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ABSTRACT

Palynological results from opposite sides of the northernmost Antarctic Peninsula provide insight on
terrestrial vegetation and sea-surface conditions immediately before the Eocene-Oligocene transition
(EQT), through Early Oligocene glacial conditions and the subsequent Late Oligocene interglacial interval.
A latest Eocene sample set from the uppermost La Meseta Formation on Seymour Island, James Ross
(back-arc) Basin, records a low-diversity Nothofagus (southern beech)-dominated vegetation with some
podocarp conifers similar to Valdivian-type forest found today in Chile and Argentina. Marine organic-
walled phytoplankton include leiospheres and Eocene dinoflagellate cysts such as Vozzhennikovia
rotunda, V. apertura, Senegalinium asymmetricum and Spinidinium macmurdoense. Immediately before the
EOT near the top of the section the decrease in terrestrial palynomorphs, increase in reworked specimens,
disappearance of key dinocysts, and overwhelming numbers of sea-ice-indicative leiospheres plus the
small dinoflagellate cyst Impletosphaeridium signal the onset of glacial conditions in a subpolar climate.
Early to Late Oligocene samples from the Polonez Cove and Boy Point formations on King George Island,
South Shetland Islands (magmatic arc), yielded an extremely depauperate terrestrial flora, likely resulting
in part from poor vegetation cover during the Polonez Glaciation but also because of destruction of
vegetation due to continued regional volcanism. The prevalence of sea-ice-indicative leiospheres in the
marine palynomorph component is consistent with polar to subpolar conditions during and following the
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Polonez Glaciation.

1. Introduction

The interval from the early Eocene through to the Eocene-
Oligocene Transition (EOT, ca. 34 Ma) represents a global cool-
ing trend marked by a high-latitude sea-surface temperature
decrease from ~18 °C in early Eocene to ~6 °C transitioning
into the Oligocene (Stott et al. 1990; Liu et al. 2009). The
~12 °C temperature change has been correlated with increas-
ing deep-sea benthic foraminiferal oxygen isotope (5'0)
values, and decreasing atmospheric carbon dioxide concen-
trations (Zachos et al. 1996, 2001, 2008; Prothero & Berggren
2014). This major cooling trend was accompanied by substan-
tial ice growth in Antarctica. Ice growth continued with some
fluctuations as temperatures decreased from ‘greenhouse’
conditions approaching the EOT, to the Oligocene-present
day ‘icehouse’ or glacial state in Antarctica (Prothero et al.
2003; Lear et al. 2008).

This paper reports palynological results from a master’s of
science (MS) project by Madison Kymes (2015), originally based
on two sample sets provided by Krzysztof P. Krajewski and
Andrzej Tatur from King George Island in the South Shetland
Islands (Figure 1). These included the current Lower to Upper
Oligocene set from the Polonez Cove and the Boy Point forma-
tions, as well as a Lower Miocene set from the Cape Melville

Formation, reported earlier in Warny et al. (2016). For compari-
son, an additional sample set was selected from the uppermost
Eocene sediments on Seymour Island in the Weddell Sea
(Figure 1). Together these studies cover three small but signifi-
cant slices of time during the Cenozoic shift to icehouse condi-
tions in West Antarctica. They are compared with earlier results
in the region from well-dated SHALDRIL cores (Anderson et al.
2011; Warny & Askin 2011a, 2011b; Griener et al. 2013; Feakins
et al. 2014). This MS project is a small part within the broader
objectives of the authors and their colleagues of clarifying Ant-
arctica’s Cretaceous and Cenozoic vegetation and climate
history.

2. Geological setting
2.1. La Meseta Formation, Seymour Island

The older (Eocene) sample set discussed here is from Seymour
Island, which lies within the James Ross (back-arc) Basin, south-
east of the tip of the Antarctic Peninsula (Figure 1(B)) at 64°17'S
latitude and 56°45'W longitude. The island is roughly 20.5 km
long and 9.6 km wide, showing slopes from sea level up to a
pronounced plateau or mesa at roughly 200 m above sea level
(Elliot et al. 1975). Seymour Island outcrops lack permanent ice
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Figure 1. (A) Map of Antarctica showing the location of the Antarctic Peninsula; the red rectangle is the part enlarged in (B). (B) Locations of Seymour Island, King George

Island, and SHALDRIL Il sites 3C and 12A in the northern Antarctic Peninsula region.

and are thus well exposed, and contain a rich assortment of
well-preserved marine and terrestrial macro- and microfossils.
The selected samples are from the uppermost sediments of
the La Meseta Formation (Rinaldi et al. 1978; Elliot & Trautman
1982) (Figure 2). La Meseta Formation siliciclastic strata crop
out on the northern third of the island, filling a valley incised
into the upper Palaeocene Cross Valley Formation, itself incised
into Maastrichtian to lower Palaeocene sediments of the Lépez
de Bertodano and Sobral formations, which are exposed in the
south-western two-thirds, and also the northern tip of the
island. Following the initial three-fold subdivision of the forma-
tion by Elliot & Trautman (1982), various authors have described
and subdivided this complex back-arc shelfal succession of

e,

shallow marine, estuarine and deltaic sands, silts, muddy sedi-
ments and shellbeds. Seven lithofacies (designated Tertiary
Eocene La Meseta/Telm 1-7) were mapped in detail by Sadler
(1988). Porebski (1995, 2000) recognised three major eustati-
cally controlled depositional sequences, with subdivisions that
are more tectonically influenced. Marenssi & Santillana (1994)
and Marenssi et al. (1998a, 1998b) divided the formation into
six primarily eustatically controlled depositional sequences or
allomembers. The stratigraphic scheme of Marenssi and col-
leagues is followed here.

