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Sparse-Group Lasso for Graph Learning From
Multi-Attribute Data

Jitendra K. Tugnait

Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of high-dimensional Gaussian vectors
from multi-attribute data. Most existing methods for graph esti-
mation are based on single-attribute models where one associates a
scalar random variable with each node. In multi-attribute graph-
ical models, each node represents a random vector. In this paper,
we present a sparse-group lasso based penalized log-likelihood
approach for graph learning from multi-attribute data. Existing
works on multi-attribute graphical modeling have considered only
group lasso penalty. The main objective of this paper is to explore
the use of sparse-group lasso for multi-attribute graph estimation.
An alternating direction method of multipliers (ADMM) algorithm
is presented to optimize the objective function to estimate the
inverse covariance matrix. Sufficient conditions for consistency and
sparsistency of the estimator are provided. Numerical results based
on synthetic as well as real data are presented.

Index Terms—Graph learning, inverse covariance estimation,
undirected graph, sparse-group lasso, multi-attribute data.

1. INTRODUCTION

RAPHICAL models provide a powerful tool for analyzing

multivariate data [1], [2]. A central concept is that of
conditional independence. In graphical models, graphs display
the conditional independence structure of the variables, and
learning the graph structure is equivalent to learning a factor-
ization of the joint probability distribution of these random
variables. In an undirected graphical model, the conditional
dependency structure among prandom variables z1, x1,- -, Tp,
(x =[x 20 -+~ xp]T),is represented using an undirected graph
G=(V,E), where V ={1,2,--- ,p} =[1,p] is the set of p
nodes corresponding to the p random variables x;s, and £ C
V x V is the set of undirected edges describing conditional
dependencies among the components of x. The graph G then
is a conditional independence graph (CIG) where there is no
edge between nodes ¢ and j (i.e., {,j} € &) iff z; and z; are
conditionally independent given the remaining p — 2 variable
[2, p. 60]. Graphical models based on gene expression data
have been used for data visualization and biological hypothesis
generation (i.e., exploratory data analysis) in [3]. Some other
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applications include classification and exploratory data analysis
in intensive care monitoring [4], financial time series [5], [6],
social networks [7], gene regulatory networks [8], [9], and
analysis of fMRI (functional magnetic resonance imaging) data
[10].

Gaussian graphical models (GGMs) are CIGs where « is mul-
tivariate Gaussian. Suppose x has positive-definite covariance
matrix ¥ with inverse covariance matrix £ = X~!. Then Qij,
the (4, j)-th element of €, is zero iff ; and z; are condition-
ally independent. Given n samples of z, in high-dimensional
(data-starved) settings, one estimates {2 under some sparsity
constraints; see [3], [11], [12], [13], [14]. In these graphs each
node represents a scalar random variable; we will call such
a graph G a single-attribute graphical model for x. In many
applications, there may be more than one random variable
associated with a node. This class of graphical models has been
called multi-attribute graphical models in [8], [9], [15] where a
focus is on application to biological regulatory networks. In [16],
[17] image graphs for grayscale texture images are inferred for
modeling dependence of a pixel on neighboring pixels; here one
has one variable per pixel node. These approaches do not apply to
color images where one has three variables (RGB — red, green,
blue — color components) per pixel node. Image graphs for
color images is an example of multi-attribute graphical models.

In this paper we consider p random vectors z; € R™, ¢ =
1,2,---,p, m > 2. We associate z; with the ¢th node of an
undirected graph G = (V,€) where V = [1,p],andE CV x V
is the set of edges that describe the conditional dependencies
among vectors {z;, ¢ € V' }. Asin the scalar case (m = 1), there
is no edge between node i and node j in G iff random vectors z;
and z; are conditionally independent given the remaining p — 2
vectors.

We now consider some specific cases where use of multi-
attribute models is relevant. Gene regulatory networks have been
considered in [8], [9], [15], [18], [19]. Antibodies are proteins,
and proteins are encoded by genes. Protein profiles and gene
profiles have been used in [8], [9], [15], [18], [19] for graph mod-
eling to investigate links between various proteins/genes based
on their two profiles using data from the US national cancer
institute NCI-60 database for 60 human tumor cell lines. In [15]
a network with 91 nodes (p = 91 genes), each with two (m=2)
attributes comprised of protein and gene profiles, is considered
based on n =60 samples (cell lines). Since these molecular
profiles are on the same set of biological samples, it is argued
in [15] (also by others) that the multi-attribute graphical model
“proposes a consensus version of the interactions at hand in the
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cell, and one which is hopefully more robust to noise,” compared
with single-attribute models based on protein profile alone or
gene profile alone. Similar conclusions are reached in [8], [9],
[18], [19]. In [16], [17] image graphs for grayscale images are
inferred for modeling dependence of a pixel on neighboring pix-
els; here one has one variable per pixel node. These approaches
do not apply to color images where one has three variables
(RGB color components) per pixel node. Image graphs for color
images is an example of multi-attribute graphical models with
a pixel represented by a graph node and three attributes (RGB
components) per pixel. Graph-based transform coding and its
potential application to signal/image compression is discussed
in [20] which is a potential application of image graphs; see also
[21], [22]. These contributions are restricted to single attribute
models. Connections among different industries in the US are
explored in [18] to see if the GDP (gross domestic product) of
one industry has some effect on that of other industries. Regional
GDP data available from U.S. Department of Commerce website
for 8 regions (New England, Mideast, Great Lakes, etc.) and
20 industries (utilities, construction, manufacturing, etc.) are
used resulting in a multi-attribute graph with p = 20 nodes
(industries) and m = 8 attributes (regions). Exploration in [18]
takes regions into consideration, since significant differences in
relations may exist because of regional characteristics, which
are not possible to capture using only national data. In another
application in [23], daily time series data from Hong Kong to
analyze air pollution of Hong Kong via single attribute graphical
models is considered, following the earlier work of [24] based on
dependent time series. The time series data of the daily average
for four pollutants over three monitoring stations are used in [23]
to construct a time series graph of p = 12 nodes with m =1
attribute. If the objective is to study conditional dependencies
between various pollutants, then a more appropriate model
would be a multi-attribute model with p = 4 pollutant nodes,
each with m = 3 attributes, reflecting measurements at the three
monitoring stations.

A. Related Work

For high-dimensional linear regression problems with
grouped covariates, it has been shown in [25], [26] that imposing
an additional within group level sparsity constraint can lead to
improved classification performance. This is the sparse-group
lasso approach. These papers are concerned with algorithm
development and do not offer any theoretical analysis, and
also do not consider graphical models, single or multi-attribute.
Multi-attribute graphical model learning has been considered in
[8], [9], [15] and [18]. In [8], [9] a group lasso based penalized
log-likelihood approach is investigated. A primal-dual optimiza-
tion algorithm is given and a theoretical analysis of true graph
recovery with high probability is provided following the single-
attribute results of [27]. In [15], [18] group lasso based penalized
pseudo-likelihood approaches are considered for multi-attribute
graph estimation. While [15] offers no theoretical analysis, in
[18] sufficient conditions for convergence in the Frobenius norm
of the inverse covariance estimator to the true value are presented
following the single-attribute results of [28]. Sparse-group lasso

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

penalty has also been used in [3] for joint graphical lasso in the
context of multiple classes. As noted in [8], [9], the approach of
[3] can be used for multi-attribute graphical model learning. An
alternating direction method of multipliers (ADMM) algorithm
is presented in [3], but there is no theoretical analysis regarding
graph estimator.

B. Our Contributions

In this paper, we present a sparse-group lasso based penalized
log-likelihood approach for graph learning from multi-attribute
data, whereas [8], [9], [15], [18] consider only group lasso
which is a special case of sparse-group lasso. Our penalty is
similar, but not identical, to the group graphical lasso penalty
in [3]. In [3], correlations between data from different classes
are ignored, whereas correlations between data from different
attributes are central to our approach. In group lasso, sparsity
penalty is imposed on all entries of {2 associated with a pair of
nodes, as a group. In sparse-group lasso, an additional sparsity
penalty is imposed on each off-diagonal €);;. An alternating
direction method of multipliers (ADMM) algorithm is presented
to optimize the objective function to estimate the inverse covari-
ance matrix. We provide sufficient conditions for convergence
in the Frobenius norm of the estimator to the true value, a rate
of convergence, and also consider sparsistency; [8], [9] provide
conditions only for consistent graph edge recovery, but not for
consistent inverse covariance matrix estimation, and [15] offers
no theoretical analysis. Related works of [25], [26] dealing with
sparse-group lasso do not offer any theoretical analysis (such as
our Theorems 1 and 2), and do not consider graphical models.

Our theoretical results follow the single-attribute method of
[29] for consistency and the method of [30] for sparsistency,
resulting in much simpler, and checkable, sufficient conditions,
whereas [8], [9] require an “irrepresentable condition” ([9, con-
dition (12)]) which is hard to verify. The sufficient conditions
for convergence given in [18] also require an “irrepresentable
(incoherence) condition” ([18, condition (C2)], [28, condition
(C2)]) which is hard to verify. We require no such conditions.

