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Abstract—This paper is concerned with the problem of
Security-Constrained Unit Commitment (SCUC) which is a long-
standing challenge in power system engineering faced by system
operators and utility companies on a daily basis. We consider a
detailed variant of this problem that suffers from complexities
posed by the presence of binary variables, the uncertainty of
renewable sources and security constraints. A convex relaxation
is formulated which is capable of finding feasible solutions within
a provable distance from global optimality. We demonstrate
the performance of this approach on detailed and challenging
instances of SCUC with IEEE and PEGASE benchmark cases
from MATPOWER [1]. The proposed approach is able to handle
over 12,000 binary variables and 2 million continuous variables
with significant improvement in solution quality over commonly-
used off-the-shelf solvers and other methods of convex relaxation.

Index Terms—Power generation scheduling, Power system
security, Optimization methods

I. INTRODUCTION

UNit commitment (UC) is the problem of determining the

schedule and level of contributions by generators in

a power grid to meet forecasted demand for electricity as

economically as possible. The efficiency of wholesale power

markets is highly dependent on solution methods for UC.

Efficient algorithms based on high-fidelity power grid models

can alleviate a variety of problems such as uplift payments,

underfunded transmission rights and occasional disputes be-

tween market participants [2], [3]. Several variants of UC

have been studied in the literature to address considerations

such as contingency constraints and to mitigate the uncer-

tainty of demand and renewable sources. Network components

are prone to various sources of failure. Hence, contingency

planning is central to reliable functioning of power grids. To

ensure immunity to the outage of individual grid components,

it is common-practice to impose a comprehensive list of

constraints, accounting for pre-determined contingencies. This

problem is regarded as Security-Constrained Unit Commit-

ment (SCUC). Due to the ever increasing integration of renew-

able energy sources, several papers have considered stochastic

formulations of SCUC to mitigate the risks associated with

grid uncertainty. In this paper, we propose a computational

method for SCUC under the uncertainty of renewable sources.

The presence of binary variables pose a major challenge

in solving large-scale unit commitment problems. Therefore,

a variety of methods have been developed for UC since the

late 1960s. Among early attempts were rudimentary methods

such as exhaustive enumeration and priority list [4]–[8] that
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are only applicable to small instances of UC. In the 1960s and

70s a number of Dynamic Programming (DP) methods were

proposed for UC in [9]–[11], without success on large-scale

problems due to curse of dimensionality. To this date, La-

grangian Relaxation (LR) has remained one of the successful

methods to approach UC [12]–[14]. LR works by decomposing

UC problems into a master problem and subproblems that

are solved iteratively until an optimal solution is found. The

success of LR is due to its reliance on a lower complexity

dual formulation as opposed to the high dimensional primal

UC problem which is tackled by other methods. Recent papers

employ benders decomposition for separating the UC into

master and subproblems to be solved using augmented LR

or combined with DP and Genetic Algorithm (GA) [15]–[17]

to achieve reasonable computational speed, though not fast

enough for practical applications.

With the increase in computer memory and processing

power Mixed-Integer Programming (MIP) methods such as

Branch and Bound (B&B) have gained popularity as solution

approaches to UC [18], [19]. Recently, MIP solvers such as

CPLEX and GUROBI have become very popular and widely

used to solve UC problems for commercial applications [2].

However, a main disadvantage of B&B is the rapid growth

of search trees with the number of binary variables [20]. The

success of MIP solvers in tackling stochastic SCUC problems

depends on the tightness and compactness of formulation,

number of binary variables, number of wind scenarios, number

of contingencies and binding transmission line constraints

[21]–[23]. In order to improve the efficiency and solution

quality of B&B searches, the creators of CPLEX; IBM have

offered improvements such as heuristics, node presolve and

cutting planes [24]. Despite these improvements, a number of

papers have reported that the computational burden on off-

the-shelf MIP solvers increases when applied to large-scale

SCUC problems as solvers either exceed the time-limit or

CPU memory limit [21]–[23]. Many papers have also offered

partial convex hull characterizations of UC feasible sets [25]–

[28] to improve efficiency of B&B. The paper [29] offers a

critical review of the common-practice of implementing linear

programming (LP) relaxation as a reliable approach to UC.

