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Abstract 16 

Novel dual-functionalized ammonium-based hydrophobic ionic liquids (ILs) have been 17 

synthesized by mimicking the water structure to carry both ether group (hydrogen-bond acceptor) 18 

and tert-alcohol group (hydrogen-bond donor). These ammonium-type ionic solvents exhibit the 19 

advantage of lower viscosities (as low as 129 mPa s at 30 °C) than the imidazolium analogue 20 

(~300 mPa s at 30 °C); more importantly, these “water-like” media are highly compatible with 21 

immobilized Candida antarctica lipase B (Novozym 435) in terms of producing high 22 

transesterification activities (1.5-fold higher than that in tert-butanol, and slightly higher than 23 

that in diisopropyl ether) and higher thermal stability than that in tert-butanol. To demonstrate 24 

the utilization of this new enzymatic system, enzymatic ring-opening polymerization (ROP) of ε-25 

caprolactone using these “water-like” ILs as co-solvents was carried out to synthesize polyesters, 26 

achieving high molecular mass Mw (up to 18,000 Da) and high yields (up to 74%). 27 

 28 
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1. Introduction 31 

Nonaqueous biocatalysis in organic solvents has drawn a great deal of attention since some 32 

pioneering work in 1980s [1-8]. Obvious advantages of enzymatic reactions in nonaqueous 33 

media include high enantioselectivity, high thermal stability, substrate dissolution in organic 34 

solvents, reversing hydrolysis reactions to become synthesis, and simple recovery of enzyme and 35 

product, etc. [9-13]. However, nonaqueous biocatalysis has been challenged by large-scale 36 

applications for issues like high enzyme cost, protein fragility, and depressed enzyme activity. In 37 

particular, enzyme activity in nonaqueous media is significantly lower than that in aqueous 38 

solutions [9, 14]. For instance, α-chymotrypsin and subtilisin in octane were 104‒105 times less 39 

active than in water [9]. Likely explanations for activity depression include the limitation of 40 

substrate mass transfer to insoluble enzymes in organic media, poor accessibility to active sites 41 

of lyophilized or cross-linked enzyme particles, structural changes of enzyme molecules, 42 

unfavorable energetics of substrate desolvation (i.e. enzyme-substrate binding is weaken due to 43 

the tendency of substrate staying in organic phase) and transition state stabilization (i.e. water 44 

stabilizes highly polar transition state much better than organic solvents), reduced 45 

conformational mobility, and poor pH optimization [14]. Therefore, a careful design of water-46 

mimicking nonaqueous solvents could lead to transition state stabilization, higher conformational 47 

mobility of enzymes, and improved enzyme-substrate binding.  48 

Ionic liquids (ILs) represent a new group of highly designable nonaqueous solvents that 49 

could be compatible with enzymes [15-19]. A number of groups have indicated that enzymes 50 

displayed high activities and/or enantioselectivity in hydroxyl- or ether-functionalized ILs; these 51 

functionalized ionic solvents include various alkoxy-containing Ammoeng type ILs (e.g. 52 

cocosalkyl pentaethoxy methylammonium methylsulfate) [20-28], tetrakis(2-53 
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hydroxyethyl)ammonium triflouromethanesulfonate [29], [Me(OCH2CH2)n-Et-IM][OAc] and 54 

[Me(OCH2CH2)n-Et3N][OAc] [30-32], [MeOCH2CH2-Bu3P][Tf2N] [33-35],  [HOCH2CH2-55 

MIM][PF6] and [Me(OCH2CH2)2-MIM][PF6] [36], and [Me(OCH2CH2)n-Et-IM][Tf2N] and 56 

