

We provide a solution in Sec. 3.1.

3.1. Optimization

We will use the alternating direction method of multipliers (ADMM)
approach [20] with variable splitting. The solution of [14] is differ-
ent. Using variable splitting, consider (recall Wii = 0)

min
W∈Wp,θ∈Rp

{

tr(WZ̃)− α

p
∑

i=1

ln(θi) +
β

2
‖W ‖2F

}

(20)

subject to θi =

p
∑

j=1,j 6=i

Wij , i = 1, 2, · · · , p. (21)

The scaled augmented Lagrangian for this problem is [20] (1p is a
column of all ones)

Lρ = tr(WZ̃)− α

p
∑

i=1

ln(θi) +
β

2
‖W ‖2F +

ρ

2
‖θ −W1p + u‖22

(22)

where u ∈ R
p is the dual variable, and ρ > 0 is the penalty pa-

rameter. Given the results θ(k),W (k),u(k) of the kth iteration, in
the (k+ 1)th iteration, an ADMM algorithm executes the following
three updates:

(a) With La(W) := tr(WZ̃) + β

2
‖W ‖2F + ρ

2
‖θ(k) −W1p +

u(k)‖22, let W (k+1) ← argminW∈Wp La(W) .

(b) With Lb(θ) := −α
∑p

i=1 ln(θi) +
ρ

2
‖θ − W (k+1)

1p +

u(k)‖22, let θ(k+1) ← argminθ Lb(θ) .

(c) u(k+1) ← u(k) + θ(k+1) −W (k+1)
1p .

In update (a) above, cost La(W) is separable row-wise in W :
La(W) =

∑p

i=1 Lai(W̌i.) where W̌i. ∈ R
p−1 is obtained from

Wi. by deleting its ith row (recall that Wii = 0), similarly,
ˇ̃
Zi. ∈

R
p−1 is obtained from Z̃i. by deleting its ith row, and

Lai(W̌i.) = W̌
⊤
i.

ˇ̃
Zi. +

β

2
W̌

⊤
i. W̌i. +

ρ

2
(θ

(k)
i − W̌

⊤
i. 1p−1 + u

(k)
i)2

= W̌
⊤
i.

(

β

2
+

ρ

2
1p−11

⊤
p−1

)

W̌i. +
ρ

2
(θ

(k)
i − u

(k)
i)2

+
(

ˇ̃
Zi. − ρ(θ

(k)
i + u

(k)
i)1p−1

)⊤

W̌i. (23)

We need to minimize Lai(W̌i.) w.r.t. W̌i. subject to Wij ≥ 0. An
iterative solution is given in [19]. [19] minimizes (1/2)y⊤Qy −
y⊤h w.r.t. y ∈ R

q subject to yℓ ≥ 0 ∀ℓ, where Q is symmetric,
positive-definite and h is arbitrary. The monotonically convergent
iterative solution of [19] is

yℓ ← yℓ

[

2[Q−y]ℓ + h+
ℓ + δ

[abs(Q)y]ℓ + h−
ℓ + δ

]

(24)

where 0 < δ ≪ 1. In our problem of minimization of Lai(W̌i.)
w.r.t. W̌i. subject to Wij ≥ 0, we have Q = β

2
+ ρ

2
1p−11

⊤
p−1

independent of row i of W , and h = ˇ̃
Zi. − ρ(θ

(k)
i + u

(k)
i)1p−1

which depends upon row i of W . Since all elements of Q for our
problem are positive, Q− = 0 and Q+ = Q.

Now we turn to update (b). Notice that Lb(θ) is completely sep-
arable w.r.t. each component of θ: Lb(θ) =

∑p

i=1 Lbi(θi), where

Lbi(θi) = −α ln(θi) + (ρ/2)(θi −W
(k+1)
i. 1p + u

(k)
i)2. Setting

0 =
∂Lbi(θi)

∂θi
= −

α

θi
+ ρ (θi − ci)

where ci =W
(k+1)
i. 1p − u

(k)
i . (25)

This leads to a quadratic equation in θi. Since the ith node degree θi
must be positive, we take

θ
(k+1)
i =

1

2

(

ci +
√

ci + (4α/ρ)
)

(26)

where ci is specified in (25).

Finally, update (c) follows from [20].

We initialize as u(0) = 0, W (0) = 0 and θ = 1p. For all
numerical results presented later, we used ρ = 2 and set α = 1.

