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Abstract—This paper identifies the parameters of an induction
machine using limited and non-intrusive observations of available
input voltages, stator currents, and the rotor speed. Parameter ex-
traction is formulated as a non-convex estimation problem, which
is then relaxed to a convex conic optimization problem. While
the resulting relaxation could exhibit a satisfactory performance,
there might be cases where the solution of convex relaxation fails
to satisfy the dynamic equations of the machine. This is remedied
through a local search approach initiated using the solution
obtained from the relaxed problem. The proposed method is
experimentally verified on a squirrel-cage induction machine
with missing measured data. Using the measured signals as the
benchmark, time-domain transients produced by the parameters
estimated using the proposed method show almost 20% better
match compared to time-domain transients produced by the
parameters obtained via conventional testing.

Index Terms—Conic relaxation, convex optimization, induction
machine, parameter estimation, system identification.

I. INTRODUCTION

Accurate machine characterization is needed for drive

design and control, diagnostics and condition monitoring,

controller/hardware-in-the-loop applications. Given that induc-

tion machines constitute a significant portion of loads in the

grid, proper machine characterization is crucial to analysis of

power system dynamics [1]. Mismatch between the actual and

estimated parameter sets can deteriorate the drive performance

[2]. Reliable data for most machines are not accessible, and

excessive testing may not always be practical. Informative

reviews on parameter identification of induction machines are

presented in [3] and [4]. Conventionally, estimating parameters

involves intrusive testing, e.g., IEEE Std. 112 [5]. One popular

approach is to excite the machine with predetermined signals

and monitor its response while maintaining a standstill rotor

[6]–[8], which is suitable for ‘self-commissioning’ [9], [10].

In general, intrusive testings require isolated access to the

machine, additional measurement equipment, and interruption

of machine operation which might not be always feasible.

For example, the locked-rotor test draws in large currents

and could become impractical for some industrial setups. It

is desirable to extract machine parameters from (preferably a

single) transients during normal operation [11]. For example,

[12] utilizes different portions of current and voltage transients

to approximate conventional test scenarios.
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The main parameters of interest for an induction machine

are stator and rotor resistances, magnetizing inductance, stator

and rotor leakage inductances, and mechanical inertia. Var-

ious methodologies exist for non-intrusive parameterization

of induction machines, e.g., observer-based estimators [13],

[14] or least-square regression [15], [16]. Observer-based

methods, such as Kalman filters, can estimate system states

and a subset of machine parameters using measured signals

from the machine terminals. However, Kalman filters require

proper initialization and noise covariance matrices [17]. [15]

reformulates the machine model in terms of K-parameters,

assuming slow-varying rotor speed, resulting in a standard

linear least-square regression problem. [16] and [18] further

extend this work to incorporate time-varying speed into the

final regression problem. However, this involves estimating

first- and second-order derivatives for certain current and flux-

linkage terms, and are susceptible to noisy measurements.

Usually, all these methods perform estimations using measure-

ments of stator currents, input voltages, and rotor speed. [19]

estimated machine parameters using only stator currents and

voltages. This could, potentially, result in an ill-conditioned

problem which would require an estimate for speed trajectory

or an excellent initial guess, or could only offer a subset of

parameters. Equivalent circuit model of an induction machine

could be found using geometrical and electrical data [20], [21].

[22] employed finite-element model of an induction machine

to extract its equivalent circuit model. [23] obtained the

machine parameters from a high-fidelity magnetic-equivalent

circuit model. Such methods require expert knowledge on the

underlying complex models, manufacturing/fabrication errors,

or material defects, and inherent the approximation present in

the primary modeling effort.

One could employ nonlinear constraint optimization [24],

[25] to minimize an objective function (usually, the norm

of error between measured and predicted outputs) subject to

machine model equations. A major challenge is the inherent

non-convexity of the resulting optimization problem. Newton’s

method might not correctly converge without proper initial-

ization. Various workarounds to tackle this limitation include

(1) use of good initial conditions (from self-commissioning

[10], [26] or conventional tests), (2) employing heuristics,

e.g, enforcing box constraints on machine parameters [27],

or (3) executing multiple optimization runs from different

initial points [25]. Metaheuristic optimization techniques, e.g.,

genetic algorithms, can circumvent non-convexity albeit at a

higher computational cost [28], [29]–[31]. In the context of

power system estimation, [32] proposes a convex optimization
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approach to offer a good initial condition for the follow-

up Newton’s method. [23] has extracted parameters from

magnetic equivalent circuit model of a synchronous machine

using conic relaxation, assuming availability of all inputs and

states, which is not a valid assumption for a physical machine.

We leverage the convex optimization framework to param-

eterize an induction machine using only limited samples of

measurable signals. Herein, we assume a no-load operation

and use data from start-up transients. The problem of non-

convexity is tackled by formulating it in a higher-dimensional

space and imposing conic constraints. Unlike original equa-

tions, the relaxed formulation can be solved efficiently using

off-the-shelf solvers. To properly enforce machine dynamics,

we feed the outcome of convex relaxation to a local search

algorithm to obtain the desired near-optimal solution. Figure

1 provides an overview of the proposed approach, with its

salient features summarized as follows:

• This method is non-intrusive; Parameters are identified

using only limited samples of start-up transients.

• The proposed method does not require a priori knowl-

edge of most machine parameters, which makes it suitable

for refurbished or re-wounded machines.

• Machine parameters, including stator and rotor resis-

tances, stator and rotor leakage inductances, magnetizing

inductance, mechanical inertia, and the friction coeffi-

cient, are simultaneously identified.

• The proposed method reformulates a non-convex opti-

mization problem into a tractable convex approximation.

Detailed treatment of this transformation is provided. A

penalized improvement of this convex relaxation is also

discussed and verified using a test example.

• The proposed method is experimentally verified for an

induction motor prototype, and is shown to converge even

with missing points in available signals. Convergence is

achieved with 80% of the measurement data. Robustness

of the proposed method to noisy data is discussed.

• The set of machine parameters extracted by the proposed

method are shown to result in a better match with

the measured transients compared to the parameter set

obtained by the conventional methods. Particularly, the

proposed method has resulted in 12.5%-30% reduction

in error when matching the stator currents, and 8.7% im-

provement when matching with the rotor speed transients.

II. NOTATIONS

Vectors and matrices are represented using bold lowercase

and uppercase variables, respectively (e.g., y and Y ). The

jth element of vector y is yj . In denotes a size n identity

matrix. The notation diag{y} represents a diagonal matrix

with the vector y forming the diagonal. For an n×n symmetric

positive-definite matrix Z and the vector y ∈ R
n, the norm

notation ‖y‖Z denotes
√

y⊤Zy. ⊗ stands for the Kronecker

product. Symbol ·̌ represents the vectorization operator, i.e.,

λ̌ ,

[

λ[1]⊤,λ[2]⊤,λ[3]⊤ . . .
]⊤

. Set A is convex if, for every

y1,y2 ∈ A and any ρ ∈ [0, 1], ρy1 + (1− ρ)y2 ∈ A [33].

Subject to:

   State Equation 

   Flux-Current Equation 

   Torque Equation 

Model Identification Process

Minimize:

Limited Samples of

Measurable Signals

Physical Machine

Unmeasurable Signals

Machine Parameters

Conic Relaxation

Local Search

Fig. 1. Overview of the proposed model identification method.