[Me(OCH2CH2)n-Et3N][Tf2N] [37, 38], etc. Based on this perspective, our group [39] recently 57 

constructed dual-functionalized imidazolium-based ILs containing both groups of tert-alcohol 58 

and ether to mimic the water structure carrying both hydrogen-bond donating (‒OH) and 59 

accepting (R‒O‒R) properties. tert-Alcohol groups are selected instead of 1° and 2° alcohols due 60 

to the fact that 3° alcohols are more enzyme-compatible (less enzyme inhibition) and much less 61 

reactive as substrates in enzymatic reactions especially under dried conditions [1, 40]. In these 62 

dual-functionalized imidazoliums, we evaluated the transesterification activity of immobilized 63 

lipase B from Candida antarctica (CALB), and observed high synthetic activity of CALB: up to 64 

2‒4 folds higher than those in non-functionalized ‘classic’ ILs (e.g. [BMIM][Tf2N]), and up to 65 

40‒100% higher than those in diisopropyl ether and tert-butanol. One area needing improvement 66 

is that these imidazolium-ILs have relatively high dynamic viscosities (in the neighborhood of 67 

300 mPa s at 30 °C) [39]. The present study aims to prepare novel ‘water-like’ dual-68 

functionalized ILs containing a different cation core (i.e. alkylammonium) to achieve high lipase 69 

activities and lower viscosities at the same time. 70 

2. Materials and methods 71 

2.1. Materials 72 

(2-Methoxyethyl)methylamine, bis(2-methoxyethyl)amine, and 1,1-dimethyloxirane (known as 73 

isobutylene oxide; sometimes referred as 2,2-dimethyloxirane) were acquired from TCI America 74 

(Portland, OR). Lithium bis(trifluoromethylsulfonyl)imide (Li[Tf2N]) was the product of Matrix 75 

Scientific (Columbia, SC). 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 76 
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([BMIM][Tf2N], synthesis grade) was produced by Merck KGaA (EMD Millipore Corporation, 77 

Billerica, MA). Novozym 435 (Candida antarctica lipase B (CALB) immobilized on acrylic 78 

resin) (Catalog # L4777, Lot # SLBW1544, enzyme activity 11,900 propyl laurate units (PLU)/g) 79 

was purchased from Sigma-Aldrich (St. Louis, MO). The synthesis and characterizations of tert-80 

alcohol- and ether-functionalized ammonium-based ILs (see Schemes 1 and 2) were described in 81 

Supporting Information. 82 

2.2. Enzymatic transesterification of ethyl sorbate with 1-propanol 83 

In a capped 3-mL glass vial reactor, 50 μL stock solution of 100 mM ethyl sorbate in 1-propanol 84 

was mixed with 1.0 mL of IL. Ethyl sorbate and 1-propanol had final concentrations of 5 mM 85 

and 0.67 M, respectively. Following the addition of 20 mg Novozym 435 (assuming containing 86 

~4 mg free CALB for calculation of reaction rates; according to literatures [41-44], free CALB 87 

loading in Novozym 435 ranges from 8.5 to 20 wt%), the reaction mixture was incubated in an 88 

oil bath at 50 °C and gently stirred. Periodically (each 15 min of the first hour), an aliquot (50 μL) 89 

was carefully withdrawn from reaction mixture (while minimizing the removal of enzyme beads) 90 

and mixed with 1.0 mL methanol. The diluted sample was centrifuged for about 2 min, and the 91 

clear supernatant was added into an autosampler vial for HPLC analysis. The content of propyl 92 

sorbate was estimated from its integrated peak area by using the standard curve for ethyl sorbate 93 

(propyl sorbate is not commercially available). Since our earlier study [31] suggested that trace 94 

amounts of sorbic acid and sorbate ester could migrate out of Novozym 435 beads into various 95 

solvents including ILs, control experiments were performed in the absence of substrate (ethyl 96 

sorbate) but with the addition of 50 μL 1-propanol. All lipase activities reported herein were net 97 

activities after subtracting control rates. Reaction samples were analyzed by a Shimadzu LC-98 

20AD HPLC with an auto-sampler and a SPD-20A UV–Visible dual-wavelength detector at 258 99 
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nm. The stationary phase was a Phenomenex® Kinetex C18 column (100 mm × 4.6 mm, particle 100 

size 2.6 mm), and the mobile phase was an isocratic eluent comprising methanol and water 101 