The Seymour Island sample set was collected from the top of
the La Meseta Formation (Submeseta Allomember according to
Marenssi et al. 1998a, 1998b) along the side of a gully

Study area
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Figure 2. Simplified geological map of northern Seymour Island, showing the La Meseta Formation with the distribution of the Submeseta Allomember in relationship to
other La Meseta allomembers. The location of the D6 section is marked by a red line. The relationship of the sample location with the lithology sampled is presented in

the inset to the right.
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downcutting the central/south-eastern side of the mesa (Fig-
ures 2 and 3), from monotonous unconsolidated sands and silts
with shell beds and concretionary horizons. Strontium-isotope
analyses conducted on Cucullaea specimens collected through-
out the La Meseta Formation by Dutton et al. (2002 and referen-
ces therein; Ivany et al. 2008) had supported the previous
palaeontologically assigned age range of late Early Eocene to
Late Eocene; however, more recent results suggest the oldest
La Meseta sediments may be Mid rather than late Early Eocene
(Douglas et al. 2014), with the entire formation ranging in age
from 45 to 34 Ma. Specifically, for the uppermost beds sampled
in this study (upper Submeseta Allomember, or upper Telm7),
Dutton et al. (2002), lvany et al. (2008) and Douglas et al. (2014)
place these sediments between 36 and 34 Ma. These upper
beds underlie the Miocene glacigenic Hobbs Glacier Formation
(Marenssi et al. 2010) and the Pliocene-Pleistocene till of the
Weddell Sea Formation (Zinsmeister and deVries 1983; Gazd-
zicki et al. 2004) that tops the mesa. The discovery, off the
opposite northern side of the mesa, by Ivany et al. (2006) of
three thin layers of sediments (pebbly mudstone; diamict; peb-
bly mudstone) between the uppermost La Meseta Formation
and the overlying Weddell Sea Formation provides more certain
age and palaeoclimatic control. Ivany et al. (2006) report
87Sr/%55r ratios of bivalves yielding ages of 33.57-34.78 Ma from
the uppermost La Meseta Formation at their locality, confirming
an EOT age at the top of the formation (E-O boundary 33.9 Ma,
Gradstein et al. 2012). Dinoflagellate cysts indicate a late Eocene
and earliest Oligocene age, respectively, for the lower and
upper pebbly mudstone (lvany et al. 2006), with the intervening
diamict suggesting glacial ice at the EOT. Our sample set from a
section on the opposite side of the mesa is likely of similar latest
Eocene age to the uppermost La Meseta beds dated by Ivany
et al. (2006; see also Dutton et al. 2002; lvany et al. 2008; Doug-
las et al. 2014).

2.2. Polonez Cove Formation and Boy Point Formation,
King George Island

The younger (Oligocene) sample set discussed here is from King
George Island, located approximately 120 km off the northern
coast of the Antarctic Peninsula at 62°01'S latitude and 58°33'W
longitude (Figure 1(B)). King George Island is roughly 95 km
long and 25 km wide, making it the largest of the South Shet-
land Islands. The South Shetland Islands are part of a magmatic
arc, detached from the northern Antarctic Peninsula magmatic
arc by the Bransfield Strait (Figure 1(B)). The Bransfield Rift is
less than 4 million years old, with oceanic crust dating from
about 1.3 Ma (Barker & Austin 1998). Thus, the studied sedimen-
tary units representing the back-arc basin (Seymour Island) and
the magmatic arc (King George Island) were deposited in rela-
tively close proximity to each other on opposite sides of the
Antarctic Peninsula in the latest Eocene and Oligocene.

The geological history of King George Island is substantially
more complicated than that of the Seymour Island sediments.
The Eocene through Oligocene of King George Island reflects a
complex history of volcanism, glaciation and marine transgres-
sions. The studied sample set is from part of the Chopin Ridge
Group (Birkenmajer 1980) exposed on the western side of King
George Bay (Figure 4). The Chopin Ridge Group includes por-
phyritic lava flows and pyroclastics, marine tillites, associated
glaciogenic sediments and sandstones, divided into five forma-
tions (in ascending order): the Mazurek Point Formation or
Lions Cove Formation, Polonez Cove Formation, Boy Point For-
mation and Wesele Cove Formation (Birkenmajer 2001). The
sample set was collected from the Polonez Cove Formation and
basal Boy Point Formation along a section at Linton Knoll (Fig-
ures 4 and 5(A)). Supplementary samples from the Polonez
Cove Formation were collected at Conglomerate Bluff, located
approximately 2 km to the south-east from Linton Knoll

Figure 3. Photograph looking to the south-east on Seymour Island of section D6 towards a person (black arrow) standing on the resistant bed near the section base

(between samples 1 and 2). The red arrow indicates the direction of the D6 section.
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Figure 4. Geological map of King George Island, showing the distribution of the Chopin Ridge Group and the location of Linton Knoll and Conglomerate Bluff sections.

(Figures 4 and 5(B)). Their stratigraphic position is compiled on
the Linton Knoll section (Figure 6).

