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Abstract—This paper identifies the parameters of an induction
machine using limited and non-intrusive observations of available
input voltages, stator currents, and the rotor speed. Parameter ex-
traction is formulated as a non-convex estimation problem, which
is then relaxed to a convex conic optimization problem. While
the resulting relaxation could exhibit a satisfactory performance,
there might be cases where the solution of convex relaxation fails
to satisfy the dynamic equations of the machine. This is remedied
through a local search approach initiated using the solution
obtained from the relaxed problem. The proposed method is
experimentally verified on a squirrel-cage induction machine
with missing measured data. Using the measured signals as the
benchmark, time-domain transients produced by the parameters
estimated using the proposed method show almost 20% better
match compared to time-domain transients produced by the
parameters obtained via conventional testing.

Index Terms—Conic relaxation, convex optimization, induction
machine, parameter estimation, system identification.

I. INTRODUCTION

Accurate machine characterization is needed for drive
design and control, diagnostics and condition monitoring,
controller/hardware-in-the-loop applications. Given that induc-
tion machines constitute a significant portion of loads in the
grid, proper machine characterization is crucial to analysis of
power system dynamics [1]. Mismatch between the actual and
estimated parameter sets can deteriorate the drive performance
[2]. Reliable data for most machines are not accessible, and
excessive testing may not always be practical. Informative
reviews on parameter identification of induction machines are
presented in [3] and [4]. Conventionally, estimating parameters
involves intrusive testing, e.g., IEEE Std. 112 [5]. One popular
approach is to excite the machine with predetermined signals
and monitor its response while maintaining a standstill rotor
[6]-[8], which is suitable for ‘self-commissioning’ [9], [10].
In general, intrusive testings require isolated access to the
machine, additional measurement equipment, and interruption
of machine operation which might not be always feasible.
For example, the locked-rotor test draws in large currents
and could become impractical for some industrial setups. It
is desirable to extract machine parameters from (preferably a
single) transients during normal operation [11]. For example,
[12] utilizes different portions of current and voltage transients
to approximate conventional test scenarios.
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The main parameters of interest for an induction machine
are stator and rotor resistances, magnetizing inductance, stator
and rotor leakage inductances, and mechanical inertia. Var-
ious methodologies exist for non-intrusive parameterization
of induction machines, e.g., observer-based estimators [13],
[14] or least-square regression [15], [16]. Observer-based
methods, such as Kalman filters, can estimate system states
and a subset of machine parameters using measured signals
from the machine terminals. However, Kalman filters require
proper initialization and noise covariance matrices [17]. [15]
reformulates the machine model in terms of K-parameters,
assuming slow-varying rotor speed, resulting in a standard
linear least-square regression problem. [16] and [18] further
extend this work to incorporate time-varying speed into the
final regression problem. However, this involves estimating
first- and second-order derivatives for certain current and flux-
linkage terms, and are susceptible to noisy measurements.
Usually, all these methods perform estimations using measure-
ments of stator currents, input voltages, and rotor speed. [19]
estimated machine parameters using only stator currents and
voltages. This could, potentially, result in an ill-conditioned
problem which would require an estimate for speed trajectory
or an excellent initial guess, or could only offer a subset of
parameters. Equivalent circuit model of an induction machine
could be found using geometrical and electrical data [20], [21].
[22] employed finite-element model of an induction machine
to extract its equivalent circuit model. [23] obtained the
machine parameters from a high-fidelity magnetic-equivalent
circuit model. Such methods require expert knowledge on the
underlying complex models, manufacturing/fabrication errors,
or material defects, and inherent the approximation present in
the primary modeling effort.

One could employ nonlinear constraint optimization [24],
[25] to minimize an objective function (usually, the norm
of error between measured and predicted outputs) subject to
machine model equations. A major challenge is the inherent
non-convexity of the resulting optimization problem. Newton’s
method might not correctly converge without proper initial-
ization. Various workarounds to tackle this limitation include
(1) use of good initial conditions (from self-commissioning
[10], [26] or conventional tests), (2) employing heuristics,
e.g, enforcing box constraints on machine parameters [27],
or (3) executing multiple optimization runs from different
initial points [25]. Metaheuristic optimization techniques, e.g.,
genetic algorithms, can circumvent non-convexity albeit at a
higher computational cost [28], [29]-[31]. In the context of
power system estimation, [32] proposes a convex optimization
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approach to offer a good initial condition for the follow-
up Newton’s method. [23] has extracted parameters from
magnetic equivalent circuit model of a synchronous machine
using conic relaxation, assuming availability of all inputs and
states, which is not a valid assumption for a physical machine.

We leverage the convex optimization framework to param-
eterize an induction machine using only limited samples of
measurable signals. Herein, we assume a no-load operation
and use data from start-up transients. The problem of non-
convexity is tackled by formulating it in a higher-dimensional
space and imposing conic constraints. Unlike original equa-
tions, the relaxed formulation can be solved efficiently using
off-the-shelf solvers. To properly enforce machine dynamics,
we feed the outcome of convex relaxation to a local search
algorithm to obtain the desired near-optimal solution. Figure
1 provides an overview of the proposed approach, with its
salient features summarized as follows:

o This method is non-intrusive; Parameters are identified
using only limited samples of start-up transients.

o The proposed method does not require a priori knowl-
edge of most machine parameters, which makes it suitable
for refurbished or re-wounded machines.

e Machine parameters, including stator and rotor resis-
tances, stator and rotor leakage inductances, magnetizing
inductance, mechanical inertia, and the friction coeffi-
cient, are simultaneously identified.

e The proposed method reformulates a non-convex opti-
mization problem into a tractable convex approximation.
Detailed treatment of this transformation is provided. A
penalized improvement of this convex relaxation is also
discussed and verified using a test example.

o The proposed method is experimentally verified for an
induction motor prototype, and is shown to converge even
with missing points in available signals. Convergence is
achieved with 80% of the measurement data. Robustness
of the proposed method to noisy data is discussed.

« The set of machine parameters extracted by the proposed
method are shown to result in a better match with
the measured transients compared to the parameter set
obtained by the conventional methods. Particularly, the
proposed method has resulted in 12.5%-30% reduction
in error when matching the stator currents, and 8.7% im-
provement when matching with the rotor speed transients.

II. NOTATIONS

Vectors and matrices are represented using bold lowercase
and uppercase variables, respectively (e.g., y and Y). The
4 element of vector y is y;. I, denotes a size n identity
matrlx. The notation diag{y} represents a diagonal matrix
with the vector y forming the diagonal. For an nxn symmetric
positive-definite matrix Z and the vector y € R", the norm
notation ||y||z denotes \/yT Zy. ® stands for the Kronecker
product. Symbol * represents the vectorization operator, i.e.,

g T
A= AT A2IT,AB]T .. ‘} . Set A is convex if, for every
y1,Y2 € Aand any p € [0,1], py1 + (1 — p)y2 € A [33].

