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QUADRATIC GORENSTEIN RINGS
AND THE KOSZUL PROPERTY 1

MATTHEW MASTROENI, HAL SCHENCK, AND MIKE STILLMAN

ABSTRACT. Let R be a standard graded Gorenstein algebra over a field pre-
sented by quadrics. In [Compositio Math. 129 (2001), no. 1, 95-121], Conca-
Rossi-Valla show that such a ring is Koszul if regR < 2 or if regR = 3 and
¢ = codimR < 4, and they ask whether this is true for regR = 3 in general.
We determine sufficient conditions on a non-Koszul quadratic Cohen-Macaulay
ring R that guarantee the Nagata idealization R=Rx wr(—a —1) is a non-
Koszul quadratic Gorenstein ring. We prove there exist rings of regularity 3
satisfying our conditions for all ¢ > 9; this yields a negative answer to the
question from the above-mentioned paper.

1. INTRODUCTION

Let I be a homogeneous ideal in a standard graded polynomial ring S over a
field k, and set R = S/I. In this paper, we study the relationship between two
conditions that impose extraordinary constraints on the homological properties of
R, namely the Gorenstein and Koszul properties. The ring R is Gorenstein if it is
Cohen-Macaulay and its canonical module is isomorphic to a shift of R:

wr = Ext$ (R, S)(—n) = R(a)
where ht I = ¢ and dim S = n. This implies that the graded Betti numbers
5 (R) = dimy, Tor? (R, k),

(2]
have a symmetry
(1.1) b (R) =67 (R)

] c—t,a+n—j
for all 4, 5.

On the other hand, R is Koszul if the ground field R/Ry = k has a linear
free resolution over R. That is, we have fj(k) = dimy, Torf(k,k); = 0 for all
i and j with j # 4. Koszul algebras have strong duality properties such as a
close relationship between the Hilbert series of R and the Poincaré series of k over
R. In particular, when R is Koszul, its defining ideal I must be generated by
homogeneous forms of degree two, and there are significant restrictions [Bac88]
[ACI10, 3.2] [BHI17, 3.4, 4.2] on the graded Betti numbers of R over S compared
to general quadratic algebras. Moreover, Koszul algebras appear as many rings of
interest in commutative algebra, topology, and algebraic geometry; they include
quotients by any quadratic monomial ideal, the coordinate rings of Grassmannians
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1078 MATTHEW MASTROENI, HAL SCHENCK, AND MIKE STILLMAN

[Kem90] and sufficiently small general sets of points in projective space [Kem92],
and all suitably high Veronese subrings of any standard graded algebra [Bac86]. We
refer the interested reader to the surveys [Fro99] and [Conl4] and the references
therein for further details about Koszul algebras.

A particularly important motivation for the present article is that, if R is the
homogeneous coordinate ring of a general curve C of genus g > 5 in its canonical
embedding, Vishik and Finkelberg prove that R is Koszul in [VF93]. Building on
this, Polishchuk shows that R is Koszul if C' is not a plane quintic, hyperelliptic,
or trigonal in [Pol95]. Such rings are also quadratic and Gorenstein by [Eis05, 9.5],
so a natural question is:

Question 1.1. Are quadratic Gorenstein rings always Koszul?

Unfortunately, in [Mat17], Matsuda shows that this is not the case by construct-
ing a quadratic Gorenstein toric ring of regularity four and codimension seven which
is not Koszul. Nonetheless, there is some evidence that quadratic Gorenstein rings
are Koszul, at least when R is a complete intersection or has small Castelnuovo-
Mumford regularity (see §2 for a review of this concept):

e Every quadratic complete intersection is Koszul. This was first proved by
Tate in [Tat57]; see [Conld, 1.19] for an easier argument due to Caviglia.

e If reg R = 2, then R is Koszul by [CRV01, 2.12].

o If reg R =3 and codim R = ht I < 5, then R is Koszul. This follows from
[CRVO01, 6.15] and more recently by [EK17] when codimR = 4 and by
[Cav00] when codim R = 5.

o If regR = 3, and dim R = 2, then R is the canonical ring of a curve by
[Eis05, 9C.2] so that R is Koszul by [VF93] and [Pol95].

Note that the symmetry (1.1) of the free resolution of a quadratic Gorenstein ring
forces reg R > 2 unless R is a hypersurface and that R is also Koszul in that case
by the first bullet above. These results led Conca, Rossi, and Valla to pose the
following question.

Question 1.2 ([CRVO0L, 6.10]). If R is a quadratic Gorenstein ring with reg R = 3,
is R Koszul?

