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Sparse-Group Lasso for Graph Learning From

Multi-Attribute Data
Jitendra K. Tugnait , Life Fellow, IEEE

Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of high-dimensional Gaussian vectors
from multi-attribute data. Most existing methods for graph esti-
mation are based on single-attribute models where one associates a
scalar random variable with each node. In multi-attribute graph-
ical models, each node represents a random vector. In this paper,
we present a sparse-group lasso based penalized log-likelihood
approach for graph learning from multi-attribute data. Existing
works on multi-attribute graphical modeling have considered only
group lasso penalty. The main objective of this paper is to explore
the use of sparse-group lasso for multi-attribute graph estimation.
An alternating direction method of multipliers (ADMM) algorithm
is presented to optimize the objective function to estimate the
inverse covariance matrix. Sufficient conditions for consistency and
sparsistency of the estimator are provided. Numerical results based
on synthetic as well as real data are presented.

Index Terms—Graph learning, inverse covariance estimation,
undirected graph, sparse-group lasso, multi-attribute data.

I. INTRODUCTION

G
RAPHICAL models provide a powerful tool for analyzing

multivariate data [1], [2]. A central concept is that of

conditional independence. In graphical models, graphs display

the conditional independence structure of the variables, and

learning the graph structure is equivalent to learning a factor-

ization of the joint probability distribution of these random

variables. In an undirected graphical model, the conditional

dependency structure amongp random variablesx1, x1, · · · , xp,

(x = [x1 x2 · · · xp]
⊤), is represented using an undirected graph

G = (V, E), where V = {1, 2, · · · , p} = [1, p] is the set of p
nodes corresponding to the p random variables xis, and E ⊆
V × V is the set of undirected edges describing conditional

dependencies among the components of x. The graph G then

is a conditional independence graph (CIG) where there is no

edge between nodes i and j (i.e., {i, j} 6∈ E) iff xi and xj are

conditionally independent given the remaining p− 2 variable

[2, p. 60]. Graphical models based on gene expression data

have been used for data visualization and biological hypothesis

generation (i.e., exploratory data analysis) in [3]. Some other

Manuscript received September 2, 2020; revised December 27, 2020 and
January 19, 2021; accepted February 3, 2021. Date of publication February 8,
2021; date of current version March 30, 2021. The associate editor coordinating
the review of this paper and approving it for publication was Dr. Justin Dauwels.
This work was supported by National Science Foundation under Grants CCF-
1617610 and ECCS-2040536.

The author is with the Department of Electrical & Computer Engineering,
Auburn University, Auburn, AL 36849 USA (e-mail: tugnajk@eng.auburn.edu).

Digital Object Identifier 10.1109/TSP.2021.3057699

applications include classification and exploratory data analysis

in intensive care monitoring [4], financial time series [5], [6],

social networks [7], gene regulatory networks [8], [9], and

analysis of fMRI (functional magnetic resonance imaging) data

[10].

Gaussian graphical models (GGMs) are CIGs wherex is mul-

tivariate Gaussian. Suppose x has positive-definite covariance

matrix Σ with inverse covariance matrix Ω = Σ
−1. Then Ωij ,

the (i, j)-th element of Ω, is zero iff xi and xj are condition-

ally independent. Given n samples of x, in high-dimensional

(data-starved) settings, one estimates Ω under some sparsity

constraints; see [3], [11], [12], [13], [14]. In these graphs each

node represents a scalar random variable; we will call such

a graph G a single-attribute graphical model for x. In many

applications, there may be more than one random variable

associated with a node. This class of graphical models has been

called multi-attribute graphical models in [8], [9], [15] where a

focus is on application to biological regulatory networks. In [16],

[17] image graphs for grayscale texture images are inferred for

modeling dependence of a pixel on neighboring pixels; here one

has one variable per pixel node. These approaches do not apply to

color images where one has three variables (RGB — red, green,

blue — color components) per pixel node. Image graphs for

color images is an example of multi-attribute graphical models.

In this paper we consider p random vectors zi ∈ R
m, i =

1, 2, · · · , p, m ≥ 2. We associate zi with the ith node of an

undirected graph G = (V, E) where V = [1, p], and E ⊆ V × V
is the set of edges that describe the conditional dependencies

among vectors {zi, i ∈ V }. As in the scalar case (m = 1), there

is no edge between node i and node j in G iff random vectors zi

and zj are conditionally independent given the remaining p− 2
vectors.

We now consider some specific cases where use of multi-

attribute models is relevant. Gene regulatory networks have been

considered in [8], [9], [15], [18], [19]. Antibodies are proteins,

and proteins are encoded by genes. Protein profiles and gene

profiles have been used in [8], [9], [15], [18], [19] for graph mod-

eling to investigate links between various proteins/genes based

on their two profiles using data from the US national cancer

institute NCI-60 database for 60 human tumor cell lines. In [15]

a network with 91 nodes (p = 91 genes), each with two (m=2)

attributes comprised of protein and gene profiles, is considered

based on n =60 samples (cell lines). Since these molecular

profiles are on the same set of biological samples, it is argued

in [15] (also by others) that the multi-attribute graphical model

“proposes a consensus version of the interactions at hand in the
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cell, and one which is hopefully more robust to noise,” compared

with single-attribute models based on protein profile alone or

gene profile alone. Similar conclusions are reached in [8], [9],

[18], [19]. In [16], [17] image graphs for grayscale images are

inferred for modeling dependence of a pixel on neighboring pix-

els; here one has one variable per pixel node. These approaches

do not apply to color images where one has three variables

(RGB color components) per pixel node. Image graphs for color

images is an example of multi-attribute graphical models with

a pixel represented by a graph node and three attributes (RGB

components) per pixel. Graph-based transform coding and its

potential application to signal/image compression is discussed

in [20] which is a potential application of image graphs; see also

[21], [22]. These contributions are restricted to single attribute

models. Connections among different industries in the US are

explored in [18] to see if the GDP (gross domestic product) of

one industry has some effect on that of other industries. Regional

GDP data available from U.S. Department of Commerce website

for 8 regions (New England, Mideast, Great Lakes, etc.) and

20 industries (utilities, construction, manufacturing, etc.) are

used resulting in a multi-attribute graph with p = 20 nodes

(industries) and m = 8 attributes (regions). Exploration in [18]

takes regions into consideration, since significant differences in

relations may exist because of regional characteristics, which

are not possible to capture using only national data. In another

application in [23], daily time series data from Hong Kong to

analyze air pollution of Hong Kong via single attribute graphical

models is considered, following the earlier work of [24] based on

dependent time series. The time series data of the daily average

for four pollutants over three monitoring stations are used in [23]

to construct a time series graph of p = 12 nodes with m = 1
attribute. If the objective is to study conditional dependencies

between various pollutants, then a more appropriate model

would be a multi-attribute model with p = 4 pollutant nodes,

each withm = 3 attributes, reflecting measurements at the three

monitoring stations.

A. Related Work

For high-dimensional linear regression problems with

grouped covariates, it has been shown in [25], [26] that imposing

an additional within group level sparsity constraint can lead to

improved classification performance. This is the sparse-group

lasso approach. These papers are concerned with algorithm

development and do not offer any theoretical analysis, and

also do not consider graphical models, single or multi-attribute.

Multi-attribute graphical model learning has been considered in

[8], [9], [15] and [18]. In [8], [9] a group lasso based penalized

log-likelihood approach is investigated. A primal-dual optimiza-

tion algorithm is given and a theoretical analysis of true graph

recovery with high probability is provided following the single-

attribute results of [27]. In [15], [18] group lasso based penalized

pseudo-likelihood approaches are considered for multi-attribute

graph estimation. While [15] offers no theoretical analysis, in

[18] sufficient conditions for convergence in the Frobenius norm

of the inverse covariance estimator to the true value are presented

following the single-attribute results of [28]. Sparse-group lasso

penalty has also been used in [3] for joint graphical lasso in the

context of multiple classes. As noted in [8], [9], the approach of

[3] can be used for multi-attribute graphical model learning. An

alternating direction method of multipliers (ADMM) algorithm

is presented in [3], but there is no theoretical analysis regarding

graph estimator.

B. Our Contributions

In this paper, we present a sparse-group lasso based penalized

log-likelihood approach for graph learning from multi-attribute

data, whereas [8], [9], [15], [18] consider only group lasso

which is a special case of sparse-group lasso. Our penalty is

similar, but not identical, to the group graphical lasso penalty

in [3]. In [3], correlations between data from different classes

are ignored, whereas correlations between data from different

attributes are central to our approach. In group lasso, sparsity

penalty is imposed on all entries of Ω associated with a pair of

nodes, as a group. In sparse-group lasso, an additional sparsity

penalty is imposed on each off-diagonal Ωij . An alternating

direction method of multipliers (ADMM) algorithm is presented

to optimize the objective function to estimate the inverse covari-

ance matrix. We provide sufficient conditions for convergence

in the Frobenius norm of the estimator to the true value, a rate

of convergence, and also consider sparsistency; [8], [9] provide

conditions only for consistent graph edge recovery, but not for

consistent inverse covariance matrix estimation, and [15] offers

no theoretical analysis. Related works of [25], [26] dealing with

sparse-group lasso do not offer any theoretical analysis (such as

our Theorems 1 and 2), and do not consider graphical models.

Our theoretical results follow the single-attribute method of

[29] for consistency and the method of [30] for sparsistency,

resulting in much simpler, and checkable, sufficient conditions,

whereas [8], [9] require an “irrepresentable condition” ([9, con-

dition (12)]) which is hard to verify. The sufficient conditions

for convergence given in [18] also require an “irrepresentable

(incoherence) condition” ([18, condition (C2)], [28, condition

(C2)]) which is hard to verify. We require no such conditions.

We test the proposed approach on synthetic as well as real

data. While the ground truth is unknown in the real data applica-

tions, requiring domain expert knowledge to interpret the results,

the synthetic data examples clearly demonstrate the advantages

of using sparse-group lasso instead of just group-lasso or just

lasso.

