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In most unconventional and high-temperature super-
conductors, superconductivity emerges as a nearby 
symmetry-breaking phase is suppressed by chemical doping 
or pressure1–7. This has led to the belief that the fluctuations 
associated with the symmetry-breaking phase are ben-
eficial, if not responsible, for the superconducting pairing8,9.  
A direct test to verify this hypothesis is to observe a decrease 
of the superconducting critical temperature (Tc) by applying 
the symmetry-breaking conjugate field that suppresses the 
dynamic fluctuations of the competing order. However, most 
of the competing phases in unconventional superconductors 
break translational symmetry, requiring a spatially modulated 
conjugate field that is difficult to realize experimentally. Here, 
we show that anisotropic strain, the conjugate field of nema-
ticity, reduces the Tc of an iron pnictide. For optimally doped 
samples we show a fivefold reduction of Tc with less than 
one per cent of strain. For underdoped samples, Tc becomes 
zero yielding a fully metallic ground state. In addition to 
providing direct evidence of the role played by the nematic 
fluctuations in the formation of the superconducting state, 
these results demonstrate tunable mechanical control of a 
high-temperature superconductor, an important step forward 
for technological applications of superconductivity.

The electronic nematic phase10 found in the iron-based super-
conductors is a rare example of a wave-vector q = 0 competing 
phase proximate to unconventional superconductivity, in that it 
only breaks the crystalline four-fold rotational symmetry in the 
B2g symmetry channel. In the iron pnictides a collinear antifer-
romagnetic order further breaks translational and time-reversal 
symmetries within the nematic phase11,12, whereas in the iron 
chalcogenides nematic order may exist without long-range mag-
netic order13,14. Owing to the finite electron–lattice coupling, the 
nematicity induces an orthorhombic structural distortion that can 
be considered as a secondary order parameter. X-ray diffraction 
measurements have shown a suppression of the orthorhombic dis-
tortion upon entering the superconducting state15, which is direct 
evidence of the competition between the nematic and supercon-
ducting phases. Above the nematic phase transition, the ortho-
rhombic lattice distortion induced by uniaxial stress plays the 
role of the conjugate field of the primary nematic order param-
eter. One application of this idea is the measurement of the bare 
nematic susceptibility, in which the induced electronic anisotropy 
is measured above the phase transition under a constant aniso-
tropic strain16–19. The divergence of this bare nematic susceptibil-
ity demonstrates unambiguously that the structural transition is 

electronically driven20. Notably, a diverging nematic susceptibility 
is observed in a wide range of optimally doped iron-based super-
conductors, suggesting the correlation of optimal Tc with nematic 
quantum critical fluctuations21.

Here we investigate the effect of B2g anisotropic strain on the 
superconducting transition in Ba(Fe1–xCox)2As2 through electrical 
transport, magnetic susceptibility and X-ray diffraction measure-
ments. Resistivity measurements were performed as a function of 
temperature and applied uniaxial stress, with current flowing par-
allel to the direction of the applied stress along the Fe–Fe bond-
ing direction. In this configuration the uniaxial stress induces a 
B2g anisotropic strain that couples linearly to nematicity. We used 
a strain cell (Supplementary Fig. 1) capable of applying large, tun-
able uniaxial stress at low temperatures22. The uniaxial stress is con-
trolled by the displacement of two strain cell plates across which 
the sample is mounted. The relative change of the size of the gap 
between the plates, εdisp, was measured by resistive strain gauges, 
and corresponds to a tensile (compressive) uniaxial stress for posi-
tive (negative) values. Nevertheless, εdisp is distinct from the actual 
lattice distortion due to the imperfect strain transmission and the 
formation of twin domains in the underdoped samples. The actual 
lattice distortion was either measured directly by X-ray diffrac-
tion or calculated by finite-element simulations (see Methods and 
Supplementary Fig. 2).