More generally, one might ask:

Question 1.3. For which positive integers ¢ and r is every quadratic Gorenstein
ring R with codim R = ¢ and reg R = r Koszul?

Matsuda’s example in [Mat17] does not address the Conca-Rossi-Valla question
since the toric ring he constructs has regularity four. We give a negative answer
(Example 4.2) to Question 1.2 with codimension nine and a partial answer to Ques-
tion 1.3. In fact, our main result (Theorem 3.5) provides a machine for producing
lots of examples of non-Koszul quadratic Gorenstein rings by deducing conditions
on a quadratic Cohen-Macaulay ring such that the idealization R = Rx w r(—a—1)
is a non-Koszul quadratic Gorenstein ring.

After introducing the necessary background on Cohen-Macaulay rings in §2, we
prove our main result in §3 and apply it in §4 to give many examples of non-
Koszul quadratic Gorenstein rings. As a consequence, we prove the existence of
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QUADRATIC GORENSTEIN RINGS AND THE KOSZUL PROPERTY I 1079

non-Koszul quadratic Gorenstein rings R with reg R = 3 and codim R = ¢ for all
¢ > 9 in characteristic zero, which is the setting originally considered in [CRV01].

Notation 1.4. Throughout the remainder of the paper, we use the following notation
unless specifically stated otherwise. Let k be a fixed ground field of any character-
istic, S be a standard graded polynomial ring over k, and I C S be a graded ideal
such that R = S/I is Cohen-Macaulay. We set w = wr(—a — 1), where a = a(R)
is the a-invariant of R, and R = R x w denotes the idealization of w. Recall that
the ideal I is called nondegenerate if it does not contain any linear forms. We can
always reduce to a presentation for R with I nondegenerate by killing a basis for
the linear forms contained in I, and we will assume that this is the case throughout.
We denote the irrelevant ideal of R by Ry = @,,~, Ra.

2. BACKGROUND ON COHEN-MACAULAY RINGS

In this section, we briefly recall some invariants associated to standard graded
algebras and discuss how they specifically relate to Cohen-Macaulay rings. We refer
the reader to [BH93] and [BS13] for further details and any unexplained terminology.

Let R = S/I be a standard graded algebra of dimension d. An important
invariant of R is its (Castelnuovo-Mumford) regularity

reg R = max{j | H}h (R)j—i # 0 for some i}

= max{j | fi_,_j (R) # 0 for some i}

(2.1)

where H;‘h (R) denotes the i-th local cohomology module of R with respect to its
irrelevant ideal. Recall that the injective hull of k over R is the injective R-module

FE = ER(]C) =" Homk(R, k)
This is a graded R-module where
*Homy (R, k); = Homy(R_;, k)
is the set of k-linear maps R — k of degree j. The canonical module of R is the
Matlis dual of its top local cohomology module
wr = *Homp(H§ (R),E) = * Homy(Hf;, (R), k).
A closely related quantity is the a-invariant of R, which is defined by
a(R) = max{j | H, (R); # 0} = —min{j | (wr); # 0}
so that wp is generated in degrees at least —a(R). As a consequence, we have an
inequality
a(R) +dim R < regR.

When R is Cohen-Macaulay, it is well known that H ;‘ﬁ (R) = 0 for all i # d so that
the preceding becomes an equality. Moreover, we say that a Cohen-Macaulay ring
R is level if wg is generated in a single degree and Gorenstein if wg is cyclic.

When R is Cohen-Macaulay, the minimal number of generators of wg is called
the type of R and denoted by type R. By Grothendieck-Serre duality, we also have
(2.2) wr 2 ExtG(R,ws) 2 Extg(R,S)(—n),

where ¢ = ht I and dimS = n so that applying Homg(—,.S) to the minimal free
resolution of R over S yields the minimal free resolution of wg up to shifts, and we
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1080 MATTHEW MASTROENI, HAL SCHENCK, AND MIKE STILLMAN

can therefore read the type of R as the rank of last free module in the minimal free
resolution of R.

We will be particularly interested in the case of Artinian rings for examples, so
we elaborate on how the above definitions translate to that case. Recall that the
socle of R is the ideal (0: Ry). When R is Artinian, it has finitely many nonzero
graded components, and the degree r of the last nonzero component is called the
socle degree of R as R, C (0: Ry). In this case, we have

wr = " Homy (R, k)

so that
reg R = a(R) = max{j | R; # 0}

is the socle degree of R. We will therefore use the terminology of regularity, a-
invariant, and socle degree interchangeably in this case. Furthermore, R is level if
and only if (0: R;) = R, and Gorenstein if and only if (0: R ) is one-dimensional
as a k-vector space.