As noted in [14], the objective function (19) is proper, convex,
and lower-semicontinuous. Hence the ADMM algorithm is guar-
anteed to converge [20, Sec. 3.2], in the sense that we have primal
residual convergence to 0, dual residual convergence to 0, and ob-
jective function convergence to the optimal value.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1
-s

c
o
re

 (
F

1
)

0

50

100

150

200

250

300

350

H
a
m

m
in

g
 d

is
ta

n
c
e
 (

H
D

)

p=60, MA: F
1

p=100, MA: F
1

p=200, MA: F
1

p=60, SA: F
1

p=100, SA: F
1

p=200, SA: F
1

p=60, MA: HD

p=100, MA: HD

p=200, MA: HD

p=60, SA: HD

p=100, SA: HD

p=200, SA: HD

Fig. 1: F1-score and Hamming distance for the chain graph with
m = 3 attributes per node. The label MA refers to multi-attribute
data, and SA refers to single attribute data using just the first attribute
at each node. α = 1, and β = 10 for MA graph learning and β = 1
for SA graph learning.

4. NUMERICAL EXAMPLES

4.1. Synthetic Data

We consider a chain graph (an example in [11]) where p nodes are
connected in succession. We use a probabilistic/statistical model
to generate multi-attribute data, but apply signal smoothness-based
graph learning. Using the notation of (6), we set [Ω(jk)]st =

−0.5|s−t| for j = k = 1, · · · , p and s 6= t = 1, · · · ,m (off-
diagonal terms are non-positive). For j 6= k, if the two nodes are
not connected, we have Ω

(jk) = 0, and if nodes j and k are con-
nected in the chain graph, then [Ω(jk)]st = −0.2 if s 6= t, and

[Ω(jk)]st = 0 if s = t. Then we fill in the diagonal terms of Ω
to make it a valid graph Laplacian. This is simulation example 3
in [11, Sec. 5.1] except that off-diagonal terms of Ω are non-positive.
Now add γI to Ω with γ picked to make minimum eigenvalue of
Ω + γI equal to 0.001. With ΦΦ

⊤ = (Ω+ γI)−1
, we generate

x = Φw with w ∈ R
mp as Gaussian w ∼ N (0, I). We gener-

ate n i.i.d. observations from x, with m = 3, p ∈ {60, 100, 200},
n ∈ {50, 100, 200, 400, 1000, 2000}. The true value of |E| = p−1.

10-8 10-6 10-4 10-2 100 102
90

100

110

120

130

140

150

c
o
s
t

texture

rotated texture

Fig. 2: Cross-validation cost (19) versus β, for β selection for image
graph fitting

Simulation results based on 100 runs are shown in Fig. 1. We
applied our proposed multi-attribute (labeled MA in figures) graph
learning approach to estimate W , hence the edgeset E , along with
the restriction of this approach to a single attribute (labeled SA in
figures; we used only the first attribute at each node, results for other
attributes were very similar). We fixed α = 1 and selected β over a
grid of values to maximize the F1-score∗. The selected values were
β = 10 for multi-attribute and β = 1 single attribute; the results are
not very sensitive to the choice of β. Fig. 1 shows the F1-score and
the Hamming distance between the true and estimated edge sets E0
and Ê , respectively. It is seen that multi-attribute based graph learn-
ing is significantly better than single attribute graph learning, since
for same number of nodes and sample size, the former yields signif-
icantly higher F1-score and significantly lower Hamming distance.
As sample size n increases, the Hamming distance tends to zero for
multi-attribute based graph learning, indicating that the the edgeset
E is learned perfectly.

Since computation the F1-score requires knowledge of true E0,
in practice, one would select β via cross-validation or some infor-

∗It is defined as F1 = 2× precision × recall/(precision + recall) where

precision = |Ê ∩ E0|/|Ê|, recall = |Ê ∩ E0|/|E0|, and E0 and Ê denote the
true and estimated edge sets, respectively.

mation criterion-based approach. This is illustrated for the real data
set later.

Algorithm 1 ADMM Algorithm for Multi-Attribute Graph learning

Input: Number of samples n, number of nodes p, number of at-
tributes m, data {x(t)}nt=1, x ∈ R

mp, regularization parameters α
and β, ADMM penalty parameter ρ, and δ = 10−16.
Output: estimated weight matrix W and edge-set E

1: Calculate the (squared) distance matrix Z̃ ∈ R
p×p with (i, j)th

component Z̃ij =
∑m

s,k=1

(

1
n

∑n

t=1(xq(t)− xr(t))
2
)

, where

q = (i− 1)m+ s and r = (j − 1)m+ k.
2: Q = β

2
+ ρ

2
1p−11

⊤
p−1, P = Q−1.