We focus first on the x = 0.042 composition that lies in the under-
doped region of the phase diagram (Fig. 1a). With decreasing tem-
perature, the free-standing sample undergoes nematic (structural),  
magnetic and superconducting phase transitions at T = 75 K, 67 K 
and 13 K, respectively (Fig. 1b). Thus, the application of uniaxial 
stress is expected to enhance an orthorhombicity that is already 
present at zero stress due to the nematic transition. The resistiv-
ity as a function of temperature under different applied stress is 
shown in Fig. 1c–f. Inspection of these data shows that for small 
εdisp, the value of the resistivity above the superconducting transition 
changes rapidly while the superconducting transition temperature 
changes little. In this range of εdisp the only effect of uniaxial stress 
is to align nematic domains without changing the lattice constants, 
and the strong modulation of resistivity is due to the large resistance 
anisotropy associated with the orthorhombic phase23,24. Then for  
εdisp > 2.7 × 10−3 and εdisp < 0.9 × 10−3, at which point the sample 
is fully detwinned and the crystal lattice is further distorted by 
the uniaxial stress, the superconducting transition is dramatically  
suppressed for both compressive (Fig. 1c) and tensile (Fig. 1d) 
stress. The effect of the stress on the superconducting transition is 
even more striking when the resistivity is shown on a logarithmic 
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scale (Fig. 1e,f). At the highest values of εdisp, we measure a non-zero 
resistivity down to the base temperature of our system.

The broad resistive transition at large values of εdisp raises the 
question of how to define the phase boundary of the superconduct-
ing state. Owing to the extreme sensitivity of Tc to εdisp, even small 
strain gradients or slight strain drift as the temperature is changing 
may substantially broaden the transition. To mitigate these effects, 
we investigated the behaviour of the x = 0.042 composition under 
conditions of fixed temperature and variable εdisp. In addition, in 
order to confirm that the superconductivity in the bulk of the sam-
ple has been suppressed, we also measured the AC magnetic suscep-
tibility as a function of εdisp (Fig. 2a,b), which is a technique already 
shown to be an effective method for measuring superconducting 
transitions of strained samples25,26. At high temperatures, there is 
near-zero signal for all εdisp, indicating the sample is in the normal 
state. Then at low temperatures and low εdisp, there is a diamagnetic 
signal consistent with a superconducting Meissner screening state. 
By applying either tensile or compressive stress, this diamagnetic 
signal is suppressed, and there is a sharp peak in the imaginary 
part of the signal that we take to be clear evidence of a thermody-
namic transition out of the superconducting state. This behaviour  
mirrors what is seen in the corresponding resistivity data at fixed 
temperature and variable εdisp, which is shown in Fig. 2c. Current–
voltage (I–V) curves performed at fixed temperature and εdisp 
(Supplementary Fig. 3) reveal suppressed critical currents and 
nonlinear behaviour near the zero resistivity (ρ = 0) phase bound-
ary, and that nonlinearity evolves into linear ohmic behaviour with 
increasing εdisp, confirming the full recovery of a metallic state.

To further elucidate how the superconducting state responds to 
the lattice distortion induced by εdisp, we performed X-ray diffrac-
tion measurements at beamline 6-ID-B at the Advanced Photon 
Source where we have a sample environment that can simultane-
ously measure electrical transport and apply uniaxial stress while 

performing the X-ray diffraction measurements (see Methods for 
details). For a finite range of εdisp around zero, both the in-plane and 
out-of-plane lattice constants do not change as the crystal is being 
detwinned (Supplementary Fig. 4) as the displacement is being 
absorbed by shifting domain populations and the orthorhombicity 
is flat. For higher εdisp, the lattice constants begin to change, and the 

orthorhombicity δ ¼ a�b
aþb

� �

I
 increases with both compressive and 

tensile stress. Eventually, at a critical orthorhombicity a finite resis-
tance state is recovered (Fig. 2d). In addition to direct visualization 
of the evolution of lattice constants, this measurement also demon-
strates that the strain within the sample is homogenous by moni-
toring the sharpness of the Bragg peaks. Overall, the compilation 
of transport and magnetic susceptibility data for this composition 
(Fig. 2e) clearly demonstrates a superconductor-to-metal quantum 
phase transition as a function of εdisp.