Under appropriate conditions, all of these invariants can also be read off from
the so-called h-polynomial hg(t) of R, which is the unique integer polynomial such
that the Hilbert series of R can be expressed as a rational function

Hp(t) = hg(t)/(1 — 1)
The h-vector of R is just the vector
h(R) = (ho, hiy. . hy)

of coeflicients of the h-polynomial, where
hr(t) = hit'.
i=0

If R is Cohen-Macaulay, then, after extending to an infinite ground field if necessary,
we can reduce to the Artinian case by killing a maximal regular sequence of linear
forms. Since this does not affect the Betti numbers or Hilbert series of R, we see
that the length r of the h-vector is none other than regularity of R, h; = codim R,
and if R is level, then h, = type R.

We close this section with an observation which is relevant to Question 1.3.

Proposition 2.1 ([HM+07, 3.1]). Suppose that R = S/I is a quadratic Cohen-
Macaulay ring. Then reg R < pdg R, and equality holds if and only if R is a
complete intersection.

3. NON-KO0OSZUL QUADRATIC IDEALIZATIONS

We now come to the central construction of this paper. Given a ring R and an
R-module M, the idealization of M over R is the R-algebra Rx M whose underlying
R-module is R @ M with multiplication defined by

(a,z) - (b,y) = (ab,ay + bx)

for all a,b € R and z,y € M. In particular, by identifying « € R and z € M
with (a,0) and (0,z) in R x M, we view R as a subring of R x M, and the ideal
generated by M in R x M has square zero.

Licensed to Auburn Univ. Prepared on Thu Apr 1 10:46:52 EDT 2021 for download from IP 131.204.53.80.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUADRATIC GORENSTEIN RINGS AND THE KOSZUL PROPERTY I 1081

Remark 3.1. When R is a standard graded algebra and M is a graded R-module,
the idealization has a natural Z-grading given by

(R[)(M)j:Rj@Mj

for each j. With this grading, it is clear that the idealization is standard graded
if and only if M is generated in degree one. Since w = wgr(—a — 1) is always
nonzero in degree one for a = a(R), we see that the idealization R=Rxwofa
Cohen-Macaulay ring R is standard graded if and only if R is level.

The usefulness of idealization for our purposes is that it gives a canonical way of
producing Gorenstein rings from Cohen-Macaulay rings. The following well known
result, adapted here to the standard graded setting, was discovered independently
by at least Foxby, Gulliksen, and Reiten; see [Rei72, 7] and the lemma preceding
Theorem 3 in [Gul72].

Proposition 3.2. If R is a standard graded level k-algebra, then R=Rxwisa
Gorenstein standard graded ring.

Properties of the level algebra R often carry over to its idealization. To guarantee
that R is still quadratic, we need to impose a slightly stronger condition on R than
merely being level. We say that a standard graded algebra R is superlevel if it is
level and wg has a linear presentation over R. That is, there is an exact sequence

R(a—1)* % R(a)’ = wg — 0.
In particular, every Gorenstein ring is superlevel since wg = R(a) in that case. If
Fy i) Fo —wr —0

is a minimal presentation for wg over S, then ¢ = ¢ ® Idg gives a presentation for
wpgr over R, which is minimal up to summands of F; ®¢ R that map to zero. Hence,
R is superlevel if and only if the entries of the matrix of ¢ of degree at least two
are all contained in I. However, for examples, it will suffice to find rings such that
wpg has a linear presentation over S.

Lemma 3.3. Let R = S/I be a quadratic level algebra. Then R=Rxwisa
quadratic algebra if and only if R is superlevel.

Proof. There is an obvious R-algebra isomorphism Symp(w)/(w)? = R. We also
have Symp(w) = Symg(w)/I Symg(w), and if w is minimally generated by t ele-
ments, then Symg(w) = Sys, ..., yt]/L, where

t
L= fip | (fr,---, o) € Syzi (W)
i=1

Assembling all of these facts together, we see that

(3.1) RSy, ul /(Wi ye)? + £+ (D).