We test the proposed approach on synthetic as well as real
data. While the ground truth is unknown in the real data applica-
tions, requiring domain expert knowledge to interpret the results,
the synthetic data examples clearly demonstrate the advantages
of using sparse-group lasso instead of just group-lasso or just
lasso.

C. Outline and Notation

The rest of the paper is organized as follows. The system
model is presented in Sec. II where we describe the multi-
attribute graphical model with m random variables per node, and
also an associated larger single-attribute graph. A sparse-group
lasso based penalized log-likelihood approach for graph learning
from multi-attribute data is proposed in Sec. IIlI. An ADMM
algorithm is presented in Sec. III-A to optimize the objective
function to estimate the inverse covariance matrix and the edges
in the graph. In Sec. IV we analyze consistency (Theorem 1) and
sparsistency (Theorem 2) of the proposed approach. Numerical
results based on synthetic as well as real data are presented in
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Sec. V to illustrate the proposed approach. Proofs of Theorems
1 and 2 are given in Appendices A and B, respectively.

Given A € RP*P, we use @min(A), Pmax(A), |A[, tr(A) and
etr(A) to denote the minimum eigenvalue, maximum eigen-
value, determinant, trace, and exponential of trace of A, respec-
tively. For a matrix B € RP*9, we define the operator norm,
the Frobenius norm and the vectorized ¢; norm, respectively,

as | B = \/éumax(B' B). | Bllr = \/tu(B' B) and || B||, =
> |Bij| where Bjj is the (4, j)-th element of B. We also
denote B;; by [B];;. Given A € RP*?, AT = diag(A) is a di-
agonal matrix with the same diagonalas A, and A~ = A — A™
is A with all its diagonal elements set to zero. Symbol & denotes
the matrix Kronecker product and 1 4 is the indicator function,
equaling one if A is true, zero otherwise. For y,,, x, € R?,
Y, = @, means that y,, = O(x,) and x, = O(y,,), where
the latter means there exists 0 < M < oo such that ||z,| <
M]||y,,|| ¥n > 1. The notation y,, = Op(a,,) for random vec-
tors y,,, €, € RP means that for any ¢ > 0, there exists 0 <
M < oosuch that P(||y,|| < M||x,]) >1—ecVn > 1.

II. SYSTEM MODEL

Consider p jointly Gaussian random vectors z; € R™, i =
1,2,--- ,p. We associate z; with the ith node of an undirected
graph G = (V, &) where V' = [1, p] is the set of p nodes, and £ C
V' x V isthe set of edges that describe the conditional dependen-
cies among vectors {z;, ¢ € V'}. Asin the scalar case (m = 1),
there is no edge between node i and node jin G (i.e., {i,j} € &)
iff random vectors z; and z; are conditionally independent
given all the remaining random vectors z corresponding to the
remaining p — 2 nodes in V, i.e., for ¢ € V\{j, k} [8], [9]. This
is the multi-attribute Gaussian graphical model of interest in
this paper. The term multi-attribute Gaussian graphical model
has been used in [15] for such models. Define the mp-vector

T2l z,)]" €R™. (1)

T=[zy 29 -
Suppose we have n i.i.d. observations x(¢),t = 0,1,--- ,n — 1,
of zero-mean . Our objective is to estimate the inverse covari-
ance matrix (E{xx'})~! and to determine if edge {i,;} € &,
given data {z(t)}7-,.

Let us associate  with an “enlarged” graph G = (V, &),
where V = [1,mp]and € C V x V. Now [2;], the £th compo-
nent of z; associated with node j of G = (V, &), is the random
variable z, = [x],, where ¢ = (j —1)m+¢, j=1,2,--- ,p
and ¢ = 1,2, --- ,m. The random variable x,, is associated with
node g of G = (V, £). Corresponding to the edge {j, k} € £ in
the multi-attribute G = (V, £), there are m? edges {q,r} € £
specified by ¢ = (j — 1)m + s and r = (k — 1)m + ¢, where
s=1,2,--- ,mandt =1,2,--- ,m. The graph G = (V, &) is
a single-attribute graph. In order for G to reflect the conditional
independencies encoded in G, we must have the equivalence

{(jk}gEe EUMNE=9, )
where
£ = ({a.r}|a= (i~ Dm +s,7 = (k= Dm+t,
s,t=1,2,---,m} . 3)
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Let R, = E{xza'} - 0 and Q = R_!. Define the (j,k)th
m x m subblock V%) of € as
[Q(jk)]st = [Q} (j—1)ym+s,(k—1)m-+t » S, t= 17 27 e ,Mme (4)
It is established in [9, Sec. 2.1] that
QUR —0& 2 4 and z;, are conditionally independent

s {5k} €E. ©)
Since QUR = 0 is equivalent to [Q2],, = 0 for every {q,7} €
EUk) and since, by [1, Proposition 5.2], [Q]4 = 0 iff 2, and 2,
are conditionally independent, hence, iff {¢,r} & &, it follows
that equivalence (2) holds true.

III. SPARSE-GROUP GRAPHICAL LASSO

Given n samples {z(t)}7-] of zero-mean x, define
the sample covariance 3 = %Z?;ol x(t)x'(t). Let X =
[£(0) (1) --- x(n —1)]T € R®*("?) We have the log-
likelihood (up to some constants)

In fx(X) =1In(|Q]) — tr(XQ). (6)
To estimate sparse €2, consider minimization of a penalized
version of the negative log-likelihood

L(X;Q) = —In fx(X) + P(Q) ™

using a sparse-group lasso penalty [25], where

P
P(©) = a9l + (1 —a)A Y 1299)F,  ®)
i#k
A > 0 is a penalty (tuning) parameter used to control sparsity,
and 0 < o < 1 yields a convex combination of lasso and group
lasso penalties (o« = 0 gives the group-lasso fit while o =1
yields the lasso fit). In (8), an ¢; penalty term is applied to
each off-diagonal element of Q via a\||€27|; (lasso), and
to the off-block-diagonal group of m? terms in (4)—(5) via
(L—a)Adl, 1295 || & (group lasso). The function L (X ; 2)
is strictly convex in £ > 0.

A. Optimization

We will use the ADMM approach [31] with variable splitting.
The method is similar, but not identical, to a method in [3]. Using
variable splitting, consider

i {tr(EQ) —In(|92]) + P(W)} subjectto Q@ = W .
©)

The scaled augmented Lagrangian for this problem is [31]
Ly = 0(EQ) — () + P(W) + £ |Q - W + U
(10)
where U is the dual variable, and p > 0 is the penalty parameter.
Given the results Q(i), W(i), U of the ith iteration, in the
(¢ + 1)stiteration, an ADMM algorithm executes the following
three updates:
a) QU « argming L,(Q), L.(Q) := tr(2Q) —
n(|2) + 5@ - W@+ UD |3
b) WO < argminy Ly(W), Ly(W) := a)
Wl + (1= A 0, (W + 520+ —
W+ U2
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C) U(i+1) — U(l) +( l+1) W(l+1 )

A necessary and sufficient condition for a global optimum in
update (a) is that the gradient of L, (£2) w.r.t. ©2, given by (11),
vanishes, with 2 = Q' = 0:

L, (2 - ; »
‘967;]) =3-Q ' 4pQ@-WOD LUy, an
The solution to (11) follows from [31, Sec. 6.5]. Rewrite (11) as

s (W@ - U<i>) —0 - 0. (12)

0=

Let VDV " denote the eigen-decomposition of the symmetric
matrix 3 — p(W® — U®) where D is diagonal with real val-
ues on the diagonal, and VV' =V'V =1 Then QUFY =

VDV where D is the diagonal matrix with (th diagonal

element
- _DZ€+ \/D%g+4p

2p
Since eigenvalues ﬁu >0, QUL o 0, and as shown in [31,
Sec. 6.5] for a similar problem, it satisfies (11).

Now we turn to update (b). Notice that Ly(W) is
completely separable w.r.t. each m x m subblock w k)
(defined as in (4)). Therefore, we solve (W(jk))(”l) +—
arg minyy, ir) Jyjx (W), for subblock indexed by (4, k),
where

Toji(WUR) = aX (1j:kH(W(jk))_||1 + 1j¢k||W(jk)||1>

) . W\ (7F)
+Le(1 = A [WUR [+ 2 () —w U ) T

Note that sparse lasso penalty applies only to off-diagonal el-
ements of W, hence to off-diagonal elements of w9 and
all elements of W U*)| J # k. The group-lasso penalty applies
only to off-diagonal subblocks Wk g # k. Therefore, for

J=k=1,2---p(thatis, diagonal subblocks), we have
(J3)y(i+1 e
[(W(yj))(z+1)]st _ [(Q JJ )( .)}ss \ ifs=t
S([(QUD) D], 2R if s o ¢
where
S(a,B) == (1= B/lal)+a, (a)+ :=max(0,a),

denotes scalar soft thresholding. For j # k, following [25], [26],
the solution to update (b) is given by

[(W(jk))(iﬂ)]st

[(QURNYEHDT 0 if s =t

_ & 57gt
oS D)r ) |

where A = (QUR)(+1D) _ (7GR (@) and S(A, ) denotes el-
ementwise matrix soft thresholding, specified by [S (A, a)]s: :=
S([A]st, ). Finally, update (c) is U = U®) 4+ 0+ —
w D)y [31].