C. Outline and Notation

The rest of the paper is organized as follows. The system

model is presented in Sec. II where we describe the multi-

attribute graphical model withm random variables per node, and

also an associated larger single-attribute graph. A sparse-group

lasso based penalized log-likelihood approach for graph learning

from multi-attribute data is proposed in Sec. III. An ADMM

algorithm is presented in Sec. III-A to optimize the objective

function to estimate the inverse covariance matrix and the edges

in the graph. In Sec. IV we analyze consistency (Theorem 1) and

sparsistency (Theorem 2) of the proposed approach. Numerical

results based on synthetic as well as real data are presented in
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Sec. V to illustrate the proposed approach. Proofs of Theorems

1 and 2 are given in Appendices A and B, respectively.

Given A ∈ R
p×p, we use φmin(A), φmax(A), |A|, tr(A) and

etr(A) to denote the minimum eigenvalue, maximum eigen-

value, determinant, trace, and exponential of trace of A, respec-

tively. For a matrix B ∈ R
p×q , we define the operator norm,

the Frobenius norm and the vectorized ℓ1 norm, respectively,

as ‖B‖ =
√

φmax(B
⊤B), ‖B‖F =

√

tr(B⊤B) and ‖B‖1 =
∑

i,j |Bij | where Bij is the (i, j)-th element of B. We also

denote Bij by [B]ij . Given A ∈ R
p×p, A+ = diag(A) is a di-

agonal matrix with the same diagonal asA, andA− = A−A+

isAwith all its diagonal elements set to zero. Symbol⊗ denotes

the matrix Kronecker product and 1A is the indicator function,

equaling one if A is true, zero otherwise. For yn,xn ∈ R
p,

yn ≍ xn means that yn = O(xn) and xn = O(yn), where

the latter means there exists 0 < M < ∞ such that ‖xn‖ ≤
M‖yn‖ ∀n ≥ 1. The notation yn = OP (xn) for random vec-

tors yn,xn ∈ R
p means that for any ε > 0, there exists 0 <

M < ∞ such that P (‖yn‖ ≤ M‖xn‖) ≥ 1− ε ∀n ≥ 1.

II. SYSTEM MODEL

Consider p jointly Gaussian random vectors zi ∈ R
m, i =

1, 2, · · · , p. We associate zi with the ith node of an undirected

graphG = (V, E)whereV = [1, p] is the set of p nodes, and E ⊆
V × V is the set of edges that describe the conditional dependen-

cies among vectors {zi, i ∈ V }. As in the scalar case (m = 1),

there is no edge between node i and node j in G (i.e., {i, j} 6∈ E)

iff random vectors zi and zj are conditionally independent

given all the remaining random vectors zℓ corresponding to the

remaining p− 2 nodes in V , i.e., for ℓ ∈ V \{j, k} [8], [9]. This

is the multi-attribute Gaussian graphical model of interest in

this paper. The term multi-attribute Gaussian graphical model

has been used in [15] for such models. Define the mp-vector

x = [z⊤
1 z⊤

2 · · · z⊤
p ]

⊤ ∈ R
mp . (1)

Suppose we haven i.i.d. observationsx(t), t = 0, 1, · · · , n− 1,

of zero-mean x. Our objective is to estimate the inverse covari-

ance matrix (E{xx⊤})−1 and to determine if edge {i, j} ∈ E ,

given data {x(t)}n−1
t=0 .

Let us associate x with an “enlarged” graph Ḡ = (V̄ , Ē),
where V̄ = [1,mp] and Ē ⊆ V̄ × V̄ . Now [zj ]ℓ, the ℓth compo-

nent of zj associated with node j of G = (V, E), is the random

variable xq = [x]q , where q = (j − 1)m+ ℓ, j = 1, 2, · · · , p
and ℓ = 1, 2, · · · ,m. The random variable xq is associated with

node q of Ḡ = (V̄ , Ē). Corresponding to the edge {j, k} ∈ E in

the multi-attribute G = (V, E), there are m2 edges {q, r} ∈ Ē
specified by q = (j − 1)m+ s and r = (k − 1)m+ t, where

s = 1, 2, · · · ,m and t = 1, 2, · · · ,m. The graph Ḡ = (V̄ , Ē) is

a single-attribute graph. In order for Ḡ to reflect the conditional

independencies encoded in G, we must have the equivalence

{j, k} 6∈ E ⇔ Ē(jk) ∩ Ē = ∅ , (2)

where

Ē(jk) =
{
{q, r}

∣
∣ q = (j − 1)m+ s, r = (k − 1)m+ t,

s, t = 1, 2, · · · ,m} . (3)

Let Rxx = E{xx⊤} ≻ 0 and Ω = R−1
xx . Define the (j, k)th

m×m subblock Ω
(jk) of Ω as

[Ω(jk)]st = [Ω](j−1)m+s,(k−1)m+t , s, t = 1, 2, · · · ,m . (4)

It is established in [9, Sec. 2.1] that

Ω
(jk) = 0 ⇔ zj and zk are conditionally independent

⇔ {j, k} 6∈ E . (5)

Since Ω
(jk) = 0 is equivalent to [Ω]qr = 0 for every {q, r} ∈

Ē(jk), and since, by [1, Proposition 5.2], [Ω]qr = 0 iff xq and xr

are conditionally independent, hence, iff {q, r} 6∈ Ē , it follows

that equivalence (2) holds true.

III. SPARSE-GROUP GRAPHICAL LASSO

Given n samples {x(t)}n−1
t=0 of zero-mean x, define

the sample covariance Σ̂ = 1
n

∑n−1
t=0 x(t)x⊤(t). Let X =

[x(0)x(1) · · · x(n− 1) ]⊤ ∈ R
n×(mp). We have the log-

likelihood (up to some constants)

ln fX(X) = ln(|Ω|)− tr(Σ̂Ω) . (6)

To estimate sparse Ω, consider minimization of a penalized

version of the negative log-likelihood

L(X;Ω) = − ln fX(X) + P (Ω) (7)

using a sparse-group lasso penalty [25], where

P (Ω) = αλ ‖Ω−‖1 + (1− α)λ

p
∑

j 6=k

‖Ω(jk)‖F , (8)

λ > 0 is a penalty (tuning) parameter used to control sparsity,

and 0 ≤ α ≤ 1 yields a convex combination of lasso and group

lasso penalties (α = 0 gives the group-lasso fit while α = 1
yields the lasso fit). In (8), an ℓ1 penalty term is applied to

each off-diagonal element of Ω via αλ ‖Ω−‖1 (lasso), and

to the off-block-diagonal group of m2 terms in (4)–(5) via

(1− α)λ
∑p

j 6=k ‖Ω(jk)‖F (group lasso). The functionL(X;Ω)
is strictly convex in Ω ≻ 0.

A. Optimization

We will use the ADMM approach [31] with variable splitting.

The method is similar, but not identical, to a method in [3]. Using

variable splitting, consider

min
Ω≻0,W

{

tr(Σ̂Ω)− ln(|Ω|) + P (W )
}

subject to Ω = W .

(9)

The scaled augmented Lagrangian for this problem is [31]

Lρ = tr(Σ̂Ω)− ln(|Ω|) + P (W ) +
ρ

2
‖Ω−W +U‖2F

(10)

whereU is the dual variable, and ρ > 0 is the penalty parameter.

Given the results Ω
(i),W (i),U (i) of the ith iteration, in the

(i+ 1)st iteration, an ADMM algorithm executes the following

three updates:

a) Ω
(i+1) ← argminΩ La(Ω), La(Ω) := tr(Σ̂Ω)−

ln(|Ω|) + ρ
2‖Ω−W (i) +U (i)‖2F

b) W (i+1) ← argminW Lb(W ), Lb(W ) := αλ
‖W−‖1 + (1− α)λ

∑p
i6=j ‖W (ij)‖F + ρ

2‖Ω(i+1) −
W +U (i)‖2F
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c) U (i+1) ← U (i) + (Ω(i+1) −W (i+1))
A necessary and sufficient condition for a global optimum in

update (a) is that the gradient of La(Ω) w.r.t. Ω, given by (11),

vanishes, with Ω = Ω
⊤ ≻ 0:

0 =
∂La(Ω)

∂Ω
= Σ̂−Ω

−1 + ρ(Ω−W (i) +U (i)) . (11)

The solution to (11) follows from [31, Sec. 6.5]. Rewrite (11) as

Σ̂− ρ
(

W (i) −U (i)
)

= Ω
−1 − ρΩ . (12)

Let V DV ⊤ denote the eigen-decomposition of the symmetric

matrix Σ̂− ρ(W (i) −U (i)) where D is diagonal with real val-

ues on the diagonal, and V V ⊤ = V ⊤V = I . Then Ω
(i+1) =

V D̃V ⊤ where D̃ is the diagonal matrix with ℓth diagonal

element

D̃ℓℓ =
−Dℓℓ +

√

D2
ℓℓ + 4ρ

2ρ
.

Since eigenvalues D̃ℓℓ > 0, Ω(i+1) ≻ 0, and as shown in [31,

Sec. 6.5] for a similar problem, it satisfies (11).

Now we turn to update (b). Notice that Lb(W ) is

completely separable w.r.t. each m×m subblock W (jk)

(defined as in (4)). Therefore, we solve (W (jk))(i+1) ←
argmin

W
(jk) Jbjk(W

(jk)), for subblock indexed by (j, k),
where

Jbjk(W
(jk)) := αλ

(

1j=k‖(W (jk))−‖1 + 1j 6=k‖W (jk)‖1
)

+1j 6=k(1− α)λ ‖W (jk)‖F +
ρ

2
‖
(

Ω
(i+1)−W+U (i)

)(jk)

‖2F
Note that sparse lasso penalty applies only to off-diagonal el-

ements of W , hence to off-diagonal elements of W (jj) and

all elements of W (jk), j 6= k. The group-lasso penalty applies

only to off-diagonal subblocks W (jk), j 6= k. Therefore, for

j = k = 1, 2, · · · , p (that is, diagonal subblocks), we have

[(W (jj))(i+1)]st =

{

[(Ω(jj))(i+1)]ss if s = t

S([(Ω(jj))(i+1)]st,
αλ
ρ ) if s 6= t

where

S(a, β) := (1− β/|a|)+a, (a)+ := max(0, a),

denotes scalar soft thresholding. For j 6= k, following [25], [26],

the solution to update (b) is given by

[(W (jk))(i+1)]st

=







[(Ω(jk))(i+1)]ss , if s = t

S([A]st,
αλ
ρ )

(

1− (1−α)λ

ρ‖S(A,αλ
ρ

)‖F

)

+

, s 6= t

where A = (Ω(jk))(i+1) − (U (jk))(i) and S(A, α) denotes el-

ementwise matrix soft thresholding, specified by [S(A, α)]st :=
S([A]st, α). Finally, update (c) is U (i+1) = U (i) + (Ω(i+1) −
W (i+1)) [31].