 Minimize:
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Fig. 1. Overview of the proposed model identification method.
III. DISCRETE-TIME MODEL OF AN INDUCTION MACHINE

We present the classic dynamic model of an induction
machine, and then adopt its discrete-time representation.

A. Machine Model

The induction machine model, in the arbitrary reference
frame, is given by [34]
d\(t T
P [ A dgn(t), A1) 2 ()] +
dt
T
we(t) [o,o,xd,@), —Aq,(t)} ~Ri(t)+v(t), (1a)
At) = Li(t), (1b)
where A(t), (),
currents, and vol

and v(t) are the vectors of flux linkages,
tages, respectively, defined as

A() £ s (£); Aas (), Agr (1), Aar ()], (2a)
i(t) £ ligs(t),7as(t), qu( )siar(t)]T (2b)
v(t) £ [Vgs(t), Vas (), vgr (1), Udr(t)]—r (2¢)

Subscripts gs, ds, qr, and dr denote g-axis stator, d-axis
stator, g-axis rotor, and d-axis rotor terms, respectively. Zero-
sequence terms are neglected in this balanced representation.
R = diag {[rs,rs, 7, 7|} and L is

Ls 0 L, 0
0 L 0 L,
L= L, O L. 0]° )

0 Ln 0 Ly

w represents the speed of the chosen reference frame, w,.(t)
is the rotor speed, 7, is the stator resistance, r,. is the rotor
resistance, L is the stator self-inductance, L, is the rotor self-
inductance, and L,, is the magnetizing inductance. Stator and
rotor leakage inductances can be obtained as L;s = Ly — L,
and L;. = L, — L,,, respectively. We assume an induction
machine with shorted rotor bars, i.e., vgr = vg, = 0.
The dynamics of the mechanical subsystem is [34]
L) _ T () Tate) )
where P is the number of poles, J is the lumped mechanical
inertia, 7, is the electromagnetic torque, and 7, is the
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mechanical (load) torque. In this paper, we consider the start-
up transient of an induction machine under free acceleration,
where only friction torque is present. The equivalent friction
torque can be found by subtracting the machine loss from
the input power at the steady state, no-load operation. For
simplicity, we assume that the friction coefficient has a linear
relation with the rotor mechanical speed. The load torque is

T (t) = Buwr(t)/(P/2). (5)
B is the total effective friction coefficient [11]. Electromag-
netic torque is

(1) = ZP(/\ds(t)iqs(t) e ®ias®). ©)

B. Discrete-time Representation

The machine model is discretized using the forward Euler
method as it results in a simple explicit equations which
eases the derivation of upcoming relaxation formulations. The
discrete-time representation of (1), (4), and (6) become

A1) = M) + AT (w0~ Aas ], Ago ], ~ A ) e ]

+ rln][0.0. Marln], ~Age )] = Riln] +oln]), (o)

Quinln +11= Qusil+ 5 (Tl = 22510)
Aln] = Li[n], (7¢)

Tfn] = 2 P[]~ i ln), s, 0,0] (70

n € T represents a time horizon with 7 2 {1,2,3,...,7},
and AT is the sampling time interval. The variable Q,, =
J/P is defined to ensure that (7b) remains of degree two
(quadratic), which will be helpful in the upcoming convex

relaxation formulations. Note that P is a known constant.

IV. PARAMETER EXTRACTION PROCEDURE

Let MEA[n] and wMFA[n] denote the values of measured
currents and rotor speeds, respectively, for n € T. Let S
denote the set of different discrete-time horizons such as
T. The parameter identification problem is formulated as a
weighted least-square optimization that minimizes the mis-
match between predicted state variables in the discrete-time

model (7) and the measured signals over S,
minimize

> ||diag{e[n]} (i[n] -5 [n]) |12+t (wr 2] — i [n])? (8a)
nes
subject to

At 1) = M+ AT (s [~ Adsln), Ags ], = ] e ] T4

wr[n] [o, 0, Aar [, f/\q,«[nﬂ L diag{re, ro, 0, ]} i[n]Jrv[n}),

(8b)
way-[n—&—l]:war[n]—i—% (Te[n} — ZBWT;[M) , (8¢)
Aln] = Lo [ige 0], iarln] ol iasln]]

+ diag {[Ls, Ls, Lr, L]} [n], (8d)
Tujn] = %PAT[n] [~ sl o], 0,0) " (8e)

3

variables
{A[n],i[n] € R*, T.[n], w,[n] € R}
TsyTry Lisy Lipy Ly Qu, B € R.

nes’

A = diag{[o1,a2,a3,04]} and ~ contain non-negative
weights to normalize current and speed terms, respectively.
t[n] € {0,1}* and v,[n] € {0,1} represent binary flags
indicating the availability of the n*" data sample. Since rotor-
side currents are hard to measure, it is reasonable to assume
that ¢3[n] = t4[n] = 0 (corresponding to the rotor currents),
and ¢1[n] = 12[n] = 1 (corresponding to the stator currents).
Similarly, ¢,,[n] is 1 or O depending upon the availability of
speed measurement. The objective function (8a) represents the
mismatch between the measured signals and the transients pre-
dicted by the estimated parameter set. The objective function
denotes the sum of squared residuals (same as a least-squares
regression). The equality constraints (8b) — (8e) reflect the
discrete-time machine model (7a) — (7d). The induction
machine model presented in (1), (4), and (6) are reflected
within the optimization formulation. The unknown variables in
the optimization problem (8) are separately listed below the
constraints for convenience. The optimization problem (8a) —
(8e) solves for flux linkages A, currents 2, torque 7, and speed
wy- in S, as well as the parameters (7, 7, Ls, Ly, Ly, Quw, B),
while minimizing the objective function, subject to machine
dynamics. Measured data for stator currents (¢4, and %4), input
voltage (v), and rotor speed (w;), and the number of poles,
P, are assumed known.

Observe that due to the the absence of rotor-side mea-
surements, the estimation problem (8a) — (8e) suffers from
solution ambiguity [35]. This is obvious from rotor-side flux
linkage and current relations (see (7c)), where the expression
L,ig, (or Lyig) can take identical values for different L, and
iqr (Or %g,) in absence of rotor-side current measurements.
To resolve this, we assume that the ratio Ls/L, is known.
It should be noted that if the NEMA design letter is known
for the machine, the ratio L;/L, can be obtained from IEEE
Std 112 [5], [36]. Inspired by [15], [16], [18], we assume
Ls/L, = 1. Note that any other known Lg/L, ratio would
would not affect the optimization process.