The slightly underdoped composition x = 0.06 exhibits similar 
behaviour as the x = 0.042 composition (Supplementary Fig. 5). In 
these underdoped samples the superconducting transition occurs 
below the antiferromagnetic transition temperature TN. The appli-
cation of uniaxial stress increases TN (refs. 27,28) (see Methods and 
Supplementary Fig. 6), hence suppressing spin fluctuations and 
enhancing static magnetic order, which may also contribute to the 
suppression of superconductivity. The question arises of whether 
a natural structural distortion or static magnetic order are neces-
sary ingredients to observe this rapid suppression of Tc. To answer 
this question, we performed the same resistivity measurements 
under uniaxial stress on an optimally doped (x = 0.071) sample, 
in which no long-range magnetic order was observed down to Tc. 
For tetragonal samples, the relevant crystal point group is D4h, and 
the type of strain induced by uniaxial stress can be decomposed 
as the sum of two irreducible representations: εA1g, corresponding 
to non-symmetry-breaking strains such as volume expansion and 

0 0.05 0.10 0.15 0.20

x

0

50

100

150
T

 (
K

)
TS

TN

Tc

0 25 50 75 100

T (K)

0

0.5

1.0

ρ/
ρ 10

0 
K

0

0.05

0.10

0.15

ρ 
(m

Ω
cm

)

ρ 
(m

Ω
cm

)

0 5 10 15 20

T (K)

0

0.1

0.2

0.3

ρ 
(m

Ω
cm

)

ρ 
(m

Ω
cm

)

10–5

10–3

10–1

10–5

10–3

10–1

0 5 10 15 20

T (K)

0 5 10 15 20

T (K)
0 5 10 15 20

T (K)

–1.0 –0.5 0 0.5 1.0

b

a c

d

e

f

εdisp (10–2)

AFM

Nematic

Tc

x = 0.042

x = 0.042

x = 0.042

Compressive

TensileBa(Fe1–xCox)2As2

Superconductor

TN

TS

Fig. 1 | Background and superconducting transition in Ba(Fe0.958Co0.042)2As2 under uniaxial stress. a, Temperature–composition phase diagram11 of  
Ba(Fe1–xCox)2As2. AFM, antiferromagnetic. b, Resistivity as a function of temperature for the x = 0.042 composition. Blue vertical lines indicate the locations 
of the various phase transitions. c,d, Resistive signature of the superconducting transition in the x = 0.042 composition as a function of temperature under 
different amounts of applied uniaxial tensile (c) and compressive (d) stress. e,f, Same as in c and d with resistivity on a log scale.

Nature Physics | VOL 16 | December 2020 | 1189–1193 | www.nature.com/naturephysics1190

http://www.nature.com/naturephysics


LettersNATure PHysIcs

change of tetragonality, and ϵB2g ¼ 1
2 ϵxx � ϵyy
� �

I
, which breaks the 

four-fold rotational symmetry. By symmetry considerations, to low-
est order the superconducting Tc can only depend quadratically on 
εB2g but can depend linearly on εA1g. Mathematically, we have

Tc εð Þ ¼ T0
c 1þ βεA1g �

1
2
αϵ2B2g

� �

where α and β are the dimensionless coefficients of the dependence 
of Tc on εA1g and εB2g respectively. Consequently, one would expect 
a monotonic dependence on εdisp if the Tc is primarily determined 
by εA1g, and a symmetric response to both positive and negative εdisp 
if the effect of εB2g dominates. Remarkably, in the optimally doped 
sample we observe a strong suppression of superconductivity for 
both positive and negative εdisp—a nearly fivefold reduction of Tc 
at about 1% εdisp (Fig. 3a). Although the effect of strain on super-
conductivity was inferred in several previous works28,29, here we 
unambiguously demonstrate the dominant effect of εB2g. We note 
that there is no sign of long-range magnetic order induced by strain 
from resistivity measurements (see Methods and Supplementary 
Fig. 7). In this situation, εB2g is expected to enhance spin fluctua-
tions while suppressing nematic fluctuations, as has been previously 
observed in underdoped samples by nuclear magnetic resonance 
experiments18. Thus, the extreme sensitivity of Tc to B2g strain in the 
paramagnetic optimally doped sample confirms the role played by 
the nematic fluctuations in the superconducting pairing.