(60/40, v/v) at 1.0 mL min-1 flow rate. 102 

2.3. Enzymatic ring-opening polymerization (ROP) of ε-caprolactone 103 

In a glass reaction vial, ε-caprolactone (0.5 mL with density of 1.03 g/mL) was mixed with 0.25 104 

mL of IL and 100 mg of Novozym 435. The capped vial was incubated in a 70 ºC-oil bath and 105 

stirred at 210 rpm. After 48 h, the reaction mixture was cooled to room temperature, followed by 106 

the addition of 2.0 mL of chloroform to solubilize the polyester with a small spatula breaking 107 

apart the solid. The enzyme beads were removed by vacuum filtration with additional chloroform 108 

to wash the solid. Chloroform in filtrate was evaporated and then methanol was added to 109 

precipitate the polymer, which was collected by centrifugation or vacuum filtration. The white 110 

polyester product was air-dried for 24 h.  111 

Polyester yield was calculated by dividing polyester mass with ε-caprolactone mass. 112 

Mass-average molecular mass (Mw) and polydispersity index (PDI = Mw/Mn) of polymers were 113 

obtained from analyses by a GPC (LC-20AD Shimadzu HPLC) with a SPD-20A UV–visible 114 

dual-wavelength detector at 210 and 254 nm, and two Agilent PLgel MIXED-B (10 µm, 300 × 115 

7.5 mm) columns eluted with 1.0 mL/min THF at 30 ºC [45]. The calibration curve was 116 

generated by polystyrene standards with Mw in the range of 1,130 to 62,500 Da [46]. 117 

3. Results and discussion 118 

To synthesize dual-functionalized ammonium-based ILs, our initial attempts (as illustrated by 119 

Scheme S1(a) in Supporting Information) began by grafting an ethyl group or tert-alcohol group 120 

onto diethylamine to yield tertiary amines. However, further quaternarization reactions to append 121 

an additional functional group failed, most likely due to steric hindrance that is unfavorable for 122 
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nucleophilic alkylation; similar failures were found for two other approaches [Schemes S1(b) 123 

and (c)]. To move forward, we modified our synthetic strategy by starting with an ether-124 

functionalized secondary amine (such as (2-methoxyethyl)methylamine, or bis(2-125 

methoxyethyl)amine). These ether-functionalized amines were purchased from a commercial 126 

source, but could be prepared by reacting glycol with p-toluenesulfonyl chloride to form 127 

sulfonate ester which further reacts with a primary or methyl amine [47]. As shown in Scheme 1, 128 

ether-functionalized amine reacted with 1,1-dimethyloxirane to yield a tertiary amine grafted 129 

with a tert-butyl alcohol group, which could be easily converted to quaternary ammonium salt by 130 

refluxing with iodomethane in acetone (however, refluxing with bromoethane took 48 h at a 131 

higher temperature in acetonitrile). The resulted ammonium halide was converted to Tf2N‒ 132 

hydrophobic IL through an anion exchange (Scheme 1), which was purified by rinsing with 133 

diethyl ether and/or n-heptane to remove impurities. Three ILs (Scheme 2) produced are 134 

[CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (1), [(CH3OCH2CH2)2-MeN-t-BuOH][Tf2N] (2), and 135 

[CH3OCH2CH2-Me-EtN-t-BuOH][Tf2N] (3). 136 

 The synthetic activity of Novozym 435 (immobilized Candida antarctica lipase B 137 

(CALB)) in different solvents was evaluated by a highly sensitive transesterification reaction 138 

between ethyl sorbate and 1-propanol [31, 35, 38, 39]. Lipases are known to have high synthetic 139 

activities in tert-butanol [40, 48-53] and diisopropyl ether [54-57], and thus these two organic 140 

solvents are often used as ‘baselines’ for comparing enzyme’s synthetic activities. As illustrated 141 

in Table 1, Novozym 435 displayed high activities of 5.94 and 8.57 μmol min‒1 g‒1 CALB in 142 

tert-butanol (trial 1) and diisopropyl ether (trial 2) respectively. In the absence of Novozym 435, 143 

no appreciable transesterification could be detected in organic solvents or any ILs listed in Table 144 