A pseudocode for the ADMM algorithm used in this paper is
given in Algorithm 1 where we use the stopping (convergence)
criterion following [31, Sec. 3.3.1] and varying penalty parame-
ter p following [31, Sec. 3.4.1]. The stopping criterion is based on
primal and dual residuals being small where, in our case, at (i +
1)st iteration, the primal residual is given by QU+t — w(+1)

~\S(AL 22 (1
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Algorithm 1: ADMM Algorithm for Sparse-Group Graph-

ical Lasso.

Input: Number of samples n, number of nodes p, number of attributes m,
data {z(t)}7_ 1, @ € R™P, regularization and penalty parameters A, o
and po, tolerances 7,3 and 7,..;, variable penalty factor x, maximum
number of iterations 7,,, 44

Output: estimated inverse covariance Q and edge set c‘f

1:  Calculate sample covariance 33 = Z x ' (t) (after
centering @(t)).
2: Initialize: U = W () = 0, Q) = (diag(%)) 1,
U,W e R(TVLP)X(’"L[))’ p(O) = po
3:  converged = false, i = 0
while converged = false and i < iy, do
5. Eigen-decompose 3 — p(1) (W () — (1) a5
- pOw® —u®)y = vDVT with diagonal matrix D
consisting of eigenvalues. Define diagonal matrix D with ¢th
diagonal element Dy = (—

D¢+ /D3y +4p) /(2p1).
Set QU+ = v DV,

6: Define soft thresholding scalar operator
S(a,B) :== (1 — /|a])+a where (a) 4+ := max(0, a). The
diagonal m x m subblocks of W are updated as

Q39 (i+1)
[(W(jj))(i'*'l)}st — I ) Jss
SQUD) D], 45 A)ifs#t

j=12,---,p, s,t =1,2,--- ,m. The off-diagonal m x m

subblocks of W are updated as ( denote

A = (QUR)Y D) _ (k) (@)
[(Q(jk))(iﬂ)]ss

where

»

lfs—t

ifs=t

1 (l—a))\
T eia 2l
plS(A, =8| 5
2 +
ifs#t

where S(A, «) denotes elementwise matrix soft thresholding,
specified by [S(A, a)]st := S([A]st, a) and

(WU G+, — S([A]st,%)

jFE=1,2,---|p, s, t=1,2,---
7: Dual update UGHD =y ® (Q(”l) w 1),
8: Check convergence. Set tolerances

Tpri = MPTaps + Trer max(| QD[ p, [WEFD | 1)

Tdual = MP Tabs + Trel HU(1+1) HF/p(l) .

Define d), = [0+ — WG+ | » and
dg = pD Wit —w@| 5.1t
(dp < Tpri) and (dg < Tqyai). set converged = true.
9: Update penalty parameter p :
' 200 if dy, > pdy
Pl = P /2 if dg > pdy
()
We also need to set U 1) = U(”l)/Z for d, > pdg and
UG = 2UC+Y for dg > pd,.
10: i1+ 1
11:  end while )
12: For j # k,if [WUR)||p > 0, assign edge {j, k} € &, else
{j, k} ¢ &. Inverse covariance estimate £2 = W.

otherwise .

and the dual residual by p® (W @+ — W) Convergence
criterion is met when the norms of these residuals are below
primary and dual tolerances 7,,; and 74,4, respectively; see
line 8 of Algorithm 1. In turn, 7,; and 74,4 are chosen using an
absolute and relative criterion as in line 8 of Algorithm 1 where
Tabs and 7,.¢; are user chosen absolute and relative tolerances,
respectively. As stated in [31, Sec. 3.4.1], one may use “possibly
different penalty parameters p(*) for each iteration, with the goal
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of improving the convergence in practice, as well as making
performance less dependent on the initial choice of the penalty
parameter.” Line 9 of Algorithm 1 follows typical choices given
in [31, Sec. 3.4.1]. For all numerical results presented later, we
used po = 2, = 10, and Typs = Trep = 1074

The objective function L(X;€), given by (7), is strictly
convex, and its domain is the set of strictly positive definite
matrices (because of — In(]€2]) and using the log-determinant
barrier function [27]). It is also closed, proper and lower semi-
continuous. Hence, for any fixed p > 0, the ADMM algorithm is
guaranteed to converge [31, Sec. 3.2], in the sense that we have
primal residual convergence to 0, dual residual convergence to
0, and objective function convergence to the optimal value. For
varying p, the convergence of ADMM has not been proven [31,
Sec. 3.4.1].

B. Parameter Tuning, Model Selection and Debiasing

Now we briefly discuss some practical aspects of applying the
ADMM algorithm, such as how to select the tuning parameters
A and a. This, in turn, dictates how many edges are connected in
the graph. Itis also well-known that lasso and related approaches
yield biased estimates of inverse covariance [32], [33]. To debias
(approximately), for real data, we will mimic the adaptive lasso
approach of [32] to propose an adaptive sparse-group lasso
approach.

1) Parameter Tuning and Model Selection: In practice, one
would select A and « via cross-validation or an information crite-
rion. Let 3 and & denote the estimated inverse covariance matrix
and estimated enlarged edge-set (defined in Sec. II), respectively,

and let \5 | denote the cardinality (# of nonzero elements) of &.
Noting that ¥ is symmetric with nonzero diagonal elements,

the number of free nonzero elements of 3 equal %|§ [+pm.
For synthetic and real data results presented later, we used the
Bayesian information criterion (BIC)
1 2
—|&
(51€1+om)

based on optimized — In fx (X) %(tr(ﬁ)ﬂ) —In|Q2|). The
pair (A, a) is selected to minimize BIC. Instead of searching over
a two-dimensional space (A, «), we first search over a grid of A
values with fixed &« = 0.1 (= ag), (somewhat arbitrary, o = 0
will make it group lasso). Then with )\ fixed at the selected value,
we search over a grid of « values over [0,1].

We search over A values in the range [\¢, \,| selected via the
following heuristic. For oo = a, we first find the smallest A,
labeled \,,,, for which we get a no-edge model (i.e., |¢‘f | =0).
To this end, searching over a grid of A\ values, we find the
largest A for which the corresponding |£| > 7, & 0, i.e, for
which we get close to a no-edge model; we take this value of A
as \gp,. We picked 74, = 0.002p(p — 1)/2 (0.2% of possible
p(p —1)/2 edges are connected). Then we set A, = g, /2
and Ay = \,,/10. The given choice of \,, precludes “extremely”
sparse models while that of A, precludes “very” dense models
(e.g., more than 50% connected edges). We search over a grid
of A values in the range [\¢, \,,] to minimize BIC.

BIC(\, ) = tr(ﬁ)ﬂ) — ln(|fl|) +

In(n)
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2) Debiasing: Adaptive Sparse-Group Lasso: Lasso and re-
lated approaches yield biased estimates [32], [33]. To approx-
imately debias, we will mimic the adaptive lasso approach of
[32] to propose an adaptive sparse-group lasso approach where
we replace P(£2) in (8) with P(€2) given below. Given estimates
Q, ;j obtained from the proposed non-adaptive sparse-group lasso
approach, we define

mp

P (k)
3 12|
k=1 (12|

P(Q) = ar L7 (1
i#j=1 |QU‘

Thus, we replace a\ with a\/|Q;;] and (1 — )\ with (1 —

a)\/ ||Q(M) || 7. Now run the ADMM algorithm using adaptive
weights (with “obvious” modifications) using the previously
selected values of A and a. Higher |Qij| values decrease the
penalty, while lower values increase the penalty. We will illus-
trate this approach later when exploring both synthetic and real
data networks.

Selection of A and «v is done via BIC, as in Sec. III-B1 for
sparse-group lasso, with the following exception. We select
Asm as before, using sparse-group lasso. Then for adaptive
sparse-group lasso (comprised of two steps of sparse-group lasso
followed by adaptive sparse-group lasso), we set A, = g, /6
and A\, = \,,/10. Notice that we now have the upper limit \,,
one-third of the upper limit for sparse-group lasso. This is based
on empirical evidence, and the following observation. Elements
of € estimated as zero in the first step of sparse-group lasso
will stay zero in the next adaptive step. Too high a value of
A in sparse-group lasso stage results in higher number of zero
elements in €2, which in adaptive version will remain as zeros.
Reduced )\ allows these elements to stay non-zero, thereby
allowing adaptive sparse-group lasso to “properly” process such
elements. Computation of BIC is done after the second, adaptive
step.

IV. THEORETICAL ANALYSIS

In this section we analyze consistency (Theorem 1) and spar-
sistency (Theorem 2) of the proposed approach. For consistency
we follow the method of [29] which deals with single attribute
models and lasso penalty in a high-dimensional setting where
we allow p to be a function of sample size n, denoted as p,.
High-dimensional setting allows consideration of the case where
number of unknowns mp(mp + 1)/2 in 2 is much greater than
(or comparable to) the sample size n [34], and as n increases,
Py, May increase too maintaining more unknowns than sample
size. We also allow A to be a function of sample size n, denoted
as \,.
Assume 3
Al) Define the trueedgeset& = {{i,j} : Q7 £ 0, i £ j}
where €2 denotes the true inverse covariance of . Assume
that card(&y) = [(&o)| < Sno-

A2) The minimum and maximum eigenvalues of 3y = €2 e
0 satisfy

0 < Bmin S ¢min(20) S ¢max(20) S ﬁmax < 0.