The optimization problem (8a) — (8e) is non-convex
because of the following bilinear terms:

o WrAgr, WrAgr and Tgigs, Tsldss Trigr, Tridgr in (8b);

e Quw, and Buw, in (8c);

i Lsiqs’ Lsid(‘;a Lriqm Lridr and Lmiqr’ Lmidr’ Lmiq57

Lmids in (Sd)’

o Agstas and Aggiqs in (8e).

Problem of non-convexity makes the optimization problem
hard to solve, and standard tools, such as Newton’s method,
might not converge to the right solution without good initial-
ization. In the following section, we transform this problem
into a convex optimization formulation which could be solved
in polynomial time using off-the-shelf solvers [33], [37].

V. CONIC RELAXATION AND NUMERICAL SEARCH

To remedy the presence of non-convex bilinear terms,
we introduce additional variables (lifting) and employ conic
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relaxation to derive a convex optimization formulation for the
problem (8a) — (8e).

A. Lifting

Non-convexity due to nonlinear terms (e.g., w,Ag- and
Tsiqs) can be addressed by variable substitution. As a result,
the objective function (8a) and constraints (8b) — (8e) can
be rewritten as linear (convex) functions of variables in (8a)
— (8e) and newly-defined auxiliary variables. This process is
known as lifting in which the original optimization problem
is cast into a higher dimensional space and the entire non-
convexity is captured in the definition of auxiliary variables.

For every n € S, define the following additional variables

£ln] 2 w.[n] {0,0,)\dr[n],—)\qr[n]}—r, (9a)
g[n] £ diag {[rs, rs, 7] } 8[0], (9b)
hln] £ Lgi[n], 9c)
T
2[n) 2 Linigrln]. iar ), igeln), il o)
yln] £ [Ngelnlias [ Ads[nliqe[m], 0.0 %)
0[n] 2 Quwy [n], o[n] £ Buw, [n] (91)
Aln] £ diag{A[n]}A[n],  i[n] £ diag{i[n]}i[n], (g
@p[n] £ winl, [o[n] £ TZ[n). (9h)
Define
Ts £ r?a Ty £ r72-7 Qw = w7 91)
L,.2I1?, L,21? B#2B. 9j)

There are two new sets of variables in above formulation:
Those like f[n] that represent the non-convex terms, and
those like 7, that denote squared variable. The need for
such formulations will become clear in what follows. The
optimization problem (8a) — (8e) can now be reformulated
in terms of the auxiliary variables (9a) — (9j). However,
additional constraints need to be included in the optimization
problem to account for (9a) — (9j). A standard approach in
convex optimization to represent bilinear expressions is using
matrix equalities [23]. For example, g1[n] = rsigs[n] in (9b)

can be enforced as
T
SEA R

[917: [n]

Expressing (9a) — (9j) as matrix equalities is helpful as they
can be easily convexified. Variables such as 7, that denote
squared variable are used to enforce equality conditions.
Hence, problem (8a) — (8¢) can now be reformulated as

(10)

minimize
> Il A (iln] + diag{a™™ [n]} (i [n] — 2i[n)) )
nes
+ Yew[n] (@T[n]—2w¥l Alnlwen }+wMEA[n}2) (11a)
subject to
A+ 1) = Aln]+ AT (1] Aasln]. Ags ), ~arln], Agr ]

+ £ln) - gln] + vln)), (11b)

]
On + 1 }—9[n]+£( T.n] — 2¢["]) (11¢)
Aln] = 2[n] + h[n], (11d)
Tuln] = > (ol — aln), (11e)
e o) Pt
fs—k[n] =0, k=34 (11
;g:[sn] gk[[:;]]]:[z r[;}];i:[sn]}t k=12 (11g)
e gk[[gl]]:[ [n }] iff;zﬂ ’ k=34 (b
:hf{Z] ’;:[[Zﬂ { [”]-[ZkL[:ﬂ]T’ k=1,234. (1)
Lf{%] z-fﬁgfi]]—[mfﬂnﬂ[ikfﬁnﬂT’ k=12 4
sz:;] E:'_CET[Z;L]} - LkL;’fn]szLﬁnﬂT k=34 (b
e i Pt
ya+k[n] =0, k=1,2 (111
9%3”] o ] Z]T
ot i[ﬂ o] (1m)
iabl
NN 0], i . Al =0 ] e®'}, .,
. nLTe[ b1 i ] < R}, ..

TsafSaTr7fr7L87l_137Lm»l_/myQuu QuvaB eR.

The optimization problem (11a) — (11m) is equivalent to (8a)
— (8e). The objective function (11a) and constraints (11b) —
(11e) are now expressed as linear equations using auxiliary
variables to achieve convexification. The updated objective
function (11a) is formulated as an algebraic expansion of
(8a). Considering the assumption Ly/L, = 1, variable L, is
replaced by L, in the problem formulation. Matrix equalities
(11f) — (11m) enforce (9a) — (9j). However, problem (11a) —
(11m) is still non-convex due to these matrix equalities (11f)
— (11m). In the following subsection, these equality conditions
are relaxed which make the optimization problem convex.

B. Conic Relaxation

Relaxation aims to formulate a convex approximation of
a non-convex optimization problem. Such a formulation is
favorable because its every minimum is a global minimum
that can be readily obtained. Usually, relaxation is achieved
by eliminating or modifying the constraints that lead to non-
convexity [33]. For the problem (11a) — (11m), relaxed formu-
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lation can be obtained by transforming all matrix equalities in
(11f) — (11m) to matrix inequalities as shown in the following.

Definition 1. Define C as the set of vectors ¢ € R that satisfy

. T
Cc3 C2| — |C5] |Cs

It is straightforward to observe that C is a convex set [33].

(12)

minimize
> Il A (iln] + diag{a™™ (1]} M 0] — 2i[n)) )
nesS
+ Yiwln] (:Dr[n] — 2 WM™ [nw, [n }—i—wTMEA[n}Q) (13a)

subject to

Machine model equations: (11b) — (11e) (13b)
[@0ln], Xawlnl, (~1)" felnl, —onlnl, Ao sln)] - € €

fs—k[n] =0, k=3,4. (13¢)

_ T

[FMik[n]vgk[n]vraik[nﬂ €C, k=1,2
[ﬂﬁk[n},gk[n],rr,ik[n]]T ec, k=3,4 (13d)
[ES,Ek[n},hk[n],Ls,ik[n]]Tec, k=1,2,3,4. (13e)
_ _ T

[Lonswsalin], 2eln], Lonsinsalil| €€, k=1,2

(Lo iesli), 2ulin], Lo, i oln)] €€, k=34 (30
_ _ T

[Aelnl, - wlnl, e[, Awlnl, ia-ilnl] - €€,

Y2+x[n] =0, k=1,2 (13g)
_ T

[Qu @[], 0[], Qui i ] €€,

[B.@,[n). 6ln]. B n)] e, (13h)