This extreme sensitivity of the superconducting state to B2g strain 
is truncated past optimal doping (Fig. 3a); for a slightly overdoped 
sample with a similar transition temperature (x = 0.088), 0.5% of εdisp 
induced by compressive stress only reduces Tc by 12%, compared 
with a 50% reduction in the optimally doped sample for the same 

εdisp. Further into the overdoped regime, (x = 0.113) the response of 
Tc to εdisp is even smaller in magnitude and no longer symmetric for 
tensile and compressive stress. By calculating the amount of εB2g at a 
given εdisp using linear elasticity theory (see Methods for details) and 
recent systematic measurements of the elastic constants30, we plot Tc 
against the purely antisymmetric εB2g in Fig. 3b,c. It is clear from the 
behaviour of Tc that there is a crossover from a strongly quadratic 
response to strain towards a primarily linear response as the doping 
level is increased.

The drastically different behaviour between underdoped, opti-
mally doped and overdoped samples is rather intriguing. From the 
symmetry point of view, the suppression of Tc should be directly 
proportional to the square of the amount of static nematic order 
induced by a fixed amount of εB2g, which is measured by the nem-
atic susceptibility. Therefore, we expect a stronger doping depen-
dence of the strain sensitivity of Tc than the nematic susceptibility. 
In Fig. 3d we plot the doping dependence of the elastoresistivity 
coefficient −2m66 measured just above Tc, which is proportional 
to the nematic susceptibility, and the strain sensitivity of Tc, char-
acterized by the coefficient α as defined above. The coefficient α 
indeed shows a much stronger doping dependence compared with 
−2m66. We note that static and/or fluctuating antiferromagnetic 
order may play a non-trivial role in the determination of α. A sys-
tematic study of the strain dependence of spin fluctuations in the 
overdoped and optimally doped compounds will further quantita-
tively determine the contribution to superconducting pairing from 
different degrees of freedom.

In a broader view, regardless of the exact mechanism at play here, 
these measurements reveal an unprecedented tunability of Tc by lat-
tice deformation in a bulk superconductor. To put iron pnictides 
into context, we plot in Fig. 4a the normalized maximum change of 
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Tc as a result of mechanical strain ΔTc=T0
c ε

max
� �

I
 for a diverse group 

of both conventional and unconventional superconductors26,31–35. 
The normalized sensitivity of the underdoped and optimally 

doped samples studied in this work is much larger than any other 
known superconductor other than Sr2RuO4. Such tunability allows  
us to construct the doping–strain–temperature (x–ε–T) phase  
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diagram shown schematically in Fig. 4b. For a broad range of dop-
ing near the composition-tuned nematic quantum critical point, 
the superconducting state is extremely sensitive to B2g strain that 
acts to close the superconducting dome in the ε–T plane, generating 
a line of superconductor–metal quantum phase transitions in the 
zero-temperature limit.

The superconductor-to-metal (or insulator) transition is one of 
the most studied quantum phase transitions in condensed-matter 
physics36,37. Nevertheless, previous experimental studies have 
been mostly restricted to two-dimensional systems, possibly 
due to the ease of continuous tuning of Tc in thin films or exfo-
liated thin flakes. Our work presents a new platform to study the 
superconductor-to-metal transition in a three-dimensional crystal 
with an in situ tunable strain. The three-dimensional sample may 
allow experimental probes that were previously inaccessible in a 
two-dimensional system, such as thermodynamic measurement, 
which may shed new light onto the recently proposed ‘anomalous 
metal’ state38.
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Methods
Sample preparation. Single crystals of Ba(Fe1–xCox)2As2 were grown out of FeAs 
flux as described previously11,12. The crystals preferentially break along the (100)Tet 
and (010)Tet directions when cleaved, which allowed for determination of the 
crystallographic directions (the ‘Tet’ subscript signifies that the Miller indices 
are referenced from the high-temperature tetragonal lattice). Composition of the 
samples was determined using energy dispersive spectroscopy. The crystals were 
cleaved into thin bars with the (110)Tet direction being the longest dimension. 
Electrical contacts were made in a typical four-point configuration with sputtered 
gold pads and silver epoxy.