Moreover, since Ej = R; ® wj, this isomorphism is graded if we grade Sy1, ...,y
by total degree in the variables of S and the y;. That is, (Syi,...,u]); =
Di<; Boj—i Sj—iy”, where y* = yi™ - -y and o = 3, a; forall a € Nt. Since I
is generated by quadrics, it follows from the above presentation that Ris quadratic
if and only if the minimal first syzygies of w are generated by the linear syzygies
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1082 MATTHEW MASTROENI, HAL SCHENCK, AND MIKE STILLMAN

and IS*, which happens if and only if the minimal first syzygies of w over R are all
linear as Syz!(w) = Syz; (w)/IS". O

_ In order to show that non-Koszulness can be passed from R to its idealization
R = R x w, we make use of a technical result of Gulliksen computing the graded
Poincaré series of R in terms of those of R and w. The graded Poincaré series of a
finitely generated graded R-module M is the formal power series

P (s,t) = Z,@fj(M)sﬂ'ti € Z[s, s H[[t].

When M = k, we omit the superscript from the notation and refer to Pr(s,t) as
the graded Poincaré series of R. Note that R is Koszul if and only if Pr € Z][[st]].

Theorem 3.4 ([Gul72, Thm 2]). If R is a standard graded k-algebra and M
is a finitely generated graded R-module generated in degree one, then the graded
Poincaré series of R = R x M is

P (s, 1) = — 20D

C1—tPM(s,t)
Combining this result with the above observations, we have the following.

Theorem 3.5. If R is is a non-Koszul, quadratic superlevel algebra, then R = Rxw
18 a non-Koszul quadratic Gorenstein ring. Moreover, we have

codim R = codim R + type R
regﬁ =reg R+ 1.

Proof. By Proposition 3.2 and Lemma 3.3, it suffices to prove that R is not Koszul.
Write

P(s,t) = Z fi(s)t! P4 (s, 1) = Z gi ()t Pr(s,t) = Z hi(s)t!

for some f;, g;, h; € Z[s] with non-negative coefficients. By the above theorem, we
know that

Pg(s,t)(1 —tPx(s,t)) = Pr(s,t)
so that

K3
hi=fi—= Y fi-jgi1
j=1
for all ¢ > 1. Since all of the polynomials in the above expression have non-negative
coefficients, any monomial in the support of h; must also belong to the support of
fi. Since R is not Koszul, there is an i > 1 such that h; has a monomial s/ with
j # 1 in its support; hence, so does f;, and R is not Koszul. The statements about
the codimension and regularity of R follow from considering the Hilbert series of R
and the fact that R is Cohen-Macaulay. O

Remark 3.6. The interested reader may wish to consult [CI4-15, 2.3] where the
above argument was also discovered in the context of retracts of rings, of which
idealization is a special case. Part (1) of that result shows that Gulliksen’s proof
of Theorem 3.4 carries over with minimal changes to general retracts. We thank
Srikanth Iyengar for bringing this paper to our attention.
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4. EXAMPLES OF NON-KOSZUL SUPERLEVEL ALGEBRAS

4.1. Almost complete intersections.

Proposition 4.1. If R = S/I is a quadratic Cohen-Macaulay almost complete
intersection with reg R = 2 and ht I = 4, then R is a non-Koszul superlevel algebra.

Proof. Since the conclusion is preserved under flat base change and killing a regular
sequence of linear forms on R, we may assume without loss of generality that the
ground field k is infinite and that R is Artinian, and we can choose a quadratic
complete intersection L C I with ht L = ht I = 4. Set J = (L : I), the ideal directly
linked to I by L. Since R is an almost complete intersection, J is a Gorenstein
ideal, and
S/J(a) = wg/y = Homg(S/J,ws/r,) = Homs(S/J, S/L(4))
= (03572 J/L)(0) = I/L(4)

for a =regS/J. As I/L =2 S/J(a — 4) is generated in degree two, it follows a = 2.
On the other hand, wg = J/L(4) is generated in degrees at least —2 so that .J is
generated in degrees at least 2. Combining this with the fact that S/.J is Gorenstein
of regularity 2, it follows that J must be generated by quadrics, and in particular,

wr is generated in degree exactly —2 so that R is level.
The exact sequence

0—J/L—S/L—S/J—=0
yields an induced exact sequence
Tors (S/J,k); — Tory (J/L,k); — Tor{ (S/L,k); = 0
for j > 2. Since S/J has a Gorenstein linear resolution, we see that
Tors (S/J,k); = 0 = Tor (J/L, k),
for j > 3. Hence,
Tor} (wr, k); = 0 for j > —1,

and wpr has a linear presentation since it is generated in degree —2.
Finally, R is necessarily non-Koszul since any Cohen-Macaulay Koszul almost
complete intersection of codimension 4 must have regularity 3 by [Masl8, 3.3]. O

Recall that the graded Betti numbers ﬂfj (R) may be compactly summarized
in the Betti table of R, where the entry in column ¢ and row j is ﬁfi_,_j (R); the
indexing is designed so that the regularity of R is the index of the bottom-most
nonzero row in the Betti table of R (compare (2.1)). This is illustrated in our next

example.