Recently, more sophisticated convex relaxations such as

Semidefinite Programming (SDP) and Second-Order Cone

Programming (SOCP) have been used for solving different

variants of UC [30], [31]. In [30], it is shown that perspective

relaxation can significantly improve the performance of MIP

search for UC. The paper [31] applies SDP relaxation to SCUC

with AC network constraints. In [32] a strengthened SDP

relaxation is proposed, which offers improved performance

using the Reformulation Linearization Technique (RLT). The

paper [33] employs SOCP to find globally optimal solutions
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to UC with AC network constraints. Due to the computational

complexity of UC, solutions obtained from any polynomial-

solvable relaxation may not be feasible for the original non-

convex UC problem. To address this issue, the paper [34]

proposes a sequential penalization method for UC to obtain

near-globally optimal solutions.

This paper examines the complexity of tackling challenging

day-ahead scheduling problems in cases where large-scale UC

is combined with security constraints, contingency events and

uncertain wind scenarios. We adopted a stochastic approach

proposed in [35]. The base case and contingency states are

tied together by generator ramp limits. In addition, generator

re-dispatches are treated as recourse actions to contingencies.

This stochastic approach to modeling system security is pre-

ferred to other modeling approaches because it allows for cost

of each state to be weighted by its probability of occurrence.

In this paper, we leverage the power of SDP relaxation to

alleviate the burden of branch-and-bound search for detailed

and large-scale SCUC problems. While off-the-shelf SDP

relaxation produces a lower bound on the optimal objective,

it is computationally prohibitive thus not scalable [36], [37].

Hence, in this work, we are forging a low-complexity conic

relaxation that is capable of solving large-scale SCUC. This

effort is aligned with the recent body of research devoted

to scalable variants of semidefinite programming [38]. In

lieu of computationally demanding constraints, we employ

low-order SDP constraints to determine binary variables.

So as to strengthen the relaxation, valid inequalities are

introduced from the multiplication of constraints through

the Reformulation-Linearization Technique (RLT). To address

cases for which the proposed relaxation is not exact, we

propose a heuristic approach to infer near-globally optimal

points from the outcome of convex relaxation. The proposed

approach is tested on modified IEEE and PEGASE benchmark

systems with realizations of uncertain wind scenarios and N-

1 contingencies. The largest benchmark system considered

includes 12,240 binary decision variables and 1,830,560 con-

tinuous variables. The performance of the proposed convex

relaxation is compared with off-the-shelf solvers such as

CPLEX and GUROBI and other methods of relaxation like

perspective and LP relaxations.

The remainder of this paper is organized as follows. In Sec-

tion II-A, we formulate the SCUC problem under uncertainty.

This non-convex problem is convexified by means of convex

surrogates in Section III. Next, a scalable convex relaxation

is proposed in Section III to tackle SCUC in polynomial

time. Section IV proposes a heuristic approach to infer near-

globally optimal points from the outcome of convex relaxation.

Extensive experiments are conducted in Section V on IEEE

and PEGASE benchmark systems. Section VI concludes the

paper.

A. Notations

Throughout this paper, matrices, vectors and scalars are

represented by boldface uppercase, boldface lowercase and

italic lowercase letters, respectively. |·| represents the absolute

value of a scalar or the cardinality of a set. The symbol

(·)⊤ represents the transpose operator. The notation real{·}
represents the real part of a scalar or a matrix. Given a matrix

A, the notation Ajk refers to its (j, k)th element. A � 0
means that A is symmetric and positive semidefinite.