The Mazurek Point Formation and the Lions Cove Formation
(Eocene) comprise basaltic/andesitic substratum for the overly-
ing glacio-marine and volcanogenic formations along the out-
crop belt of the Chopin Ridge Group (Birkenmajer 2001;
Panczyk & Nawrocki 2011). The overlying Polonez Cove Forma-
tion is subdivided into six members, though not all are present
at every location (Birkenmajer 1980, 1982; Porebski & Gradzinski
1987; Troedson & Smellie 2002). These are (in ascending order):
the Krakowiak Glacier, Bayview, Low Head, Siklawa, Oberek and
Chlamys Ledge members. Lodgement till at the base of the
Polonez Cove Formation and the associated glacio-marine sedi-
ments, together making up the Krakowiak Glacier Member, rep-
resent the Polonez Glaciation (Birkenmajer 1987). The name
Krakowiak Glacier Member was based on the presence of a
small glacial body that existed along the Chopin Ridge, and it
was introduced by K. Birkenmajer in 1980. It is sad to note that
this ice body has now fully vanished as a result of the warming
trend in West Antarctica (K. Krajewski, pers. comm.). A late Early
Oligocene age is indicated from Sr dating of carbonate material
from the Krakowiak Glacier Member and the Low Head Member
(ca. 30-28 Ma, Dingle et al. 1997; Dingle & Lavelle 1998). Unpub-
lished strontium isotope results point to even older geological
ages (Early Oligocene, ca. 32-30 Ma) of parts of the glacio-
marine deposits of the Krakowiak Glacier Member (K. Krajewski,
pers. comm.). Younger Ar-Ar dates were derived from the inter-
fingering and overlying basaltic lavas and hyaloclastic rocks in
the Low Head Member and Oberek Cliff Member, although pre-
cision of these measurements is low (29-22 Ma, Smellie et al.
1998; Troedson & Smellie 2002). The upper part of the Polonez
Cove Formation, which comprises shallow marine basaltic

sandstones (Chlamys Ledge Member), gave a single late Oligo-
cene strontium age (27.1 = 0.3 Ma) on the basis of a Chlamys
shell analysis (K. Krajewski, pers. comm.). The whole-rock K-Ar
ages obtained from the overlying terrestrial Boy Point Forma-
tion (ca. 24-22 Ma) indicate an age of youngest Oligocene/old-
est Miocene, though they might in part reflect a reset by
younger thermal events (Birkenmajer & Gazdzicki 1986). The
Boy Point Formation consists mostly of dacitic rocks, with the
lower informal member (Loud Waterfall member) dominated
by dacitic clastic deposits, and the upper informal member (Lin-
ton Knoll member) dominated by agglomerates and lavas. A
Late Oligocene age for the formation is suggested here on the
basis of geological correlation.

3. Studied materials

Thirty samples were analysed for palynology: 14 from Seymour
Island (Table 1), and 16 from King George Island (Table 2). The
14 Seymour Island samples were collected from the uppermost
La Meseta Formation for R. Askin in December 1986 and were
obtained for this study from the Polar Rock Repository, Byrd
Polar and Climate Research Center, The Ohio State University.
These 14 samples are from the top of the Submeseta Allomem-
ber (or upper Telm7 in the terms of Sadler 1988) and were col-
lected at 3-m intervals through a 39-m section of monotonous
fine sands and silts (Figure 2).

The 16 samples from King George Island included sand-
stones to mudstones and were collected from the Linton Knoll
(11 samples) and Conglomerate Bluff (five samples) sections
(Figures 4-6). Fourteen of these samples were taken from some
members of the Polonez Cove Formation, and two samples
from the base of the Boy Point Formation. They were collected
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Figure 5. (A) Photograph of the section at Linton Knoll. (B) Photograph of the section at Conglomerate Bluff. King George Bay, King George Island. Red arrows indicate
directions of the sections. KGM - Krakowiak Glacier Member; LHM — Low Head Member; CLM — Chlamys Ledge Member.

during the Polish Academy of Sciences (PAS) two-part expedi-
tion, which took place in January 2007 and January 2009.

4. Methods

All samples were processed using standard chemical palynolog-
ical processing techniques. Dry sediment was weighed and
spiked with a known quantity of Lycopodium spores to allow for
calculation of palynomorph concentrations. Dry sediment was
successively treated with hydrochloric acid, hydrofluoric acid
and heavy liquid separation (e.g. Brown 2008). Samples were
sieved between a 10- and 250-um fraction, and the remaining
residue was mounted on microscope slides using glycerin jelly.
Palynological analysis was conducted in the Louisiana State
University’s Center for Excellence in Palynology (CENEX) lab.
When possible, 300 palynomorphs were tabulated per sample,
using an Olympus BX41 microscope. Palynomorphs were identi-
fied to the lowest taxonomic level possible. After palynomorphs
were tallied, palynomorph concentration was calculated for

each specimen using the equation from Benninghoff (1962):
C=(P: x Lt x M/(Lc x W), where C = concentration (per
gramme of dried sediment, gdw™"), Pc = the number of palyno-
morphs counted, L, = the number of Lycopodium spores per
tablet, T = the total number of Lycopodium tablets added per
sample, L. = the number of Lycopodium spores counted and W
= the weight of dried sediment.

All specimens analysed from the assemblages were identi-
fied at the time of scanning and counting as being either
reworked or in situ (considered penecontemporaneous with
deposition), before palaeoenvironmental conditions could be
considered. High numbers of reworked specimens are com-
monplace in Antarctic Cenozoic assemblages, in large part
because of glacial and/or fluvial scouring and redeposition of
mainly unconsolidated sediments. When age-restricted species
older than Eocene or Oligocene were found (e.g. Cretaceous
species), they could be easily recognised as reworked. However,
for species with longer age ranges, it is often difficult to differ-
entiate between reworked and in situ in Antarctic successions,
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arine fossils

* indicates

stratigraphic location of samples from the adjacent Conglomerate Bluff section. Polonez Cove Formation: KGM - Krakowiak Glacier Member; BM - Bayview Member;
LHM - Low Head Member; SM - Siklawa Member; OCM — Oberek Member; CLM — Chlamys Ledge Member. Boy Point (BP) Formation: LWM — Loud Waterfall member;

LKM — Linton Knoll member.

because of minimal time and depths of burial of eroded strata
and subsequent lack of differences in preservation and thermal
maturities between reworked and in situ grains. Where possible,
differentiation of reworked specimens was done on the basis of
subtle to more overt differences in the preservation of the

grains (e.g. battered specimens, presence of corrosion) as well
as the thermal maturity of their walls. Some thick-walled crypto-
gam spores were counted as reworked. Some specimens, if dif-
ferentiation was not possible, were counted as in situ, resulting
in taxa such as Nothofagidites spp. (brassii group) being
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Table 1. Palynomorph concentration for the uppermost Eocene D6 section of the
La Meseta Formation.