Here Bin and [nax are not functions of n.
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Let fl/\ = argming, o L(X; 2). Theorem 1, proved in Ap-
pendix A, establishes consistency of Q £\
Theorem 1. (Consistency): For T > 2, let
Cp =140 ml?x(Eokk)\/Q (7 4+ In(4)/ In(mpy,)) .

Given real numbers d; € (0,1), 3 > 0 and Cy > 0, let Cy =
vm+ 1+ Cy, and

(14)

M = (1+61)*(2Cs + 82)Co/ Bins (15)
- \/(mpn + mZiLnO) In(mp,,) —o(1), (16)
Ny =2(In(4) + 7 In(mp,,)) , (17)

) 515min
N, = trp < -
5 argmln{n Tn = (1+461)2(2C5 + 62)00} e

Suppose the regularization parameter \,, and « € [0, 1] satisfy

_ GG (P ) In(mpn) A
1+ a(m-—1) MSno n m

zcm/%. (19)

Then if the sample size n > max{N;, Na} and assumptions
(A1)-(A2) hold true, €2, satisfies

€2y, — Qol|r < Mr, (20)

with probability greater than 1 — 1/(mp, )™ 2. In terms of rate
of convergence, Q)\ —Qollp =Op(r,) o
Comments on Theorem 1.
® In Theorem 1, the number of attributes m are fixed (not
a function of sample size n) whereas number of nodes
p and hence, number of connected edges sy (s,0) of &
are allowed to be a function of n. For Theorem 1 to
hold, lim,, ,~ 7, = 0. Clearly the results hold if p is fixed,
independent of n.
® The bounds on A, in (19) could restrict maximum value
of « for larger m values, if C; is chosen to be too small.
Upperbound of (19) always works for a = 0 so long as
C1 > 1. 1If we pick C; > m, then the lower bound in (19)
is less than the upper bound for every a € [0, 1].
Sparsistency refers to the property that all parameters that are
zero are actually estimated as zero with probability tending to
one, as n — oo [30]. Theorem 2, stated below and proved in
Appendix B, deals with sparsistency of Q - Its proof follows
that of [30, Theorem 2] pertaining to lasso and a larger class of
penalty functions (including some non-convex functions).
Theorem 2. (Sparsistency): Suppose all assumptions and con-
ditions of Theorem 1 hold true so that (20) holds. In addition,
suppose that there exists a sequence 7,, — 0 such that ||Q A

Q|| = Op(ny) and /In(mpy,,)/n + n, = O(A,). Then with
probability tending to one, Aix = 0 for all {i,k} € £ and

OV = 0forall {j,0} € £5. o

Remark I: For both consistency and sparsistency to be sat-
isfied, the chosen regularization parameters \,’s need to be
compatible. Theorem 1 imposes upper and lower bounds on the

rate of \,, and Theorem 2 specifies a lower bound. Therefore,
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for both consistency and sparsistency to be satisfied, we must
have

ln(mpn)/n + 1 X >\n = m\/(l + pn) M

mMSno n
(21

Its consequences depend upon 7,, required to attain ||Q A\
Qol| = Op(n,). As in [30], we consider two cases, us-
ing the inequalities ||Al|r/\/mp, < [|A| < [|Al|F for A €
R (mpn)x(mpn)

a) Since ||&:2)\ — Q] < ||Q)\ — Ql||lp, in the worst
case where the two have the same order,
||Q>\ —-Q = OP(\/(mP71+m2577;,0)11‘(mPn)) so that
Ny =/ mzntm2en)intmen) - Then for (21) to hold true,
we should have 1 4 m+\/(pn/m)+sno=m\/1+(pn/(msn0)),
which holds only if 5,0 = O(1).

b) Since ||Q>\ —ﬂo||F/\/mg|\§z)\—nou, in the optimistic
case where the two have the same order, |2 A~ Qoll =

Op(\/a+ =m0y mmen) so that 1, =,/(1+2220) 1n m2o,

Then for (21) to hold true, we should have 1 +, /14220 <
m, [1+722—, which holds only if 5,0 = O(pp).

V. NUMERICAL EXAMPLES

We now present numerical results for both synthetic and real
data to illustrate the proposed approach. In synthetic data exam-
ples the ground truth is known and this allows for assessment
of the efficacy of various approaches. In real data examples
where the ground truth is unknown, our goal is visualization and
exploration of the dependency structures underlying the data,
similar to [3], [9], [16], [17].

Various aspects of single-attribute versus multi-attribute
graphical modeling have been well-covered in [8], [9], [15],
[18]. So we will focus more on sparse-group lasso versus group
lasso comparisons for multi-attribute graph estimation. For our
numerical examples, in Algorithm 1, we used py = 2, p = 10,
Tabs = Tre; = 107, with maximum number of iterations 4,44
set at 300 and 2000 for synthetic and real data, respectively.

A. Synthetic Data: Chain Graph

We consider a chain graph (an example in [9]) where p nodes
are connected in succession. In the upper triangular , using the
notation of (4), we set [Q(]k)]st =055 forj=k=1,---,p,
s,t =1,-+- ,m.For j # k, if the two nodes are not connected,

we have Q(j k) 0, and i_f nodes j and k are connected in

the chain graph, then [Q(Jk)]st is uniformly distributed over
(0.4, —0.1] U [0.1,0.4] if s # ¢, and [QYM],, =0 if s =1.
Now add vI to € with v picked to make minimum eigenvalue
of Q + ~I equal to 0.5. This is similar to simulation example
3 in [9, Sec. 5.1]. With ®®" = (Q 4 ~vI)~!, we generate
x = dw with w € R™ as Gaussian w ~ N(0, I). We gen-
erate n i.i.d. observations from x, with m = 3, p € {100,400},
n € {100, 200,400, 800}. The true value of edgeset cardinality
€] =2(p— 1).

Simulation results based on 100 runs are shown in Figs. 1-5
for the following approaches: Lasso (proposed ADMM with
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Chain graph
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Fig. 1.  F-score (mean £1 std) vs sample size n, for chain graph with m = 3.
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Fig. 2.  Error norm HQ)\ — Qo|lr/||0]||F (mean +1 std) vs sample size n,
for chain graph with m = 3.
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Fig.3.  Fj-score and Hamming distance (mean £1 std) vs «, for chain graph
with m = 3, p = 100, A,, as for Fig. 1. ({i,} and {4, 4} are counted as one
edge in computing the Hamming distance.)
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Fig. 4. True and estimated precision matrices, chain graph, p = 100, m = 3,

n = 200. Top left is the ground truth, top right the lasso estimate, bottom left
is group lasso estimate and bottom right is the sparse-group lasso estimate. All
entries that are exactly zero, are color coded as white.
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Fig. 5. Subsets of true and estimated precision matrices of Fig. 4, for ease of
viewing.

a = 1, labeled “L”), Group Lasso (proposed ADMM with o =
0, labeled “GL”), Sparse-Group Lasso (proposed ADMM with
« as a parameter, labeled “SGL”), adaptive sparse-group lasso
(as detailed in Sec. I1I-B2, labeled “AdpSGL”), and approaches
labeled “BIC-SGL” and “BIC-AdpSGL” which are approaches
SGL and AdpSGL for which the tuning parameters (), ) were
selected in each run via BIC as discussed in Sec. III-B. For
p = 100 and each value of sample size n, for approaches L, GL,
SGL and AdpSGL, we selected the tuning parameters (\, «) by
searching over a two-dimensional grid to maximize the F-score
(averaged over 100 runs), where Fi-score is defined as
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TABLE I
TIMINGS FOR ADMM ALGORITHM 1 FOR L (LABELED L(ADMM)), GL. AND
SGL, AND FOR QUIC ALGORITHM [35] (LABELED L(QUIC)) IMPLEMENTED IN

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

TABLE II
CHAIN GRAPH, p = 100: F;-SCORE AND TIMINGS BASED ON 100 RUNS FOR
THE APPROACHES OF KOLAR [9] AND DANAHER ET AL. [3], IMPLEMENTED IN