II. UNIT COMMITMENT PROBLEM

This work considers a secure unit commitment problem

under wind generation uncertainty. As mentioned in the in-

troduction, security constraints are modeled using a stochastic

approach proposed in [35]. Contingencies in the network are

modeled by specifying outages to units or lines. Locational

reserve requirements are endogenously determined as a func-

tion of the set of included credible contingencies, which

is in stark contrast to deterministic approach where zonal

reserve requirements are predefined by system operators and

employed in various UC studies [15]. Pre-defined or fixed

reserve requirements are not used in this study, conversely

we make use of generator ramp rate modeled after [39]. Also,

we define a power contract variable which represents reference

dispatch value from which dispatch deviations are defined.

Uncertainty in wind generation is modeled as scenarios with

continuous probability distributions, such that each scenario

represents a different forecast of wind. Furthermore, a transi-

tion probability matrix is used to describe the transitions from

a limited set of base scenarios in one period to a limited set

of base scenarios in the next period. Experimental data on

generator and wind parameters including ramp rate for IEEE

and PEGASE benchmark systems are specified in Section V.

A. Problem Formulation

The goal of unit commitment is to schedule the generation

of electricity within a time horizon T = {1, 2, . . . , |T |}. For

every t ∈ T , let St represent the set of all possible uncertainty

scenarios for renewable sources at time t. Additionally, let Gt

represent the set of all generating units that are available at

time t ∈ T . For every, t ∈ T and s ∈ St, define Cts as the set

of all contingency cases with 0 ∈ Cts representing the base

case (normal operation). Lastly, Gtsc ⊆ Gt is defined as the

set of all generating units that are available at time t ∈ T ,

scenario s ∈ St and contingency c ∈ Cts, such that

Gt = ∪s∈St
∪c∈Cts

Gtsc.

Consider a power system with V as the set of buses, and Etc ⊆
V × V as the set of branches at time t ∈ T and contingency

c ∈ ∪s∈St
Cts.

Motivated by [35], we formulate SCUC using the following

list of decision variables:

{xtg ∈ {0, 1}}t∈T , g∈Gt
,

{pcontracttg , r+tg, r
−
tg, w

+
tg, w

−
tg ∈ R}t∈T , g∈Gt

{ptgsc}t∈T , g∈Gt, s∈St, c∈Cts
, {θtsc ∈ R

|V|}t∈T , s∈St, c∈Cts
.

Each xtg is a binary variable indicating the on/off status of

unit g ∈ Gt at time t ∈ T and pcontracttg is its contract

active power quantity. Variables (r+tg, r
−
tg) are upward and
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downward contingency reserve quantities, and (w+
tg, w

−
tg) rep-

resent upward and downward load-following ramping reserve

quantities, respectively. If g /∈ Gt, then

xtg = pcontracttg = r+tg = r−tg = w+
tg = w−

tg = 0.

Each variable ptgsc denotes the active power injection at time

t ∈ T by generator g ∈ Gt, in scenario s ∈ St and contingency

c ∈ Cts. Lastly, θtsc ∈ R
|V| represents the vector of nodal

phase angles at time t ∈ T , scenario s ∈ St and contingency

c ∈ Cts.

B. Objective function

We consider a holistic objective accounting for the ex-

pected value of the total cost throughout the time horizon T ,

and across the set of all scenarios and contingencies. This

objective is made up of the expected base case and post-

contingency generation costs, ramping “wear and tear” costs,

load-following ramp reserve and contingency reserve costs, as

well as the generator start-up, shutdown and fixed costs. This

objective function can be cast with respect to the following

three expressions:

∑

t∈T

γt
∑

g∈Gt

σ
(1)
tg (xtg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) (1a)

∑

t∈T

∑

s∈St

∑

c∈Cts

ψtsc

∑

g∈Gtsc

σ
(2)
tg (ptgsc, p

contract
tg ) (1b)

∑

t∈T

γt
∑

s1∈St−1

∑

s2∈St

φts1s2

∑

g∈Gts20

σ(3)
g (ptgs20, p(t−1)gs10) (1c)

In the first line of the objective (1a), the cost function σ
(1)
tg is

defined as

σ
(1)
tg (xtg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) , ζtg xtg (2a)