III. DISCRETE-TIME MODEL OF AN INDUCTION MACHINE

We present the classic dynamic model of an induction

machine, and then adopt its discrete-time representation.

A. Machine Model

The induction machine model, in the arbitrary reference

frame, is given by [34]

dλ(t)

dt
= ω

[

−λds(t), λqs(t),−λdr(t), λqr(t)
]⊤

+

ωr(t)
[

0, 0, λdr(t),−λqr(t)
]⊤

−Ri(t)+v(t), (1a)

λ(t) = Li(t), (1b)

where λ(t), i(t), and v(t) are the vectors of flux linkages,

currents, and voltages, respectively, defined as

λ(t) , [λqs(t), λds(t), λqr(t), λdr(t)]
⊤, (2a)

i(t) , [iqs(t), ids(t), iqr(t), idr(t)]
⊤, (2b)

v(t) , [vqs(t), vds(t), vqr(t), vdr(t)]
⊤. (2c)

Subscripts qs, ds, qr, and dr denote q-axis stator, d-axis

stator, q-axis rotor, and d-axis rotor terms, respectively. Zero-

sequence terms are neglected in this balanced representation.

R = diag {[rs, rs, rr, rr]} and L is

L =









Ls 0 Lm 0
0 Ls 0 Lm

Lm 0 Lr 0
0 Lm 0 Lr









. (3)

ω represents the speed of the chosen reference frame, ωr(t)
is the rotor speed, rs is the stator resistance, rr is the rotor

resistance, Ls is the stator self-inductance, Lr is the rotor self-

inductance, and Lm is the magnetizing inductance. Stator and

rotor leakage inductances can be obtained as Lls = Ls − Lm

and Llr = Lr − Lm, respectively. We assume an induction

machine with shorted rotor bars, i.e., vqr = vdr = 0.

The dynamics of the mechanical subsystem is [34]

dωr(t)

dt
=

P

2J
(Te(t)− Tm(t)) , (4)

where P is the number of poles, J is the lumped mechanical

inertia, Te is the electromagnetic torque, and Tm is the
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mechanical (load) torque. In this paper, we consider the start-

up transient of an induction machine under free acceleration,

where only friction torque is present. The equivalent friction

torque can be found by subtracting the machine loss from

the input power at the steady state, no-load operation. For

simplicity, we assume that the friction coefficient has a linear

relation with the rotor mechanical speed. The load torque is

Tm(t) = Bωr(t)/(P/2). (5)

B is the total effective friction coefficient [11]. Electromag-

netic torque is

Te(t) =
3

4
P (λds(t)iqs(t)− λqs(t)ids(t)) . (6)

B. Discrete-time Representation

The machine model is discretized using the forward Euler
method as it results in a simple explicit equations which
eases the derivation of upcoming relaxation formulations. The
discrete-time representation of (1), (4), and (6) become

λ[n+1] = λ[n] +∆T
(

ω
[

−λds[n], λqs[n],−λdr[n], λqr[n]
]⊤

+ ωr[n]
[

0, 0, λdr[n],−λqr[n]
]⊤

−Ri[n]+v[n]
)

, (7a)

Qwωr[n+ 1] = Qwωr[n]+
∆T

2

(

Te[n]−
2Bωr[n]

P

)

, (7b)

λ[n] = Li[n], (7c)

Te[n] =
3

4
Pλ

⊤[n]
[

− ids[n], iqs[n], 0, 0
]⊤

. (7d)

n ∈ T represents a time horizon with T , {1, 2, 3, . . . , τ},

and ∆T is the sampling time interval. The variable Qw ,

J/P is defined to ensure that (7b) remains of degree two

(quadratic), which will be helpful in the upcoming convex

relaxation formulations. Note that P is a known constant.

IV. PARAMETER EXTRACTION PROCEDURE

Let iMEA[n] and ωMEA
r [n] denote the values of measured

currents and rotor speeds, respectively, for n ∈ T . Let S
denote the set of different discrete-time horizons such as
T . The parameter identification problem is formulated as a
weighted least-square optimization that minimizes the mis-
match between predicted state variables in the discrete-time
model (7) and the measured signals over S ,

minimize
∑

n∈S

∥

∥diag{ι[n]}
(

i[n]−iMEA[n]
)
∥

∥

2

Λ
+γιω[n]

(

ωr[n]−ω
MEA
r [n]

)2
(8a)

subject to

λ[n+1]=λ[n]+∆T
(

ω
[

−λds[n], λqs[n],−λdr[n], λqr[n]
]⊤

+

ωr[n]
[

0, 0, λdr[n],−λqr[n]
]⊤

−diag{[rs, rs, rr, rr]} i[n]+v[n]
)

,

(8b)

Qwωr[n+1]=Qwωr[n]+
∆T

2

(

Te[n]−
2Bωr[n]

P

)

, (8c)

λ[n] = Lm

[

iqr[n], idr[n], iqs[n], ids[n]
]⊤

+ diag {[Ls, Ls, Lr, Lr]} i[n], (8d)

Te[n] =
3

4
Pλ

⊤[n]
[

− ids[n], iqs[n], 0, 0
]⊤

, (8e)

variables
{

λ[n], i[n] ∈ R
4
, Te[n], ωr[n] ∈ R

}

n∈S
,

rs, rr, Ls, Lr, Lm, Qw, B ∈ R.

Λ = diag{[α1, α2, α3, α4]} and γ contain non-negative

weights to normalize current and speed terms, respectively.

ι[n] ∈ {0, 1}4 and ιw[n] ∈ {0, 1} represent binary flags

indicating the availability of the nth data sample. Since rotor-

side currents are hard to measure, it is reasonable to assume

that ι3[n] = ι4[n] = 0 (corresponding to the rotor currents),

and ι1[n] = ι2[n] = 1 (corresponding to the stator currents).

Similarly, ιw[n] is 1 or 0 depending upon the availability of

speed measurement. The objective function (8a) represents the

mismatch between the measured signals and the transients pre-

dicted by the estimated parameter set. The objective function

denotes the sum of squared residuals (same as a least-squares

regression). The equality constraints (8b) – (8e) reflect the

discrete-time machine model (7a) – (7d). The induction

machine model presented in (1), (4), and (6) are reflected

within the optimization formulation. The unknown variables in

the optimization problem (8) are separately listed below the

constraints for convenience. The optimization problem (8a) –

(8e) solves for flux linkages λ, currents i, torque Te, and speed

ωr in S , as well as the parameters (rs, rr, Ls, Lr, Lm, Qw, B),

while minimizing the objective function, subject to machine

dynamics. Measured data for stator currents (iqs and ids), input

voltage (v), and rotor speed (ωr), and the number of poles,

P , are assumed known.

Observe that due to the the absence of rotor-side mea-

surements, the estimation problem (8a) – (8e) suffers from

solution ambiguity [35]. This is obvious from rotor-side flux

linkage and current relations (see (7c)), where the expression

Lriqr (or Lridr) can take identical values for different Lr and

iqr (or idr) in absence of rotor-side current measurements.

To resolve this, we assume that the ratio Ls/Lr is known.

It should be noted that if the NEMA design letter is known

for the machine, the ratio Ls/Lr can be obtained from IEEE

Std 112 [5], [36]. Inspired by [15], [16], [18], we assume

Ls/Lr = 1. Note that any other known Ls/Lr ratio would

would not affect the optimization process.