Sample Elevation Palynological Concentration of
name (m) counts palynomorphs (gdw™")
D6-14 39 300 753

D6-13 36 300 634

D6-12 33 300 759

D6-11 30 300 812

D6-10 27 300 652

D6-09 26 300 557

D6-08 21 300 669

D6-07 18 300 760

D6-06 15 300 873

D6-05 12 300 844

D6-04 9 300 776

D6-03 6 300 987

D6-02 3 86 373

D6-01 0 98 119

included as part of the penecontemporaneous flora, though
these ‘warmer-climate’ species are typically considered as
becoming scarce and possibly disappearing from the region in
the latest Eocene (e.g. Chen 2000; R. Askin, pers. comm.).

5. Results
5.1. Palynological results from the La Meseta Formation

The 14 La Meseta samples yielded well-preserved palyno-
morphs, but with a fairly low diversity. The overall numbers of
palynomorphs counted are shown in Figure 7, and our interpre-
tations of in situ vs. reworked species in Figure 8. Table 3 pro-
vides raw counts. Note that specimens considered to be in situ
(interpreted as derived from the penecontemporaneous terres-
trial and marine flora) are differentiated in blue, and reworked
specimens in red, throughout the figures and tables. Selected
in situ specimens are illustrated in Plate 1.

Palynomorph concentrations are low in these sandy sedi-
ments and range from 119 to 987 per gramme of dried sedi-
ments (Table 1), which is far less than the concentrations
(varying from 700 to 100,000) of recovered palynomorphs from
the late Eocene 3C section (Figure 1(B)) sampled by the

Table 2. Palynomorph concentrations of reworked (Rw) and in situ palynomorphs
from Polonez Cove and Boy Point formation samples.

Concentration of ~ Concentration of

Sample  Elevation Palynological ~ palynomorphs palynomorphs
name (m) counts (gdw™") (Rw) (gdw™") (in situ)
L-12 55 " 41 9

L-13 48 7 5 4

G-13 46 1 1 1

L-11 43 46 9 20
LHMb 26 101 4 20
LHMb-cb 26" 40 7 10

G8 25 37 73 44

LRx 25 46 8 21

L-6 21 73 " 18

L-5 14 54 4 10

K-1 14 64 15 21
KGLMb-4 7 95 29 33
KGLMb-3 7" 45 4 18
KGLMb-2 7" 10 7 1
KGLMb-1 7" 0 0 0

G3 5 40 44 117

* Samples from Conglomerate Bluff, with their stratigraphic position shown on
the Linton Knoll section.

SHALDRIL programme offshore and north-east of Seymour
Island (Warny & Askin 2011a), and from many older samples of
the La Meseta Formation. Both of the latter sample sets gener-
ally have a higher mud content and thus tend to be more pro-
ductive. Interestingly, the preparations recovered in this study
contain higher concentrations of palynomorphs than most of
the same uppermost La Meseta samples summarised by Askin
(1997). Several factors may explain this mismatch in palyno-
morph concentration between the two studies: a larger amount
of sample was processed in the current study, recent improve-
ments in processing techniques may have resulted in more
abundant organic matter being recovered, or the processed
sample fraction may have contained a slightly higher propor-
tion of finer (muddy) sediment.

Age-indicative dinoflagellate cysts occur throughout most of
the section, from D6-01 to D6-12 (Figure 7; Table 3). They are
absent in the uppermost part (samples D6-13, D6-14). The pres-
ence of Vozzhennikovia rotunda (Lentin & Williams 1981), V.
apertura (Lentin & Williams 1981), Senegalinium asymmetricum
(Stover & Evitt 1978) and Spinidinium macmurdoense (Wilson
1967) in the La Meseta samples is consistent with Eocene age,
based on age ranges from Ocean Drilling Program’s (ODP) Pub-
lication 189 (Sluijs et al. 2003; see also the Supporting Informa-
tion discussion in Douglas et al. 2014 with their reference to the
recent biostratigraphic age model of Bijl et al. 2013). It is noted
that even though Vozzhennikovia spp. and S. macmurdoense are
shown by Bijl et al. (2013) to range into the Early Oligocene,
other dating methods restrict the La Meseta Formation to the
Eocene (see Geological setting, Section 2).

Reworked palynomorphs occur throughout the section,
becoming progressively more common above the basal sam-
ples, and after some fluctuations again increasing in the
uppermost portion of the section in samples D6-13 and espe-
cially D6-14. Reworked species of palynomorphs range from
Permian to Palaeocene in age and have been well docu-
mented on Seymour Island (e.g. Askin & Elliot 1982; Bowman
et al. 2012). Identified reworked taxa are mostly Cretaceous to
Paleogene in age.

Presumed penecontemporaneous or ‘in situ’ specimens pre-
dominate throughout section D6, with terrestrial pollen of
Nothofagidites spp. the most abundant in the lower samples
(D6-01 to D6-07) and marine leiospheres dominating the upper
samples (D6-08 to D6-14), illustrating a trend to a more marine
assemblage upsection. Some other observations within these
broad trends are summarised below.