Fo>rs,  F>rh,  Le> L2 (13i)

Lm>L7, Quw>Q., B>B (13j)

Aln] > diag{A[n]}A[n], (13k)

i[n] > diag{i[n]}i[n], (131

@r[n] = wrn] (13m)

T.[n] > T?[n). (13n)

variables

{Aln], Aln], é[n], i[n], £In), g[n], hln], z[n], y[n] € R*} o,

{Te n), Te[n], wr[n], @r[n], O[n], ¢[n] € R}nES ,
TSy'FsyTTafT"LSy[_/s,Lm,[_/m,Qw,Qw,B,B S R

(13c) — (13n) implicitly impose the matrix equalities (11f)
— (I11m). (13c) — (13n) are same as (11f) — (11m) except for
the equality/inequality condition. A new notation using C is
used for compactness. If the solution to the relaxed problem

5
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(a) Estimates from conic relaxation (13a) — (13n) using rotor currents.
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(b) Estimates from conic relaxation (13a) — (13n) without rotor currents.
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(c) Estimates from penalized conic relaxation (13a) — (13n) without rotor
currents.

Fig. 2. Assessment of the estimates obtained from conic relaxation.

(13a) — (13n) satisfies (11f) — (11m) (probably unlikely),
then the relaxation is declared as exact [33]. Otherwise, the
obtained solution is infeasible for the problem (8a) — (8e).
To assess the solution obtained from conic relaxation, we
solve (13a) — (13n) for the startup transient of an induction
machine. We consider a simulated case study where the re-
laxed problem is solved under different scenarios. The machine
model used in the numerical simulation is constructed using
the parameters obtained via conventional test as seen in Table
I. The machine model is simulated with zero initial conditions
and with the input voltage of 220 V (line-to-line). First, to
establish a benchmark, rotor currents are intentionally assumed
to be available. We then consider the realistic scenario that
rotor currents are unavailable. Figure 2a shows the estimated
currents ¢, speed w,, and torque 7, (part of the optimization
solution) for a scenario when the rotor currents are available
with A = diag{[0.1,0.1,0.1,0.1]} and v = 0.1. The result
obtained from conic relaxation is near optimal as evident
from the estimated waveforms. However, the absence of rotor
current measurements (with A = diag{[0.1,0.1,0,0]} and
~v = 0.1), leads to poor estimates for rotor currents and torque
(see Figure 2b). (13a) — (13n) is a convex approximation to
the original problem in (8a) — (8e), leading to an approximate
solution in Figure 2b.

C. Incorporating Penalty

The solution from the conic relaxation can be further
improved by incorporating penalty terms into the objective
function [38]. Let 74 and ig, denote rough guesses for g-
axis and d-axis rotor currents. Therefore, one can augment
the objective function (13a) with the penalty term

k=D iy, (igrln] = 2igr[nligr[n] + 23, [n])

nes

+ iy, (Gar ] — 2tar [n)iar [0] + 3, [n]).  (14)

. . . = A
i, and n;,, are user-defined non-negative gains with 44, =
2

iy, and [r—— i2 . The penalty term in (14) incentivizes
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Feasible Solution

Local Search
Solve: (24) (MIPS)
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Fig. 3. Overview of the two-step solution for the estimation problem in (8).
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Fig. 4. Local search results for the example in Fig. 2, which is initialized
with the solution of the penalized conic relaxation in Fig. 2c.

the optimization solver to search around the neighborhood of
guessed rotor currents. The penalty term (14) is a convex
reformulation for ;. (igr[n] = igr[n])? +1i, (iar 0] —iar[n])?.
A decent guess for rotor currents can be ig.[n] & —igq[n]
and idr[n] A~ —igs[n] during the startup [19]. Similarly, at
the steady state, i,.[n] ~ 0 and 74,[n] ~ 0. Figure 2c shows
the results for the relaxed problem (13a) — (13n) when the
objective function (13a) is augmented with the penalty term
(14). Penalization significantly improves the results for the
relaxed problem (with A = diag{[0.1,0.1,0,0]}, v = 0.1,

and niqr = Nig, = 1).

D. Local Search

As discussed in Section V-B, the solution to the relaxed
optimization problem (13a) — (13n) could be infeasible for
the original problem (8a) — (8e). It can, however, serve as
an excellent initial condition to a local search algorithm [32].
To solve the estimation problem using an iterative Newton’s
method, we need to formulate the Karush-Kuhn-Tucker (KKT)
conditions [33]. By defining the optimization variable as

T
A |NT T T ~ T
z=|X",1 T, 0., Ls, Lpy,7s,7,Qu, B| (15)

the equality constraint (8b) — (8e) can then be cast as
E(x) £ [Ei(2) &(2) &(z)' E(x)']T =0,

where

(16)

E1(m)2 (Ki — K))A — AT ((diag (K10, Y@ L) N1 Ko A

+ wNL KA — (IT,1®R)K2%+K26), (17a)

AT .. 2B
E2(2) 2 QuKswr — Ki(Quar+ - (T.— @), (17b)
Es(x)2 X — (I, @ diag {[Ls, Ls, Ls, Ls]})i — L N3t, (17¢)

o 3P < .
Es(x)2AT. — = diag{(I- ® d) AN ®d] )i

6

3P < .
+ = diag{(I> ® d)AY(I. ® dy )i. (17d)

K1 2 [04r—1)xas Lar—1))s Ko & [Ty—1), 04r—1)xa). K3 =
[O‘r—laI‘r—l]s and K4 £ [IT—170T—1] and

N, 21, ®(dsd] —dydj), (18a)
Ny 2 I, 1 @ (—didg + dod] —dsd] +dyd3 ), (18b)
N3 2 I, ® (didg + dod] + dzd] + dud; ). (18c)

x denotes the concatenated form of the optimization variable.
Symbol - represents the vectorization operator (see notations).
E1(x), E2(x), E3(x), and E4(x) are the vectorized form
of machine model (7). Variables K; — K4 and N; — N3
are defined to achieve vectorization. (d1,ds,ds,d,) are the
standard basis of R*. One can formulate the Jacobian matrix
J () for the constraints (17a) — (17d) in the form of (19). In
(19), V13 denotes the derivative with respect to the subscript
variable, e.g., V& is the derivative of £; with respect to A
Additionally, the Lagrangian function £ of the optimization
problem (8a) — (8e) can be cast as
L(z;v) 21— M T (diag{e} (I, ® A)) (3 — 1MF4)
+ (@, — oMM T diag{i, } (@, — M) + v E(x), (20)

where v is the vector of Lagrange multipliers, M** and

WMEA denote vectorized current and speed measurements. The
gradient of £ with respect to @ can be formulated as

G(x; v) 22 [o, ((diag{l}(IT ® A))(i — EMEA))T,O,
fy(diag{lw}(cbr - QMEA)>T,0} +vTJ(z). @21

Finally, the Hessian of L is

H H
lﬂmwA{H¥ gﬂ, (22)
12
where
[ 2L 2L
0 x5 0 axaa,
L 3L
Hy 2 oG g g , (23a)
%L 9L
L &>, 0X 0 0 9&2
[0 0 0 0 0 0
’L 9L 9L 9L 0
2 |9i0L, 9i0L,, 9i0r, Oidr,
Hy,= 0 0 0 0 0 0 (23b)
8L 8L
L0 000 5an sem

Newton steps of the form

s

converge to a solution that meets the KKT optimality condi-
tions. Figure 4 shows the results for the example presented in
Figure 2, when the solution of the penalized conic relaxation
(Fig. 2c) initializes a local search procedure. Figure 3 shows
the steps needed to solve the estimation problem (8a) — (8e).