1. A non-functionalized ‘classical’ hydrophobic IL ([BMIM][Tf2N], trial 3) is well-known for its 145 



8 
 

high compatibility with enzymes [15, 18, 58], which afforded the transesterification activity of 146 

5.12 μmol min‒1 g‒1 CALB in the present study. A dual-functionalized imidazolium IL 147 

([CH3OCH2CH2-Im-t-BuOH][Tf2N], trial 4, recently synthesized by our group) exhibited a very 148 

high enzyme activity of 12.36 μmol min‒1 g‒1 CALB [39]. Trials 5a-d demonstrate the effect of 149 

water contents on CALB activities in [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (1): lipase activity 150 

increased from 0.005 wt% to 0.02 wt% H2O, and then declined at 0.03 wt% H2O. These results 151 

imply the necessity of a small amount of water (sometime knowns as ‘essential water’ [3, 59]) in 152 

nonaqueous media to activate the enzyme. The highest CALB activity achieved in this IL (1) was 153 

9.15 μmol min‒1 g‒1 CALB (with 0.02 wt% H2O). A similar trend was observed in trials 6a-b and 154 

7a-b where lipase activities were lower when the water content was below 0.02 wt%. Highest 155 

activities observed for [(CH3OCH2CH2)2-MeN-t-BuOH][Tf2N] (2) and [CH3OCH2CH2-Me-EtN-156 

t-BuOH][Tf2N] (3) were 6.73 and 7.37 μmol min‒1 g‒1 CALB (with 0.02 wt% H2O) respectively. 157 

New dual-functionalized ammonium-based ILs (1-3) enabled excellent lipase activities that are 158 

higher than the performance in tert-butanol (up to 1.5 fold) and are slightly higher than that in 159 

diisopropyl ether. Although these activities (6.73‒9.15 μmol min‒1 g‒1 CALB in trials 5c, 6b and 160 

7b) are not as high as that in the imidazolium analogue (trial 4), these ammonium-type ILs 161 

exhibit the advantage of significantly lower viscosities (129.3‒190.4 mPa s at 30 °C) than its 162 

imidazolium cousin (303.0 mPa s).  163 

When compared with water and conventional organic solvents, ILs are viscous fluids 164 

(mostly in the range of 30‒1000 mPa s at room temperature) [60]. Typically, enzymes are 165 

suspended in organic solvents or neat ILs during biocatalytic processes, resulting in 166 

heterogeneous reaction systems. For this reason, internal and external mass-transfer limitations 167 

could become a bottleneck of fast enzymatic reactions [61]. For example, Lozano et al [62] noted 168 
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that other than IL polarity, IL viscosity could influence α-chymotrypsin’s activity; they observed 169 

a higher transesterification activity in less viscous [EMIM][Tf2N] (34 mPa s) than in much more 170 

viscous [MTOA][Tf2N] (574 mPa s) (MTOA = methyl trioctylammonium). van Rantwijk and 171 

Sheldon [18] explained that conformation changes of proteins are slower in a more viscous 172 

medium, enabling enzymes to conserve their native structures and activity. In addition, from the 173 

industrial processing point of view, a lower solvent viscosity usually leads to an improved 174 

operability especially for biocatalytic reactor design [63]. 175 

 Furthermore, Novozym 435 showed greater thermal stability in ILs (1-3) than in tert-176 

butanol (Fig. 1). At 50 °C, CALB only kept 17% of its synthetic activity in tert-butanol after 24 177 

h incubation. However, the lipase retained about 50% activity after 24 h in [CH3OCH2CH2-178 

Me2N-t-BuOH][Tf2N] (1), 35% activity in [(CH3OCH2CH2)2-MeN-t-BuOH][Tf2N] (2), and 47% 179 

activity in [CH3OCH2CH2-Me-EtN-t-BuOH][Tf2N] (3). Among these three ILs, [CH3OCH2CH2-180 