A pseudocode for the ADMM algorithm used in this paper is

given in Algorithm 1 where we use the stopping (convergence)

criterion following [31, Sec. 3.3.1] and varying penalty parame-

terρ following [31, Sec. 3.4.1]. The stopping criterion is based on

primal and dual residuals being small where, in our case, at (i+
1)st iteration, the primal residual is given by Ω

(i+1) −W (i+1)

Algorithm 1: ADMM Algorithm for Sparse-Group Graph-

ical Lasso.
Input: Number of samples n, number of nodes p, number of attributes m,

data {x(t)}n−1
t=0 , x ∈ Rmp, regularization and penalty parameters λ, α

and ρ0, tolerances τabs and τrel, variable penalty factor µ, maximum

number of iterations imax

Output: estimated inverse covariance Ω̂ and edge-set Ê
1: Calculate sample covariance Σ̂ = 1

n

∑n−1

t=0
x(t)x⊤(t) (after

centering x(t)).
2: Initialize: U (0) = W

(0) = 0, Ω(0) = (diag(Σ̂))−1, where

U ,W ∈ R(mp)×(mp), ρ(0) = ρ0
3: converged = false, i = 0

4: while converged = false and i ≤ imax, do

5: Eigen-decompose Σ̂− ρ(i)(W (i) −U
(i)) as

Σ̂− ρ(i)(W (i) −U
(i)) = V DV

⊤ with diagonal matrix D

consisting of eigenvalues. Define diagonal matrix D̃ with ℓth

diagonal element D̃ℓℓ = (−Dℓℓ +
√

D
2
ℓℓ + 4ρ(i) )/(2ρ(i)).

Set Ω(i+1) = V D̃V
⊤.

6: Define soft thresholding scalar operator

S(a, β) := (1− β/|a|)+a where (a)+ := max(0, a). The

diagonal m×m subblocks of W are updated as

[(W (jj))(i+1)]st =

{
[(Ω(jj))(i+1)]ss if s = t

S([(Ω(jj))(i+1)]st,
αλ
ρ(i)

) if s 6= t

j = 1, 2, · · · , p, s, t = 1, 2, · · · ,m. The off-diagonal m×m

subblocks of W are updated as ( denote

A = (Ω(jk))(i+1) − (U (jk))(i))

[(W (jk))(i+1)]st =







[(Ω(jk))(i+1)]ss if s = t

S([A]st,
αλ
ρ(i)

)

(

1− (1−α)λ
ρ‖S(A, αλ

ρ(i)
)‖F

)

+

if s 6= t

where S(A, α) denotes elementwise matrix soft thresholding,

specified by [S(A, α)]st := S([A]st, α), and

j 6= k = 1, 2, · · · , p, s, t = 1, 2, · · · ,m.

7: Dual update U
(i+1) = U

(i) + (Ω(i+1) −W
(i+1)).

8: Check convergence. Set tolerances

τpri = mpτabs + τrel max(‖Ω(i+1)‖F , ‖W (i+1)‖F )

τdual = mpτabs + τrel ‖U (i+1)‖F /ρ(i) .

Define dp = ‖Ω(i+1) −W
(i+1)‖F and

dd = ρ(i)‖W (i+1) −W
(i)‖F . If

(dp ≤ τpri) and (dd ≤ τdual), set converged = true.

9: Update penalty parameter ρ :

ρ(i+1) =

{
2ρ(i) if dp > µdd
ρ(i)/2 if dd > µdp
ρ(i) otherwise .

We also need to set U (i+1) = U
(i+1)/2 for dp > µdd and

U
(i+1) = 2U (i+1) for dd > µdp.

10: i ← i+ 1
11: end while

12: For j 6= k, if ‖W (jk)‖F > 0, assign edge {j, k} ∈ Ê , else

{j, k} 6∈ Ê . Inverse covariance estimate Ω̂ = W .

and the dual residual by ρ(i)(W (i+1) −W (i)). Convergence

criterion is met when the norms of these residuals are below

primary and dual tolerances τpri and τdual, respectively; see

line 8 of Algorithm 1. In turn, τpri and τdual are chosen using an

absolute and relative criterion as in line 8 of Algorithm 1 where

τabs and τrel are user chosen absolute and relative tolerances,

respectively. As stated in [31, Sec. 3.4.1], one may use “possibly

different penalty parameters ρ(i) for each iteration, with the goal
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of improving the convergence in practice, as well as making

performance less dependent on the initial choice of the penalty

parameter.” Line 9 of Algorithm 1 follows typical choices given

in [31, Sec. 3.4.1]. For all numerical results presented later, we

used ρ0 = 2, µ = 10, and τabs = τrel = 10−4.

The objective function L(X;Ω), given by (7), is strictly

convex, and its domain is the set of strictly positive definite

matrices (because of − ln(|Ω|) and using the log-determinant

barrier function [27]). It is also closed, proper and lower semi-

continuous. Hence, for any fixed ρ > 0, the ADMM algorithm is

guaranteed to converge [31, Sec. 3.2], in the sense that we have

primal residual convergence to 0, dual residual convergence to

0, and objective function convergence to the optimal value. For

varying ρ, the convergence of ADMM has not been proven [31,

Sec. 3.4.1].

B. Parameter Tuning, Model Selection and Debiasing

Now we briefly discuss some practical aspects of applying the

ADMM algorithm, such as how to select the tuning parameters

λ and α. This, in turn, dictates how many edges are connected in

the graph. It is also well-known that lasso and related approaches

yield biased estimates of inverse covariance [32], [33]. To debias

(approximately), for real data, we will mimic the adaptive lasso

approach of [32] to propose an adaptive sparse-group lasso

approach.

1) Parameter Tuning and Model Selection: In practice, one

would selectλ andα via cross-validation or an information crite-

rion. Let Σ̂ and ˆ̄E denote the estimated inverse covariance matrix

and estimated enlarged edge-set (defined in Sec. II), respectively,

and let | ˆ̄E| denote the cardinality (# of nonzero elements) of ˆ̄E .

Noting that Σ̂ is symmetric with nonzero diagonal elements,

the number of free nonzero elements of Σ̂ equal 1
2 | ˆ̄E|+pm.

For synthetic and real data results presented later, we used the

Bayesian information criterion (BIC)

BIC(λ, α) = tr(Σ̂Ω̂)− ln(|Ω̂|) + ln(n)

n

(
1

2
| ˆ̄E|+ pm

)

based on optimized − ln fX(X) ∝ n
2 (tr(Σ̂Ω̂)− ln |Ω̂|). The

pair (λ, α) is selected to minimize BIC. Instead of searching over

a two-dimensional space (λ, α), we first search over a grid of λ
values with fixed α = 0.1 (= α0), (somewhat arbitrary, α = 0
will make it group lasso). Then withλ fixed at the selected value,

we search over a grid of α values over [0,1].

We search over λ values in the range [λℓ, λu] selected via the

following heuristic. For α = α0, we first find the smallest λ,

labeled λsm, for which we get a no-edge model (i.e., |Ê | = 0).

To this end, searching over a grid of λ values, we find the

largest λ for which the corresponding |Ê | > τth ≈ 0, i.e, for

which we get close to a no-edge model; we take this value of λ
as λsm. We picked τth = 0.002 p(p− 1)/2 (0.2% of possible

p(p− 1)/2 edges are connected). Then we set λu = λsm/2
and λℓ = λu/10. The given choice of λu precludes “extremely”

sparse models while that of λℓ precludes “very” dense models

(e.g., more than 50% connected edges). We search over a grid

of λ values in the range [λℓ, λu] to minimize BIC.

2) Debiasing: Adaptive Sparse-Group Lasso: Lasso and re-

lated approaches yield biased estimates [32], [33]. To approx-

imately debias, we will mimic the adaptive lasso approach of

[32] to propose an adaptive sparse-group lasso approach where

we replaceP (Ω) in (8) with P̂ (Ω) given below. Given estimates

Ω̂ij obtained from the proposed non-adaptive sparse-group lasso

approach, we define

P̂ (Ω) = αλ

mp
∑

i6=j=1

|Ωij |
|Ω̂ij |

+ (1− α)λ

p
∑

k 6=ℓ=1

‖Ω(kℓ)‖F
‖Ω̂(kℓ)‖F

. (13)

Thus, we replace αλ with αλ/|Ω̂ij | and (1− α)λ with (1−
α)λ/‖Ω̂(kℓ)‖F . Now run the ADMM algorithm using adaptive

weights (with “obvious” modifications) using the previously

selected values of λ and α. Higher |Ω̂ij | values decrease the

penalty, while lower values increase the penalty. We will illus-

trate this approach later when exploring both synthetic and real

data networks.

Selection of λ and α is done via BIC, as in Sec. III-B1 for

sparse-group lasso, with the following exception. We select

λsm as before, using sparse-group lasso. Then for adaptive

sparse-group lasso (comprised of two steps of sparse-group lasso

followed by adaptive sparse-group lasso), we set λu = λsm/6
and λℓ = λu/10. Notice that we now have the upper limit λu

one-third of the upper limit for sparse-group lasso. This is based

on empirical evidence, and the following observation. Elements

of Ω estimated as zero in the first step of sparse-group lasso

will stay zero in the next adaptive step. Too high a value of

λ in sparse-group lasso stage results in higher number of zero

elements in Ω̂, which in adaptive version will remain as zeros.

Reduced λ allows these elements to stay non-zero, thereby

allowing adaptive sparse-group lasso to “properly” process such

elements. Computation of BIC is done after the second, adaptive

step.