D6-01 to D6-07. This lower part of the section contained the
most varied (though hardly diverse) terrestrial palyno-
flora. The predominant Nothofagidites (southern beech)
pollen considered in situ are mainly N. spp. (fusca
group), with Nothofagidites species of the brassii and
menziesii groups. Other angiosperm pollen include Myri-
cipites harrisii and M. parvus, Peninsulapollis spp. and Pro-
teacidites spp. Some podocarpaceous conifer pollen,
Phyllocladidites spp. and Podocarpidites spp. (Table 3),
occur in these lower samples. Other conifer pollen were
observed throughout the section, but they were inter-
preted at the time of scanning as reworked specimens
(see Section 4, Methods).
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Figure 7. Overall frequency (raw counts) of palynomorph species observed in the La Meseta Formation of Seymour Island; blue = in situ and red = reworked.
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Figure 8. Relative abundance of reworked (Rw) and in situ palynomorphs in La Meseta Formation samples.

In the marine dinoflagellate cyst component, taxa typical of the
Antarctic Eocene are most common in this part of the section,
and a small peak in abundance in Impletosphaeridium spp.
occurs in sample D6-05.

D6-08 to D6-12. The marine component, which dominates

in this part of the section, is marked by increasing

numbers of leiospheres, included as the sphaeromorph
acritarch Leiosphaeridia spp. Dinoflagellate cysts show
slight decreases in numbers compared with the underly-
ing part of the section. Diversity has dropped off drasti-
cally in the terrestrial assemblage. Apart from the last
conifer pollen considered in situ in this study in sample
D6-08, only pollen of Nothofagidites (mainly fusca group)



PALYNOLOGY 13

Table 3. Palynomorph counts for the uppermost Eocene D6 section of the La Meseta Formation. Reworked specimens are listed in pink and in situ specimens are listed in

blue.
Dinoflagellate cysts Algae Spores Gymnosperms Angiosperms Reworking
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D6-14 39 19 111 3 10 17 38 88 7 5 2 0 130 168 O
D6-13 36 28 1 1 179 4 22 13 9 32 8 3 0207 9% O
D6-12 33 19 2 172 2 4 8 7 50 25 5 0 2191 54 53
D6-11 30 19 7 2 4 4(112 3 2 31 2 7 13 814 7020 1 3 4 4 7 6 15 121 80 79
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D6-9 24 7 4 7 1 1 3106 1 2 3 2 3 6 12 019 7537 1 3 4 2 3] 5 12 113 9% 76
D6-8 21| 1 2 5 8 1 1 7(102 2 2 11 18 4 11 22 76 29 5 5 1 5/ 8 17 104 84 88
D6-7 18| 4 1 7 3 1 5| 65 14 2 2 3 5 18 29 87 44 6 3 4 5/ 0 20 66 103 111
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D6-3 6 3 4 1 1 8 3 69 9 6 2 2 4 715 26 71 21 1 9 2 2 45 31 72 53 138
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_ are the in situ species.

are the reworked species.

are considered to be penecontemporaneous with
deposition.

D6-13 and D6-14. These upper two assemblages are
entirely marine and composed mainly of leiospheres
along with the small chorate dinoflagellate cyst Imple-
tosphaeridium spp. This latter form fluctuates in abun-
dance through the section above sample D6-02,
reaching a peak in sample D6-13. No other in situ dino-
cysts or any in situ terrestrial components were
observed. There is no change in total frequencies of
specimens recovered compared with the underlying
part of the section (Table 1).

5.2. Palynological results from the Polonez Cove
Formation and Boy Point Formation

Unlike most of the La Meseta Formation samples, Polonez
Cove and Boy Point Formation samples contain very few
palynomorphs (Table 2). The overall number of identifiable
palynomorphs observed is summarised in Figure 9, our inter-
pretations of in situ vs. reworked specimens are given in
Figure 10, and counts are given in Table 4. The listed samples
are from the Krakowiak Glacier Member (KGM), Bay View Mem-
ber (BM), Low Head Member (LHM), and the Chlamys Ledge
Member (CLM) of the Polonez Cove Formation (listed from old-
est to youngest), and from the lower Boy Point (BP) Formation
(Figure 6).

The concentrations of total in situ palynomorphs ranged
from 0 to 117 per gramme of dried sediments, and the concen-
trations of reworked palynomorphs ranged from 0 to 73 per
gramme of dried sediments (Table 2), which is substantially
lower than concentrations of up to 2000 recovered palyno-
morphs from the late Oligocene 12A section (Figure 1(B))

sampled by the SHALDRIL programme off the Antarctic Penin-
sula (Warny & Askin 2011b). Many of the latter samples con-
tained higher proportions of fine-grained carbonaceous
material and thus likely more palynomorphs, as well as being
deposited in a marine environment more conducive to palyno-
morph deposition than the diamictites and volcanobreccias of
the Polonez Cove samples.

There were no age-diagnostic marine in situ palyno-
morphs observed in these samples. Radiometric dating for
these beds is outlined in Section 2.2 (Geological setting).
Leiospheres dominate in these very sparse assemblages,
typically in overwhelming abundance. Of the non-leiosphere
fraction, most specimens are reworked (~85% of the non-
leiosphere fraction). Many reworked specimens are of such
high thermal maturity that they are unidentifiable, and thus
are not included in any counts. The identifiable reworked
assemblages, readily differentiated from in situ by their
darker exines, are of possible Jurassic but mainly Cretaceous
and Paleogene age, and include rare dinoflagellate cysts
and fluctuating proportions of terrestrial cryptogam spores,
podocarp conifer pollen and various angiosperm pollen (Fig-
ures 9 and 10; Table 4).