Me2N-t-BuOH][Tf2N] (1) appears to be most compatible with the lipase especially after CALB 181 

incubation for 48 h at 50 °C, where 52% residual enzyme activity was detected. This thermal 182 

stability of CALB is slightly inferior to that in the imidazolium analogue (i.e. [CH3OCH2CH2-183 

Im-t-BuOH][Tf2N]), where 81% and 69% residual activities were observed respectively after 24 184 

h and 48 h incubation at 50 °C [39]. Our earlier study [35] indicated that when Novozym 435 185 

was incubated in [CH3OCH2CH2NEt3][Tf2N] for 24 or 48 h, its thermal stability at 70 °C was 186 

about the half of that at 50 °C; for 24 h-incubation in tert-butanol, lipase residual activities were 187 

17% and 1% respectively at 50 °C and 70 °C. Thus, earlier and current results suggest that the 188 

lipase CALB exhibited much higher thermal stability in functionalized ILs than in tert-butanol. 189 

 Additionally, we evaluated these dual-functionalized ILs as co-solvents for enzymatic 190 

ring-opening polymerization (ROP) of ε-caprolactone (Scheme 3 and Table 2). Enzymatic ROP 191 
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is becoming an attractive and benign route for polyester synthesis [34, 35, 64]. Under solvent-192 

free condition (trial 1 in Table 2), moderate molecular mass (Mw) of 13,800 Da and isolated yield 193 

of 37% were obtained. An ether-functionalized imidazolium [CH3OCH2CH2-Im-Et][Tf2N] (trial 194 

2) showed a minimum impact on the polymerization while an ether-functionalized ammonium 195 

(trial 3) was able to increase Mw to 17,300 Da but decrease the yield to 11%. On the other hand, 196 

dual-functionalized imidazolium and ammonium-based ILs (trial 4-7 in Table 2) considerably 197 

improved ROP yields (64‒76%) and increased Mw at various degrees (15,800‒18,000 Da). The 198 

top-performing IL identified was [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (1), achieving Mw = 199 

18,000 Da and 74% isolated yield. Polydispersity index (PDI = Mw/Mn) was generally reduced 200 

with the use of ILs (PDI = 1.39‒1.66) when comparing with solvent-free condition (PDI = 1.71), 201 

implying that ionic co-solvents promoted more uniform enzymatic polymerization. 202 

4. Conclusions 203 

We have synthesized three dual-functionalized ammonium-based ILs carrying both ether and 204 

tert-alcohol groups. These novel ionic solvents have lower viscosities than the imidazolium 205 

analogue. These ammonium-based ILs are highly compatible with Novozym 435 leading to 206 

higher transesterification activities than those in [BMIM][Tf2N] and organic solvents (e.g. tert-207 

butanol and diisopropyl ether), and higher thermal stability of CALB than that in tert-butanol. 208 

When these ILs were employed as co-solvents for enzymatic ROP of ε-caprolactone, high Mw 209 

(up to 18,000 Da) and high yields (up to 74%) were obtained. In summary, we have prepared 210 

“water-like” ionic solvents that not only mimic the structure of water, but also provide a benign 211 

environment for achieving high enzyme activity and stability. 212 

 213 

 214 
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 406 

Scheme 1. Three-step synthesis of “water-like” ammonium-type ionic liquids (ILs). 407 

 408 
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 410 

Scheme 2. Structures of three dual-functionalized ammonium-based ILs. 411 
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 413 

Scheme 3. Enzymatic ring-opening polymerization (ROP) of ε-caprolactone. 414 
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Table 1 Lipase-catalyzed transesterification between ethyl sorbate and 1-propanol a 