Strain device and strain determination. For applying uniaxial stress, a home-built 
three-piezo device was used (Supplementary Fig. 1). In this type of strain cell22, 
a crystal is glued so that a portion of its length is suspended across a gap in 
a titanium scaffolding that has three piezo stacks attached in such a way that 
extension (compression) of the outer stacks and compression (extension) of the 
inner stack will cause the crystal to experience tensile (compressive) strain. In this 
configuration, the effect of the thermal expansion of the piezo stacks is greatly 
reduced because of their symmetric arrangement, and the large ratio of the length 
of the gap over the length of the piezo stacks allows for large strains of 1% or more 
to be applied to the sample even at cryogenic temperatures.

Even though the thermal expansion of the piezo stacks is mostly eliminated in 
this configuration, knowing the displacement of the mounting plates is not enough 
to know the εdisp experienced by the sample because of two facts. First, the presence 
of differential thermal contraction between the sample and the titanium from 
which the plates are made. This requires a separate determination of the zero-strain 
point on the sample. Second, a non-perfect strain transmission though the epoxy 
used to affix the sample to the mounting plates.

To address the first point and determine the point of zero strain for the sample, 
we utilized the fact that the Ba(Fe1–xCox)2As2 system demonstrates relatively large 
gauge factors, meaning that the resistivity is very sensitive to strain. Thus, to 
determine zero strain, we would first measure the temperature dependence of the 
resistivity of a crystal in the free-standing state, not mounted on the strain cell. 
Then, once mounted on the strain cell, we would sweep the voltage on the stacks 
until the resistance matched the resistance of the free-standing state just above Tc.

To address the second point, we performed finite-element analysis using 
the ANSYS Academic Research Mechanical 19.1 software to model the strain 
transmission utilizing the elastic properties of both the sample, which were taken 
from ref. 30, and the elastic properties of the mounting epoxy (Loctite Stycast 
2850FT), which is available from the manufacturer (Young’s modulus E ~ 15 GPa, 
Poisson ratio v ~ 0.3). The mounting geometry is modelled as two symmetric 
rectangular slabs of epoxy rigidly bonded to the top and bottom surfaces of the 
sample on either end of the gap (Supplementary Fig. 2). A fixed displacement is 
applied to the top and bottom surfaces of each slab of epoxy with a magnitude 
that would induce 1% strain in the middle of the gap if there were perfect strain 
transmission. However, because the epoxy deforms upon displacement, not all the 
applied displacement is transferred to the sample. The result of these calculations is 
a coefficient μ that indicates the percentage of the strain transmitted to the middle 
region of the sample, which is the region where we placed the electrical contacts. 
An example result of the simulation is shown in Supplementary Fig. 2 and the 
results for all samples measured in the main text are compiled in Supplementary 
Table 1. Typical values of μ are 0.7–0.9.

Once the zero-point and strain transmission factors are known, monitoring of 
the strain experienced by the sample was done using a resistive strain gauge. For 
the resistive strain gauge, the gauge (SS-150–124–15P, Micron Instruments, Simi 
Valley, CA) is glued onto the back of the centre piezo stack. These gauges have a 
known room-temperature gauge factor provided by the manufacturer, where the 
gauge factor g is defined through the equation

Δρ=ρ ¼ ρ ϵð Þ � ρ ϵ ¼ 0ð Þ
ρðϵ ¼ 0Þ ¼ g ´ ϵpiezo

The temperature dependence of the gauge factor was calibrated before the 
measurements. For this type of strain gauge, g = 80 at room temperature and  
g = 165 at our base temperature of 2 K and follows a linear temperature dependence 
for intermediate temperatures. Here ϵpiezo ¼ ΔL

Lpiezo

I

 represents the strain experienced 
by the piezo itself. Because we always drive the outer piezo stacks exactly opposite 
to the inner piezo stack, the change of length of the gap across which the sample 
is suspended is equal to twice the change of length of a single piezo, so we have 
ϵdisp ¼ μ 2ΔL

Lgap
¼ μ

2´ Lpiezo
Lgap

ϵpiezo
I

, where μ is the strain transmission factor discussed 

above. The quantity 2 ´ LpiezoLgap

I

 is the mechanical advantage that allows for large strains 
to be applied to the sample, and is equal to 36 for typical values of Lpiezo = 9 mm and 
Lgap = 0.5 mm. Combining the above equations gives us that the strain experienced 
by the sample in terms of the strain gauge resistance RSG, which is the quantity that 
we directly measure, is

ϵdisp ¼ μ ´
2 ´ Lpiezo
Lgap

´
RSG � RSG

0

RSG
0

where RSG
0
I

 is the value of the strain gauge resistance at the point where the crystal is 
in the zero-strain state as determined above.