The optimization problem (8a) – (8e) is non-convex

because of the following bilinear terms:

• ωrλqr, ωrλdr and rsiqs, rsids, rriqr, rridr in (8b);

• Qwωr and Bωr in (8c);

• Lsiqs, Lsids, Lriqr, Lridr and Lmiqr, Lmidr, Lmiqs,

Lmids in (8d);

• λqsids and λdsiqs in (8e).

Problem of non-convexity makes the optimization problem

hard to solve, and standard tools, such as Newton’s method,

might not converge to the right solution without good initial-

ization. In the following section, we transform this problem

into a convex optimization formulation which could be solved

in polynomial time using off-the-shelf solvers [33], [37].

V. CONIC RELAXATION AND NUMERICAL SEARCH

To remedy the presence of non-convex bilinear terms,

we introduce additional variables (lifting) and employ conic
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relaxation to derive a convex optimization formulation for the

problem (8a) – (8e).

A. Lifting

Non-convexity due to nonlinear terms (e.g., ωrλdr and

rsiqs) can be addressed by variable substitution. As a result,

the objective function (8a) and constraints (8b) – (8e) can

be rewritten as linear (convex) functions of variables in (8a)

– (8e) and newly-defined auxiliary variables. This process is

known as lifting in which the original optimization problem

is cast into a higher dimensional space and the entire non-

convexity is captured in the definition of auxiliary variables.

For every n ∈ S , define the following additional variables

f [n] , ωr[n]
[

0, 0, λdr[n],−λqr[n]
]⊤

, (9a)

g[n] , diag {[rs, rs, rr, rr]} i[n], (9b)

h[n] , Lsi[n], (9c)

z[n] , Lm

[

iqr[n], idr[n], iqs[n], ids[n]
]⊤

, (9d)

y[n] ,
[

λqs[n]ids[n], λds[n]iqs[n], 0, 0
]⊤

, (9e)

θ[n] , Qwωr[n], φ[n] , Bωr[n], (9f)

λ̄[n] , diag{λ[n]}λ[n], ī[n] , diag{i[n]}i[n], (9g)

ω̄r[n] , ω2
r [n], T̄e[n] , T 2

e [n]. (9h)

Define

r̄s , r2s , r̄r , r2r , Q̄w , Q2
w, (9i)

L̄m , L2
m, L̄s , L2

s, B̄ , B2. (9j)

There are two new sets of variables in above formulation:

Those like f [n] that represent the non-convex terms, and

those like r̄s that denote squared variable. The need for

such formulations will become clear in what follows. The

optimization problem (8a) – (8e) can now be reformulated

in terms of the auxiliary variables (9a) – (9j). However,

additional constraints need to be included in the optimization

problem to account for (9a) – (9j). A standard approach in

convex optimization to represent bilinear expressions is using

matrix equalities [23]. For example, g1[n] = rsiqs[n] in (9b)

can be enforced as
[

r̄s g1[n]
g1[n] ī1[n]

]

=

[

rs
iqs[n]

][

rs
iqs[n]

]⊤

. (10)

Expressing (9a) – (9j) as matrix equalities is helpful as they
can be easily convexified. Variables such as r̄s that denote
squared variable are used to enforce equality conditions.
Hence, problem (8a) – (8e) can now be reformulated as

minimize
∑

n∈S

ι
⊤[n]Λ

(

ī[n] + diag{iMEA[n]}(iMEA[n]− 2i[n])
)

+ γιw[n]
(

ω̄r[n]− 2 ω
MEA
r [n]ωr[n] + ω

MEA
r [n]2

)

(11a)

subject to

λ[n+ 1]=λ[n]+∆T
(

ω
[

−λds[n], λqs[n],−λdr[n], λqr[n]
]⊤

+ f [n]− g[n] + v[n]
)

, (11b)

θ[n+ 1] = θ[n] +
∆T

2

(

Te[n]−
2φ[n]

P

)

, (11c)

λ[n] = z[n] + h[n], (11d)

Te[n] =
3P

4
(y2[n]− y1[n]), (11e)

[

ω̄r[n] (−1)kfk[n]
(−1)kfk[n] λ̄7−k[n]

]

=

[

−ωr[n]
λ7−k[n]

][

−ωr[n]
λ7−k[n]

]⊤

,

f5−k[n] = 0, k = 3, 4. (11f)

[

r̄s gk[n]
gk[n] īk[n]

]

=

[

rs
ik[n]

][

rs
ik[n]

]⊤

, k = 1, 2. (11g)

[

r̄r gk[n]
gk[n] īk[n]

]

=

[

rr
ik[n]

][

rr
ik[n]

]⊤

, k = 3, 4. (11h)

[

L̄s hk[n]
hk[n] īk[n]

]

=

[

Ls

ik[n]

][

Ls

ik[n]

]⊤

, k = 1, 2, 3, 4. (11i)

[

L̄m zk[n]
zk[n] īk+2[n]

]

=

[

Lm

ik+2[n]

][

Lm

ik+2[n]

]⊤

, k = 1, 2. (11j)

[

L̄m zk[n]
zk[n] īk−2[n]

]

=

[

Lm

ik−2[n]

][

Lm

ik−2[n]

]⊤

, k = 3, 4. (11k)

[

λ̄k[n] yk[n]
yk[n] ī3−k[n]

]

=

[

λk[n]
i3−k[n]

][

λk[n]
i3−k[n]

]⊤

,

y2+k[n] = 0, k = 1, 2. (11l)

[

Q̄w θ[n]
θ[n] ω̄r[n]

]

=

[

Qw

ωr[n]

][

Qw

ωr[n]

]⊤

,

[

B̄ φ[n]
φ[n] ω̄r[n]

]

=

[

B
ωr[n]

][

B
ωr[n]

]⊤

, (11m)

variables
{

λ[n], λ̄[n], i[n], ī[n],f [n], g[n],h[n], z[n],y[n] ∈ R
4
}

n∈S
,

{

Te[n], T̄e[n], ωr[n], ω̄r[n], θ[n], φ[n] ∈ R
}

n∈S
,

rs, r̄s, rr, r̄r, Ls, L̄s, Lm, L̄m, Qw, Q̄w, B, B̄ ∈ R.

The optimization problem (11a) – (11m) is equivalent to (8a)

– (8e). The objective function (11a) and constraints (11b) –

(11e) are now expressed as linear equations using auxiliary

variables to achieve convexification. The updated objective

function (11a) is formulated as an algebraic expansion of

(8a). Considering the assumption Ls/Lr = 1, variable Lr is

replaced by Ls in the problem formulation. Matrix equalities

(11f) – (11m) enforce (9a) – (9j). However, problem (11a) –

(11m) is still non-convex due to these matrix equalities (11f)

– (11m). In the following subsection, these equality conditions

are relaxed which make the optimization problem convex.

B. Conic Relaxation

Relaxation aims to formulate a convex approximation of

a non-convex optimization problem. Such a formulation is

favorable because its every minimum is a global minimum

that can be readily obtained. Usually, relaxation is achieved

by eliminating or modifying the constraints that lead to non-

convexity [33]. For the problem (11a) – (11m), relaxed formu-
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lation can be obtained by transforming all matrix equalities in

(11f) – (11m) to matrix inequalities as shown in the following.