3: Initialize: u(0) = 0 ∈ R
p, W (0) = 0 ∈ R

p×p and θ = 1p=
column of p ones.

4: for k = 0, 1, 2, . . ., until convergence, do

5: for i = 1, 2, · · · , p do

6: Define
ˇ̃
Zi. ∈ R

p−1 from Z̃i. by deleting its ith row:

ˇ̃
Zij =

{

Z̃ij , 1 ≤ j ≤ i− 1

Z̃i(j+1), i ≤ j ≤ p− 1 .

7: h = ˇ̃
Zi. − ρ(θ

(k)
i + u

(k)
i)1p−1

8: y(0) = max(Ph,0) ∈ R
p−1

9: for q = 1, 2, . . ., until convergence, do

10: for ℓ = 1, 2, · · · , p− 1 do

11: y
(q)
ℓ = y

(q−1)
ℓ

[

h
+
ℓ
+δ

[Qy(q−1)]ℓ+h
−

ℓ
+δ

]

12: end for

13: end for

14: Update ith row of W as

W
(k+1)
ij =







yj , 1 ≤ j ≤ i− 1
0, j = i
yj−1, i+ 1 ≤ j ≤ p .

15: end for

16: for i = 1, 2, · · · , p do

17: ci = W
(k+1)
i. 1p − u

(k)
i

18: θ
(k+1)
i = 1

2

(

ci +
√

ci + (4α/ρ)
)

19: end for

20: u(k+1) ← u(k) + θ(k+1) −W (k+1)
1p

21: end for

4.2. Real Data Example: Graphs of Color Texture Images

Following [12, 13] where grayscale texture images from a USC
database are considered, we now consider color textures from the
Amsterdam Library of Textures (ALOT) [21]. We use two versions
of the image 108 from [21], c111.png and c111r60.png (400 × 400
patches shown in Figs. 3 and 4), photographed from different angles.
The 400× 400 patches were partitioned into non-overlapping 8× 8
blocks, vectorized into 64-pixel columns, 3 colors associated with
each pixel. Thus, we have m = 3, p = 64 and n = 2500. The
data were centered and mean-square value normalized to one before
processing. To select β (α=1 throughout), we use cross-validation
with criterion Ccv= the objective function (19), as follows. We ran-
dom sample 70% of n (=2500) samples as training data for model
fitting and use the remaining 30% samples as test data to compute
Ccv . We average Ccv over 30 random samples for β values over a
grid; the value of β is selected to minimize average Ccv . With the

selected β̂, we perform model fitting over the entire dataset (with
α = 1). The average cost Ccv for graph learning for the two color
images displayed in Fig. 3(a) and Fig. 4(a), are shown in Fig. 2.

For both textures, we get β̂ = 0.1. These values were used for
final graph model fitting. We take the final estimated W resulting
from (multi-attribute) ADMM algorithm as edge weights, normalize
maximum value to one, and show the resulting graphs (arranged
as 8 × 8 nodes) with colored edge weights and link thickness also
reflecting edge weight. Compare Figs. 3(a) and 3(b), and Figs. 4(a)
and 4(b), respectively, to note that the strong link weights follow the
texture orientation: vertical in Figs. 3(a) and 3(b), and horizontal in
Figs. 4(a) and 4(b). This provides significant “visual” support for
the fitted graphs.

(a) a texture (from [21])

(b) image graph of (a): number of edges =458

Fig. 3: Color texture graph example

5. CONCLUSIONS

The problem of how to learn the graph combinatorial Laplacian ma-
trix defining the structure of an undirected weighted graph under-
lying a set of smooth multi-attribute signals, was addressed. We
extended the single attribute approach of Kalofolias (2016) to multi-
attribute data. In a typical single-attribute graph modeling problem,
one associates a scalar data variable with each node of the graph,
whereas in multi-attribute graphical models, each node represents a

vector. Image graphs for grayscale images for modeling dependence
of a pixel on neighboring pixels is an example of single-attribute
graph modeling. These approaches do not apply to color images
where one has three variables (RGB color components) per pixel
node. Image graphs for color images is an example of multi-attribute
graphical models. An ADMM algorithm was presented to optimize
the objective function to infer the graph topology. We tested the
proposed approach on synthetic as well as real data (color image
graphs).