IV. THEORETICAL ANALYSIS

In this section we analyze consistency (Theorem 1) and spar-

sistency (Theorem 2) of the proposed approach. For consistency

we follow the method of [29] which deals with single attribute

models and lasso penalty in a high-dimensional setting where

we allow p to be a function of sample size n, denoted as pn.

High-dimensional setting allows consideration of the case where

number of unknowns mp(mp+ 1)/2 in Ω is much greater than

(or comparable to) the sample size n [34], and as n increases,

pn may increase too maintaining more unknowns than sample

size. We also allow λ to be a function of sample size n, denoted

as λn.

Assume

A1) Define the true edge setE0 = {{i, j} : Ω
(ij)
0 6= 0, i 6= j}

whereΩ0 denotes the true inverse covariance ofx. Assume

that card(E0) = |(E0)| ≤ sn0.

A2) The minimum and maximum eigenvalues of Σ0 = Ω
−1
0 ≻

0 satisfy

0 < βmin ≤ φmin(Σ0) ≤ φmax(Σ0) ≤ βmax < ∞ .

Here βmin and βmax are not functions of n.
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Let Ω̂λ = argminΩ≻0 L(X;Ω). Theorem 1, proved in Ap-

pendix A, establishes consistency of Ω̂λ.

Theorem 1. (Consistency): For τ > 2, let

C0 = 40 max
k

(Σ0kk)
√

2 (τ + ln(4)/ ln(mpn)) . (14)

Given real numbers δ1 ∈ (0, 1), δ2 > 0 and C1 > 0, let C2 =√
m+ 1 + C1, and

M = (1 + δ1)
2(2C2 + δ2)C0/β

2
min, (15)

rn =

√

(mpn +m2sn0) ln(mpn)

n
= o(1) , (16)

N1 = 2 (ln(4) + τ ln(mpn)) , (17)

N2 = argmin

{

n : rn ≤ δ1βmin

(1 + δ1)2(2C2 + δ2)C0

}

. (18)

Suppose the regularization parameter λn and α ∈ [0, 1] satisfy

C1C0

1 + α(m− 1)

√
(

1 +
pn

msn0

)
ln(mpn)

n
≥ λn

m

≥ C0

√

ln(mpn)

n
. (19)

Then if the sample size n > max{N1, N2} and assumptions

(A1)-(A2) hold true, Ω̂λ satisfies

‖Ω̂λ −Ω0‖F ≤ Mrn (20)

with probability greater than 1− 1/(mpn)
τ−2. In terms of rate

of convergence, ‖Ω̂λ −Ω0‖F = OP (rn) •
Comments on Theorem 1.
r In Theorem 1, the number of attributes m are fixed (not

a function of sample size n) whereas number of nodes

p and hence, number of connected edges s0 (sn0) of E0
are allowed to be a function of n. For Theorem 1 to

hold, limn→∞ rn = 0. Clearly the results hold if p is fixed,

independent of n.
r The bounds on λn in (19) could restrict maximum value

of α for larger m values, if C1 is chosen to be too small.

Upperbound of (19) always works for α = 0 so long as

C1 ≥ 1. If we pick C1 ≥ m, then the lower bound in (19)

is less than the upper bound for every α ∈ [0, 1].
Sparsistency refers to the property that all parameters that are

zero are actually estimated as zero with probability tending to

one, as n → ∞ [30]. Theorem 2, stated below and proved in

Appendix B, deals with sparsistency of Ω̂λ. Its proof follows

that of [30, Theorem 2] pertaining to lasso and a larger class of

penalty functions (including some non-convex functions).

Theorem 2. (Sparsistency): Suppose all assumptions and con-

ditions of Theorem 1 hold true so that (20) holds. In addition,

suppose that there exists a sequence ηn → 0 such that ‖Ω̂λ −
Ω0‖ = OP (ηn) and

√

ln(mpn)/n+ ηn = O(λn). Then with

probability tending to one, Ω̂λik
= 0 for all {i, k} ∈ Ēc

0 and

Ω̂
(jℓ)

λ = 0 for all {j, ℓ} ∈ Ec
0 . •

Remark 1: For both consistency and sparsistency to be sat-

isfied, the chosen regularization parameters λn’s need to be

compatible. Theorem 1 imposes upper and lower bounds on the

rate of λn and Theorem 2 specifies a lower bound. Therefore,

for both consistency and sparsistency to be satisfied, we must

have

√

ln(mpn)/n+ ηn ≍ λn ≍ m

√
(

1 +
pn

msn0

)
ln(mpn)

n
.

(21)

Its consequences depend upon ηn required to attain ‖Ω̂λ −
Ω0‖ = OP (ηn). As in [30], we consider two cases, us-

ing the inequalities ‖A‖F /√mpn ≤ ‖A‖ ≤ ‖A‖F for A ∈
R

(mpn)×(mpn).

a) Since ‖Ω̂λ −Ω0‖ ≤ ‖Ω̂λ −Ω0‖F , in the worst

case where the two have the same order,

‖Ω̂λ −Ω0‖ = OP (
√

(mpn+m2sn0) ln(mpn)
n

) so that

ηn =
√

(mpn+m2sn0) ln(mpn)
n

. Then for (21) to hold true,

we should have 1 +m
√

(pn/m)+sn0≍m
√

1+(pn/(msn0)),

which holds only if sn0 = O(1).

b) Since ‖Ω̂λ −Ω0‖F /√mpn≤‖Ω̂λ−Ω0‖, in the optimistic

case where the two have the same order, ‖Ω̂λ −Ω0‖ =
OP (

√

(1+
msn0
pn

) ln mpn
n

) so that ηn =
√

(1+
msn0
pn

) ln mpn
n

.

Then for (21) to hold true, we should have 1 +
√

1+
msn0
pn

≍
m

√

1+ pn
msn0

, which holds only if sn0 = O(pn).

V. NUMERICAL EXAMPLES

We now present numerical results for both synthetic and real

data to illustrate the proposed approach. In synthetic data exam-

ples the ground truth is known and this allows for assessment

of the efficacy of various approaches. In real data examples

where the ground truth is unknown, our goal is visualization and

exploration of the dependency structures underlying the data,

similar to [3], [9], [16], [17].

Various aspects of single-attribute versus multi-attribute

graphical modeling have been well-covered in [8], [9], [15],

[18]. So we will focus more on sparse-group lasso versus group

lasso comparisons for multi-attribute graph estimation. For our

numerical examples, in Algorithm 1, we used ρ0 = 2, µ = 10,

τabs = τrel = 10−4, with maximum number of iterations imax

set at 300 and 2000 for synthetic and real data, respectively.

A. Synthetic Data: Chain Graph

We consider a chain graph (an example in [9]) where p nodes

are connected in succession. In the upper triangular Ω̄, using the

notation of (4), we set [Ω̄
(jk)

]st = 0.5|s−t| for j = k = 1, · · · , p,

s, t = 1, · · · ,m. For j 6= k, if the two nodes are not connected,

we have Ω̄
(jk)

= 0, and if nodes j and k are connected in

the chain graph, then [Ω̄
(jk)

]st is uniformly distributed over

[−0.4,−0.1] ∪ [0.1, 0.4] if s 6= t, and [Ω̄
(jk)

]st = 0 if s = t.
Now add γI to Ω̄ with γ picked to make minimum eigenvalue

of Ω̄+ γI equal to 0.5. This is similar to simulation example

3 in [9, Sec. 5.1]. With ΦΦ
⊤ = (Ω̄+ γI)−1, we generate

x = Φw with w ∈ R
mp as Gaussian w ∼ N (0, I). We gen-

erate n i.i.d. observations from x, with m = 3, p ∈ {100, 400},

n ∈ {100, 200, 400, 800}. The true value of edgeset cardinality

|E| = 2(p− 1).
Simulation results based on 100 runs are shown in Figs. 1–5

for the following approaches: Lasso (proposed ADMM with
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Fig. 1. F1-score (mean±1 std) vs sample sizen, for chain graph withm = 3.

Fig. 2. Error norm ‖Ω̂λ −Ω0‖F /‖Ω0‖F (mean ±1 std) vs sample size n,

for chain graph with m = 3.

Fig. 3. F1-score and Hamming distance (mean ±1 std) vs α, for chain graph
with m = 3, p = 100, λn as for Fig. 1. ({i, j} and {j, i} are counted as one
edge in computing the Hamming distance.)

Fig. 4. True and estimated precision matrices, chain graph, p = 100, m = 3,
n = 200. Top left is the ground truth, top right the lasso estimate, bottom left
is group lasso estimate and bottom right is the sparse-group lasso estimate. All
entries that are exactly zero, are color coded as white.

Fig. 5. Subsets of true and estimated precision matrices of Fig. 4, for ease of
viewing.

α = 1, labeled “L”), Group Lasso (proposed ADMM with α =
0, labeled “GL”), Sparse-Group Lasso (proposed ADMM with

α as a parameter, labeled “SGL”), adaptive sparse-group lasso

(as detailed in Sec. III-B2, labeled “AdpSGL”), and approaches

labeled “BIC-SGL” and “BIC-AdpSGL” which are approaches

SGL and AdpSGL for which the tuning parameters (λ, α) were

selected in each run via BIC as discussed in Sec. III-B. For

p = 100 and each value of sample size n, for approaches L, GL,

SGL and AdpSGL, we selected the tuning parameters (λ, α) by

searching over a two-dimensional grid to maximize theF1-score

(averaged over 100 runs), where F1-score is defined as
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TABLE I
TIMINGS FOR ADMM ALGORITHM 1 FOR L (LABELED L(ADMM)), GL AND

SGL, AND FOR QUIC ALGORITHM [35] (LABELED L(QUIC)) IMPLEMENTED IN

MATLAB, BASED ON 100 RUNS, CHAIN GRAPH

F1 =
2× precision × recall

precision + recall
,

precision =
|Ê ∩ E0|

|Ê |
, recall =

|Ê ∩ E0|
|E0|

and E0 and Ê denote the true and estimated edge sets, respec-

tively. In Fig. 1 we show the F1-score and in Fig. 2 we show the

normalized Frobenius error ‖Ω̂λ −Ω0‖F /‖Ω0‖F . We see that

GL, SGL and AdpSGL approaches are significantly superior to

L in terms of both F1-score and Frobenius error, particularly at

smaller sample sizes. While AdpSGL is also significantly better

than GL, SGL is only slightly better than GL. For instance, at

n = 200 (p = 100), the F1-score is 0.6632, 0.7988, 0.8203 and

0.8817 for L, GL, SGL, and AdpSGL, respectively. For the prac-

tical case where the tuning parameters (λ, α) have to be selected

based on data, the results for BIC-SGL and BIC-AdpSGL show

a loss in F1-score which significantly narrows with increasing

n. For instance, for n = 100, 200, 400, and p = 100, the F1-

scores are 0.4962, 0.8429, 0.9544 for BIC-AdpSGL compared

to 0.6143, 0.8817, 0.9795 for AdpSGL.