Definition 1. Define C as the set of vectors c ∈ R
5 that satisfy

[

c1 c3
c3 c2

]

�

[

c4
c5

] [

c4
c5

]⊤

. (12)

It is straightforward to observe that C is a convex set [33].

minimize
∑

n∈S

ι
⊤[n]Λ

(

ī[n] + diag{iMEA[n]}(iMEA[n]− 2i[n])
)

+ γιw[n]
(

ω̄r[n]− 2 ω
MEA
r [n]ωr[n] + ω

MEA
r [n]2

)

(13a)

subject to

Machine model equations: (11b) – (11e) (13b)
[

ω̄r[n], λ̄7−k[n], (−1)kfk[n],−ωr[n], λ7−k[n]
]⊤

∈ C

f5−k[n] = 0, k=3, 4. (13c)

[

r̄s, īk[n], gk[n], rs, ik[n]
]⊤

∈ C, k=1, 2.
[

r̄r, īk[n], gk[n], rr, ik[n]
]⊤

∈ C, k=3, 4. (13d)

[

L̄s, īk[n], hk[n], Ls, ik[n]
]⊤

∈C, k=1, 2, 3, 4. (13e)

[

L̄m, īk+2[n], zk[n], Lm, ik+2[n]
]⊤

∈ C, k=1, 2.
[

L̄m, īk−2[n], zk[n], Lm, ik−2[n]
]⊤

∈ C, k=3, 4. (13f)

[

λ̄k[n], ī3−k[n], yk[n], λk[n], i3−k[n]
]⊤

∈ C,

y2+k[n] = 0, k=1, 2. (13g)

[

Q̄w, ω̄r[n], θ[n], Qw, ωr[n]
]⊤

∈ C,
[

B̄, ω̄r[n], φ[n], B, ωr[n]
]⊤

∈ C, (13h)

r̄s ≥ r
2
s , r̄r ≥ r

2
r , L̄s ≥ L

2
s, (13i)

L̄m ≥ L
2
m, Q̄w ≥ Q

2
w, B̄ ≥ B

2
(13j)

λ̄[n] ≥ diag{λ[n]}λ[n], (13k)

ī[n] ≥ diag{i[n]}i[n], (13l)

ω̄r[n] ≥ ω
2
r [n] (13m)

T̄e[n] ≥ T
2
e [n]. (13n)

variables
{

λ[n], λ̄[n], i[n], ī[n],f [n], g[n],h[n], z[n],y[n] ∈ R
4
}

n∈S
,

{

Te[n], T̄e[n], ωr[n], ω̄r[n], θ[n], φ[n] ∈ R
}

n∈S
,

rs, r̄s, rr, r̄r, Ls, L̄s, Lm, L̄m, Qw, Q̄w, B, B̄ ∈ R.

(13c) – (13n) implicitly impose the matrix equalities (11f)

– (11m). (13c) – (13n) are same as (11f) – (11m) except for

the equality/inequality condition. A new notation using C is

used for compactness. If the solution to the relaxed problem
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(c) Estimates from penalized conic relaxation (13a) – (13n) without rotor
currents.

Fig. 2. Assessment of the estimates obtained from conic relaxation.

(13a) – (13n) satisfies (11f) – (11m) (probably unlikely),

then the relaxation is declared as exact [33]. Otherwise, the

obtained solution is infeasible for the problem (8a) – (8e).

To assess the solution obtained from conic relaxation, we

solve (13a) – (13n) for the startup transient of an induction

machine. We consider a simulated case study where the re-

laxed problem is solved under different scenarios. The machine

model used in the numerical simulation is constructed using

the parameters obtained via conventional test as seen in Table

I. The machine model is simulated with zero initial conditions

and with the input voltage of 220 V (line-to-line). First, to

establish a benchmark, rotor currents are intentionally assumed

to be available. We then consider the realistic scenario that

rotor currents are unavailable. Figure 2a shows the estimated

currents i, speed ωr, and torque Te (part of the optimization

solution) for a scenario when the rotor currents are available

with Λ = diag{[0.1, 0.1, 0.1, 0.1]} and γ = 0.1. The result

obtained from conic relaxation is near optimal as evident

from the estimated waveforms. However, the absence of rotor

current measurements (with Λ = diag{[0.1, 0.1, 0, 0]} and

γ = 0.1), leads to poor estimates for rotor currents and torque

(see Figure 2b). (13a) – (13n) is a convex approximation to

the original problem in (8a) – (8e), leading to an approximate

solution in Figure 2b.

C. Incorporating Penalty

The solution from the conic relaxation can be further

improved by incorporating penalty terms into the objective

function [38]. Let îqr and îdr denote rough guesses for q-

axis and d-axis rotor currents. Therefore, one can augment

the objective function (13a) with the penalty term

κ =
∑

n∈S

ηiqr (̄iqr[n]− 2̂iqr[n]iqr[n] + î2qr[n])

+ ηidr (̄idr[n]− 2̂idr[n]idr[n] + î2dr[n]). (14)

ηiqr and ηidr are user-defined non-negative gains with īqr ,

i2qr and īdr , i2dr. The penalty term in (14) incentivizes
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Conic Relaxation

Solve: (13a) - (13n) (CVX)

Local Search

Solve: (24) (MIPS)

 Flat Start: 
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Solution
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Desired Solution 

Infeasible Solution
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Fig. 3. Overview of the two-step solution for the estimation problem in (8).
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Fig. 4. Local search results for the example in Fig. 2, which is initialized
with the solution of the penalized conic relaxation in Fig. 2c.

the optimization solver to search around the neighborhood of

guessed rotor currents. The penalty term (14) is a convex

reformulation for ηiqr (iqr[n]− îqr[n])
2+ηidr (idr[n]− îdr[n])

2.

A decent guess for rotor currents can be îqr[n] ≈ −iqs[n]
and îdr[n] ≈ −ids[n] during the startup [19]. Similarly, at

the steady state, îqr[n] ≈ 0 and îdr[n] ≈ 0. Figure 2c shows

the results for the relaxed problem (13a) – (13n) when the

objective function (13a) is augmented with the penalty term

(14). Penalization significantly improves the results for the

relaxed problem (with Λ = diag{[0.1, 0.1, 0, 0]}, γ = 0.1,

and ηiqr = ηidr = 1).

D. Local Search

As discussed in Section V-B, the solution to the relaxed

optimization problem (13a) – (13n) could be infeasible for

the original problem (8a) – (8e). It can, however, serve as

an excellent initial condition to a local search algorithm [32].