X-ray diffraction. High-energy X-ray diffraction measurements were performed 
at beamline 6-ID-B at the Advanced Photon Source with an energy of 11.215 keV 
and wavelength of 1.10552 Å. The strain cell was mounted on the cold finger of 
a closed-cycle cryostat allowing for temperature control between 7 and 300 K. 
Electrical contacts made on the underside of the sample allowed for simultaneous 
resistivity and diffraction measurements under uniaxial stress without blocking 
the path of the X-rays. Below the structural/nematic transition, the presence of 
orthorhombic twin domains causes splitting of the Bragg peaks sensitive to the 
in-plane lattice constants along the Fe–Fe bonds and uniaxial stress acts to align 
those domains (Supplementary Fig. 4). By measuring the (2 2 12)Tet, (1 –1 14)Tet 
and (0 0 14)Tet Bragg peaks, we were able to extract the orthorhombic a,b in-plane 
lattice constants both parallel and perpendicular to the direction of applied stress, 
as well as the out-of-plane c lattice constant. Measurement of the in-plane lattice 
constant allows for determination of the orthorhombicity δ ¼ a�b

aþb
I

 as a function 
of applied stress as shown in the main text. In addition, the X-ray diffraction 
measurements under stress confirm that the crystal is experiencing a state of 
homogenous strain; the widths of the Bragg peaks under both compressive and 
tensile strain are comparable to the width of the Bragg peak near zero stress.  
This, coupled with the fact that we are using a large beam spot (~250 μm) that 
covers the whole width of the sample, attests to homogenous strains.

Definition and extraction of Tc. Throughout the text, the superconducting Tc 
is defined as the point where the resistivity of the sample is equal to zero. In the 
superconducting state, a resistivity measurement made with a lock-in amplifier 
will yield a signal that consists of a base noise level that is zero on average. One 
consistent way of defining the point of ‘zero resistance’ is to find the root mean 
square of the noise far below the superconducting transition, and then define the 
transition to zero resistance to be the first point at which the signal falls below that 
level. This is the definition that we use throughout this work.

The normal state resistivity response to strain. For underdoped samples, strain 
in the B2g symmetry channel is expected to smear the nematic phase transition 
at the nematic critical temperature Ts and enhance the magnetic transition 
temperature TN. In Supplementary Fig. 6, we show the resistivity and temperature 
derivative for the x = 0.042 composition under different amounts of B2g strain as a 
function of temperature, and indeed the resistive signature associated with Ts in the 
free-standing crystal is smeared under finite strain, while TN is linearly increased. 
Thus, the magnetic phase boundary is shifted vertically in temperature by εB2g as 
shown in Fig. 4b, resulting in suppressed spin fluctuations at Tc < TN. In addition, 
we show that, as expected, the resistivity anisotropy (ρxx − ρyy) / (ρxx + ρyy) that is 
proportional to the nematic order parameter is enhanced substantially by εB2g.

In contrast, for the paramagnetic tetragonal samples, B2g strain is expected 
to enhance spin fluctuations as long as no static magnetic order develops. In 
Supplementary Fig. 7, we show the elastoresistive response for the three tetragonal 
compositions just above Tc, which evolve smoothly as a function of applied strain 
and show no sign of induced magnetic order. Furthermore, by symmetrizing 
the data about zero strain, we isolate the response of the average resistivity 
(ρxx + ρyy) to εB2g, which shows a clear quadratic enhancement consistent with 
an increase of scattering off of spin fluctuations as seen by nuclear magnetic 
resonance measurements under strain18. Our observation of the large quadratic 
strain sensitivity of Tc near optimal doping in spite of nominally stronger 
antiferromagnetic fluctuations suggests that nematic fluctuations are indeed 
contributing substantially to the superconducting pairing.