MATLAB, BASED ON 100 RUNS, CHAIN GRAPH MATLAB
time (s) for p = 100, m = 3 Kolar [9] ‘ Danaher et al. [3]
n L (ADMM) L (QUIC) GL SGL n F-score time (s) F1-score time (s)
100 | 0.735 £ 0.043 | 0.316 £0.050 | 1.16 £ 0.206 | 1.42 £0.433 100 | 0.466 + 0.079 | 205.0 +18.7 | 0.079 4+ 0.036 | 0.75 40.05
200 | 0.784 4 0.045 | 0.340 £0.040 | 1.44 £ 0.505 | 1.20 +0.218 200 | 0.802 & 0.056 | 46.0 £18.7 | 0.179 + 0.052 | 0.74 £0.07
400 | 0.925 + 0.061 | 0.378 £0.029 | 1.37 £ 0.098 | 1.31 40.083 400 | 0.941 + 0.033 23.5 £6.3 0.353 £0.065 | 0.72 40.02
800 | 0.974 £ 0.027 | 0.541 £0.019 | 1.38 4+ 0.033 | 1.32 £0.029 800 | 0.989 + 0.008 15.6 £3.9 0.532 +0.048 | 0.70 4+0.09
time (s) for p = 400, m = 3
n L (ADMM) L (QUIC) GL SGL
100 | 1628 £ 1.37 | 57.70 £2.60 | 18.09 £ 0.75 | 19.12 £0.71
200 | 1472+ 1.29 | 57.65 £1.78 | 18.05 + 1.75 | 17.61 £1.39 0.263, 0.417, 0.577, 0.914 for L(QUIC), respectively. As seen
400 13.82 + 1.29 61.69 +8.03 17.76 £ 2.20 | 17.40 £1.94 in Fie. 1 le size b 1 —'800). th
800 | 1531+ 1.79 | 85.32 +£9.64 | 18.69 & 2.60 | 18.72 +2.46 in Fig. 1, as sample size becomes large (e.g. n = 800), the
F-score of approach L becomes comparable to GL and SGL,
therefore, one may wish to use just lasso for multi-attribute
2 x precision x recall models using fast lasso solvers such as QUIC. We implemented
Fy = precision + recall QUIC in MATLAB. The main computational requirement in
A A ADMM is eigen-decomposition in line 5 of the ADMM algo-
.. |€ N & I€ N &l rithm whose complexity is O((mp)?). Therefore, comparing
precision = — , recall =
& 1o the results for p = 100 and p = 400, one would expect to see

and & and & denote the true and estimated edge sets, respec-
tively. In Fig. 1 we show the F;-score and in Fig. 2 we show the
normalized Frobenius error ”Q)\ — Qo #/]1Q0]| - We see that
GL, SGL and AdpSGL approaches are significantly superior to
L in terms of both F}j-score and Frobenius error, particularly at
smaller sample sizes. While AdpSGL is also significantly better
than GL, SGL is only slightly better than GL. For instance, at
n = 200 (p = 100), the F}-score is 0.6632, 0.7988, 0.8203 and
0.8817 for L, GL, SGL, and AdpSGL, respectively. For the prac-
tical case where the tuning parameters (A, «) have to be selected
based on data, the results for BIC-SGL and BIC-AdpSGL show
a loss in F-score which significantly narrows with increasing
n. For instance, for n = 100, 200,400, and p = 100, the Fj-
scores are 0.4962, 0.8429, 0.9544 for BIC-AdpSGL compared
to 0.6143, 0.8817, 0.9795 for AdpSGL.

For p = 400, we show results only for SGL. We first selected
(A, ) by searching over a two-dimensional grid to maximize the
F1-score, for p = 100 and n = 200. Based on 100 runs, the se-
lected values were A = 0.255 and o« = 0.05. Then we scale \ for
other values of p and n based on (19): \,, = C'y/In(mp)/n with

C = 0.255,/200/ In(300). Figs. 1 and 2 show the F-score and
Frobenius error , respectively, under the label “SGL, p=400.”
Table I shows some statistics regarding average timings (mean
+1 std) per run for the approaches L, GL and SGL using the
(A, @) values optimized for each n and p = 100 for the F}-score
(as discussed for Fig. 1) and A scaled for p = 400 using (19),
where the ADMM algorithm was implemented in MATLAB
R2020b, and run on a Window Home 10 operating system
with processor Intel(R) Core(TM) i5-6400T CPU @2.20 GHz
with 12 GB RAM. We also show timings for the fast Hessian-
based quadratic approximation approach of [35] for lasso (o =
1), called QUIC. For p =100 and n = 100, 200, 400, 800,
the Fi-scores were 0.425, 0.652, 0.799, 0.970 for LLADMM)
and 0.424, 0.652, 0.799, 0.970 for L(QUIC), respectively,
and for p=400 and n = 100, 200, 400, 800, the F3-
scores were 0.263, 0.417, 0.576, 0.914 for L(ADMM) and

an increase in timing of the order of approximately 64, but the
times displayed in Table I scale by less than 64. While the fast
algorithm QUIC is indeed faster than ADMM Algorithm 1 for
p = 100, it is not so for p = 400. We do note that the timing
comparisons between QUIC and ADMM given in [35] (for a
different example) are based on QUIC implemented in C++ with
aMATLAB interface but ADMM implemented in MATLAB and
without using variable penalty p.

Note that QUIC speeds up the algorithm by processing only a
subset of variables (“free variables” [35]) for Newton direction
computation at any given iteration, with the remaining variables
(“fixed variables”) in the precision matrix left unprocessed. The
number of free variables depends upon A, with higher X leading
to fewer free variables (sparser estimate), and vice versa. Nu-
merical results in [35, Table 2] show that if one selects optimum
A (the one that results “in the discovery of the correct number
of non-zeros” in the precision matrix [35, p. 2936]), then QUIC
converges the fastest. If the chosen A results in denser estimated
precision matrix, one has higher number of free variables, and
consequently larger time to convergence. Since, using (19), we
scaled A values for p = 400 from A values chosen to optimize
performance for p = 100, they are not necessarily optimal for
p =400 (because (19) and Theorem 1 hold for large n). For
optimal \’s one expects the timings to scale as O((mp)?), in
particular, by a factor of 64 from p = 100 to p = 400. But for
non-optimal A values this factor can be much larger, as seen in
[35, Table 2] for a different problem. Note that ADMM does
not make use of this partition of variables into free and fixed
sets, therefore, its timings are not as dependent upon choice of
A values. (Another fast gradient-based lasso solver is given in
[36] which we have not tested.)

Table II shows the results (F7-score and timings) of using the
approaches of [9] and [3] on chain graph with p = 100, m = 3.
For Kolar [9], we implemented the primal-dual algorithm given
therein with error tolerance of 10~* and selected the tuning
parameter A by searching over a grid of values to maximize
F-score. The approach of [3] is closer to our proposed ADMM
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solution, and was implemented similar to our Algorithm 1, and
we search for (), &) over a two-dimensional grid to maximize the
F1-score. Since for connected nodes j and k in the chain graph,
we pick [Q(jk)}st = 0if s = ¢, (an example in [9]), and since for
a given edge {7, k}, [3] exploits [Q2%)], only for s = ¢, and not
s # t (unlike ours and Kolar’s approach), one would not expect
[3] to do well for this example (as was also noted in [9]). The
F-scores of Kolar are quite close to the SGL results (for n =
100, 200, 400, 800, the F-scores are 0.466, 0.802,0.941, 0.989
for Kolar compared to 0.549, 0.780, 0.939, 0.989 for GL) but
timings are significantly higher (for n = 100,200,400, 800,
the timings are 205.0,46.0, 23.5,15.6s for Kolar compared to
1.163,1.442,1.372,1.375s for GL). The approach of [3] yields
quite poor F} scores, as seen in Table II.

Fig. 3 shows Fi-score vs « for p =100 and n = 100 or
400, with A values equal to the optimized values for SGL, as
used for the results of Fig. 1. For example, we have (\, o) =
(0.3253,0.05) for n =100 and (A, ) = (0.18,0.1) for n =
400. Parameter o = 0 leads to group-lasso while v =1 is
purely lasso. For n. = 100, the peak empirical F}-score is 0.551
at a = 0.05 (compared to 0.525 at o« = 0 (group lasso) and
0.115 at a = 1 (lasso)), and the minimum Hamming distance
between & and & is 72.3 at a = 0.15 (compared to 108.2 at
a =0 and 93.1 at « = 1). For n = 400, the peak empirical
Fi-score is 0.948 at o = 0.10 (compared to 0.893 at « = 0 and
0.676 at o = 1), and the minimum Hamming distance is 10.08
at « = 0.10 (compared to 23.5 at « = 0 and 47.7 at o = 1).
Fig. 3 highlights possible advantages of using sparse-group lasso
instead of just group-lasso or just lasso: performance could be
significantly improved by allowing « # 0 or 1; however, the
gains may not be as significant if one optimizes w.r.t. A for
each « separately. While group-lasso enforces multi-attribute
graph modeling explicitly, there are some gains to be had by
also incorporating sparsity within the groups if such is the case;
see also [25], [26].

For the chain graph, p = 100, m = 3, and n = 200, we show
the true (ground truth) and estimated (mp) x (mp) inverse
covariance matrices for a single run in Figs. 4 and 5 (the
latter is a subset of the former, scaled for ease of viewing),
using approaches lasso (L, o = 1), group lasso (GL, o = 0)
and sparse group lasso (SGL, a = 0.05), implemented with the
corresponding optimized tuning parameters as for Fig. 1. In these
figures all matrix entries that are exactly zero, are color coded
as white, other matrix elements follow the displayed colorbar
coding. Lasso does not impose group penalty, hence, for j = k,
estimate of the m x m subblock [Q(jk)]st, s, t=1,2,--- ,m,
yields nonzero diagonals (s = ¢) and several zero off-diagonals,
unlike GL and SGL. On the other hand, GL imposes only group
penalty which can lead to errors in “full” m x m subblocks
(notice the “thick” nonzero subblocks off the diagonal in Fig. 5)
whereas errors in SGL resultin “partial” subblocks since individ-
ual elements are also penalized. The F}-scores for the given run
were 0.690, 0.809 and 0.833 for L, GL and SGL, respectively.