To solve the estimation problem using an iterative Newton’s

method, we need to formulate the Karush-Kuhn-Tucker (KKT)

conditions [33]. By defining the optimization variable as

x ,

[

λ̌⊤, ǐ⊤, Ť⊤
e , ω̌⊤

r , Ls, Lm, rs, rr, Qw, B
]⊤

, (15)

the equality constraint (8b) – (8e) can then be cast as

E(x) , [E1(x)
⊤
E2(x)

⊤
E3(x)

⊤
E4(x)

⊤]⊤ = 0, (16)

where

E1(x),
(

K1 −K2

)

λ̌−∆T
(

(diag {K4ω̌r}⊗I4)N1K2λ̌

+ ωN2K2λ̌− (Iτ−1⊗R)K2ǐ+K2v̌
)

, (17a)

E2(x),QwK3ω̌r −K4

(

Qwω̌r+
∆T

2
(Ťe−

2B

P
ω̌r)

)

, (17b)

E3(x), λ̌− (Iτ ⊗ diag {[Ls, Ls, Ls, Ls]})ǐ− LmN3ǐ, (17c)

E4(x), Ťe −
3P

4
diag{(Iτ ⊗ d

⊤
2 )λ̌}(Iτ ⊗ d

⊤
1 )ǐ

+
3P

4
diag{(Iτ ⊗ d

⊤
1 )λ̌}(Iτ ⊗ d

⊤
2 )ǐ. (17d)

K1 , [04(τ−1)×4, I4(τ−1)], K2 , [I4(τ−1),04(τ−1)×4], K3 ,

[0τ−1, Iτ−1], and K4 , [Iτ−1,0τ−1] and

N1 , Iτ−1 ⊗ (d3d
⊤
4 − d4d

⊤
3 ), (18a)

N2 , Iτ−1 ⊗ (−d1d
⊤
2 + d2d

⊤
1 − d3d

⊤
4 + d4d

⊤
3 ), (18b)

N3 , Iτ ⊗ (d1d
⊤
3 + d2d

⊤
4 + d3d

⊤
1 + d4d

⊤
2 ). (18c)

x denotes the concatenated form of the optimization variable.

Symbol ·̌ represents the vectorization operator (see notations).

E1(x), E2(x), E3(x), and E4(x) are the vectorized form

of machine model (7). Variables K1 − K4 and N1 − N3

are defined to achieve vectorization. (d1,d2,d3,d4) are the

standard basis of R
4. One can formulate the Jacobian matrix

J
(

x
)

for the constraints (17a) – (17d) in the form of (19). In

(19), ∇{·} denotes the derivative with respect to the subscript

variable, e.g., ∇
λ̌
E1 is the derivative of E1 with respect to λ̌.

Additionally, the Lagrangian function L of the optimization

problem (8a) – (8e) can be cast as

L
(

x;ν
)

,(ǐ− ǐMEA)⊤
(

diag{ι̌}(Iτ ⊗Λ)
)

(ǐ− ǐMEA)

+ γ(ω̌r − ω̌MEA
r )⊤diag{ι̌ω}(ω̌r − ω̌MEA

r ) + ν⊤E(x), (20)

where ν is the vector of Lagrange multipliers, ǐMEA and

ω̌MEA
r denote vectorized current and speed measurements. The

gradient of L with respect to x can be formulated as

G
(

x; ν
)

, 2×
[

0,
(

(

diag{ι̌}(Iτ ⊗Λ)
)

(ǐ− ǐMEA)
)⊤

,0,

γ
(

diag{ι̌ω}(ω̌r − ω̌MEA
r )

)⊤

,0
]

+ ν⊤J
(

x
)

. (21)

Finally, the Hessian of L is

H
(

x; ν
)

,

[

H11 H12

H⊤
12 0

]

, (22)

where

H11,













0
∂2L
∂λ̌∂ǐ

0
∂2L

∂λ̌∂ω̌r

∂2L
∂ǐ∂λ̌

∂2L
∂ǐ2

0 0

0 0 0 0

∂2L
∂ω̌r∂λ̌

0 0
∂2L
∂ω̌2

r













, (23a)

H12,











0 0 0 0 0 0

∂2L
∂ǐ∂Ls

∂2L
∂ǐ∂Lm

∂2L
∂ǐ∂rs

∂2L
∂ǐ∂rr

0 0

0 0 0 0 0 0

0 0 0 0
∂2L

∂ω̌r∂Qw

∂2L
∂ω̌r∂B











. (23b)

Newton steps of the form

[

∆x

∆ν

]

=−

[

H
(

x; ν
)

J
(

x
)⊤

J
(

x
)

0

]−1[

G
(

x; ν
)⊤

E(x)

]

, (24)

converge to a solution that meets the KKT optimality condi-

tions. Figure 4 shows the results for the example presented in

Figure 2, when the solution of the penalized conic relaxation

(Fig. 2c) initializes a local search procedure. Figure 3 shows

the steps needed to solve the estimation problem (8a) – (8e).
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J
(

x
)

=









∇
λ̌
E1 ∇

ǐ
E1 0 ∇ω̌r

E1 0 0 ∇rsE1 ∇rrE1 0 0

0 0 ∇Ťe
E2 ∇ω̌r

E2 0 0 0 0 ∇Qw
E2 ∇BE2

∇
λ̌
E3 ∇

ǐ
E3 0 0 ∇Ls

E3 ∇Lm
E3 0 0 0 0

∇
λ̌
E4 ∇

ǐ
E4 ∇Ťe

E4 0 0 0 0 0 0 0









(19)

1. Three-phase power supply. 

2. Mechanical load (DC machine 

  operating as a generator).

3. Measurement and data acquisition.

4. Three-phase induction machine. 

5. Data monitoring and recording. 

1

2

3

4

5

Fig. 5. Hardware setup used to measure machine transients and characteristics.
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Fig. 6. Measured startup transients for the underlying induction machine. The
highlighted portion of the transients are used for parameter identification.

VI. EXPERIMENTAL STUDIES

A. Numerical and Experimental Setups

The numerical studies are performed on a workstation using

Windows 10 equipped with quad-core Intel® CoreTM i7-6700

with 32 GB RAM. The relaxed optimization problem (13a)

– (13n) is solved using the SDPT3 4.0 [39] solver in the

CVX [37] environment on MATLAB 2019a. MATPOWER

Interior Point Solver (MIPS) [40] version 1.3.1 performs

the local search. MIPS solves (24) using the formulations

of objective function and equality constraints (8a) – (8e),

Jacobian matrix (19), Hessian matrix (22), and the solution

of the relaxed optimization problem (13a) – (13n) as an initial

condition. The termination tolerances for the MIPS solver,

namely, gradtol, feastol, comptol, and costtol are

selected as 10−8, 10−8, 10−6, and 10−6, respectively. The

maximum iteration count is set to 50.

Figure 5 shows the experimental setup used for measure-

ment acquisition. The four-pole motor is excited with a voltage

of 220 V (line-to-line). The measured data is demonstrated

in Fig. 6. For comparison, machine parameters have also

been identified through standard intrusive characterization tests

[5]. These conventional tests include dc stator resistance

measurements, locked rotor test (used for identifying rotor

resistance along with stator and rotor leakage inductances),

no-load test (used for identifying magnetizing inductance), no-

load deceleration test (used for identifying total lumped inertia

of the machine and dynamometer), and no-load startup test

(used for identifying start-up impedance of the machine).

B. Parameter Extraction from Measurement

Parameters such as leakage inductance and inertia are more

dominant during transients, whereas magnetizing inductance

has a prominent effect at the steady state. Hence, limited data

from both acceleration and steady-state phases of the measured

waveforms are used for the model identification procedure.

Sampling time of 100 µs is used in the measured data shown

in Fig. 6. The highlighted portions of the data is used for

parameter extraction. Synchronous reference frame is chosen

for the machine model with ω = 120π. The non-negative

weights for the relaxed problem (13a) – (13n) and the

local search (8a) – (8e) are Λ = diag {[0.1, 0.1, 0, 0]} and

γ = 0.1, with binary flags as ι = [1, 1, 0, 0]⊤ and ιw = 1.