+ ζ↑tg (1− x(t−1)g)xtg (2b)

+ ζ↓tg x(t−1)g(1− xtg) (2c)

+ (η+tg r+tg + η−tg r−tg) (2d)

+ (µ+
tg w+

tg + µ−
tg w−

tg) (2e)

with the expressions (2a), (2b) and (2c) corresponding to

generator fixed, startup and shutdown costs, respectively; while

(2d) and (2e) account for the cost of contingency and load-

following ramping reserves, respectively. The start-up and

shutdown costs ζ↑tg and ζ↓tg incur with every time slot at

which the unit changes status. The fixed production cost ζtg
is enforced if the unit is active. The coefficients η+tg and η−tg
are the costs incurred when reserves are purchased from a

generating unit in the event of a contingency. The coefficients

µ+
tg and µ−

tg are the costs incurred due to variations of active

power between two consecutive time slots in which the unit

g is committed. These costs are weighted by γt, which is the

probability of transitioning to period t without branching off

from the central base case path to a contingency.

In the second line (1b), the function σ
(2)
tg (·, ·) is defined as

σ
(2)
tg (ptgsc, p

contract
tg ) , αsqr

tg p2tgsc + αlin
tg ptgsc + (3a)

β+
tg+β−

tg

2
|ptgsc−pcontracttg |+

β+
tg−β−

tg

2
(ptgsc − pcontracttg ) (3b)

including the quadratic expression (3a) with nonnegative

quadratic and linear coefficients αsqr
tg and αlin

tg , and the term

(3b) for assigning costs to deviations from contract values

with nonnegative coefficients β+
tg and β−

tg . These costs are

weighted by the probability of contingency ψtsc.

Finally, we have the third term (1c) representing a quadratic

load-following ramp “wear and tear” cost

σ(3)
g (ptgs20, p(t−1)gs10) , κg×(ptgs20 − p(t−1)gs10)

2 (4)

weighted by γt, the nonnegative coefficients κg , and φts1s2

which is the probability of transitioning to scenario s2 in

period t provided that scenario s1 was realized in period t−1.

C. Constraints

We apply the following constraints which can be separated

into five main categories:

1) Integrality constraints: For every t ∈ T and g ∈ Gt, the

binary requirements are:

xtg ∈ {0, 1} (5)

These constraints are the main sources of complexity in SCUC.

We will relax the integrality constraints (5) and implicitly

impose them via proxy conic and linear inequalities.

2) Unit capacity constraints: For every t ∈ T and g ∈ Gt,

the unit capacity constraints consist of:

¯
pg xtg ≤ ptgsc ≤ p̄g xtg ∀s ∈ St, ∀c ∈ Cts (6)

Constraint (6) ensures that when unit g ∈ Gt is committed

during the interval t, then its active power injections lies

within the pre-specified limits
¯
ptgsc and p̄tgsc.

3) Minimum up/down time constraints: For every t ∈ T
and g ∈ Gt, the Minimum up/down time constraints are:

xtg ≥ xτg − x(τ−1)g ∀τ ∈ {t−m↑
g + 1, . . . , t} (7a)

1− xtg ≥ x(τ−1)g − xτg ∀τ ∈ {t−m↓
g + 1, . . . , t} (7b)

where m↑
g and m↓

g denote the minimum up and down time

limits of generator t, respectively.

4) Ramp constraints: For every t ∈ T and g ∈ Gt, the

generator ramp constraints consist of:

0 ≤ w+
tg ≤ w̄tg, (8a)

0 ≤ w−
tg ≤

¯
wtg, (8b)

ptgs20 − p(t−1)gs10 ≤ w+
(t−1)g, ∀s1 ∈ St−1, ∀s2 ∈ St (8c)

p(t−1)gs10 − ptgs20 ≤ w−
(t−1)g, ∀s1 ∈ St−1, ∀s2 ∈ St (8d)