B. Synthetic Data: Erdos-Rényi Graph

Now we consider an Erdos-Renyi graph where p nodes are
connected to each other with probability p.,. = 0.05. In the
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1 !

091

08F

0.7 F
o
o 06
o
P 05k —&—L, p=100
W —-%-—GL, p=100

3 — & —SGL, p=100
04L/ —%— AdpSGL, p=100
I — B —BIC-SGL, p=100
03¥ —<— BIC-AdpSGL, p=100
—-&-—SGL, p=400
02 ./
4
./'
0.1 . . . . . .
100 200 300 400 500 600 700 800
n
Fig. 6.  F-score (mean £1 std) vs sample size n, for Erdos-Renyi graph with

node connection probability of 0.05, m = 3.
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Fig. 7. Error norm HQ)\ — Qol|r/||20]| F (mean £1 std) vs sample size n,
for Erdos-Renyi graph with node connection probability of 0.05, m = 3.

upper triangular €2, using the notation of (4), we set [Q(jk)]st =
0.5/ for j=k=1,---,p, s,t=1,--- ,m. For j # k, if
the two nodes are not connected, we have Q(jk) =0, and if
nodes j and k are connected in the chain graph, then [Q2Y"],,
is uniformly distributed over [—0.4, —0.1] U [0.1,0.4] if s # ¢,
and [QY"],, = 0 if s = t. Now add I to € with ~ picked
to make minimum eigenvalue of € + I equal to 0.5. With
&P = (Q +~I)', we generate z = Pw with w € R™P as
Gaussian w ~ N(0, I'). We generate n i.i.d. observations from
x, with m = 3, p € {100,400}, n € {100, 200, 400,800}. We
then have JE{|E|} = 247.5 and 3990 for p = 100 and 400,
respectively.

Simulation results based on 100 runs are shown in Figs. 6, 7
and § for p = 100 and 400 nodes. Figs. 6, 7 and 8 are counterparts
of Figs. 1, 2 and 3 pertaining to the chain graph. For p = 400,
we show results only for SGL in Figs. 6 and 7, similar to Figs. 1
and 2, where we first selected the tuning parameters (A, &) by
searching over a two-dimensional grid to maximize the F-score
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Erdos-Renyi graph, p=100
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Fig. 8. Fj-score and Hamming dist. (mean +1 std) vs o for Erdos-Renyi
graph with node connection probability of 0.05, m = 3, p = 100, A, as for
Fig. 6.

for (p, n) = (400, 400), resulting in (A, &) = (0.08,0.05). Then
we scale A for other values of n based on (19): \,, = Cy00/+/1
with Cy00 = 0.08y/400 for p = 400. For p = 100, for each n,
the tuning parameters were selected by exhaustive search or via
BIC, exactly as for Figs. 1 and 2. We see that the performance or-
der among these approaches is as follows: AdpSGL is better than
SGL which is better than GL, and all the three approaches are
superior to L in terms of both the F-score and Frobenius error.
For the practical case where the tuning parameters (A, ) have
to be selected based on data, the results for BIC-SGL and BIC-
AdpSGL show a loss in Fj-score which significantly narrows
with increasing n. For instance, for n = 100, 200, 400, 800, and
p = 100, the F}-scores are 0.3366, 0.5603, 0.8483, 0.9810 for
BIC-AdpSGL compared to 0.4487, 0.7210, 0.9190, 0.9882 for
AdpSGL.

Fig. 8 shows F'-score vs o for p = 100 and n = 100 or 400,
with \,,’s as for Fig. 6, and Fig. 8 is the counterpart of Fig. 3
pertaining to the chain graph. The discussion pertaining to Fig. 3
applies here too.

C. Real Data Example: Gross Domestic Product (GDP)
Network

Asin [18], we consider regional GDP data obtained from the
U.S. Department of Commerce (DoC) website.! We picked data
for the following 20 different industries with DoC labels: (1) util-
ities (uti), (2) construction (cons) , (3) manufacturing (manu), (4)
Durable goods manufacturing (durable), (5) nondurable goods
manufacturing (nondu), (6) wholesale trade (wholesale), (7)
retail trade (retail), (8) transportation and warehousing (trans),
(9) information (info), (10) finance and insurance (finance),
(11) real estate and rental and leasing (real), (12) professional,
scientific and technical services (prof), (13) management of
companies and enterprises (manage), (14) administrative and
waste management services (admin), (15) educational services
(edu), (16) health care and social assistance (health), (17) arts,

Uhttps://www.bea.gov/index.html
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entertainment and recreation (arts), (18) accommodation and
food services (food), (19) other services except government
(other), and (20) government (gov). The quarterly data are
available from the first quarter of 2005 to the first quarter of
2020, but we used the data from first quarter of 2005 to the
first quarter of 2016 since some of the later data are undis-
closed (confidential). We used data pertaining to 8 regions in
the US: Far West (FWST: Alaska, California, Hawaii, Nevada,
Oregon and Washington), Great Lakes (GLAK: Illinois, Indiana,
Michigan, Ohio and Wisconsin), Mideast (MEST: Delaware,
D.C., Maryland, New Jersey, New York and Pennsylvania),
New England (NENG: Connecticut, Maine, Massachusetts,
New Hampshire, Rhode Island and Vermont), Plains (PLNS:
Towa, Kansas, Minnesota, Missouri, Nebraska, North Dakota
and South Dakota), Rocky Mountain (RKMN: Colorado, Idaho,
Montana, Utah and Wyoming), Southeast (SEST: Alabama,
Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi,
North Carolina, South Carolina, Tennessee, Virginia and West
Virginia), and Southwest (SWST: Arizona, New Mexico, Okla-
homa and Texas).

We model this GDP network as a multi-attribute graphical
model with p = 20 nodes (industries) and m = 8 attributes
(regions). The objective is visualization and exploration of
the dependency structures (conditional dependencies) among
these 20 industries. One could merge the region-wise data into
nationwide data and then estimate the single-attribute graph
for these industries; this would ignore regional differences
and more granular information available in the data. Or, one
could separately fit graphs for each of the eight regions, and
then combine them somehow for a final graph for the entire
nation; this ignores any group structure that may be present
in the data, and moreover, it is not clear how to combine the
various fitted graphs. Multi-attribute graphical modeling pre-
serves/exploits the group structure while maintaining regional
differences.

Thus we have a 160-dimensional (m = 8, p = 20, mp = 160)
single-attribute time series with n=48 samples. We pre-process
the data by first detrending it (i.e., remove the best straight-line
fit linear trend from each component series using the MATLAB
function detrend). Then we normalized the entire dataset to have
a mean-square value of one. To estimate the multi-attribute
graph, we use the BIC-based method outlined in Sec. III-B
to select the tuning parameters A and «. The selected val-
ues turn out be (A, ) = (1,0.5) for sparse-group lasso and
(A, ) = (0.167,0.1) for adaptive sparse-group lasso. The es-
timated graph using the sparse-group lasso ADMM algorithm
has 46 distinct edges (out of possible 190) and the graph is
shown in Fig. 9. For Fig. 9, we take |QU%) || as the edge
weight for edge {7, k}, normalize maximum value to one, and
show the resulting graph with colored edge weights and link
thickness also reflecting edge weight. With maximum edge
weight ||Q2U%) || normalized to one, we quantize the interval
[0,1] to 4 link thicknesses. The estimated graph using adaptive
sparse-group lasso has 54 edges and the graph is shown in
Fig. 10. We repeated this procedure (BIC-based tuning parame-
ter selection, for both lasso and adaptive lasso graphs) for single-
attribute graphical modeling for each of the eight attributes and
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Fig. 9. GDP graph: sparse-group lasso, %|5A\ = 46.
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Fig. 10.  GDP graph: adaptive sparse-group lasso, %|<‘§\ = 54.

nationwide data (pool all regional data). The selected \ values
range from 0.04 to 0.075 for lasso, and from 0.013 to 0.018 for
adaptive lasso. The resulting adaptive lasso graphs are shown
in Fig. 11.

Some edge statistics are tabulated in Table III. Comparing
multi-attribute graph of Fig. 10 with the single attribute graphs
in Fig. 11, as well as examining the statistics in Table III,
we see that multi-attribute graph captures edges not found in
single attribute graphs while rejecting some edges in single
attribute graphs that do not find support across the various
single attribute graphs. It is also interesting to note that there
are no edges common to all eight single attribute regional
graphs.