While choosing Λ and γ, one should note that (1) larger

gain implies higher priority for the optimization solver, and

(2) gains can be used to normalize the order of terms in the

objective function. For example, Λ = diag {[1, 1, 0, 0]} and

γ = 1 or Λ = diag {[0.01, 0.01, 0, 0]} and γ = 0.01 are also

viable options. The gains for penalty terms in (14) are set as

ηiqr = ηidr = 1. The optimization problem (13a) – (13n),

with the penalty term (14), is first solved. The outcome of
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TABLE I
MACHINE PARAMETERS EXTRACTED USING THE CONVENTIONAL TESTS AND THE PROPOSED METHOD

Methodology Ls (H) Lm (H) Lr (H) rs (Ω) rr (Ω) J (kg.m2) B (N.m.s/rad) Objective fn (8a)

Proposed Method 0.3149 0.3040 0.3149 4.50 3.45 0.0041 0.0089 648.3

Conventional Tests 0.3207 0.3087 0.3207 4.52 3.23 0.0037 - 1235.2

this relaxation is then used as an initial point for the local

search (24) (see Fig. 3). A single run of convex relaxation

takes approximately 185 seconds (including all overheads) on

average. Local search concludes within 60 seconds. Table I

compares the machine parameters estimated by the proposed

method against parameters extracted using conventional tests.

In addition to resistances, inductances, and inertia terms, we

could estimate the friction coefficient as well. Table I also lists

the values of objective function (8a) that, for the proposed

method, is almost half of that predicted by parameters obtained

from conventional tests. Since rotor current measurements are

not available, (8a) takes the following form

∑

n∈S

α1ι1[n](iqs[n]−iMEA
qs [n])2+α2ι2[n](ids[n]−iMEA

ds [n])2

(25)

+γιω[n]
(

ωr[n]−ωMEA
r [n]

)2
.

The aggregate value of (25) is attributed to individual mis-

match expressions for stator currents (iqs and ids) and rotor

speed (ωr). For the proposed method, the contribution due

to the first expression in (25) is about 10.5, the second

expression is 14.4, and the last expression is 623.4. For param-

eters obtained from conventional tests, respective expressions

contribute about 27.3 (mismatch in iqs), 34.0 (mismatch in

ids), and 1173.9 (mismatch in ωr). The absolute value of

(25) depends on user-defined coefficients α1, α2, and γ.

Therefore, one should consider the relative improvement in

the value of the objective function obtained by the proposed

method, as shown in the last column of Table I. Moreover,

as opposed to multiple interruptive and intrusive tests needed

in the conventional approach, our method extracts machine

parameters from measured data obtained during the machine’s

normal operation.

Two dynamic models built using two sets of machine pa-

rameters, one extracted using the proposed method and another

obtained via conventional methods, are considered. Figures

7 and 8 compare the stator currents and speed waveforms

obtained from simulating the machine models using the two

sets of parameters listed in Table I. Figure 9 shows the tra-

jectories of both stator and rotor flux linkages and currents in

the qd-axis. The machine model is simulated with zero initial

conditions. Parameters obtained from the proposed method

result in an excellent fit to the measured data as evident from

Fig. 7. Figure 8 shows a zoomed-in view of a portion of stator

current in Figure 7. It is evident that the time-domain transients

predicted by the parameters obtained by the proposed method

match better with the measured signal compared to transients

predicted by the parameters obtained using the conventional

methods. This fit can be quantified using metrics like the root-
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induction machine model from zero initial conditions. The resulting current
and speed waveforms are compared against measured data.
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observe a better match between the waveforms predicted by the estimated
parameters with measurements.

mean-square error (RMSE) or the 2-norm error defined as

RMSE =

√

√

√

√

1

N

N
∑

i=1

(xMEA
i − xEST

i )2, (26a)

2-norm error =

√

∑N
i=1(x

MEA
i − xEST

i )2
√

∑N
i=1(x

MEA
i )2

× 100. (26b)

xEST
i and xMEA

i are the ith samples of the estimated and mea-

sured signals, respectively. N denotes the number of samples

considered. Table II lists RMSE and 2-norm error values while
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Fig. 9. Trajectories of qd flux linkages and currents obtained using the pa-
rameters listed in Table I. Stator currents are compared against measurements.

TABLE II
QUANTIFICATION OF THE MISMATCH AGAINST MEASUREMENT

Signal
RMSE 2-norm

Proposed

method

Conventional

tests

Proposed

method

Conventional

tests

Percentage Improved

ia 0.433 0.625 6.847 9.882 30.7

ib 0.455 0.520 7.188 8.216 12.5

ic 0.441 0.593 7.076 9.514 25.6

ωr 3.70 4.05 1.227 1.343 8.7

Average 19.3

comparing the two sets of machine waveforms against real

measurements. Parameters extracted by the proposed method

result in lower RMSE and 2-norm error as compared to the

parameter obtained from conventional tests. Table II lists the

percentage reduction in error values against parameters from

conventional tests. RMSE reduces from 0.625 to 0.433 for the

phase-a current, a 30% percent improvement. The RMSE for

rotor speed has improved by more than 8%. On average, we

see a 19.3% improvement in error. Percentage improvements

in Table II are the same for both RMSE and 2-norm metrics.

C. Estimation with Missing Data Points

We now test the resilience of the proposed method against

loss in measured data. We assume that indicators ι[n] and

ιw[n] take the value 1 with a probability of 0.8, such that

random data points for stator currents and rotor speed are

flagged as unavailable in (8a) and (13a). This is implemented

using the rand function (uniformly distributed pseudorandom

numbers) in MATLAB. Figure 10 compares the estimated

current and speed trajectories against the input measurements.

Signal loss is shown by zeros along the time axis for illus-

tration purposes (lost data are not necessarily zero in value).

The optimization algorithm successfully reproduces the entire

current trajectory along with machine parameters.
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Fig. 10. Stator currents and rotor speed transients, considering lossy mea-
surement, predicted by the estimated parameters versus input measurement.
The red dots along the time-axis represent the instances of data loss.

TABLE III
PARAMETER SETS OBTAINED FROM NOISY DATA

Machine Parameters 0% noise 2% noise 5% noise

Ls 0.3207 0.3216 0.3193

Lm 0.3087 0.3096 0.3074

Lr 0.3207 0.3216 0.3193

rs 4.52 4.57 4.38

rr 3.23 3.18 3.27

J 0.0037 0.0036 0.0038

B 0.0089 0.0087 0.0085

D. Impact of Noisy Input Data

The machine model is first simulated assuming the param-

eters listed in Table I (conventional tests values) and, then,

the resulting state transients are polluted with noise signals

with zero mean and 2%/5% standard deviations. Figure 11

shows both the noise-free and distorted transients. Table III

lists the parameters obtained under different noise scenarios.

As seen, estimated parameters, in presence of noisy data, are

in good agreement with those obtained from noise-free data.