Relation between applied strain and irreducible strain components. The 
quantity directly measured in our set-up, εdisp, is the strain along the direction 
of the current flow, and is not the same as the quantity ϵB2g ¼ 1

2 ϵaa � ϵbbð Þ
I

 that 
is of the same symmetry as the natural lattice distortion and consequently is 
the conjugate field that directly couples to the nematic order parameter. In fact, 
a uniaxial stress applied along one direction will induce strains along all three 
principal axes. Assuming a tetragonal lattice and letting a and b represent the 
lengths parallel and perpendicular, respectively, to the direction of strain and c the 
out-of-plane direction, then we have εjj = −vijεii, where vij is the appropriate Poisson 
ratio. This then gives

ϵB2g ¼
1
2

ϵaa � ϵbbð Þ ¼ 1
2
ϵaa 1þ νabð Þ

ϵA1g;1 ¼
1
2

ϵaa þ ϵbbð Þ ¼ 1
2
ϵaa 1� νabð Þ

ϵA1g;2 ¼ ϵcc ¼ �ϵaaνac

These are the irreducible representations into which all strains in a crystal with 
D4h crystal symmetry can be decomposed for the uniaxial type of stress applied 
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in our experiments. The quantity vij can be calculated from the coefficients of 
the compliance tensor. We used detailed temperature and doping dependence30 
of the stiffness tensor of the Ba(Fe1–xCox)2As2 system extracted from ultrasound 
measurements. However, those coefficients are in the basis of the tetragonal lattice. 
For a tetragonal crystal, the stiffness tensor takes the form

C ¼

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

0
BBBBBB@

1
CCCCCCA

The compliance tensor is the inverse of the stiffness tensor, so we have

S ¼ C�1 ¼

�C2
13þC11C33

A
�C2

13�C12C33

A
C13
Bþ 0 0 0

�C2
13�C12C33

A
�C2

13þC11C33

A
C13
Bþ 0 0 0

C13
Bþ

C13
Bþ

C13
B� 0 0 0

0 0 0 1
C44

0 0
0 0 0 0 1

C44
0

0 0 0 0 0 1
C66

0
BBBBBBBB@

1
CCCCCCCCA

where 
A ¼ �C2

13þC11C33

C11�C12ð Þ �2C2
13þC33 C11þC12ð Þð Þ

I
 and B± ¼ ± 2C2

13 � C33 C11 þ C12ð Þ
� �

I
.

This matrix is still in the basis of the tetragonal lattice, whereas we need the 
matrix in the basis where the in-plane axes are rotated 45° with respect to this 
basis. We then have

S′ = K−TSK−1, where K is the rotation matrix given by

K ¼

c2 c2 0 0 0 2cs
c2 c2 0 0 0 �2cs
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 �s c 0

�cs cs 0 0 0 c2 � s2

0
BBBBBB@

1
CCCCCCA

and c = cos(45°), s = sin(45°).
This then gives the rotated compliance tensor:

S0 ¼

C33
�2B� þ 1

4C66

C33
�2B� � 1

4C66

C13
Bþ 0 0 0

C33
�2B� � 1

4C66

C33
�2B� þ 1

4C66

C13
Bþ 0 0 0

C13
Bþ

C13
Bþ

C11þC12
B� 0 0 0

0 0 0 1
2C44

0 0
0 0 0 0 1

2C44
0

0 0 0 0 0 2
C11�C12

0
BBBBBBB@

1
CCCCCCCA

Finally, the Poisson ratios of interest νab ¼ � ϵbb
ϵaa

I
 and νac ¼ � ϵcc

ϵaa
I

 are then equal to

νab ¼ � ϵbb
ϵaa

¼ �S012
S011

¼ �C2
13 þ 1

2 C11 þ C12ð ÞC33 � C33C66

�C2
13 þ 1

2 C11 þ C12ð ÞC33 þ C33C66

νac ¼ � ϵcc
ϵaa

¼ �S013
S011

¼ 2C13C66

�C2
13 þ 1

2 C11 þ C12ð ÞC33 � C33C66

The calculated Poisson ratios for the three tetragonal samples are tabulated in 
Supplementary Table 2.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request. Source data 
are provided with this paper.
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