Trial Solvent (water, wt%) b Dynamic 

viscosity at 30 °C 

(mPa s) c 

Kinematic 

viscosity 

(mm2 s-1) c 

Density at 30 °C  

(g cm‒3) c 

Enzyme activity  

(μmol min‒1 g‒1 

free CALB) d 

1 tert-Butanol (0.02) 4.31 (25 °C) [65] ‒ 0.7887 (20 °C) [65] 5.94 

2 Diisopropyl ether (0.02) 0.299 [66] ‒ 0.713 [66] 8.57 

3 [BMIM][Tf2N] (0.01) 41.4 28.9 1.430 5.12 

4 [CH3OCH2CH2-Im-t-BuOH][Tf2N] (0.02) 303.0 213.3 1.421 12.36 

5a [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (0.005) 129.3 92.1 1.403 6.61 

5b [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (0.01)    7.74 

5c [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (0.02)    9.15 

5d [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (0.03)    8.02 

6a [(CH3OCH2CH2)2-MeN-t-BuOH][Tf2N] (0.003) 190.4 138.2 1.378 5.81 

6b [(CH3OCH2CH2)2-MeN-t-BuOH][Tf2N] (0.02)    6.73 

7a [CH3OCH2CH2-Me-EtN-t-BuOH][Tf2N] (0.002) 175.3 126.7 1.384 4.42 

7b [CH3OCH2CH2-Me-EtN-t-BuOH][Tf2N] (0.02)    7.37 

Note: a The transesterification was conducted by adding ethyl sorbate (5 mM) and 1-propanol (0.67 M) in 1.0 mL solvent with the 

presence of 20 mg Novozym 435 (~ 4 mg free CALB) at 50 °C. b A coulometric Karl Fischer titrator was used to measure the water 

content at 22 °C with Hydranal® Coulomat AG as the analyte. c An Anton Paar SVM 3000 viscometer was used to determine the 

dynamic/kinematic viscosity and density data at 30 °C (except noted otherwise). d The enzyme activity was calculated based on ~4 mg 

free CALB in 20 mg Novozym 435 (see Section 2.2 for explanation). 
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Table 2 Enzymatic ROP of ε-caprolactone using different co-solvents a 

Trial Solvent (water content) Isolated 

yield (%) 

Mw 

(Da) d 

PDI 

1 no solvent 37 13,800 1.71 

2 [CH3OCH2CH2-Im-Et][Tf2N] (0.03 wt%) b 42 12,300 1.60 

3 [CH3OCH2CH2-Et3N][Tf2N] (0.03 wt%) b 11 17,300 1.39 

4 [CH3OCH2CH2-Im-t-BuOH][Tf2N] (0.013 wt%) c 76 15,900 1.66 

5 [CH3OCH2CH2-Me2N-t-BuOH][Tf2N] (0.017 wt%) 74 18,000 1.55 

6 [(CH3OCH2CH2)2-MeN-t-BuOH][Tf2N] (0.015 wt%) 64 15,800 1.57 

7 [CH3OCH2CH2-Me-EtN-t-BuOH][Tf2N] (0.021 wt%) 64 17,600 1.55 

Note: a General reaction conditions (unless noted otherwise): 0.5 g of ε-caprolactone (containing 

0.02 wt% water), 0.25 mL solvent, 100 mg of Novozym 435 (Lot # SLBW1544), gentle stirring 

(210 rpm) at 70 °C for 2 days. GPC-derived Mw values were based on results calibrated using 

polystyrene standards. b Data (using Novozym 435 Lot # SLBP0766V) were published in our 

earlier paper [34]. c This IL was prepared by an earlier study [39]. d Based on GPC analysis. 
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Fig. 1. Novozym 435 thermal stability in various solvents (IL 1, 2 and 3 structures are shown in 

Scheme 2). Reaction conditions: a closed vial containing 20 mg Novozym 435 and 1.0 mL 

solvent was placed in a 50 ºC-oil bath for 24 or 48 h under gentle agitation. At the end of 

incubation, the mixture was cooled to room temperature, followed by the addition of ethyl 

sorbate (50 μL 100 mM in 1-propanol). The reaction mixture was sealed and stirred in an oil bath 

at 50 °C. The lipase activity was determined following the procedure in Section 2.2. 
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