The in situ assemblage throughout the Polonez Cove Forma-
tion and Boy Point Formation composite section is notable for
its extreme lack of diversity, being composed almost entirely of
the marine sphaeromorph acritarchs Leiosphaeridia spp. The
few exceptions to this observation in the Polonez Cove Forma-
tion (see Table 4) include the following.

e A few specimens of terrestrial angiosperm pollen Cheno-
podipollis sp. occur in the basal KGM (sample G- 3, from a
marine lodgement till, Figure 6), and in the LHM (samples
G-8, LHMb-cb (Conglomerate Bluff), LHMb),
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Plate 1. Light photomicrographs of palynomorphs considered in situ. Images 1-11 are from the La Meseta Fomation, Seymour Island, and 12 is from the Polonez Cove
Formation, King George Island. 1-4. Various beech pollen grains: 1-2. Fusca group: Nothofagidites rocaensis-saraenesis complex (1. sample D6-09 16.2 x 139.1; 2 sam-
ple D6-08 15.9 x 141.7); 3. Menziesii group: Nothofagidites sp. cf. N. asperus (sample D6-11 15.5 x 117.5), 4. Brassii group: Nothofagidites mataurensis (sample D6-05
4.1 x 143.5). 5-8. Other angiosperms: 5. Myricipites harrisii (sample D6-01 14.2 x 119.4), 6. Proteacidites sp. cf. P. parvus (sample D6-01 13.4 x 143.9), 7. Peninsulapollis
askiniae (sample D6-03 16.2 x 147.3), 8. Peninsulapolis gillii (sample D6-03 3.4 x 144.4). 9. Gymnosperm: Phyllocladidites sp. cf. P. exiguus (sample D6-08 13.3 x 147.6).
10-12. Marine palynomorphs: 10. Vozzhennikovia rotunda (sample D6-01 6.3 x 117.8), 11. Spinidinium macmurdoense (sample D6-12 14.6 x 144.9), 12. Leiosphaeridia
sp. (Sample G-13 12.1 x 141.0). All images were taken at 60x under oil immersion. Scale bar = 20 um.

e There are rare occurrences of podocarp conifer pollen the volcaniclastic marine samples of the BM (sample L-6),
(Phyllocladidites spp. and Podocarpidites spp.) in the lower LHM (sample G-8) and CLM (sample L-11),
part of the section (samples G3 and L-6), e The highest abundance of leiospheres was encoun-
e Scattered occurrences of Nothofagidites spp. (fusca group) tered in the LHM (sample LHMb), and the dinocyst
were observed in the basal KGM (sample G-3), in the Impletosphaeridium spp. occurs near the top of the

upper glacimarine KGM (samples K1, L5), and in some of Polonez Cove Formation in the CLM (sample L-11).
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Table 4. Palynomorph counts from Polonez Cove and Boy Point formation samples. Reworked specimens are listed in pink and in situ specimens are listed in blue.
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- are the in situ species.

are the reworked species.

KGM = Krakowiak Glacier Member; BM = Bay View Member; LHM = Low Head Member; CLM = Chlamys Ledge Member; BP = Bay Point Formation.

The two assemblages from the basal Boy Point Member are
very sparse, consisting of a few leiospheres. No in situ terrestrial
material was observed.

6. Discussion
6.1. Uppermost La Meseta Formation

6.1.1. Terrestrial vegetation

Amongst the terrestrial component, Phyllocladidites spp. and
Podocarpidites spp. represent southern podocarp conifers
which, together with the southern beech Nothofagidites spp.
(fusca gp.) and Nothofagidites spp. (menziesii gp.), thrive in cool
temperate humid climates (Veblen et al. 1996; Farjon 2010). As
noted in Section 4 (Methods), the penecontemporaneous
nature of Nothofagidites spp. (brassii gp.) through this section is
equivocal. Thus, for the lower D6 section of this La Meseta data-
set, we can infer the environment was comparable to the cool
temperate Valdivian-type forest found in parts of modern-day
Chile, as described in Veblen et al. (1996), although the diversity
of the recovered La Meseta assemblages is somewhat lower.
Podocarp conifer pollen interpreted as in situ were not
observed above sample D6-08, and above this level the only
woody taxa were Nothofagidites spp. These too disappeared
before the upper two samples. This conclusion, however,
assumes correct reworked vs. in situ interpretations. We note
that Chen (2000) reported Nothofagidites spp. in sample D6-13,
and Askin (unpublished data) recorded apparently in situ podo-
carp conifer and Nothofagidites pollen in both samples D6-13
and D6-14, albeit very sparse in the upper sample. Overall, the
frequency and relative abundance of terrestrial pollen decrease
towards the top of the section, which suggests deteriorating cli-
matic conditions (also considering the other palynomorph data

noted below) and possibly a shift from forest to more stunted
woodland-shrubby trees surviving in colder temperatures. The
composition of the latest Eocene pollen record is ambiguous,
but if penecontemporaneous, the presence of woody plants
suggests that land temperatures remained above the ~10 °C
January mean that delimits the modern austral polar-alpine
treeline (Raine 1998; Korner and Paulsen 2004).

6.1.2. Marine and sea-ice influence

Small numbers of the typical Eocene dinocysts Senegalinium
asymmetricum, Spinidinium macmurdoense and Vozzhennikovia
spp. occur through much of the section, becoming less fre-
quent upsection. These in situ dinoflagellates died out near the
top of the section, coincident with an increase in the small dino-
cyst Impletosphaeridium spp. and great abundance of leio-
spheres. The leiospheres, assigned to Leiosphaeridia spp., a
group usually associated with sphaeromorph acritarchs, are
known to be abundant at the limit between pack ice and sea
ice (Mudie 1992; Troedson & Riding 2002; Warny et al. 2006).
Similar to Leiosphaeridia spp., Impletosphaeridium spp. are
believed to be present during sea-ice formation (Warny et al.
2007).