In practice, low-pass filtering effects of acquisition devices

eliminate severe noisy data. Interested readers can refer to

[41] for a detailed theoretical analysis on the impact of noise

on the performance of conic relaxation equipped a weighted

least squared estimator, and to [42], [43] for the treatment of

process or measurement noise in estimation process.
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Fig. 11. Simulated machine transients polluted with different noise levels.
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TABLE IV
ESTIMATION RESULTS UNDER VARIOUS SAMPLING TIMES

Machine Parameters ∆T = 50 µs ∆T = 100 µs ∆T = 200 µs ∆T = 300 µs

Ls 0.3153 0.3149 0.3068 0.3412

Lm 0.3043 0.3040 0.2958 0.3300

Lr 0.3153 0.3149 0.3068 0.3412

rs 4.51 4.50 4.44 4.68

rr 3.44 3.45 3.52 3.26

J 0.0041 0.0041 0.0042 0.0040

B 0.0089 0.0089 0.0077 0.0091
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Fig. 12. Machine transients simulated under different ∆T s, with parameter
sets obtained under those ∆T s, compared to hardware measurement.

E. Impact of Sampling Time

For a given time horizon of data, increasing sampling

time interval ∆T reduces the number of data points used

in the estimation process. On the other hand, ∆T should be

sufficiently small to have fidelity with the original machine

equations. Using available data from Figure 6, Table IV lists

parameters extracted under different sampling time intervals.

As ∆T is increased, estimated parameters start to deviate

due to errors induced by the discretization process. Figure

12 compares the measured data against machine transients

simulated using the parameters sets in the last two columns

of Table IV (and their respective sampling times). Notice that,

particularly, at ∆T=300µs, simulated transients clearly deviate

from their measured counterparts.

VII. CONCLUSION

We extract the parameters of an induction machine in

a non-intrusive manner using startup transients. The non-

convex parameter identification problem is convexified using

conic relaxation, whose output is transformed into an accurate

solution for the machine dynamical equations using a local

search. The proposed method is experimentally shown to

identify machine parameters, even with intermittent losses in

measured data. These parameters are shown to result in a

better match with the measured signals compared to those

obtained using conventional tests (nearly a 20% improvement

in matching transient waveforms). Future research direction

includes expanding this approach to more comprehensive

machine models (e.g., with variable parameters).

REFERENCES

[1] P. Kundur, Power system stability and control. New York, USA:
McGraw-Hill, 1994.

[2] H. A. Maksoud, S. M. Shaaban, M. S. Zaky, and H. Z. Azazi,
“Performance and stability improvement of afo for sensorless im drives
in low speeds regenerating mode,” IEEE Trans. Power Electron., vol. 34,
no. 8, pp. 7812–7825, Aug. 2019.

[3] H. A. Toliyat, E. Levi, and M. Raina, “A review of RFO induction motor
parameter estimation techniques,” IEEE Trans. Energy Convers., vol. 18,
no. 2, pp. 271–283, Jun. 2003.

[4] S. A. Odhano, P. Pescetto, H. A. A. Awan, M. Hinkkanen, G. Pellegrino,
and R. Bojoi, “Parameter identification and self-commissioning in AC
motor drives: A technology status review,” IEEE Trans. Power Electron.,
vol. 34, no. 4, pp. 3603–3614, Apr. 2019.

[5] IEEE Standard Test Procedure for Polyphase Induction Motors and

Generators, IEEE Std. 112-2017, 2018.

[6] L. Monjo, H. Kojooyan-Jafari, F. Corcoles, and J. Pedra, “Squirrel-cage
induction motor parameter estimation using a variable frequency test,”
IEEE Trans. Energy Conv., vol. 30, no. 2, pp. 550–557, Jun. 2015.

[7] J. Ruan and S. Wang, “A prediction error method-based self-
commissioning scheme for parameter identification of induction motors
in sensorless drives,” IEEE Trans. Energy Conv., vol. 30, no. 1, pp.
384–393, Mar. 2015.

[8] S. R. P. Reddy and U. Loganathan, “Offline recursive identification of
electrical parameters of vsi-fed induction motor drives,” IEEE Trans.

Power Electron., vol. 35, no. 10, pp. 10 711–10 719, Oct. 2020.

[9] S. Lee, A. Yoo, H. Lee, Y. Yoon, and B. Han, “Identification of induction
motor parameters at standstill based on integral calculation,” IEEE Trans.

Ind. Appl., vol. 53, no. 3, pp. 2130–2139, May 2017.

[10] M. Carraro and M. Zigliotto, “Automatic parameter identification of
inverter-fed induction motors at standstill,” IEEE Trans. Ind. Electron.,
vol. 61, no. 9, pp. 4605–4613, Sep. 2014.

[11] J. Benzaquen, J. Rengifo, E. Albanez, and J. M. Aller, “Parameter
estimation for deep-bar induction machines using instantaneous stator
measurements from a direct startup,” IEEE Trans. Energy Convers.,
vol. 32, no. 2, pp. 516–524, Jun. 2017.

[12] S. Chiniforoosh, L. M. Vargas, L. Wang, and J. Jatskevich, “Online char-
acterization procedure for induction machines using start-up and loading
transients,” in Proc. IEEE Canada Elect. Power Conf., Vancouver, BC,
Canada, 2008, pp. 1–5.

[13] P. Huynh, H. Zhu, and D. Aliprantis, “Non-intrusive parameter estima-
tion for single-phase induction motors using transient data,” in Proc.

IEEE Power & Energy Conf., Champaign, IL, USA, 2015, pp. 1–8.

[14] D. J. Atkinson, P. P. Acarnley, and J. W. Finch, “Observers for induction
motor state and parameter estimation,” IEEE Trans. Ind. Appl., vol. 27,
no. 6, pp. 1119–1127, Nov. 1991.

[15] J. Stephan, M. Bodson, and J. Chiasson, “Real-time estimation of the
parameters and fluxes of induction motors,” IEEE Trans. Ind. Appl.,
vol. 30, no. 3, pp. 746–759, May 1994.

[16] H. Kojooyan-Jafari, L. Monjo, F. Corcoles, and J. Pedra, “Parameter es-
timation of wound-rotor induction motors from transient measurements,”
IEEE Trans. Energy Conv., vol. 29, no. 2, pp. 300–308, Jun. 2014.

[17] F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-
Kowalska, and S. Katsura, “Industrial applications of the kalman filter:
A review,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5458–5471,
Dec. 2013.

[18] Kaiyu Wang, J. Chiasson, M. Bodson, and L. M. Tolbert, “A nonlinear
least-squares approach for identification of the induction motor parame-
ters,” IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1622–1628, Oct.
2005.

[19] S. R. Shaw and S. B. Leeb, “Identification of induction motor parameters
from transient stator current measurements,” IEEE Trans. Ind. Electron.,
vol. 46, no. 1, pp. 139–149, Feb. 1999.

[20] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms
for induction-motor equivalent circuit parameter determination - part i:
Resistances and leakage reactances,” IEEE Trans. Ind. Electron., vol. 58,
no. 9, pp. 3723–3733, Sep. 2011.

[21] ——, “Computational algorithms for induction motor equivalent circuit
parameter determination - part ii: Skin effect and magnetizing character-
istics,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3734–3740, Sep.
2011.

[22] Z. Ling, L. Zhou, S. Guo, and Y. Zhang, “Equivalent circuit parameters
calculation of induction motor by finite element analysis,” IEEE Trans.

Magn., vol. 50, no. 2, pp. 833–836, Feb. 2014.

[23] A. P. Yadav, T. Altun, R. Madani, and A. Davoudi, “Macromodeling of
electric machines from ab initio models,” IEEE Trans. Energy Convers.,
vol. 35, no. 2, pp. 908–916, Jun. 2020.