Example 4.2. As a concrete example of the above proposition, consider the ring
R = S/I defined by the ideal

I = (2% 9% 22w zy + 2w) C klz,y,2,w] = S.

To see that R has socle degree 2, it suffices to note that Ri = 0. Since I contains
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1084 MATTHEW MASTROENI, HAL SCHENCK, AND MIKE STILLMAN

the squares of the variables, it is enough to observe that I contains all four square-
free cubic monomials by multiplying xy + zw by each variable. The Betti table of
R is given by

01 2 3 4
1 - - -

- — 15 16

N = O
|
at
ot

Since

type R = ha(R) = <;> —5=125,

it follows that R = R X w is a non-Koszul quadratic Gorenstein ring with

codimR=4+5=9 and reg§:2+1:3.

Since R is Cohen-Macaulay, it follows from (2.2) that the S-dual of the minimal
free resolution of R is the minimal free resolution of w up to shifting. Hence, when
char(k) = 0, it follows from the proof of Lemma 3.3 and an explicit computation
of the last differential in the minimal free resolution of R in Macaulay2 [M2] that
the generators for the defining ideal of R presented as a quotient of the polynomial
ring S[ty,...,t5] are

(22,92, 2%, w?, a2y + 2w) + (ty,...,t5)2
+ (CEt]_, ytla wtl - $t2a Ztl + yt2a th + -Tt?)y
Yt3, 2to — wits, 2l3, vta, Wi — Yta,

wtg + 2ty, 2ty — xls, Wiz — Yis, 2l5, Wiy, wt5).

Furthermore, the Betti table for Ris

/01 2 3 4 5 6 7 89
1

36 160 330 384 260 96 15 — -
~ 15 96 260 384 330 160 36 —
e |

w N = O
I

Example 4.3. One can show that any quadratic Cohen-Macaulay almost complete
intersection R = S/I with reg R = n > 2 and codim R = 2n is non-Koszul and su-
perlevel. The essential point is that, after possibly extending to an infinite ground
field, we can choose a quadratic complete intersection L C I, and any other quadric
q such that I = (L, q) will necessarily be a Lefschetz element of degree 2 on S/L by
Hilbert function considerations, and conversely, every almost complete intersection
R formed by killing a Lefschetz element of degree 2 on a quadratic complete inter-
section of codimension 2n in this way has reg R = n and codim R = 2n. The proof
that R is superlevel and not Koszul is then essentially Lemma 4.2 of the recent
paper [MS20].
Generalizing the preceding example, one ring of this type is

R= k[zl;' -y Ty Y1, ayTL]/(zfay? | 1 S 1 S n) + (szyz),
i=1
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for all n > 2 by adapting [CHI18, A.2] to the commutative case. In [MS20],
McCullough and Seceleanu consider another family of rings of this type to show
that subadditivity fails for quadratic Gorenstein rings. Migliore and Miré-Roig
have also shown in [MMO3] that generic quadratic almost complete intersections of
even codimension are of this form.

4.2. Ideals of generic forms. In this section, we assume that k is a field of
characteristic zero. By a generic set of g quadrics, we mean a point in a Zariski-
open subset of S§. Five generic quadrics in four variables satisfy the conditions
of Proposition 4.1, and generic quadrics in more variables provide a larger class of
examples of superlevel algebras.

Theorem 4.4 ([FL02, 7.1]). If R = S/I is an Artinian algebra with I generated
by g generic quadrics in n variables, then R is not Koszul if
n<g<(n®+2n)/4

For an ideal I generated by g generic forms of degree d in n variables, Hochster-
Laksov [HL87] prove that I has maximal growth in degree d + 1, that is

. . n+d
dimy Ig41 = mm{gn, <d—|— 1)}

Consequently, we see that a ring R = S/I defined by g generic quadrics in n
variables is non-Koszul and has socle degree 2 if

n2+3n+2< n? +2n

A

The h-vector of such an algebra is simply h(R) = (1,n, (”42'1) —g). We list the
number of quadrics satisfying this condition for some small values of n in Figure
4.1 below.