6.1.3. Environmental trends

Several simultaneous trends in environmental indicators are
evident in the upper part of the section, from sample D6-08 to
the top. Approaching the end of the Eocene, the data include a
dearth of penecontemporaneous terrestrial palynomorphs, the
overwhelming abundance of in situ sea-ice-indicative leio-
spheres, increased numbers of sea-ice-indicative Impletos-
phaeridium spp., decreasing numbers of other in situ
dinoflagellates, and towards the top an increasing relative
abundance of reworked specimens. Together these imply a less
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Figure 9. Overall frequency (raw counts) of palynomorph species observed in the Polonez Cove and Boy Point samples from King George Island. For details about the
position of samples in relation to the formations and sampled members, see Figure 6. Blue = in situ and red = reworked.

vegetated, more glacially dominated environment for the
uppermost part of the La Meseta Formation.

Our data corroborate the marine latest Eocene temperature
record for Seymour Island (e.g. Dutton et al. 2002; Ivany et al.
2006, 2008), and echo the marked cooling at the EOT in the
Zachos et al. (2008) §'80 curve. This trend was also evidenced
by the microtexture analysis of sand grains (Anderson et al.
2011) from D6 samples (D6-03, D6-05, D6-07) which revealed
high-stress glacially induced surface textures from relatively

low (<33%) occurrence, compared with younger, more glacially
influenced sediments from the area, to medium abundance
higher in the section. This analysis supported encroaching gla-
cial activity in the vicinity in the latest Eocene. By the EOT, the
presence of glacial ice was also indicated by the Ivany et al.
(2006) report of diamict at the Eocene-Oligocene boundary on
Seymour Island.

Interestingly, the Late Eocene palynomorph assemblages
described from SHALDRIL Il 3C sediment cores offshore and
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Figure 10. Relative abundance of reworked (Rw) and in situ palynomorphs in Polonez Cove and Boy Point Formation samples. For details about the position of samples

in relation to the formations and sampled members, see Figure 6.

north-east of Seymour Island (Warny & Askin 2011a) may
actually predate at least the upper D6 samples, rather than
postdate the youngest La Meseta Formation sediments as
concluded by Anderson et al. (2011) based on seismic evi-
dence. Diatom stratigraphy placed the 3C cores between 37
and 32 Ma, and a strontium date halfway through the 3C
composite section provided an age of 35.9 Ma (Bohaty et al.
2011). Both the marine and terrestrial 3C assemblages were
more diverse and more abundant (see Section 5.1) than
those encountered in the latest Eocene Seymour D6 sam-
ples, and the more refined chronostratigraphy for the top of
the La Meseta Formation, as discussed in Section 2, supports
this contention. Furthermore, although the upper 3C

assemblages record significant cooling and a sea-level drop
with an increase in erosion and reworking (Warny & Askin
2011a), these 3C samples lack the abundant sea-ice-indicative
leiosphere acritarchs, and thus suggest sea-ice was not yet
widespread during their deposition. This is in agreement with
temperature data reconstructed by Feakins et al. (2014), who
modeled leaf wax hydrogen isotopic evidence from the SHAL-
DRIL Il 3C sediments and combined their results with the pol-
len data of Warny & Askin (2011a). Their D and modeling
show cooling and drying conditions during that latest Eocene
time, but with temperatures remaining above freezing, from
ca. 7 to 2 °C and precipitation around 700 to 600 mma~' with
an isotopic shift in §D of about —15%o.
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6.2. Polonez Cove Formation and Boy Point Formation

6.2.1. Terrestrial vegetation

Our sampling on King George Island covers a period from Early
to Late Oligocene. Farther west on King George Island, the Cyta-
dela flora of the Point Thomas Formation, previously thought to
be of Early Oligocene age (e.g. Birkenmajer & Zastawniak 1989),
is now believed to represent preglacial Eocene vegetation
(Mozer 2012, 2013). In addition, the various Point Hennequin
floras in the Mount Wawel Formation, previously thought to be
of Late Oligocene age (Birkenmajer & Zastawniak 1989), are
now included in the Eocene (Hunt & Poole 2003; Nawrocki et al.
2011; Mozer 2013). This is also the case for several other flora
sites on King George Island (Mozer et al. 2015). Thus, the current
study provides important new information on the Oligocene
vegetation.

The Oligocene sections studied from the Polonez Cove For-
mation indicate that by that time, on the west side of the Ant-
arctic Peninsula, vegetation was reduced to a sparse tundra
flora consisting of a few herbaceous plants with rare podocarp
conifers in the lower section and some southern beech. The
woody beech plants were probably of prostrate habit, surviving
in sheltered locations in severe conditions (e.g. Francis & Hill
1996; Raine 1998; Askin & Raine 2000). Although occasional in
situ terrestrial pollen were observed, the vast majority of the ter-
restrial palynomorphs in the Polonez Cove samples were
reworked, which is consistent with advanced ice sheet expan-
sion, and ice erosion and transport on the Peninsula related to
the Polonez Glaciation.

6.2.2. Sea-ice influence

As evidenced by the overwhelming dominance of leiospheres
in most of our samples, plus some Impletosphaeridium spp. in
one sample, sea ice persisted in the waning stages of the Polo-
nez Glaciation, during deposition of the upper KGM and overly-
ing shallow marine, glacially influenced (at least for the lower
samples), and basaltic volcanism-dominated BM, LHM and CLM,
and lowermost BP Formation.