H(z: v) J(z) ]

G(x; V)T
J(x) 0 ]’ .

E(x)
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1. Three-phase power supply.

2. Mechanical load (DC machine
operating as a generator).

3. Measurement and data acquisition.

4. Three-phase induction machine.

° 5. Data monitoring and recording.

/
/ vot /

voLT voLT

Fig. 5. Hardware setup used to measure machine transients and characteristics.

igs (A)

igs (A)

w . (rad/sec)

Fig. 6. Measured startup transients for the underlying induction machine. The
highlighted portion of the transients are used for parameter identification.
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VI. EXPERIMENTAL STUDIES
A. Numerical and Experimental Setups

The numerical studies are performed on a workstation using
Windows 10 equipped with quad-core Intel® Core™ 7-6700
with 32 GB RAM. The relaxed optimization problem (13a)
— (13n) is solved using the SDPT3 4.0 [39] solver in the
CVX [37] environment on MATLAB 2019a. MATPOWER
Interior Point Solver (MIPS) [40] version 1.3.1 performs
the local search. MIPS solves (24) using the formulations
of objective function and equality constraints (8a) — (8e),
Jacobian matrix (19), Hessian matrix (22), and the solution
of the relaxed optimization problem (13a) — (13n) as an initial
condition. The termination tolerances for the MIPS solver,
namely, gradtol, feastol, comptol, and costtol are
selected as 1078, 1078, 1076, and 1075, respectively. The
maximum iteration count is set to 50.

Figure 5 shows the experimental setup used for measure-
ment acquisition. The four-pole motor is excited with a voltage
of 220 V (line-to-line). The measured data is demonstrated
in Fig. 6. For comparison, machine parameters have also
been identified through standard intrusive characterization tests
[5]. These conventional tests include dc stator resistance
measurements, locked rotor test (used for identifying rotor
resistance along with stator and rotor leakage inductances),
no-load test (used for identifying magnetizing inductance), no-
load deceleration test (used for identifying total lumped inertia
of the machine and dynamometer), and no-load startup test
(used for identifying start-up impedance of the machine).

B. Parameter Extraction from Measurement

Parameters such as leakage inductance and inertia are more
dominant during transients, whereas magnetizing inductance
has a prominent effect at the steady state. Hence, limited data
from both acceleration and steady-state phases of the measured
waveforms are used for the model identification procedure.
Sampling time of 100 us is used in the measured data shown
in Fig. 6. The highlighted portions of the data is used for
parameter extraction. Synchronous reference frame is chosen
for the machine model with w = 1207. The non-negative
weights for the relaxed problem (13a) — (13n) and the
local search (8a) — (8e) are A = diag{[0.1,0.1,0,0]} and
v = 0.1, with binary flags as ¢ = [1,1,0,0]" and ¢, = 1.
While choosing A and ~, one should note that (1) larger
gain implies higher priority for the optimization solver, and
(2) gains can be used to normalize the order of terms in the
objective function. For example, A = diag{[1,1,0,0]} and
v =1 or A = diag {[0.01,0.01,0,0]} and v = 0.01 are also
viable options. The gains for penalty terms in (14) are set as
Nigr = Mig. = 1. The optimization problem (13a) — (13n),
with the penalty term (14), is first solved. The outcome of
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TABLE I
MACHINE PARAMETERS EXTRACTED USING THE CONVENTIONAL TESTS AND THE PROPOSED METHOD

Methodology LsH) | Lynm H) | Ly H) | 7s (£2) | 7 (£2) | J (kg.m2) B (N.m.s/rad) | Objective fn (8a)
Proposed Method 0.3149 0.3040 0.3149 4.50 3.45 0.0041 0.0089 648.3
Conventional Tests | 0.3207 0.3087 0.3207 4.52 3.23 0.0037 - 1235.2
this relaxation is then used as an initial point for the local 20

search (24) (see Fig. 3). A single run of convex relaxation
takes approximately 185 seconds (including all overheads) on
average. Local search concludes within 60 seconds. Table I
compares the machine parameters estimated by the proposed
method against parameters extracted using conventional tests.
In addition to resistances, inductances, and inertia terms, we
could estimate the friction coefficient as well. Table I also lists
the values of objective function (8a) that, for the proposed
method, is almost half of that predicted by parameters obtained
from conventional tests. Since rotor current measurements are
not available, (8a) takes the following form

> avuln](igsln] =iy [n])* +azez[n](ias[n] —ige A [n])?

(25)

The aggregate value of (25) is attributed to individual mis-
match expressions for stator currents (iys and i4,) and rotor
speed (w;.). For the proposed method, the contribution due
to the first expression in (25) is about 10.5, the second
expression is 14.4, and the last expression is 623.4. For param-
eters obtained from conventional tests, respective expressions
contribute about 27.3 (mismatch in ¢,5), 34.0 (mismatch in
i4s), and 1173.9 (mismatch in w,). The absolute value of
(25) depends on user-defined coefficients «i, as, and .
Therefore, one should consider the relative improvement in
the value of the objective function obtained by the proposed
method, as shown in the last column of Table I. Moreover,
as opposed to multiple interruptive and intrusive tests needed
in the conventional approach, our method extracts machine
parameters from measured data obtained during the machine’s
normal operation.