For p = 400, we show results only for SGL. We first selected

(λ, α) by searching over a two-dimensional grid to maximize the

F1-score, for p = 100 and n = 200. Based on 100 runs, the se-

lected values wereλ = 0.255 andα = 0.05. Then we scaleλ for

other values of p and n based on (19): λn = C
√

ln(mp)/n with

C = 0.255
√

200/ ln(300). Figs. 1 and 2 show the F1-score and

Frobenius error , respectively, under the label “SGL, p=400.”

Table I shows some statistics regarding average timings (mean

±1 std) per run for the approaches L, GL and SGL using the

(λ, α) values optimized for each n and p = 100 for the F1-score

(as discussed for Fig. 1) and λ scaled for p = 400 using (19),

where the ADMM algorithm was implemented in MATLAB

R2020b, and run on a Window Home 10 operating system

with processor Intel(R) Core(TM) i5-6400T CPU @2.20 GHz

with 12 GB RAM. We also show timings for the fast Hessian-

based quadratic approximation approach of [35] for lasso (α =
1), called QUIC. For p = 100 and n = 100, 200, 400, 800,

the F1-scores were 0.425, 0.652, 0.799, 0.970 for L(ADMM)

and 0.424, 0.652, 0.799, 0.970 for L(QUIC), respectively,

and for p = 400 and n = 100, 200, 400, 800, the F1-

scores were 0.263, 0.417, 0.576, 0.914 for L(ADMM) and

TABLE II
CHAIN GRAPH, p = 100: F1-SCORE AND TIMINGS BASED ON 100 RUNS FOR

THE APPROACHES OF KOLAR [9] AND DANAHER ET AL. [3], IMPLEMENTED IN

MATLAB

0.263, 0.417, 0.577, 0.914 for L(QUIC), respectively. As seen

in Fig. 1, as sample size becomes large (e.g. n = 800), the

F1-score of approach L becomes comparable to GL and SGL,

therefore, one may wish to use just lasso for multi-attribute

models using fast lasso solvers such as QUIC. We implemented

QUIC in MATLAB. The main computational requirement in

ADMM is eigen-decomposition in line 5 of the ADMM algo-

rithm whose complexity is O((mp)3). Therefore, comparing

the results for p = 100 and p = 400, one would expect to see

an increase in timing of the order of approximately 64, but the

times displayed in Table I scale by less than 64. While the fast

algorithm QUIC is indeed faster than ADMM Algorithm 1 for

p = 100, it is not so for p = 400. We do note that the timing

comparisons between QUIC and ADMM given in [35] (for a

different example) are based on QUIC implemented in C++ with

a MATLAB interface but ADMM implemented in MATLAB and

without using variable penalty ρ.

Note that QUIC speeds up the algorithm by processing only a

subset of variables (“free variables” [35]) for Newton direction

computation at any given iteration, with the remaining variables

(“fixed variables”) in the precision matrix left unprocessed. The

number of free variables depends upon λ, with higher λ leading

to fewer free variables (sparser estimate), and vice versa. Nu-

merical results in [35, Table 2] show that if one selects optimum

λ (the one that results “in the discovery of the correct number

of non-zeros” in the precision matrix [35, p. 2936]), then QUIC

converges the fastest. If the chosen λ results in denser estimated

precision matrix, one has higher number of free variables, and

consequently larger time to convergence. Since, using (19), we

scaled λ values for p = 400 from λ values chosen to optimize

performance for p = 100, they are not necessarily optimal for

p = 400 (because (19) and Theorem 1 hold for large n). For

optimal λ’s one expects the timings to scale as O((mp)3), in

particular, by a factor of 64 from p = 100 to p = 400. But for

non-optimal λ values this factor can be much larger, as seen in

[35, Table 2] for a different problem. Note that ADMM does

not make use of this partition of variables into free and fixed

sets, therefore, its timings are not as dependent upon choice of

λ values. (Another fast gradient-based lasso solver is given in

[36] which we have not tested.)

Table II shows the results (F1-score and timings) of using the

approaches of [9] and [3] on chain graph with p = 100, m = 3.

For Kolar [9], we implemented the primal-dual algorithm given

therein with error tolerance of 10−4 and selected the tuning

parameter λ by searching over a grid of values to maximize

F1-score. The approach of [3] is closer to our proposed ADMM
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solution, and was implemented similar to our Algorithm 1, and

we search for (λ, α)over a two-dimensional grid to maximize the

F1-score. Since for connected nodes j and k in the chain graph,

we pick [Ω(jk)]st = 0 if s = t, (an example in [9]), and since for

a given edge {j, k}, [3] exploits [Ω(jk)]st only for s = t, and not

s 6= t (unlike ours and Kolar’s approach), one would not expect

[3] to do well for this example (as was also noted in [9]). The

F1-scores of Kolar are quite close to the SGL results (for n =
100, 200, 400, 800, the F1-scores are 0.466, 0.802, 0.941, 0.989
for Kolar compared to 0.549, 0.780, 0.939, 0.989 for GL) but

timings are significantly higher (for n = 100, 200, 400, 800,

the timings are 205.0, 46.0, 23.5, 15.6s for Kolar compared to

1.163, 1.442, 1.372, 1.375s for GL). The approach of [3] yields

quite poor F1 scores, as seen in Table II.

Fig. 3 shows F1-score vs α for p = 100 and n = 100 or

400, with λ values equal to the optimized values for SGL, as

used for the results of Fig. 1. For example, we have (λ, α) =
(0.3253, 0.05) for n = 100 and (λ, α) = (0.18, 0.1) for n =
400. Parameter α = 0 leads to group-lasso while α = 1 is

purely lasso. For n = 100, the peak empirical F1-score is 0.551

at α = 0.05 (compared to 0.525 at α = 0 (group lasso) and

0.115 at α = 1 (lasso)), and the minimum Hamming distance

between E0 and Ê is 72.3 at α = 0.15 (compared to 108.2 at

α = 0 and 93.1 at α = 1). For n = 400, the peak empirical

F1-score is 0.948 at α = 0.10 (compared to 0.893 at α = 0 and

0.676 at α = 1), and the minimum Hamming distance is 10.08

at α = 0.10 (compared to 23.5 at α = 0 and 47.7 at α = 1).

Fig. 3 highlights possible advantages of using sparse-group lasso

instead of just group-lasso or just lasso: performance could be

significantly improved by allowing α 6= 0 or 1; however, the

gains may not be as significant if one optimizes w.r.t. λ for

each α separately. While group-lasso enforces multi-attribute

graph modeling explicitly, there are some gains to be had by

also incorporating sparsity within the groups if such is the case;

see also [25], [26].

For the chain graph, p = 100, m = 3, and n = 200, we show

the true (ground truth) and estimated (mp)× (mp) inverse

covariance matrices for a single run in Figs. 4 and 5 (the

latter is a subset of the former, scaled for ease of viewing),

using approaches lasso (L, α = 1), group lasso (GL, α = 0)

and sparse group lasso (SGL, α = 0.05), implemented with the

corresponding optimized tuning parameters as for Fig. 1. In these

figures all matrix entries that are exactly zero, are color coded

as white, other matrix elements follow the displayed colorbar

coding. Lasso does not impose group penalty, hence, for j = k,

estimate of the m×m subblock [Ω(jk)]st, s, t = 1, 2, · · · ,m,

yields nonzero diagonals (s = t) and several zero off-diagonals,

unlike GL and SGL. On the other hand, GL imposes only group

penalty which can lead to errors in “full” m×m subblocks

(notice the “thick” nonzero subblocks off the diagonal in Fig. 5)

whereas errors in SGL result in “partial” subblocks since individ-

ual elements are also penalized. The F1-scores for the given run

were 0.690, 0.809 and 0.833 for L, GL and SGL, respectively.

B. Synthetic Data: Erdös-Rènyi Graph

Now we consider an Erdös-Rènyi graph where p nodes are

connected to each other with probability per = 0.05. In the

Fig. 6. F1-score (mean ±1 std) vs sample size n, for Erdös-Rènyi graph with
node connection probability of 0.05, m = 3.

Fig. 7. Error norm ‖Ω̂λ −Ω0‖F /‖Ω0‖F (mean ±1 std) vs sample size n,

for Erdös-Rènyi graph with node connection probability of 0.05, m = 3.

upper triangular Ω̄, using the notation of (4), we set [Ω̄
(jk)

]st =
0.5|s−t| for j = k = 1, · · · , p, s, t = 1, · · · ,m. For j 6= k, if

the two nodes are not connected, we have Ω̄
(jk)

= 0, and if

nodes j and k are connected in the chain graph, then [Ω̄
(jk)

]st
is uniformly distributed over [−0.4,−0.1] ∪ [0.1, 0.4] if s 6= t,

and [Ω̄
(jk)

]st = 0 if s = t. Now add γI to Ω with γ picked

to make minimum eigenvalue of Ω+ γI equal to 0.5. With

ΦΦ
⊤ = (Ω+ γI)−1, we generate x = Φw with w ∈ R

mp as

Gaussian w ∼ N (0, I). We generate n i.i.d. observations from

x, with m = 3, p ∈ {100, 400}, n ∈ {100, 200, 400, 800}. We

then have 1
2E{|E|} = 247.5 and 3990 for p = 100 and 400,

respectively.