(4.1)

9
)

7.8

10,11
12,13, 14, 15
15,16,17, 18,19

0| || o |3

FIGURE 4.1. Numbers of generic quadrics yielding non-Koszul al-
gebras of socle degree 2 for small n

Theorem 4.5. Let I C S = k[zy,...,2,] be an ideal generated by g generic
quadrics, where n > 4 and g satisfies the inequalities in (4.1). Then R = S/I
is non-Koszul and superlevel. Hence, R=Rxuw is a non-Koszul quadratic Goren-
stein ring with h-vector

(4.2) h(R) = (1,2243n _ g n’d3n g 1),

Proof. Since I is Artinian and has socle degree two, it suffices to show that

1,0 (R) = By 1 (R) = 0.
By upper semicontinuity of the Betti numbers (see [BC02, 3.13]), it further suffices
to prove that the corresponding Betti numbers vanish for some initial ideal of I.

Licensed to Auburn Univ. Prepared on Thu Apr 1 10:46:52 EDT 2021 for download from IP 131.204.53.80.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1086 MATTHEW MASTROENI, HAL SCHENCK, AND MIKE STILLMAN

Let J denote the initial ideal of I in the degree reverse lexicographic order. As
long as J does not contain the monomials

2 2
(43) L1Tn—15---5Tn—-2Tn—1,Tp_1,L1Tn, - -, L1Tn-1, Ty

we will have Jo C k[z1,...,2, 2] so that the projective dimension of S/(Jz) is at
most n — 2. In that case, the exact sequence

0— J/(J2) = S/(J2) = S/J—=0
then induces exact sequences
Tori (J/(J2), k)j — Tors (S/(J2), k); — Tor; (8/J,k); — Tors_ (J/(Ja), k);

for all ¢, j. Since .J/(J2) is generated in degree at least 3, we have 37;(J/(Jz2)) = 0
for all 4 and all j < ¢4 2. In particular, combining this fact with the preceding
observations yields

fi—i—l(s/‘]) = §i+1(S/(J2)) =0
for i =n — 1,n as we wanted.

Note that the monomials (4.3) are the smallest 2n—1 quadratic monomials in the
degree reverse lex order. Since [ is generated by generic forms, we may assume that
the determinant of the matrix of coefficients of the g largest monomials for all the
generators of I is nonzero, which is a Zariski-open condition on S3. Therefore, after
taking suitable k-linear combinations of generators of I, we see that .J contains the
g largest monomials in the degree reverse lex order, and these monomials must span
Jo as I and J have the same Hilbert function. The g largest quadratic monomials
are disjoint from the 2n — 1 smallest so long as

1
(n—2|— >g22n1.

This holds for all n > 7 by the estimates

(27) o= (") - [ = e 2o

and by an explicit check when n = 6 and g = 10.
In the remaining cases, we cannot use the above argument. However, the n = 4
case follows from Proposition 4.1. Additionally, when n = 5 and g = 7, we see that

(1 —t)°hp(t) = (1 —)5(1 + 5t + 8t2)
has no cubic term, which implies that 355(R) = 0.
For the cases (n,g) = (5,8),(6,11), we claim that 85,(R) = 0. Indeed, we may
assume as above that the lead terms of the quadrics generating I are the g largest

monomials in degree reverse lex order ™, ... % . If B denotes the set of exponent
vectors of the remaining degree two monomials, then we may assume each quadric

has the form
v+ Z ciﬁxﬂ

BeB
for some ¢; g € k.

By Schreyer’s algorithm [EM+16], we can construct a free resolution Fy of R
from a Grébner basis including these quadrics. Now, write S(—4)° for the number
of copies of S(—4) in F3 (which does not depend on the particular coefficients of
the quadrics), and consider the portion of the differential

(93 : S(—4)b — 5.
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Since we obtain the minimal free resolution of R by pruning F,, we have ,6’5? +(R)=0
if and only if this submatrix of scalars and linear forms splits, which occurs exactly
when the scalar part of 03 has rank b.