Two dynamic models built using two sets of machine pa-
rameters, one extracted using the proposed method and another
obtained via conventional methods, are considered. Figures
7 and 8 compare the stator currents and speed waveforms
obtained from simulating the machine models using the two
sets of parameters listed in Table I. Figure 9 shows the tra-
jectories of both stator and rotor flux linkages and currents in
the gd-axis. The machine model is simulated with zero initial
conditions. Parameters obtained from the proposed method
result in an excellent fit to the measured data as evident from
Fig. 7. Figure 8 shows a zoomed-in view of a portion of stator
current in Figure 7. It is evident that the time-domain transients
predicted by the parameters obtained by the proposed method
match better with the measured signal compared to transients
predicted by the parameters obtained using the conventional
methods. This fit can be quantified using metrics like the root-

see Figure 8
A

[\/’\/v/\ p
VY

iy (A)
S
L>

R —

—————
T~
—
I
—
-
T—

-10
v

-20
20

N /s\ee EigureS

o \ \'A A A
ol U VA

ip (A)

see Figure 8

AR A~
AA

i (A)

_

(=) o
e ——
i
—
—

-10
-20 V
400
3}
% 300 // Conventional method
ij{/ 200 / — Proposed method
3"" 100 L~ —— = = Measuré¢ment
0 /
0.35 0.4 0.45 0.5 0.55 0.6
Time (s)
Fig. 7. Estimated parameters listed in Table I are used to simulate the

induction machine model from zero initial conditions. The resulting current
and speed waveforms are compared against measured data.
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Fig. 8. Zoomed-in version of the highlighted portions of Fig. 7. We can
observe a better match between the waveforms predicted by the estimated
parameters with measurements.

mean-square error (RMSE) or the 2-norm error defined as

N

1
_ MEA __ ,.EST\2
RMSE = N Eﬁl(xi xh)2, (26a)
N MEA EST\2
i (B — ok
2-norm error = \/21_1( ) x 100.  (26b)

N
2 im (231)?
MEA

and MEA are the i samples of the estimated and mea-
sured signals, respectively. /N denotes the number of samples
considered. Table II lists RMSE and 2-norm error values while

EST
€Ty
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Fig. 9. Trajectories of gd flux linkages and currents obtained using the pa-
rameters listed in Table I. Stator currents are compared against measurements.

TABLE II
QUANTIFICATION OF THE MISMATCH AGAINST MEASUREMENT

Signal RMSE 2-norm
Proposed | Conventional| Proposed | Conventional| Percentage Improved
method tests method tests
i 0.433 0.625 6.847 9.882 30.7
iy 0.455 0.520 7.188 8.216 12.5
ic 0.441 0.593 7.076 9.514 25.6
wr 3.70 4.05 1.227 1.343 8.7
Average 19.3

comparing the two sets of machine waveforms against real
measurements. Parameters extracted by the proposed method
result in lower RMSE and 2-norm error as compared to the
parameter obtained from conventional tests. Table II lists the
percentage reduction in error values against parameters from
conventional tests. RMSE reduces from 0.625 to 0.433 for the
phase-a current, a 30% percent improvement. The RMSE for
rotor speed has improved by more than 8%. On average, we
see a 19.3% improvement in error. Percentage improvements
in Table II are the same for both RMSE and 2-norm metrics.

C. Estimation with Missing Data Points

We now test the resilience of the proposed method against
loss in measured data. We assume that indicators ¢[n] and
Lw[n] take the value 1 with a probability of 0.8, such that
random data points for stator currents and rotor speed are
flagged as unavailable in (8a) and (13a). This is implemented
using the rand function (uniformly distributed pseudorandom
numbers) in MATLAB. Figure 10 compares the estimated
current and speed trajectories against the input measurements.
Signal loss is shown by zeros along the time axis for illus-
tration purposes (lost data are not necessarily zero in value).
The optimization algorithm successfully reproduces the entire
current trajectory along with machine parameters.

9
20 20
10 /\ 10 N\ /
- / N = AN y4
-10 -10 N
20 ~ 20
20 80
10 N < 60
~ (5]
<0 \ 3 40 —
o &
10 = 20 / .— Proposed method
3 « Measurement
220 0
0.39 0.395 0.4 0.405 0.39 0.395 0.4 0.405
Time (s) Time (s)

Fig. 10. Stator currents and rotor speed transients, considering lossy mea-
surement, predicted by the estimated parameters versus input measurement.
The red dots along the time-axis represent the instances of data loss.

TABLE IIT
PARAMETER SETS OBTAINED FROM NOISY DATA
Machine Parameters | 0% noise | 2% noise | 5% noise

L, 0.3207 0.3216 0.3193
Lm, 0.3087 0.3096 0.3074
Ly 0.3207 0.3216 0.3193
T 4.52 4.57 4.38
Tr 3.23 3.18 3.27
J 0.0037 0.0036 0.0038
B 0.0089 0.0087 0.0085

D. Impact of Noisy Input Data

The machine model is first simulated assuming the param-
eters listed in Table I (conventional tests values) and, then,
the resulting state transients are polluted with noise signals
with zero mean and 2%/5% standard deviations. Figure 11
shows both the noise-free and distorted transients. Table III
lists the parameters obtained under different noise scenarios.
As seen, estimated parameters, in presence of noisy data, are
in good agreement with those obtained from noise-free data.
In practice, low-pass filtering effects of acquisition devices
eliminate severe noisy data. Interested readers can refer to
[41] for a detailed theoretical analysis on the impact of noise
on the performance of conic relaxation equipped a weighted
least squared estimator, and to [42], [43] for the treatment of
process or measurement noise in estimation process.

20 400

. 2% noise 2% noise
ﬁw 10 ! N 3 300
oy ™ % 200
$m 0Pl =100
-y 3

-10 0
. 20 ; ] 5% noise 400 |--5% naise
” I - =
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‘<2 G g 200 A
T U g | P 100 e
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035 04 045 05 055 06 035 04 045 05 055 0.6
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Fig. 11. Simulated machine transients polluted with different noise levels.
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TABLE IV
ESTIMATION RESULTS UNDER VARIOUS SAMPLING TIMES
Machine Parameters | AT =50 us | AT =100 us | AT =200 ps | AT = 300 us
Ls 0.3153 0.3149 0.3068 0.3412
Lo, 0.3043 0.3040 0.2958 0.3300
L, 0.3153 0.3149 0.3068 0.3412
Ts 4.51 4.50 4.44 4.68
T 3.44 3.45 3.52 3.26
J 0.0041 0.0041 0.0042 0.0040
B 0.0089 0.0089 0.0077 0.0091
20 AT =200 ps | 400 AT :‘200 1S
10 f g i g 300
2 o LAY 3
S0 1 L
- \ 37100
10 U R
20 0
20 \ AT =300 ps A400 AT =300 ps, .-
10 f g i 8300 4
2 o LY 3
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Fig. 12. Machine transients simulated under different AT's, with parameter
sets obtained under those AT's, compared to hardware measurement.

E. Impact of Sampling Time

For a given time horizon of data, increasing sampling
time interval AT reduces the number of data points used
in the estimation process. On the other hand, AT should be
sufficiently small to have fidelity with the original machine
equations. Using available data from Figure 6, Table IV lists
parameters extracted under different sampling time intervals.
As AT is increased, estimated parameters start to deviate
due to errors induced by the discretization process. Figure
12 compares the measured data against machine transients
simulated using the parameters sets in the last two columns
of Table IV (and their respective sampling times). Notice that,
particularly, at AT'=300us, simulated transients clearly deviate
from their measured counterparts.