Simulation results based on 100 runs are shown in Figs. 6, 7

and 8 forp = 100 and 400 nodes. Figs. 6, 7 and 8 are counterparts

of Figs. 1, 2 and 3 pertaining to the chain graph. For p = 400,

we show results only for SGL in Figs. 6 and 7, similar to Figs. 1

and 2, where we first selected the tuning parameters (λ, α) by

searching over a two-dimensional grid to maximize theF1-score
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Fig. 8. F1-score and Hamming dist. (mean ±1 std) vs α for Erdös-Rènyi
graph with node connection probability of 0.05, m = 3, p = 100, λn as for
Fig. 6.

for (p, n) = (400, 400), resulting in (λ, α) = (0.08, 0.05). Then

we scale λ for other values of n based on (19): λn = C400/
√
n

with C400 = 0.08
√
400 for p = 400. For p = 100, for each n,

the tuning parameters were selected by exhaustive search or via

BIC, exactly as for Figs. 1 and 2. We see that the performance or-

der among these approaches is as follows: AdpSGL is better than

SGL which is better than GL, and all the three approaches are

superior to L in terms of both the F1-score and Frobenius error.

For the practical case where the tuning parameters (λ, α) have

to be selected based on data, the results for BIC-SGL and BIC-

AdpSGL show a loss in F1-score which significantly narrows

with increasing n. For instance, for n = 100, 200, 400, 800, and

p = 100, the F1-scores are 0.3366, 0.5603, 0.8483, 0.9810 for

BIC-AdpSGL compared to 0.4487, 0.7210, 0.9190, 0.9882 for

AdpSGL.

Fig. 8 shows F1-score vs α for p = 100 and n = 100 or 400,

with λn’s as for Fig. 6, and Fig. 8 is the counterpart of Fig. 3

pertaining to the chain graph. The discussion pertaining to Fig. 3

applies here too.

C. Real Data Example: Gross Domestic Product (GDP)

Network

As in [18], we consider regional GDP data obtained from the

U.S. Department of Commerce (DoC) website.1 We picked data

for the following 20 different industries with DoC labels: (1) util-

ities (uti), (2) construction (cons) , (3) manufacturing (manu), (4)

Durable goods manufacturing (durable), (5) nondurable goods

manufacturing (nondu), (6) wholesale trade (wholesale), (7)

retail trade (retail), (8) transportation and warehousing (trans),

(9) information (info), (10) finance and insurance (finance),

(11) real estate and rental and leasing (real), (12) professional,

scientific and technical services (prof), (13) management of

companies and enterprises (manage), (14) administrative and

waste management services (admin), (15) educational services

(edu), (16) health care and social assistance (health), (17) arts,

1https://www.bea.gov/index.html

entertainment and recreation (arts), (18) accommodation and

food services (food), (19) other services except government

(other), and (20) government (gov). The quarterly data are

available from the first quarter of 2005 to the first quarter of

2020, but we used the data from first quarter of 2005 to the

first quarter of 2016 since some of the later data are undis-

closed (confidential). We used data pertaining to 8 regions in

the US: Far West (FWST: Alaska, California, Hawaii, Nevada,

Oregon and Washington), Great Lakes (GLAK: Illinois, Indiana,

Michigan, Ohio and Wisconsin), Mideast (MEST: Delaware,

D.C., Maryland, New Jersey, New York and Pennsylvania),

New England (NENG: Connecticut, Maine, Massachusetts,

New Hampshire, Rhode Island and Vermont), Plains (PLNS:

Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota

and South Dakota), Rocky Mountain (RKMN: Colorado, Idaho,

Montana, Utah and Wyoming), Southeast (SEST: Alabama,

Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi,

North Carolina, South Carolina, Tennessee, Virginia and West

Virginia), and Southwest (SWST: Arizona, New Mexico, Okla-

homa and Texas).

We model this GDP network as a multi-attribute graphical

model with p = 20 nodes (industries) and m = 8 attributes

(regions). The objective is visualization and exploration of

the dependency structures (conditional dependencies) among

these 20 industries. One could merge the region-wise data into

nationwide data and then estimate the single-attribute graph

for these industries; this would ignore regional differences

and more granular information available in the data. Or, one

could separately fit graphs for each of the eight regions, and

then combine them somehow for a final graph for the entire

nation; this ignores any group structure that may be present

in the data, and moreover, it is not clear how to combine the

various fitted graphs. Multi-attribute graphical modeling pre-

serves/exploits the group structure while maintaining regional

differences.

Thus we have a 160-dimensional (m = 8, p = 20,mp = 160)

single-attribute time series with n=48 samples. We pre-process

the data by first detrending it (i.e., remove the best straight-line

fit linear trend from each component series using the MATLAB

function detrend). Then we normalized the entire dataset to have

a mean-square value of one. To estimate the multi-attribute

graph, we use the BIC-based method outlined in Sec. III-B

to select the tuning parameters λ and α. The selected val-

ues turn out be (λ, α) = (1, 0.5) for sparse-group lasso and

(λ, α) = (0.167, 0.1) for adaptive sparse-group lasso. The es-

timated graph using the sparse-group lasso ADMM algorithm

has 46 distinct edges (out of possible 190) and the graph is

shown in Fig. 9. For Fig. 9, we take ‖Ω̂(jk)‖F as the edge

weight for edge {j, k}, normalize maximum value to one, and

show the resulting graph with colored edge weights and link

thickness also reflecting edge weight. With maximum edge

weight ‖Ω̂(jk)‖F normalized to one, we quantize the interval

[0,1] to 4 link thicknesses. The estimated graph using adaptive

sparse-group lasso has 54 edges and the graph is shown in

Fig. 10. We repeated this procedure (BIC-based tuning parame-

ter selection, for both lasso and adaptive lasso graphs) for single-

attribute graphical modeling for each of the eight attributes and
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Fig. 9. GDP graph: sparse-group lasso, 1
2 |Ê | = 46.

Fig. 10. GDP graph: adaptive sparse-group lasso, 1
2 |Ê | = 54.

nationwide data (pool all regional data). The selected λ values

range from 0.04 to 0.075 for lasso, and from 0.013 to 0.018 for

adaptive lasso. The resulting adaptive lasso graphs are shown

in Fig. 11.

Some edge statistics are tabulated in Table III. Comparing

multi-attribute graph of Fig. 10 with the single attribute graphs

in Fig. 11, as well as examining the statistics in Table III,

we see that multi-attribute graph captures edges not found in

single attribute graphs while rejecting some edges in single

attribute graphs that do not find support across the various

single attribute graphs. It is also interesting to note that there

are no edges common to all eight single attribute regional

graphs.

The average node degree in Fig. 10 is 5.4. In Fig. 10, there

are two groups of most connected industries: the first group

is comprised of construction, manufacturing, and finance and

insurance, with 16, 17 and 13 edges, respectively, and the

second group is comprised of durable goods manufacturing,

non-durable goods manufacturing, information, and real estate

and rental and leasing, with 8, 5, 6 and 7 edges, respectively.

The hubs comprised of construction, manufacturing, and finance

and insurance are not surprising as they are typical drivers

TABLE III
NUMBER OF ESTIMATED EDGES IN REGIONAL/NATIONWIDE SINGLE

ATTRIBUTE (SA) GDP GRAPHS AND MULTI-ATTRIBUTE (MA) GDP GRAPH.
POSSIBLE EDGES 190 ({i, j} AND {j, i} ARE COUNTED AS ONE EDGE),

SAMPLE SIZE n=48, p=20, m = 8. SEE THE TEXT FOR REGION LABELS

of GDP. Educational services is connected to durable goods

manufacturing, construction and manufacturing in Fig. 10 but

is not connected to any node in Fig. 9. Noting that educational

services sector includes food and accommodation services to

the students, its conditional dependence on durable goods man-

ufacturing, construction and manufacturing in Fig. 10 seems

to be plausible given construction and maintenance of student

housing and food services, in addition to that of classrooms. In

view of the synthetic data results, adaptive sparse-group lasso

graph of Fig. 10 would appear to be more accurate than the

sparse-group lasso graph of Fig. 9 where educational services

node sits in isolation. An in-depth analysis would require domain

expertise.

D. Real Data Example: Graphs of Color Texture Images

Following [16], [17] where grayscale texture images from

a University of Southern California (USC-SIPI) database are

considered, we now consider color textures from the Amsterdam

Library of Textures (ALOT)2 [37]. We use two versions of the

image 108 (fake fur), images c111.png and c111r60.png (160×
160 patches shown in Fig. 12 where c111 is labeled as image 1

and c111r60 is labeled as image 2), photographed from different

angles. These two images are 3072× 1536 RGB color pixels

(1024× 1536 for each of RGB). For image 1 we extracted rows

1 through 160, and columns 186 through 345, and for image

2 we extracted rows 700 through 859, and columns 1 through

160, to create the 160× 160 patches used for inferring image

graphs.

The 160× 160 patches were partitioned into non-overlapping

8× 8 blocks, vectorized into 64-pixel columns, 3 colors associ-

ated with each pixel. Thus, we havem = 3,p = 64 andn = 400.

The data were centered and mean-square value normalized to

one before processing. To select λ and α, we use the BIC-based

method outlined in Sec. III-B. For texture shown in Fig. 12(a),

2http://aloi.science.uva.nl/public_alot
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Fig. 11. GDP graphs for 8 regions and nationwide data: single attribute adaptive lasso.

the selected values turn out be (λ, α) = (0.0625, 0.25) for

sparse-group lasso and (λ, α) = (0.0417, 0.1) for adaptive

sparse-group lasso, and for texture shown in Fig. 12(d), the se-

lected values are (λ, α) = (0.0775, 0.25) for sparse-group lasso

and (λ, α) = (0.0517, 0.1) for adaptive sparse-group lasso. Us-

ing these values for graph estimation, we obtain 1
2 |Ê | = 554

and 1
2 |Ê | = 208 with sparse-group lasso and adaptive sparse-

group lasso, respectively, for image 1 with estimated graphs

shown in Figs. 12(b) and 12(c), respectively. For image 2, we

obtain 1
2 |Ê | = 467 and 1

2 |Ê | = 204 with sparse-group lasso and

adaptive sparse-group lasso, respectively, with estimated graphs

shown in Figs. 12(e) and 12(f), respectively. We take ‖Ω̂(jk)‖F
as the edge weight for edge {j, k}, normalize maximum value

to one, and show the resulting graphs (arranged as 8× 8 nodes)

with colored edge weights and link thickness also reflecting edge

weight. (With maximum edge weight ‖Ω̂(jk)‖F normalized

to one, we quantize the interval [0,1] to 4 link thicknesses.)