6. REFERENCES

[1] X. Dong, D. Thanou, M. Rabbat and P. Frossard, “Learning
graphs from data,” IEEE Signal Process. Mag., pp. 44-63,
May 2019.

[2] S.L. Lauritzen, Graphical models. Oxford, UK: Oxford Univ.
Press, 1996.

[3] J. Whittaker, Graphical Models in Applied Multivariate

Statistics. New York: Wiley, 1990.

[4] P. Danaher, P. Wang and D.M. Witten, “The joint graphi-
cal lasso for inverse covariance estimation across multiple
classes,” J. Royal Statistical Society, Series B (Methodolog-

ical), vol. 76, pp. 373-397, 2014.

[5] N. Meinshausen and P. Bühlmann, “High-dimensional graphs
and variable selection with the Lasso,” Ann. Statist., vol. 34,
no. 3, pp. 1436-1462, 2006.

[6] K. Mohan, P. London, M. Fazel, D. Witten and S.I. Lee,
“Node-based learning of multiple Gaussian graphical mod-
els,” J. Machine Learning Research, vol. 15, 2014.

[7] J. Friedman, T. Hastie and R. Tibshirani, “Sparse inverse co-
variance estimation with the graphical lasso,” Biostatistics,
vol. 9, no. 3, pp. 432-441, July 2008.

[8] O. Banerjee, L.E. Ghaoui and A. d’Aspremont, “Model selec-
tion through sparse maximum likelihood estimation for mul-
tivariate Gaussian or binary data,” J. Machine Learning Re-

search, vol. 9, pp. 485-516, 2008.

[9] J. Chiquet, G. Rigaill and M. Sundquist, “A multiattribute
Gaussian graphical model for inferring multiscale regulatory
networks: an application in breast cancer.” In: Sanguinetti G.,
Huynh-Thu V. (eds), Gene Regulatory Networks. Methods in

Molecular Biology, vol 1883. Humana Press, New York, NY,
2019.

[10] M. Kolar, H. Liu and E.P. Xing, “Markov network estimation
from multi-attribute data,” in Proc. 30th Intern. Conf. Ma-

chine Learning (ICML), Atlanta, GA, 2013.

[11] M. Kolar, H. Liu and E.P. Xing, “Graph estimation from
multi-attribute data,” J. Machine Learning Research, vol. 15,
pp. 1713-1750, 2014.

[12] E. Pavez and A. Ortega, “Generalized Laplacian precision
matrix estimation for graph signal processing,” in Proc. IEEE

ICASSP 2016, Shanghai, China, March 2016, pp. 6350-6354.

[13] E. Pavez, H.E. Egilmez and A. Ortega, “Learning graphs with
monotone topology properties and multiple connected com-
ponents,” IEEE Trans. Signal Process., vol. 66, no. 9, pp.
2399-2413, May 1, 2018.

[14] V. Kalofolias, “How to learn a graph from smooth signals,”
in Proc. 19th Intern. Conf. Artificial Intelligence & Statistics

(AISTATS), Cadiz, Spain, 2016.

[15] X. Dong, D. Thanou, P. Frossard and P. Vandergheynst
“Learning Laplacian matrix in smooth graph signal represen-
tations,” IEEE Trans. Signal Process., vol. 64, no. 23, pp.
6160-6173, Dec. 1, 2016.

[16] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spec-
tral techniques for embedding and clustering.,” in Proc. NIPS,
vol. 14, pp. 585-591, 2001.

[17] M. Belkin, P. Niyogi and V. Sindhwani “Manifold regulariza-
tion: A geometric framework for learning from labeled and
unlabeled examples,” J. Machine Learning Research, vol. 7,
pp. 2399-2434, 2006.

[18] G. Fracastoro, D. Thanou and P. Frossard, “Graph transform
optimization with application to image compression,” IEEE

Trans. Image Process., vol. 29, pp. 419-432, 2020.

[19] X. Xiao and D. Chen, “Multiplicative iteration for nonnega-
tive quadratic programming,” arXiv:1406.1008v1 [math.NA],
4 June 2014.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers,” Foundations and Trends

in Machine Learning, vol. 3, no. 1, pp. 1-122, 2010.

[21] Amsterdam Library of Textures (ALOT), http://aloi.
science.uva.nl/public_alot.

(a) “rotated” texture (from [21])

(b) image graph of (a): number of edges =640

Fig. 4: Another color texture graph example