VII. CONCLUSION

We extract the parameters of an induction machine in
a non-intrusive manner using startup transients. The non-
convex parameter identification problem is convexified using
conic relaxation, whose output is transformed into an accurate
solution for the machine dynamical equations using a local
search. The proposed method is experimentally shown to
identify machine parameters, even with intermittent losses in
measured data. These parameters are shown to result in a
better match with the measured signals compared to those
obtained using conventional tests (nearly a 20% improvement
in matching transient waveforms). Future research direction
includes expanding this approach to more comprehensive
machine models (e.g., with variable parameters).

REFERENCES

[1] P. Kundur, Power system stability and control.
McGraw-Hill, 1994.

New York, USA:

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

10

H. A. Maksoud, S. M. Shaaban, M. S. Zaky, and H. Z. Azazi,
“Performance and stability improvement of afo for sensorless im drives
in low speeds regenerating mode,” IEEE Trans. Power Electron., vol. 34,
no. 8, pp. 7812-7825, Aug. 2019.

H. A. Toliyat, E. Levi, and M. Raina, “A review of RFO induction motor
parameter estimation techniques,” IEEE Trans. Energy Convers., vol. 18,
no. 2, pp. 271-283, Jun. 2003.

S. A. Odhano, P. Pescetto, H. A. A. Awan, M. Hinkkanen, G. Pellegrino,
and R. Bojoi, “Parameter identification and self-commissioning in AC
motor drives: A technology status review,” I[EEE Trans. Power Electron.,
vol. 34, no. 4, pp. 3603-3614, Apr. 2019.

IEEE Standard Test Procedure for Polyphase Induction Motors and
Generators, IEEE Std. 112-2017, 2018.

L. Monjo, H. Kojooyan-Jafari, F. Corcoles, and J. Pedra, “Squirrel-cage
induction motor parameter estimation using a variable frequency test,”
IEEE Trans. Energy Conv., vol. 30, no. 2, pp. 550-557, Jun. 2015.

J. Ruan and S. Wang, “A prediction error method-based self-
commissioning scheme for parameter identification of induction motors
in sensorless drives,” IEEE Trans. Energy Conv., vol. 30, no. 1, pp.
384-393, Mar. 2015.

S. R. P. Reddy and U. Loganathan, “Offline recursive identification of
electrical parameters of vsi-fed induction motor drives,” IEEE Trans.
Power Electron., vol. 35, no. 10, pp. 10711-10719, Oct. 2020.

S. Lee, A. Yoo, H. Lee, Y. Yoon, and B. Han, “Identification of induction
motor parameters at standstill based on integral calculation,” IEEE Trans.
Ind. Appl., vol. 53, no. 3, pp. 2130-2139, May 2017.

M. Carraro and M. Zigliotto, “Automatic parameter identification of
inverter-fed induction motors at standstill,” IEEE Trans. Ind. Electron.,
vol. 61, no. 9, pp. 4605-4613, Sep. 2014.

J. Benzaquen, J. Rengifo, E. Albanez, and J. M. Aller, “Parameter
estimation for deep-bar induction machines using instantaneous stator
measurements from a direct startup,” IEEE Trans. Energy Convers.,
vol. 32, no. 2, pp. 516-524, Jun. 2017.

S. Chiniforoosh, L. M. Vargas, L. Wang, and J. Jatskevich, “Online char-
acterization procedure for induction machines using start-up and loading
transients,” in Proc. IEEE Canada Elect. Power Conf., Vancouver, BC,
Canada, 2008, pp. 1-5.

P. Huynh, H. Zhu, and D. Aliprantis, “Non-intrusive parameter estima-
tion for single-phase induction motors using transient data,” in Proc.
IEEE Power & Energy Conf., Champaign, IL, USA, 2015, pp. 1-8.

D. J. Atkinson, P. P. Acarnley, and J. W. Finch, “Observers for induction
motor state and parameter estimation,” IEEE Trans. Ind. Appl., vol. 27,
no. 6, pp. 1119-1127, Nov. 1991.

J. Stephan, M. Bodson, and J. Chiasson, “Real-time estimation of the
parameters and fluxes of induction motors,” IEEE Trans. Ind. Appl.,
vol. 30, no. 3, pp. 746-759, May 1994.

H. Kojooyan-Jafari, L. Monjo, F. Corcoles, and J. Pedra, “Parameter es-
timation of wound-rotor induction motors from transient measurements,”
IEEE Trans. Energy Conv., vol. 29, no. 2, pp. 300-308, Jun. 2014.

F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-
Kowalska, and S. Katsura, “Industrial applications of the kalman filter:
A review,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5458-5471,
Dec. 2013.

Kaiyu Wang, J. Chiasson, M. Bodson, and L. M. Tolbert, “A nonlinear
least-squares approach for identification of the induction motor parame-
ters,” IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1622—-1628, Oct.
2005.

S. R. Shaw and S. B. Leeb, “Identification of induction motor parameters
from transient stator current measurements,” IEEE Trans. Ind. Electron.,
vol. 46, no. 1, pp. 139-149, Feb. 1999.

A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms
for induction-motor equivalent circuit parameter determination - part i:
Resistances and leakage reactances,” IEEE Trans. Ind. Electron., vol. 58,
no. 9, pp. 3723-3733, Sep. 2011.

——, “Computational algorithms for induction motor equivalent circuit
parameter determination - part ii: Skin effect and magnetizing character-
istics,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3734-3740, Sep.
2011.

Z. Ling, L. Zhou, S. Guo, and Y. Zhang, “Equivalent circuit parameters
calculation of induction motor by finite element analysis,” /IEEE Trans.
Magn., vol. 50, no. 2, pp. 833-836, Feb. 2014.

A. P. Yadav, T. Altun, R. Madani, and A. Davoudi, “Macromodeling of
electric machines from ab initio models,” IEEE Trans. Energy Convers.,
vol. 35, no. 2, pp. 908-916, Jun. 2020.

M. Cirrincione, M. Pucci, G. Cirrincione, and G. Capolino, “Constrained
minimization for parameter estimation of induction motors in saturated

0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 01,2021 at 15:32:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2021.3060668, IEEE

[25]

[26]

(271

(28]

[29]

[30]

(31]

(32]

[33]

(34]

(351

[36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Industrial Electronics

and unsaturated conditions,” IEEE Trans. Ind. Electron., vol. 52, no. 5,
pp. 1391-1402, Oct. 2005.