Compare Figs. 12(a), 12(b) and 12(c), and Figs. 12(d), 12(e) and

12(f), respectively, to note that the strong link weights follow the

texture orientation: primarily vertical and some slanting left in

Figs. 12(a), 12(b) and 12(c), and primarily slanting right and

some horizontal in Figs. 12(d), 12(e) and 12(f). Weaker edge

weights connect pixels in “other” directions. These observa-

tions provide “visual” support for fitted graphs, confirming our

intuition; we do not know the ground truth. Observe also that

the results obtained via adaptive sparse-group lasso are much

sparser than those via sparse-group lasso. This is unlike the GDP

graphs in Sec. V-C where the sample size is quite small (n = 48
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Fig. 12. Color texture graph example (textures are from http://aloi.science.uva.nl/public_alot).

for (p,m) = (20, 8) for GDP graphs compared to n = 400 for

(p,m) = (64, 3) for image graphs).

VI. CONCLUSION

We proposed a sparse-group lasso based penalized log-

likelihood approach for graph learning from multi-attribute data.

Prior work of [8], [9], [15], [18] considers only group lasso which

is a special case of sparse-group lasso. An ADMM algorithm

was presented to optimize the objective function to estimate

the inverse covariance matrix and the edges in the graph. We

provided sufficient conditions for convergence in the Frobenius

norm of the estimator to the true value, a rate of convergence,

and also considered sparsistency.

We tested the proposed approach on synthetic as well as

real data. While the ground truth is unknown in the real data

applications, requiring domain expert knowledge to interpret the

results (estimated graphs), the synthetic data examples clearly

demonstrate the advantages of using sparse-group lasso instead

of just group-lasso or just lasso.

It is of interest to perform theoretical analysis of the adaptive

sparse-group lasso approach outlined in Sec. III-B2.

APPENDIX A

PROOF OF THEOREM 1

Here we prove Theorem 1. First we need Lemmas 1 and 2.

Lemma 1 below is specialization of [27, Lemma 1] to Gaussian

random vectors. It follows from [27, Lemma 1] after setting the

sub-Gaussian parameter σ in [27, Lemma 1] to 1.

Lemma 1: Consider a zero-mean Gaussian random vector z ∈
R

p with covariance R ≻ 0. Given n i.i.d. samples z(t), t =

1, 2, · · · , n, of z, let R̂ = (1/n)
∑n

t=1 zz
⊤ denote the sample

covariance matrix. Then R̂ satisfies the tail bound

P
(∣
∣
∣[R̂−R]ij

∣
∣
∣ > δ

)

≤ 4 exp

(

− nδ2

3200maxi(R2
ii)

)

(22)

for all δ ∈ (0, 40maxi(Rii)) •
Now we state Lemma 2 and provide a proof.

Lemma 2: Under Assumption (A2), the sample covariance Σ̂

satisfies the tail bound

P

(

max
k,l

∣
∣
∣[Σ̂−Σ0]kl

∣
∣
∣ > C0

√

ln(mpn)

n

)

≤ 1

(mpn)τ−2

(23)

for τ > 2, if the sample size n > N1, where C0 is defined in

(14) and N1 is defined in (17). •
Proof: Applying Lemma 1 to our problem, we have

P
(∣
∣
∣[Σ̂−Σ0]kl

∣
∣
∣ > δ

)

≤ 4 exp

(

− nδ2

3200(Σ2
0kk)max

)

(24)

for all δ ∈ (0, 40maxk(Σ0kk)) where (Σ2
0kk)max =

max1≤k≤mpn
(Σ2

0kk). Applying the union bound over all

(mpn)
2 entries of Σ̂−Σ0, we have

P

(

max
k,l

∣
∣
∣[Σ̂−Σ0]kl

∣
∣
∣ > δ

)

≤ Ptb

= 4(mpn)
2 exp

(

− nδ2

3200maxk(Σ2
0kk)

)

, (25)

for all δ ∈ (0, 40maxk(Σ0kk)). Let c∗ := 1/(40maxk(Σ0kk)).
Suppose δ is such that

c∗δ =

√

N1

n
=

√

2 ln(4(mpn)τ )

n

where we have used the expression for N1 from (17). Then

c∗δ < 1 for n > N1, and therefore, the bound (25) holds true

since δ ∈ (0, 40maxk(Σ0kk)) = (0, c−1
∗ ) . Using the definitions

Authorized licensed use limited to: Jitendra Tugnait. Downloaded on March 30,2021 at 20:35:39 UTC from IEEE Xplore.  Restrictions apply. 



1784 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

of c∗ and N1, C0 specified in (14) can be expressed as

C0 = c−1
∗

√

N1

ln(mpn)
.

Suppose we choose δ as

δ = C0

√

ln(mpn)

n
⇒ δ = c−1

∗

√

N1

n
, (26)

then c∗δ < 1 for n > N1, therefore, the bound (25) holds true.

Now it remains to show thatPtb equals 1/(mpn)
τ−2 for δ chosen

as in (26). We have

Ptb = 4(mpn)
2 exp

(

− nδ2

3200maxk(Σ2
0kk)

)

= 4(mpn)
2 exp

(

−nC2
0 ln(mpn)

2nc−2
∗

)

= 4(mpn)
2 exp (−N1/2) =

4(mpn)
2

exp (ln(4(mpn)τ ))

=
1

(mpn)τ−2
. (27)

This proves the desired result �

Now we are ready to prove Theorem 1.

Proof of Theorem 1: LetΩ = Ω0 +∆ with both Ω, Ω0 ≻ 0,

and

Q(Ω) := L(X;Ω)− L(X;Ω0) . (28)

The estimate Ω̂λ, denoted by Ω̂ hereafter suppressing depen-

dence upon λ, minimizes Q(Ω), or equivalently, ∆̂ = Ω̂−Ω0

minimizes G(∆) := Q(Ω0 +∆). We will follow, for the most

part, the method of proof of [29, Theorem 1] pertaining to lasso

penalty. Consider the set

Θn(M) :=
{
∆ : ∆ = ∆

⊤, ‖∆‖F = Mrn
}

(29)

where M and rn are as in (15) and (16), respectively. Since

G(∆̂) ≤ G(0) = 0, if we can show that inf∆{G(∆) : ∆ ∈
Θn(M)} > 0, then the minimizer ∆̂ must be inside Θn(M),

and hence ‖∆̂‖F ≤ Mrn. It is shown in [29, (9)] that

ln(|Ω0 + ∆|)− ln(|Ω0|) = tr(Σ0∆)−A1 (30)

where, with H(Ω0,∆, v) = (Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1

and v denoting a scalar,

A1 = vec(∆)⊤
(∫ 1

0

(1− v)H(Ω0,∆, v) dv

)

vec(∆) .

(31)

Noting that Ω
−1 = Σ and setting λ̄1 = αλn and λ̄2 = (1−

α)λn, we can rewrite G(∆) as

G(∆) = A1 +A2 +A3 +A4 , (32)

where

A2 = tr
(

(Σ̂−Σ0)∆
)

, (33)

A3 = λ̄1

(
‖Ω−

0 +∆
−‖1 − ‖Ω−

0 ‖1
)
, (34)

A4 = λ̄2

pn∑

i,j=1;i6=j

(

‖Ω(ij)
0 +∆

(ij)‖F − ‖Ω(ij)
0 ‖F

)

. (35)

Following [29, p. 502], we have

A1 ≥ ‖∆‖2F
2(‖Ω0‖+ ‖∆‖)2 ≥ ‖∆‖2F

2
(
β−1
min +Mrn

)2 (36)

where we have used the fact that ‖Ω0‖ = ‖Σ−1
0 ‖ =

φmax(Σ
−1
0 ) = (φmin(Σ0))

−1 ≤ β−1
min and ‖∆‖ ≤ ‖∆‖F =

Mrn = O(rn). We now consider A2 in (33). We have

A2 =

mpn∑

i,j=1;i6=j

[Σ̂−Σ0]ij∆ji

︸ ︷︷ ︸

L1

+

mpn∑

i=1

[Σ̂−Σ0]ii∆ii

︸ ︷︷ ︸

L2

(37)

To bound L1, using Lemma 2, with probability > 1−
1/(mpn)

τ−2,

|L1| ≤ ‖∆−‖1 max
i,j

∣
∣[Σ̂−Σ0]ij

∣
∣ ≤ ‖∆−‖1 C0

√

ln(mpn)/n .

(38)

Similarly, by Cauchy-Schwartz inequality, Lemma 2 and (16),

|L2| ≤ ‖∆+‖1 C0

√

ln(mpn)

n
≤ C0

√

mpn ln(mpn)

n
‖∆+‖F

≤ ‖∆+‖FC0rn . (39)

Therefore, with probability > 1− 1/(mpn)
τ−2,

|A2| ≤ ‖∆−‖1 C0

√

ln(mpn)

n
+ ‖∆+‖FC0rn . (40)

We now derive a different bound on A2. Define ∆̃ ∈ R
pn×pn

with (i, j)-th element ∆̃ij = ‖∆(ij)‖F , where ∆(ij) is defined

from ∆ similar to (4). By Cauchy-Schwartz inequality,

‖∆−‖1 =

mpn∑

i,j=1;i6=j

|∆ij | ≤ m‖∆̃−‖1

+

(
pn∑

k=1

‖∆(kk)‖1 − ‖∆+‖1
)

︸ ︷︷ ︸

=:B

. (41)

Then using
∑

k ‖∆(kk)‖1 ≤ m
∑

k ∆̃kk ≤ m
√
pn ‖∆̃

+‖F , we

have

|L2|+C0

√

ln(mpn)/nB≤C0

√

ln(mpn)/n

(
pn∑

k=1

‖∆(kk)‖1
)

≤ ‖∆̃+‖F
√
mC0rn

Therefore, an alternative bound is

|A2| ≤ m‖∆̃−‖1 C0

√

ln(mpn)/n+
√
m ‖∆̃+‖FC0rn .