The average node degree in Fig. 10 is 5.4. In Fig. 10, there
are two groups of most connected industries: the first group
is comprised of construction, manufacturing, and finance and
insurance, with 16, 17 and 13 edges, respectively, and the
second group is comprised of durable goods manufacturing,
non-durable goods manufacturing, information, and real estate
and rental and leasing, with 8, 5, 6 and 7 edges, respectively.
The hubs comprised of construction, manufacturing, and finance
and insurance are not surprising as they are typical drivers
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TABLE III
NUMBER OF ESTIMATED EDGES IN REGIONAL/NATIONWIDE SINGLE
ATTRIBUTE (SA) GDP GRAPHS AND MULTI-ATTRIBUTE (MA) GDP GRAPH.
POSSIBLE EDGES 190 ({i, j} AND {7, i} ARE COUNTED AS ONE EDGE),
SAMPLE SIZE n=48, p=20, m = 8. SEE THE TEXT FOR REGION LABELS

approach common to
non- adaptive MA
data adaptive | adaptive | and adaptive SA
MA 46 54
SA: FWST 32 37 13
SA: GLAK 53 45 11
SA: MEST 41 45 16
SA: NENG 51 47 17
SA: PLNS 30 44 14
SA: RKMT 51 46 16
SA: SEST 46 42 9
SA: SWST 38 43 16
SA: nationwide 37 29 10

of GDP. Educational services is connected to durable goods
manufacturing, construction and manufacturing in Fig. 10 but
is not connected to any node in Fig. 9. Noting that educational
services sector includes food and accommodation services to
the students, its conditional dependence on durable goods man-
ufacturing, construction and manufacturing in Fig. 10 seems
to be plausible given construction and maintenance of student
housing and food services, in addition to that of classrooms. In
view of the synthetic data results, adaptive sparse-group lasso
graph of Fig. 10 would appear to be more accurate than the
sparse-group lasso graph of Fig. 9 where educational services
node sits inisolation. An in-depth analysis would require domain
expertise.

D. Real Data Example: Graphs of Color Texture Images

Following [16], [17] where grayscale texture images from
a University of Southern California (USC-SIPI) database are
considered, we now consider color textures from the Amsterdam
Library of Textures (ALOT)? [37]. We use two versions of the
image 108 (fake fur), images c111.png and c111r60.png (160 x
160 patches shown in Fig. 12 where c111 is labeled as image 1
and c111r60 is labeled as image 2), photographed from different
angles. These two images are 3072 x 1536 RGB color pixels
(1024 x 1536 for each of RGB). For image 1 we extracted rows
1 through 160, and columns 186 through 345, and for image
2 we extracted rows 700 through 859, and columns 1 through
160, to create the 160 x 160 patches used for inferring image
graphs.

The 160 x 160 patches were partitioned into non-overlapping
8 x 8 blocks, vectorized into 64-pixel columns, 3 colors associ-
ated with each pixel. Thus, we have m = 3,p = 64 and n = 400.
The data were centered and mean-square value normalized to
one before processing. To select A and o, we use the BIC-based
method outlined in Sec. III-B. For texture shown in Fig. 12(a),

Zhttp://aloi.science.uva.nl/public_alot
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Fig. 11.  GDP graphs for 8 regions and nationwide data: single attribute adaptive lasso.

the selected values turn out be (A, «) = (0.0625,0.25) for
sparse-group lasso and (A, «) = (0.0417,0.1) for adaptive
sparse-group lasso, and for texture shown in Fig. 12(d), the se-
lected values are (A, o) = (0.0775,0.25) for sparse-group lasso
and (A, &) = (0.0517,0.1) for adaptive sparse-group lasso. Us-
ing these values for graph estimation, we obtain %|£’ | =554
and %|£’| = 208 with sparse-group lasso and adaptive sparse-
group lasso, respectively, for image 1 with estimated graphs
shown in Figs. 12(b) and 12(c), respectively. For image 2, we
obtain %|f:’ | = 467 and %|<‘f | = 204 with sparse-group lasso and
adaptive sparse-group lasso, respectively, with estimated graphs
shown in Figs. 12(e) and 12(f), respectively. We take || Q2U%)]|
as the edge weight for edge {j, ¥}, normalize maximum value
to one, and show the resulting graphs (arranged as 8 x 8 nodes)

with colored edge weights and link thickness also reflecting edge
weight. (With maximum edge weight ||Q2U*)|r normalized
to one, we quantize the interval [0,1] to 4 link thicknesses.)
Compare Figs. 12(a), 12(b) and 12(c), and Figs. 12(d), 12(e) and
12(f), respectively, to note that the strong link weights follow the
texture orientation: primarily vertical and some slanting left in
Figs. 12(a), 12(b) and 12(c), and primarily slanting right and
some horizontal in Figs. 12(d), 12(e) and 12(f). Weaker edge
weights connect pixels in “other” directions. These observa-
tions provide “visual” support for fitted graphs, confirming our
intuition; we do not know the ground truth. Observe also that
the results obtained via adaptive sparse-group lasso are much
sparser than those via sparse-group lasso. This is unlike the GDP
graphs in Sec. V-C where the sample size is quite small (n = 48
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for (p, m) = (20, 8) for GDP graphs compared to n = 400 for
(p,m) = (64, 3) for image graphs).

VI. CONCLUSION

We proposed a sparse-group lasso based penalized log-
likelihood approach for graph learning from multi-attribute data.
Prior work of [8], [9], [15], [18] considers only group lasso which
is a special case of sparse-group lasso. An ADMM algorithm
was presented to optimize the objective function to estimate
the inverse covariance matrix and the edges in the graph. We
provided sufficient conditions for convergence in the Frobenius
norm of the estimator to the true value, a rate of convergence,
and also considered sparsistency.

We tested the proposed approach on synthetic as well as
real data. While the ground truth is unknown in the real data
applications, requiring domain expert knowledge to interpret the
results (estimated graphs), the synthetic data examples clearly
demonstrate the advantages of using sparse-group lasso instead
of just group-lasso or just lasso.

It is of interest to perform theoretical analysis of the adaptive
sparse-group lasso approach outlined in Sec. III-B2.

APPENDIX A
PROOF OF THEOREM 1

Here we prove Theorem 1. First we need Lemmas 1 and 2.
Lemma 1 below is specialization of [27, Lemma 1] to Gaussian
random vectors. It follows from [27, Lemma 1] after setting the
sub-Gaussian parameter o in [27, Lemma 1] to 1.

Lemma 1: Consider a zero-mean Gaussian random vector z €
RP with covariance R > 0. Given n i.i.d. samples z(t), t =
1,2,---,n,of z,let R=(1/n) ¥}, zz" denote the sample

(e) Graph of (d), || = 467,
sparse-group lasso

(f) Graph of (d), |£] = 204,
adaptive sparse-group lasso

Color texture graph example (textures are from http://aloi.science.uva.nl/public_alot).

covariance matrix. Then R satisfies the tail bound

nd?
<4 - 22
- 5) =0 e ( 3200 maxi(RiQi)) @2
forall 6 € (0,40 max;(R;;)) e

Now we state Lemma 2 and provide a proof. .
Lemma 2: Under Assumption (A2), the sample covariance X
satisfies the tail bound

. 1 1
P <n}€32x ‘[E — EO]kl‘ > () n<mpn)> <
, n

P (‘[R — RJ;;

T—2

(23)
for 7 > 2, if the sample size n > Ny, where C is defined in
(14) and N, is defined in (17). e

Proof: Applying Lemma 1 to our problem, we have

= (mpn)

~ 77,52
P ’272 ‘ 5) <4 S L — V)
(I olu| > 8) < eXp( 3200(ngk)mm> @4)
for all ¢ € (0,40 maxy(Xokk)) where  (32,)max =

maxi<k<mp, (o). Applying the union bound over all

(mpy,)? entries of 3 — X, we have

P (rr}fa;x‘[ﬁ] — Eg]kl) > (5) < Py
62

= d(mp, )2 - r 25

(mpn) eXp( 3200maxk(zgkk)) ()

forall § € (0, 40 man(ZOkk)). Letc, := 1/(40 maxy (EOkk))
Suppose 4 is such that

c*a:ﬁ:\/mﬂgl—mpm

where we have used the expression for Ny from (17). Then
c.0 < 1 for n > Ny, and therefore, the bound (25) holds true
since § € (0,40 maxg(Xokr)) = (0, ¢, 1) . Using the definitions
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of ¢, and N1, C specified in (14) can be expressed as
N-
CO = C;l — .
In(mpy,)

Suppose we choose J as

1 " 1 IN
5:00\/% é(;:c*lq/?l, (26)

then ¢,0 < 1 for n > Ny, therefore, the bound (25) holds true.
Now it remains to show that P, equals 1/(mp,,)” 2 for § chosen
as in (26). We have

Ptb = 4(mpn)2 exp (

B né>
3200 max(22,,)
nCZIn(mp,) )

= 4(mpn)? exp (— o

4(mpn)2

= 4(mpn)2 exp (_NI/Q) = exp (1H(4(mpn)T))

1
(mpn) 2 27
This proves the desired result |
Now we are ready to prove Theorem 1.
Proof of Theorem 1: Let 2 = Q4 + A with both 2, € > 0,
and
Q(2) = L(X; Q) — L(X; Q). (28)
The estimate €2 )» denoted by Q hereafter suppressing depen-
dence upon A, minimizes Q(€2), or equivalently, A=Q— Q
minimizes G(A) := Q(Qp + A). We will follow, for the most
part, the method of proof of [29, Theorem 1] pertaining to lasso
penalty. Consider the set
O, (M) ={A : A=AT, |A|p=Mr,} (29)
where M and r,, are as in (15) and (16), respectively. Since
G(A) < G(0) = 0, if we can show that infa {G(A) : A €
0, (M)} > 0, then the minimizer A must be inside ©,,(M),
and hence ||A | p < Mr,. It is shown in [29, (9)] that
In(|Q20 + A[) — In(|Q20|) = r(ZoA) — A1 (30)
where, with H (20, A,v) = (2o + vA) 1 @ (2o +vA) !
and v denoting a scalar,

Ay = vec(A)" (/01(1 —v)H(Qp, A, v) dv) vec(A).