Furthermore, the entries of the scalar part of this submatrix are polynomials in
the ¢; g so that this determines a Zariski-open condition on S for the vanishing
of ﬁgﬁ +(R). Therefore, ,8397 +(R) = 0 for generic sets of quadrics if we can show that
there is at least one example with this property, and this is easily checked by a
direct computation picking g random quadrics in Macaulay2. O

Example 4.6 ([Roo93]). Not all non-Koszul algebras of socle degree 2 come from
this construction. Roos shows that for S = k[z, y, z, w, u, v] with char(k) = 0 and

I = (ZEQ, y2,22, u2, 1)2, w2,:cy,yz, uv, VW, r2 + 3zw — uw, zw + ru + uw)

the ring R = S/I is not Koszul. In this case, the Betti table of R is given by

0o 1 2 3 4 5 6
1

- 12 16 2 - - -
- - 32 96 100 48 9

N = O

This ring has h-vector (1,6,9), which cannot be realized by generic forms in 6
variables. Applying the idealization construction to Roos’ example, we obtain a
non-Koszul quadratic Gorenstein ring R with Betti table

‘ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

105 896 3932 11136 22154 32224 34895 28224 16877 7264 2134 384 32 - -
32 384 2134 7264 16877 28224 34895 32224 22154 11136 3932 896 105
— — — — — — — — — — — — — 1

W =Oo

Because Roos’ example is superlevel, (4.2) does not characterize all h-vectors of
non-Koszul quadratic Gorenstein rings of regularity three. This raises the question
of which h-vectors are possible for such rings.

Theorem 4.7. Qver a field of characteristic zero, there exist non-Koszul quadratic
Gorenstein rings with h-vector (1,¢,¢,1) for all ¢ > 9.

Proof. For each n, the value

n2 + 3n

C(?’L,g) = 9

appearing in (4.2) is decreasing in g and takes every integer value in the range
c(n, gmax(”)) <c< C(”a gmin(n))a
where

n? 4 2n n?+3n+2
gmax(n) = IVT—‘ -1 gmin(n) == [T—‘ .

Hence, there will be no gaps in the codimensions attained by ¢(n, g) so long as

(N, gmin(n)) > c(n 4+ 1, gmax(n + 1)) — 1.
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We claim that this holds for all n > 8. This follows from the fact that
C(nagmin(n)) - C(’I"L +1, gmax(” + 1))
> o(n, L2 4 1) o(p 41, R0 )
n? — 6n — 43
S
12 -
when n > 9 and by an explicit check when n = 8. Thus, the construction of

Theorem 4.5 yields non-Koszul quadratic Gorenstein rings with h-vector (1, ¢, ¢, 1)
for all ¢ > 25, and for all ¢ > 9 with the exceptions of

c € {10,11,14, 15,18, 19, 24}.

Example 4.6 takes care of the ¢ = 15 case, and slight modifications yield superlevel
non-Koszul algebras of socle degree two in the remaining cases. These cases arise
from ideals of the form I = J + L, where J is given by Figure 4.2 below and L
is generated by the squares of the variables appearing in the generators of J. The
quotients R = S/I corresponding to these examples are easily checked in Macaulay2
to be superlevel with idealization having h-vector (1,c¢,c,1) for the appropriate ¢

-2

in the list above. O
c J
10 (x125, T122, TaZs, L3Ts + L1T4 + T4Ts, LoZa + L3Ls)
11 (x125, T122, T3T5 + T1T4 + T4k, T2Tg + T3T5)

(w172, ToT3, T4T5, T5T6, T1 23 + 3T3T6 — T4T6,

14
T3 + T1%4 + TaZe, oLy + T3Ts5)

(x122 + X223, X4X5, T5Te, TeL7, 123 + 3T3L6 — Tals,

18
T3Te + T1T4 + Tale, Taka + T3Ts, TaXs + ToX7, T1T7, T3T7)

(xa2s, T5Te, TeL7, Laka + L3Ls, Taks + Lok, T127, T3T7,
19 T7T8, T1T8, T3TQ, T4xg, TeLY, L3T5, T2TT,
T1%2 + 23, 123 + 3X3L6 — Lale, L3Le + L1Ta + T4L6)

(1'1172 + ToX3, T4X5, T526, LeX7, L4T9, T52T7, T7T9, T1T7,
T3X7,T7T8, L1LY, L2X, L3LY, T5L8, LELY,
173 + 3T3T6 — T4Te, T3Te + T1T4 + T4T6, T2Tg + T3T5,
ToTs + Lok, Tolg + T1Tg, T3T9 + TeTg)

24

FIGURE 4.2. Exceptional examples yielding non-Koszul quadratic
Gorenstein rings of socle degree 3

Remark 4.8. We have assumed that we are working over a field of characteristic
zero in this section in order to simplify the statements of our results. However, the
proof of Theorem 4.5 shows that we obtain non-Koszul quadratic Gorenstein rings
of regularity 3 and almost every codimension greater than or equal to 9 in all char-
acteristics. We only need to specify a particular characteristic for the exceptional
cases that require a direct computation in Macaulay2.
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4.3. More examples via tensor products. When R is a non-Koszul quadratic
Gorenstein ring, the idealization R will again be non-Koszul, quadratic, and Goren-
stein with codimension and regularity increased by one. In this case, (3.1) shows
that the idealization is just the tensor product

R & klyl/(y).