(42)

We now boundA3 in (34). Considering the true enlarged edge-

set Ē0 corresponding to E0 (see Sec. II for Ē), let Ēc
0 denote its

complement. For an index set B and a matrix C ∈ R
pn×pn , we

write CB to denote a matrix in R
pn×pn such that [CB]ij = Cij

if (i, j) ∈ B, and [CB]ij = 0 if (i, j) 6∈ B. Then, by defi-

nition, ∆− = ∆
−
Ē0 +∆

−
Ēc
0
, and ‖∆−‖1 = ‖∆−

Ē0‖1 + ‖∆−
Ēc
0
‖1.

We have

A3 = λ̄1(‖Ω−
0 +∆

−‖1 − ‖Ω−
0 ‖1)

= λ̄1(‖Ω−
0 +∆

−
Ē0‖1 + ‖∆−

Ēc
0
‖1 − ‖Ω−

0 ‖1)

≥ λ̄1(‖∆−
Ēc
0
‖1 − ‖∆−

Ē0‖1) (43)

where we have used the triangle inequality ‖Ω−
0 +∆

−
Ē0‖1 ≥

‖Ω−
0 ‖1 − ‖∆−

Ē0‖1. Next we bound A4 in (35). Considering the

true edge-set E0 for the multi-attribute graph, let Ec
0 denote
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its complement. If the edge {i, j} ∈ Ec
0 , then Ω

(ij)
0 = 0, there-

fore, ‖Ω(ij)
0 +∆

(ij)‖F − ‖Ω(ij)
0 ‖F = ‖∆(ij)‖F . For {i, j} ∈

E0, by the triangle inequality, ‖Ω(ij)
0 +∆

(ij)‖F − ‖Ω(ij)
0 ‖F ≥

−‖∆(ij)‖F . Thus

A4 ≥ λ̄2(‖∆̃
−
Ec
0
‖1 − ‖∆̃−

E0‖1) . (44)

Split A2 as A2 = αA2 + (1− α)A2, apply bound (40) to

αA2 and (42) to (1− α)A2, use

‖∆−‖1 = ‖∆−
Ē0‖1 + ‖∆−

Ēc
0
‖1 , ‖∆̃−‖1 = ‖∆̃−

E0‖1 + ‖∆̃−
Ec
0
‖1 ,

and C ′
0 = C0

√

ln(mpn)/n, to yield

A2 +A3 +A4 ≥ −|A2|+ λ̄1(‖∆−
Ēc
0
‖1 − ‖∆−

Ē0‖1)

+ λ̄2(‖∆̃
−
Ec
0
‖1 − ‖∆̃−

E0‖1)

≥ − (α‖∆+‖F + (1− α)
√
m ‖∆̃+‖F )C0rn

+ ‖∆−
Ēc
0
‖1(λ̄1 − αC ′

0)

+ ‖∆̃−
Ec
0
‖1(λ̄2 − (1− α)mC ′

0)− ‖∆−
Ē0‖1(λ̄1 + αC ′

0)

− ‖∆̃−
E0‖1(λ̄2 + (1− α)mC ′

0)

≥ − (α+ (1− α)
√
m) ‖∆‖FC0rn − ‖∆−

Ē0‖1(λ̄1 + αC ′
0)

− ‖∆̃−
E0‖1(λ̄2 + (1− α)mC ′

0) (45)

where, for the last inequality above, we used the fact that for

λn as in (19), λ̄1 − αC ′
0 ≥ 0 and λ̄2 − (1− α)mC ′

0 ≥ 0, and

‖∆+‖F ≤ ‖∆‖F , ‖∆̃+‖F ≤ ‖∆‖F . By Cauchy-Schwartz in-

equality,

‖∆−
Ē0‖1 ≤

√

m2sn0 ‖∆−
Ē0‖F ≤ m

√
sn0 ‖∆‖F , (46)

‖∆̃−
E0‖1 ≤ √

sn0 ‖∆̃
−
E0‖F ≤ √

sn0 ‖∆̃‖F =
√
sn0 ‖∆‖F .

(47)

Using (45)–(47) and αm := (α+ (1− α)
√
m), we have

A2 +A3 +A4 ≥ −
[

C ′
0

(

1 + αm

√

1 + pn/(msn0)
)

+ λ̄1

+(λ̄2/m)
]
m
√
sn0 ‖∆‖F

≥ −
[

(
√
m+ 1)C0rn + (λ̄1 +

λ̄2

m
)m

√
sn0

]

‖∆‖F

≥ −C2C0rn ‖∆‖F (48)

where in the last inequality above, we used the fact that for

λn as in (19), m
√
sn0(λ̄1 + (λ̄2/m)) ≤ C1C0rn, and αm ≤√

m. Using (32), the bound (36) on A1 and (48) on A2 +
A3 +A4, and ‖∆‖F = Mrn, we have with probability > 1−
1/(mpn)

τ−2,

G(∆) ≥ ‖∆‖2F
[

1

2(β−1
min +Mrn)2

− C2
C0

M

]

. (49)

Forn ≥ N2, if we pickM as specified in (15), we obtainMrn ≤
MrN2

≤ δ1/βmin. Then

1

2(β−1
min +Mrn)2

≥ β2
min

2(1 + δ1)2
=

(2C2 + δ2)C0

2M
> C2

C0

M
,

implying G(∆) > 0. This proves the desired result. �

APPENDIX B

PROOF OF THEOREM 2

Consider the (i, k)th element Ω̂λik
of the sparse-group lasso

estimate Ω̂λ. Since Ω̂λ minimizes the penalized negative log-

likelihood L(X;Ω) given by (7), we must have

0 =
∂L(X;Ω)

∂Ω̂ik

= Σ̂ki − [Ω̂
−1

λ ]ki + αλn

Ω̂λik

|Ω̂λik|

+ (1− α)λn

Ω̂λik

‖Ω̂(jℓ)

λ ‖F

= Σ̂ik − Σ̌λik + αλn

Ω̂λik

|Ω̂λik|
+ (1− α)λn

Ω̂λik

‖Ω̂(jℓ)

λ ‖F
=: A

(50)

where

Σ̌λ := Ω̂
−1

λ ,

Ωik is an element in m×m Ω
(jℓ), we use the notation

∂L(X;Ω)

∂Ω̂ik

=
∂L(X;Ω)

∂Ωik

∣
∣
∣
Ω=Ω̂λ

and assume that Ω̂λik
6= 0.

To prove the desired result, the term αλn(Ω̂λik
/|Ω̂λik

|) +
(1− α)λn(Ω̂λik/‖Ω̂λ

(jℓ)‖F ) on the right-side of (50) must

dominate the term Σ̂ik − Σ̌λik whenever true value Ω0ij = 0.

Then the sign of
∂L(X;Ω)

∂Ω̂ik

in (50) is the same as sign(Ω̂λik) with

probability tending to one, which yields the desired result, as is

shown in what follows. At the optimal solution, by the KKT con-

ditions, one must have A in (50) equal to zero. Suppose that for

{i, k} ∈ Ēc
0 , one has Ω̂ik 6= 0whenA = 0. Suppose that Ω̂λik

<

0, implying that for some δ > 0, Ω̂λik + δ < 0, since, by The-

orem 1, Ω̂λik converges to Ω0ik = 0 for {i, k} ∈ Ēc
0 . Since

Ω̂λik minimizes L(X;Ω), and
∂L(X;Ω)

∂Ω̂ik

= 0, we must have

I1 := ∂L(X;Ω)

∂(Ω̂ik+δ)
> 0 for δ > 0. If λn dominates Σ̂ik − Σ̌λik

in (50), I1 > 0 implies that Ω̂λik
+ δ > 0, contradicting the

assumption that Ω̂λik + δ < 0. Therefore, Ω̂λik ≮ 0. We argue

similarly that Ω̂λik ≯ 0. Therefore, Ω̂λik = 0 for {i, k} ∈ Ēc
0 ,

with probability tending to one.

It remains to investigate the conditions under which λn dom-

inates Σ̂ik − Σ̌λik. Rewrite

Σ̂ik − Σ̌λik = Σ̂ik − Σ0ik
︸ ︷︷ ︸

=:I3

+Σ0ik − Σ̌λik
︸ ︷︷ ︸

=:I4

. (51)

By Lemma 2, maxi,k |I3| = OP (
√

ln(mpn)
n ). By [30, Lemma

1],

|I4| ≤ ‖Σ0 − Σ̌λ‖ = ‖Σ̌λ(Ω̂λ −Ω0)Σ0‖
≤ ‖Σ̌λ‖ · ‖(Ω̂λ −Ω0)‖ · ‖Σ0‖ . (52)

By Assumption (A2), ‖Σ0‖ = O(1). Furthermore,

‖Σ̌λ‖ = ‖Ω̂−1

λ ‖ = φ−1
min(Ω̂λ)

≤
(

φmin(Ω0) + φmin(Ω̂λ −Ω0)
)−1

= (OP (1) +OP (ηn))
−1 = OP (1) , (53)
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where we have used the fact that since ‖Ω̂λ −Ω0‖ = OP (ηn),

φmin(Ω̂λ −Ω0) ≤ ‖Ω̂λ −Ω0‖ = OP (ηn), and by Weyl’s in-

equality, φmin(A+B) ≥ φmin(A) + φmin(B). Hence,

max
i,k

|I4| = OP

(

‖Ω̂λ −Ω0‖
)

= OP (ηn) . (54)

It then follows that

|Σ̂ik − Σ̌λik| ≤ |I3|+ |I4| = OP

(√

ln(mpn)

n
+ ηn

)

.

(55)

SupposeO(λn)=
√

ln(mpn)/n+ηn. Thenαλn(Ω̂λik/|Ω̂λik|)
+ (1− α)λn(Ω̂λik

/‖Ω̂(jℓ)

λ ‖F ) dominates |Σ̂ik − Σ̌λik
| with

probability tending to one. This completes the proof. �
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