[24] M. Cirrincione, M. Pucci, G. Cirrincione, and G. Capolino, “Constrained
minimization for parameter estimation of induction motors in saturated

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 01,2021 at 15:32:26 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2021.3060668, IEEE

Transactions on Industrial Electronics

11

and unsaturated conditions,” IEEE Trans. Ind. Electron., vol. 52, no. 5,
pp. 1391–1402, Oct. 2005.

[25] L. Fagiano, M. Lauricella, D. Angelosante, and E. Ragaini, “Identifi-
cation of induction motors using smart circuit breakers,” IEEE Trans.

Control Syst. Technol., vol. 27, no. 6, pp. 2638–2646, Nov. 2019.
[26] Y. He, Y. Wang, Y. Feng, and Z. Wang, “Parameter identification of an

induction machine at standstill using the vector constructing method,”
IEEE Trans. Power Electron., vol. 27, no. 2, pp. 905–915, Feb. 2012.

[27] F. Duan, R. Zivanovic, S. Al-Sarawi, and D. Mba, “Induction motor
parameter estimation using sparse grid optimization algorithm,” IEEE

Trans. Ind. Informat., vol. 12, no. 4, pp. 1453–1461, Aug. 2016.
[28] K. S. Huang, Q. H. Wu, and D. R. Turner, “Effective identification of

induction motor parameters based on fewer measurements,” IEEE Trans.

Energy Convers., vol. 17, no. 1, pp. 55–60, Mar. 2002.
[29] Jong-Wook Kim and Sang Woo Kim, “Parameter identification of

induction motors using dynamic encoding algorithm for searches (deas),”
IEEE Trans. Energy Conv., vol. 20, no. 1, pp. 16–24, Mar. 2005.

[30] D. Bhowmick, M. Manna, and S. K. Chowdhury, “Estimation of
equivalent circuit parameters of transformer and induction motor from
load data,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2784–2791, May
2018.

[31] Z. Liu, H. Wei, X. Li, K. Liu, and Q. Zhong, “Global identification of
electrical and mechanical parameters in pmsm drive based on dynamic
self-learning pso,” IEEE Trans. Power Electron., vol. 33, no. 12, pp.
10 858–10 871, Dec. 2018.

[32] Y. Weng, Q. Li, R. Negi, and M. Ilic, “Semidefinite programming for
power system state estimation,” in Proc. IEEE Power & Energy Soc.

Gen. Meeting, San Diego, CA, USA, 2012, pp. 1–8.
[33] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.:

Cambridge University Press, 2004.
[34] P. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of

electric machinery and drive systems, 3rd ed. Piscataway, NJ, USA:
IEEE Press, 2013.

[35] A. M. Alturas, S. M. Gadoue, B. Zahawi, and M. A. Elgendy, “On the
identifiability of steady-state induction machine models using external
measurements,” IEEE Trans. Energy Conv., vol. 31, no. 1, pp. 251–259,
Mar. 2016.

[36] D. M. Reed, H. F. Hofmann, and J. Sun, “Offline identification of
induction machine parameters with core loss estimation using the stator
current locus,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1549–
1558, Dec. 2016.

[37] M. Grant and S. Boyd. (2014, Mar.) CVX: Matlab software for
disciplined convex programming, version 2.1. [Online]. Available:
http://cvxr.com/cvx

[38] R. Madani, M. Kheirandishfard, J. Lavaei, and A. Atamturk, “Penal-
ized semidefinite programming for quadratically-constrained quadratic
optimization,” arXiv preprint arXiv:2004.14328, Apr. 2020.

[39] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Mathematical Programming,
vol. 95, no. 2, pp. 189–217, Feb. 2003.

[40] R. D. Zimmerman and H. Wang. (2019, Jun.) MATPOWER interior
point solver (MIPS) user’s manual, version 1.3.1. [Online]. Available:
https://matpower.org/docs/MIPS-manual-1.3.1.pdf

[41] R. Madani, J. Lavaei, and R. Baldick, “Convexification of power flow
equations in the presence of noisy measurements,” IEEE Trans. Autom.

Control, vol. 64, no. 8, pp. 3101–3116, Aug. 2019.
[42] M. Iqbal, A. I. Bhatti, S. I. Ayubi, and Q. Khan, “Robust parameter esti-

mation of nonlinear systems using sliding-mode differentiator observer,”
IEEE Trans. Indust. Electron., vol. 58, no. 2, pp. 680–689, Feb. 2011.

[43] F. Alonge, F. D’Ippolito, and A. Sferlazza, “Sensorless control of
induction-motor drive based on robust kalman filter and adaptive speed
estimation,” IEEE Trans. Indust. Electron., vol. 61, no. 3, pp. 1444–
1453, Mar. 2014.

Ajay Pratap Yadav received the Bachelor’s and
Master’s degree in Electrical engineering from the
Indian Institute of Technology Roorkee and Indian
Institute of Technology Kanpur, in 2010 and 2014,
respectively. He is currently pursuing his Ph.D. at
the University of Texas at Arlington. His research
interests include electric machine modeling, system
identification, optimization, and microgrids.

Ramtin Madani received the Ph.D. degree in elec-
trical engineering from Columbia University, New
York, NY, USA, in 2015. He was a Postdoctoral
Scholar with the Department of Industrial Engi-
neering and Operations Research at University of
California, Berkeley in 2016. He is an Assistant Pro-
fessor with the Department of Electrical Engineer-
ing Department, University of Texas at Arlington,
Arlington, TX, USA. His research interests include
developing algorithms for optimization and control
with applications in energy.

Navid Amiri (S’11 - M’19) received his B.Sc. and
M.Sc. degrees in electrical engineering in the field of
power and electrical machines from Isfahan Univer-
sity of Technology, Isfahan, Iran, in 2008 and 2011,
and his Ph.D. degree in electrical and computer
engineering in 2019 from the University of British
Columbia, Vancouver, BC, Canada. He is currently
a Postdoctoral Research Fellow in electrical and
computer engineering department at the University
of British Columbia. His research interests include
numerically efficient modeling of electric machines,

real-time simulation, electromechanical energy conversion systems, electric
machine design, and power electronics.

Juri Jatskevich (M’99 - F’17) received the M.S.E.E.
and the Ph.D. degrees in Electrical Engineering
from Purdue University, West Lafayette IN, USA,
in 1997 and 1999, respectively. Since 2002, he has
been a faculty member at the University of British
Columbia, Vancouver, Canada, where he is now a
Professor in the Department of Electrical and Com-
puter Engineering. His research interests include
power electronic systems, electrical machines and
drives, modeling and simulation of electromagnetic
transients.

ALI DAVOUDI (S’04-M’11-SM’15) received his
Ph.D. in Electrical and Computer Engineering from
the University of Illinois, Urbana-Champaign, IL,
USA, in 2010. He is currently a Professor in
the Electrical Engineering Department, University
of Texas, Arlington, TX, USA. He is an Asso-
ciate Editor for the IEEE TRANSACTIONS ON
POWER ELECTRONICS, and an Editor for the
IEEE TRANSACTIONS ON ENERGY CONVER-
SION as well as IEEE POWER ENGINEERING
LETTERS. His research interests include modeling,

control, and optimization of power electronics systems.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 01,2021 at 15:32:26 UTC from IEEE Xplore.  Restrictions apply. 