6.2.3. Environmental trends and volcanism

Figures 9 and 10 highlight how the overall abundance,
diversity and preservation of palynomorphs have diminished
compared to those of La Meseta Formation. The lower Polo-
nez Cove samples from the KGM represent sediments
deposited during the Polonez Glaciation, with palynomorphs
from the sea-ice flora and a few pollen from a very sparse
periglacial terrestrial flora. The Antarctic periglacial tundra
vegetation that survived from the EOT, and through the Oli-
gocene and Miocene, in non-glaciated locations has been
described from SHALDRIL cores off Seymour Island (Ander-
son et al. 2011; Warny & Askin 2011b) and from as far away
as the southern Victoria Land margin of the Ross Sea (e.g.
Raine 1998; Askin & Raine 2000; Raine & Askin 2001; Feakins
et al. 2012; Greiner et al. 2015). Compared to these other
records, the vegetation recovered from the Polonez Cove
Formation was even sparser. Our data imply that local ter-
restrial vegetation barely survived through the Polonez Gla-
ciation. The palynological record suggests conifers are
present only in the lower part of the section. Southern

beech fared a little better with their interpreted in situ
record extending up into the late Oligocene top of the Polo-
nez Cove Formation. Because of the scarcity of unambigu-
ous terrestrial remains, we refrain from making comparisons
to modern climate parameters (temperatures, etc.). The only
recovered record of herbaceous plants considered in situ is
pollen of Chenopodiaceae, a group that evidently survived
well into the Neogene in the Antarctic Peninsula area
(Warny & Askin 2011b). This great dearth of local vegetation
is hardly surprising, considering the plants had to contend
with numerous episodes of local volcanism as well as glacial
climates and ice. The presence of Chenopodiaceae and very
little else is consistent with these harsh conditions, as today
these are typically weedy plants that are well adapted to
disturbed and chemically challenging soils.

Farther to the east on King George Island, it seems that
at least some vegetation regained a foothold in the region
as it emerged from the worst of the volcanism. From the
Destruction Bay Formation, of Late Oligocene age (25.3 Ma,
Dingle & Lavelle 1998), Troedson & Riding (2002) described
a ‘moderately diverse’ assemblage with abundant pollen of
Nothofagidites spp. (fusca group), with, among other taxa,
some podocarp pollen and Cyathidites (fern) spores, plus
dinoflagellate cysts. Sparse, low-diversity assemblages of
mainly podocarp pollen, with a few Nothofagidites pollen,
Cyathidites and indeterminate spores, plus dinocysts, were
reported by Troedson & Riding (2002) from the early Mio-
cene Cape Melville Formation. Also from the early Miocene
Cape Melville Formation, the in situ palynoflora described by
Warny et al. (2016) contained Nothofagidites spp. (fusca
group), rare podocarp pollen, moss spores (Coptospora), and
pollen of Asteraceae, Caryophyllaceae (Colobanthus-type)
and Chenopodiaceae. These assemblages, from sediments
deposited during the Melville Glaciation, are somewhat
richer in diversity than the Polonez assemblages and repre-
sent a periglacial tundra flora with components common to
other Antarctic Miocene tundra assemblages (Warny et al.
2016).

Nearby, to the east of the tip of the Antarctic Peninsula,
there are palynomorph assemblages of Late Oligocene age
(24.0-28.6 Ma from diatom biostratigraphy, Bohaty et al. 2011)
from the SHALDRIL Il 12A sediment cores. Palynomorph con-
centrations, however, are substantially less at Polonez Cove and
the terrestrial flora is far less diverse than that described from
the 12A cores (Warny & Askin 2011b). Probably, as noted above,
the intermittent volcanism has caused this dearth of terrestrial
vegetation on the northern Antarctic Peninsula magmatic
arc. On both sides of the northernmost peninsula the marine
component is dominated by a sea-ice acritarch flora, but with a
difference. The Polonez Cove samples are dominated by Leios-
phaeridia spp., and the 12A samples by a Micrhystridium/Leios-
phaeridia association, with the former acanthomorph acritarchs
typically more common except for the uppermost two 12A
samples where the leiospheres predominate. We note that the
dinocyst Impletosphaeridium and the acritarch Micrhystridium
are morphologically similar and likely occupied similar ecologi-
cal niches. It is possible that the difference comes from the fact
that the Polonez Cove samples are from a nearshore deposi-
tional site with closer proximity to glaciers and their freshwater



outwash, while the SHALDRIL Il 12A samples were from a more
marine palaeoenvironment, albeit within a partly land-locked
back-arc basin.

7. Conclusions

Palynomorph assemblages from the La Meseta Formation on
Seymour Island, and from the Polonez Cove and Boy Point for-
mations on King George Island, provide insight into latest
Eocene and Oligocene climatic evolution in the northern Ant-
arctic Peninsula. La Meseta Formation assemblages capture a
small slice of time at the end of the Eocene, recording the shift
from cool temperate, humid Valdivian-type forest to a more
depauperate vegetation. This was accompanied by a decrease
in typical Eocene dinoflagellate cysts, an increase in sea-ice-
indicative marine phytoplankton, and an increase in reworked
palynomorphs. We suggest these palynofloras record a shift
from cool temperate to periglacial conditions and a subpolar
climate just before the EOT boundary in the back-arc James
Ross Basin.

By the early to late Oligocene, on the other side of the Ant-
arctic Peninsula, land vegetation had been decimated by both
glaciation and volcanism in the northern Antarctic Peninsula
magmatic arc. The terrestrial palynomorph assemblage is
mostly reworked and penecontemporaneous traces of terres-
trial vegetation are sparse. We believe the apparent record of
extremely reduced vegetative cover at this time is overprinted
by regional volcanism and cannot be accurately used as an
indicator of climate. The marine palynoflora does, however,
indicate the presence of sea ice and thus a polar to subpolar
climate.
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