L. Fagiano, M. Lauricella, D. Angelosante, and E. Ragaini, “Identifi-
cation of induction motors using smart circuit breakers,” IEEE Trans.
Control Syst. Technol., vol. 27, no. 6, pp. 2638-2646, Nov. 2019.

Y. He, Y. Wang, Y. Feng, and Z. Wang, “Parameter identification of an
induction machine at standstill using the vector constructing method,”
IEEE Trans. Power Electron., vol. 27, no. 2, pp. 905-915, Feb. 2012.
F. Duan, R. Zivanovic, S. Al-Sarawi, and D. Mba, “Induction motor
parameter estimation using sparse grid optimization algorithm,” IEEE
Trans. Ind. Informat., vol. 12, no. 4, pp. 1453-1461, Aug. 2016.

K. S. Huang, Q. H. Wu, and D. R. Turner, “Effective identification of
induction motor parameters based on fewer measurements,” IEEE Trans.
Energy Convers., vol. 17, no. 1, pp. 55-60, Mar. 2002.

Jong-Wook Kim and Sang Woo Kim, “Parameter identification of
induction motors using dynamic encoding algorithm for searches (deas),”
IEEE Trans. Energy Conv., vol. 20, no. 1, pp. 16-24, Mar. 2005.

D. Bhowmick, M. Manna, and S. K. Chowdhury, “Estimation of
equivalent circuit parameters of transformer and induction motor from
load data,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2784-2791, May
2018.

Z. Liu, H. Wei, X. Li, K. Liu, and Q. Zhong, “Global identification of
electrical and mechanical parameters in pmsm drive based on dynamic
self-learning pso,” IEEE Trans. Power Electron., vol. 33, no. 12, pp.
10858-10871, Dec. 2018.

Y. Weng, Q. Li, R. Negi, and M. lIlic, “Semidefinite programming for
power system state estimation,” in Proc. IEEE Power & Energy Soc.
Gen. Meeting, San Diego, CA, USA, 2012, pp. 1-8.

S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.:
Cambridge University Press, 2004.

P. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of
electric machinery and drive systems, 3rd ed. Piscataway, NJ, USA:
IEEE Press, 2013.

A. M. Alturas, S. M. Gadoue, B. Zahawi, and M. A. Elgendy, “On the
identifiability of steady-state induction machine models using external
measurements,” I[EEE Trans. Energy Conv., vol. 31, no. 1, pp. 251-259,
Mar. 2016.

D. M. Reed, H. F. Hofmann, and J. Sun, “Offline identification of
induction machine parameters with core loss estimation using the stator
current locus,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1549—
1558, Dec. 2016.

M. Grant and S. Boyd. (2014, Mar.) CVX: Matlab software for
disciplined convex programming, version 2.1. [Online]. Available:
http://cvxr.com/cvx

R. Madani, M. Kheirandishfard, J. Lavaei, and A. Atamturk, “Penal-
ized semidefinite programming for quadratically-constrained quadratic
optimization,” arXiv preprint arXiv:2004.14328, Apr. 2020.

R. H. Tiitiincii, K. C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Mathematical Programming,
vol. 95, no. 2, pp. 189-217, Feb. 2003.

R. D. Zimmerman and H. Wang. (2019, Jun.) MATPOWER interior
point solver (MIPS) user’s manual, version 1.3.1. [Online]. Available:
https://matpower.org/docs/MIPS-manual- 1.3.1.pdf

R. Madani, J. Lavaei, and R. Baldick, “Convexification of power flow
equations in the presence of noisy measurements,” IEEE Trans. Autom.
Control, vol. 64, no. 8, pp. 3101-3116, Aug. 2019.

M. Igbal, A. I. Bhatti, S. I. Ayubi, and Q. Khan, “Robust parameter esti-
mation of nonlinear systems using sliding-mode differentiator observer,”
IEEE Trans. Indust. Electron., vol. 58, no. 2, pp. 680-689, Feb. 2011.
F. Alonge, F. D’Ippolito, and A. Sferlazza, “Sensorless control of
induction-motor drive based on robust kalman filter and adaptive speed
estimation,” IEEE Trans. Indust. Electron., vol. 61, no. 3, pp. 1444—
1453, Mar. 2014.

11

Ajay Pratap Yadav received the Bachelor’s and
Master’s degree in Electrical engineering from the
Indian Institute of Technology Roorkee and Indian
Institute of Technology Kanpur, in 2010 and 2014,
respectively. He is currently pursuing his Ph.D. at
the University of Texas at Arlington. His research
interests include electric machine modeling, system
identification, optimization, and microgrids.

Ramtin Madani received the Ph.D. degree in elec-
trical engineering from Columbia University, New
York, NY, USA, in 2015. He was a Postdoctoral
Scholar with the Department of Industrial Engi-
neering and Operations Research at University of
California, Berkeley in 2016. He is an Assistant Pro-
fessor with the Department of Electrical Engineer-
ing Department, University of Texas at Arlington,
Arlington, TX, USA. His research interests include
developing algorithms for optimization and control
with applications in energy.

Navid Amiri (S’11 - M’19) received his B.Sc. and
M.Sc. degrees in electrical engineering in the field of
power and electrical machines from Isfahan Univer-
sity of Technology, Isfahan, Iran, in 2008 and 2011,
and his Ph.D. degree in electrical and computer
engineering in 2019 from the University of British
Columbia, Vancouver, BC, Canada. He is currently
a Postdoctoral Research Fellow in electrical and
computer engineering department at the University
of British Columbia. His research interests include
numerically efficient modeling of electric machines,

real-time simulation, electromechanical energy conversion systems, electric
machine design, and power electronics.

Juri Jatskevich (M’99 - F’17) received the M.S.E.E.
and the Ph.D. degrees in Electrical Engineering
from Purdue University, West Lafayette IN, USA,
in 1997 and 1999, respectively. Since 2002, he has
been a faculty member at the University of British
Columbia, Vancouver, Canada, where he is now a
Professor in the Department of Electrical and Com-
puter Engineering. His research interests include
power electronic systems, electrical machines and
drives, modeling and simulation of electromagnetic
transients.

ALI DAVOUDI (S’04-M’11-SM’15) received his
Ph.D. in Electrical and Computer Engineering from
the University of Illinois, Urbana-Champaign, IL,
USA, in 2010. He is currently a Professor in
the Electrical Engineering Department, University
of Texas, Arlington, TX, USA. He is an Asso-
ciate Editor for the IEEE TRANSACTIONS ON
POWER ELECTRONICS, and an Editor for the
IEEE TRANSACTIONS ON ENERGY CONVER-
SION as well as IEEE POWER ENGINEERING
LETTERS. His research interests include modeling,

control, and optimization of power electronics systems.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 01,2021 at 15:32:26 UTC from IEEE Xplore. Restrictions apply.