(€29)
Noting that 2 ' = ¥ and setting \; = a\, and Ay = (1 —
@)\, we can rewrite G(A) as

G(A) - Al + A2 + Ag —+ A4 s (32)
where
Ay = tr ((2 _ EO)A> , 33)
Az =M (190 + A7 = 19]1) (34)
Pn
M=% Y (1907 + AW |p— |2f7r) . (35)
i,j=15i£j
Following [29, p. 502], we have
1A% A%
A > > (36)
2190l + AID* = 2 (8L, + Mr,)?
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where we have used the fact that [|Q] =|Z,!|| =
Pmax(Tg ") = (Pmin(D0)) " < Bty and A < [A[lp =
Mr, = O(ry,). We now consider A, in (33). We have

MPn mpn
A = Z [ — 3o)ij Aji + Z[E = Xoliilii  (37)
1,j=151#] i=1
L1 Lo

To bound L;, using Lemma 2, with probability > 1 —
1/ (mpn)T_Q’

IL1 < |A7 ] HZR;XHE — Zolij| < |A7 [ Co/In(mpn) /n.
(38)
Similarly, by Cauchy-Schwartz inequality, Lemma 2 and (16),

In(mpy, mpy, In(mpy,
2] < 8% oy 2] < g [ lalmen)

< [|A*|rCory . (39)
Therefore, with probability > 1 — 1/(mp,,)" 2,
_ In(mp,
o) < a7 Coy 2P At Oy )

We now derive a diffegent bound_Qn As. Define A € RPn>Pn
with (i, 7)-th element A;; = || A -, where A7) is defined
from A similar to (4). By Cauchy-Schwartz inequality,

Mpn

lA~li= > |Ayl <m|A |
i,j=1i%j
pn
+ (Z AR, — ||A+||1> . @D
k=1

=B

) < <+
Thenusing Y, [[A® |, <m Y, Apr < my/pn ||A”]
have

|La|+Cor/In(mp,, ) /n B<Co\/In(mp,)/n (Z | A KR |1>

k=1

F, W€

<+
<A [[rvm Cory
Therefore, an alternative bound is

- <+
[A2| < m||A - [ls Cov/In(mpy,) /1 + Vm | A [|FCory -
(42)
We now bound A3 in (34). Considering the true enlarged edge-
set & corresponding to & (see Sec. II for £), let £ denote its
complement. For an index set B and a matrix C' € RP»*P~_we
write C g to denote a matrix in RP»*Pn such that [C'gl;; = C;;
if (1,j) € B, and [Cg|;; =0 if (i,j) ¢ B. Then, by defi-
nition, A~ = Az + Az and A~y = A 1 + A
We have
Az = (19 + A7~ Q011
=M1 +Ag i+ 1A = 19211)

> (A — Az 1)

; 3)

2‘8 H 1
where we have used the triangle inequality [ + Ag [l >

€2 ll1 — [|AZ [|1. Next we bound Ay in (35). Considering the
true edge-set g’o for the multi-attribute graph, let £§ denote
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its complement. If the edge {7, j} € &§, then Qgij ) = 0, there-
— 19257 [l = [ ACP] . For (i, j} €

0

&y, by the triangle inequality, Hﬂéij) + A(ij)HF - ||Qéij)||F >
—| A . Thus
A1z Dol Ag | — 1B 1) (44)

Split Ay as Ay = aAs + (1 — ) A, apply bound (40) to
aAs and (42) to (1 — ) Ao, use

ATl = l[Ag lh+ Al

and C)) = Co+/In(mpy,)/n, to yield

Ay + Az + Ay > —|As| + 5\1(||A§5

1—1Ag )
+ o (([Ag [l — 1Ag,[1h)

— (@|AT|F + (1 — a)vm |AT||#)Corn
+ Az 1 (%1 - aCy)

Y

+Aglli (2 = (1 = a)mCy) — 1A [ (A + aCp)
~[[Ag, (A2 + (1 = a)mCy)

—(a+ 1 —a)vm)[|A]rCorn — [|Ag 1(M + aCy)

Y

~[[Ag (A2 + (1 = a)mCy) (45)
where, for the last inequality above, we used the fact that for
An asin (19), Ay — aC{, > 0 and Az — (1 — a)mC{; > 0, and
lATF < ||A|F, ||A+||F < ||A|| p. By Cauchy-Schwartz in-
equality,

[Ag Il <

Vm?sno [|Ag [|r < my/sno ||Allp, (46)

”A;O”l < V$no ||A;O||F < V8no ”AHF = 1/Sn0 ||A||F
(47
Using (45)—(47) and oy, := (o + (1 — «)y/m), we have

Ay + Az + Ay > — [06 (1 + am /1 —l—pn/(msno)) + )\
+(Az/m)] my/sno | Al p

- [+ e, + G+ 2mya] 1Al

> —CyCory, ||AllF (48)
where in the last inequality above, we used the fact that for
An as in (19), my/sno(A + (A2/m)) < C1Cory,, and o, <
v/m. Using (32), the bound (36) on A; and (48) on Ay +
Az 4+ Ay, and |A||p = M, we have with probability > 1 —
1/(mpn)"2,

1 Co

GA)> A% | ———————— — Cy—
(&) 2 181 |53y~ O
Forn > N, if we pick M as specifiedin (15), we obtain Mr,, <
Mry, < 1/Bmin- Then

(49)

1 2. 2C5 + 02)C C
> min s = ( 2 + 2) 0 > 0270 ,

208t + Mrp)2 — 2(1+61) 2M M
implying G(A) > 0. This proves the desired result. |

1A [l = [[Ag, Il + 1 Al
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APPENDIX B
PROOF OF THEOREM 2

Consider the (7, k:)th element ) \ix, Of the sparse-group lasso

estimate € - Since Q A minimizes the penalized negative log-
likelihood L(X; ©2) given by (7), we must have

_Lx:0)
Q1.

Q)\zk
‘Q)\Lk ‘

— 0 ki + o,

Q/\ik

+ (1= a)h, —Ak
A (5¢)
1923 || 7

QO Q.
= Ezk E)\zk + a\, — Aik ))\ ik
| )\2k|

= A
(56)
123 || F

+(1-

(50)
where
5= 0y
;1 18 an element in m X m Q(ﬂ), we use the notation
OL(X;Q) OL(X;Q)
o, Oy
and assume that Q)\ik # 0.

Q:QA

To prove the desired result, the term a\,, (Q i/ 1Q Nkl T
(1 —a)\, (Q)\lk/HQ/\(]Z) |l7) on the right-side of (50) must
dominate the term Zlk
Then the sign of % in (50) is the same as s1gn(Q i) With
probability tending to one, which yields the desired result, as is
shown in what follows. At the optimal solution, by the KKT con-
ditions, one must have A in (50) equal to zero. Suppose that for
{i,k} € E,onehasQy;, # Owhen A = 0. SupposethatQ/\ g <

0, implying that for some § > 0, Q)\ik + § < 0, since, by The-
orem 1, Q/\ik converges to Qq;x = 0 for {i,k} € £5. Since

A L AL(X;Q
2, minimizes L(X;$2), and a(T)

I = 55 > 0 for 6> 0.1 X, dominates ¥, — 5y,

in (50), I; > 0 implies that 0 Nk T 0 > 0, contradicting the
assumption that ., + & < 0. Therefore, Q2 ., £ 0. We argue
similarly that 2, 0. Therefore, Q. = 0 for {i,k} € &§.
with probability tending to one.

It remains to investigate the conditions under which A,, dom-

¥ \ir Whenever true value Qpi; = 0.

= 0, we must have

inates 3, — & \ij- Rewrite
Yik — Xyp = Zik — Doik T Zoik — 2 )\ - (51)
=:13 =:1y

OP(\/@)- By [30, Lemma

1] < [0 = 2y [l = B (€2) — 20) =
< 1B\l - 1102y = Qo)1 - [1Zo]l-
By Assumption (A2), || %] = O(1). Furthermore,
1A= 19371 = b (€2)
< <¢min(90) + Gmin(£2) — Qo))
(Op(1) + Op(n,)) ' = 0p(1),

By Lemma 2, max; j |I3| =

1]9

(52)

-1

A

(53)
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where we have used the fact that since |2\ — Q|| = Op(12),
Pmin (2 — Qo) < |2y — Q|| = Op(ny), and by Weyl’s in-
equality, ¢min(A + B) > dmin(A) + dmin(B). Hence,

max || = Op (|2 —ll) = Op (1) . (54
It then follows that
. . In(m
S — S| < |Is] + L] = 0p [/ 2002e)
(55)

Suppose O(\,,) = +/In(mp,,)/n+mn,. Then a)‘n(Q)\ik/m/\ik )
~ ~ (il A .

+ (1= )A€y, /19257 7) dominates [S — 5y, | with

probability tending to one. This completes the proof. |
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