In particular, the results of the previous section show that Question 1.3 has a
negative answer for all » > 3 and ¢ > r + 6. We can produce more examples by
tensoring with other Gorenstein Koszul algebras.

Proposition 4.9. Let R = S/I be a quadratic ring and B be a superlevel Koszul
algebra. Then R’ = R ®y B is Koszul (resp. level, superlevel) if and only if R is.
Moreover, we have

codim R’ = codim R + codim B
type R’ = (type R)(type B)
reg R’ = reg R + reg B.

Proof. Since tensoring over k is exact, tensoring the minimal free resolution of k
over B with R yields the minimal free resolution of R over R’. As B is Koszul,
we see that regp/(R) = 0 so that R’ is Koszul if and only if R is by [CDR13, §3.1,
2]. Write B = A/J for some standard graded polynomial ring A. The other parts
easily follow from the fact that the minimal free resolution of R’ over S ®; A is
the tensor product of the minimal free resolutions of R over S and of B over A. In
particular, when R is level, the equalities concerning the codimension, type, and
regularity of R’ also follow from the fact that the h-polynomial of R’ is the product
of the h-polynomials of R and B. O

Corollary 4.10. Qwver a field of characteristic zero, there exists a non-Koszul
quadratic Gorenstein ring of codimension ¢ and reqularity r for every r > 6 and
c>r—+ 3.

Proof. If R is a non-Koszul quadratic Gorenstein ring and B is a Gorenstein Koszul
algebra, then R’ = R ®; B is again a non-Koszul quadratic Gorenstein ring. We
can therefore produce more examples of such rings by tensoring Matsuda’s example
R, which has codimR = 7 and reg R = 4, with appropriate Gorenstein Koszul
algebras and combining this with our results. Specifically, if we take any quadratic
Gorenstein ring B with codim B = 3, then reg B = 2 by the Buchsbaum-FEisenbud
structure theorem for such rings so that B is Koszul, and tensoring with Matsuda’s
example gives a negative answer to Question 1.3 for (¢,r) = (10,6). If we take
B = k[X]/I5(X) where X is a 3 x 3 matrix of variables, then the Gulliksen-Negard
resolution [BV88, 2.5, 2.26] shows that codim B = 4 and reg B = 2 so that we also
obtain a negative answer for (¢,r) = (11,6). Propagating these negative answers
and the negative answers of Theorem 4.7 by tensoring with complete intersections
completes the proof. O

We summarize the preceding discussion in Figure 4.3 below. Aside from the seven
remaining cases of codimension ¢ > 6, one might still hope that every quadratic
Gorenstein ring R with codim R < reg R + 2 is Koszul, which could explain the
affirmative answers in regularity three.
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@ e
O No

O Unknown

10

11

Ficqure 4.3. Is every quadratic Gorenstein ring of codimension ¢
and regularity r Koszul?

5. FUTURE DIRECTIONS

Matsuda’s example cannot be obtained with our methods; there are no superlevel
quadratic algebras with the right Hilbert function. It would be interesting to find
geometric interpretations of our results. The initial example that inspired the
results of this paper was a certain inverse system related to the Artinian reduction
of a smooth curve of genus seven and degree eleven in P® defined by five quadrics
which is projectively normal but not Koszul [SS12]. We plan to investigate this
further, as well as studying how idealization relates to the parameter space of
Gorenstein algebras and work by Iarrobino-Kanev [IK99] and Boij [Boi99]. In a
followup paper [MSS19], we provide further affirmative(!) and negative answers to
Question 1.3 by alternative methods. More recently, McCullough-Secelanu show in
[MS20] that idealizing an example of Roos [Rool6] gives a negative answer to the
(c,r) = (8,3) case.

Additionally, for Artinian algebras such as those constructed in §4.2, much at-
tention has been devoted recently to determining which Gorenstein rings R have
the weak Lefschetz property (or WLP); this property asserts the existence of a lin-

ear form ¢ € R; such that the k-linear multiplication map R; 4 R; 11 has maximal

rank for all 7. The ranks of multiplication maps R; N Rs play an important role
in [CRVO01] and [Cav00]. We intend to further investigate how WLP may interact
with the Koszul property for quadratic Artinian Gorenstein algebras.
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