Constraints (8a) – (8b) impose the limits w̄tg and
¯
wtg on the

upward and downward load-following reserve quantities of

generator t, respectively. Constraints (8c) – (8d) limit changes

in active power injection between two consecutive time slots

during which the unit t is committed.
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5) Post-contingency reserve constraints: For every t ∈ T
and g ∈ Gt, the post-contingency reserve constraints are:

0 ≤ r+tg ≤ r̄tg, (9a)

0 ≤ r−tg ≤
¯
rtg, (9b)

ptgsc − pcontracttg ≤ r+tg, ∀s ∈ St, ∀c ∈ Cts (9c)

pcontracttg − ptgsc ≤ r−tg, ∀s ∈ St, ∀c ∈ Cts (9d)

−
¯
∆g ≤ ptgsc − ptgs0 ≤ ∆̄g, ∀s ∈ St, ∀c ∈ Cts (9e)

Constraints (9a) – (9b) impose the upward/downward reserve

capacity limits r̄tg and
¯
rtg on post-contingency dispatch

quantities, respectively. Deviations from active power contract

quantities are limited by constraints (9c) – (9d). Additionally,

the constraint (9e) enforces the physical ramp limits
¯
∆g and

∆̄g on downward and upward transitions from base to post-

contigency cases.
6) DC network constraints: The DC modeling is employed

to describe the flow of power throughout the network. To this

end, let B denote the the imaginary part of the network bus

admittance matrix and for each t ∈ T and c ∈ ∪s∈St
Cts,

let ~Btc ∈ R
|Etc|×|V| and Btc ∈ R

|V|×|V| represent the cor-

responding susceptance matrices. Additionally, define Ctsc ∈
{0, 1}|Gtsc|×|V| as the incidence matrix whose (j, k) element

is equal to 1, if and only if the unit g belongs to the bus k.

For every t ∈ T , the DC network constraints can be cast as

dtc +Btc θtsc = C⊤
tsc ptsc, ∀s ∈ St, ∀c ∈ Cts (10a)

|~Btc θtsc + f shift
tc | ≤ fmax

tc ∀s ∈ St, ∀c ∈ Cts (10b)

where

ptsc , [pt1sc, pt2sc, . . . , pt|Gtsc|sc]
⊤ (11)

Constraint (10a) imposes power balance equation in which

dtc ∈ R
|V| represents nodal demand and the vector Btcθtsc ∈

R
|V| contains approximate values for active power exchanges

between each vertex and the rest of the network. Additionally,

constraint (10b) restricts the flow of power by the vector of

line thermal limits fmax
tc ∈ R

|Etc|, where f shift
tc accounts for

the effect of transformers and phase shifters.

Given the above three-part expression in (1) and constraints

in (5) – (10), the Stochastic SCUC problem can be formulated

as the optimization:

minimize (1a)+(1b)+(1c) (12a)

subject to (5) – (9) ∀t ∈ T , ∀g ∈ Gt (12b)

(10) ∀t ∈ T (12c)

with respect to variables {xtg}, {ptgsc}, {pcontracttg }, {r+tg},

{r−tg}, {w+
tg}, and {w−

tg}.

III. CONVEXIFICATION OF SCUC PROBLEM

In this section, we construct convex relaxations in order

to efficiently tackle the SCUC problem (12). We employ

conic relaxations combined with a set of valid inequalities

which lead to a computationally-tractable convex formulation.

To this end, we transition to a lifted space by introducing

additional auxiliary variables each accounting for a quadratic

monomial. We then formulate a SOCP relaxation based on

the “perspective relaxation” in [40]. Finally, a strong SDP

relaxation is formulated using additional variables and valid

inequalities.

A. Lifted objective

To formulate convex relaxations we first lift the objective

function (1) into a higher-dimensional space in which it is

piecewise linear. This is done by introducing the variables

{utg}t∈T , g∈Gt
, {htgs1s2}t∈T , g∈Gt, s1∈St−1, s2∈St

,

{otgsc}t∈T , g∈Gt, s∈St, c∈Cts

representing the products

{x(t−1)g xtg}, {p(t−1)gs10 × ptgs20}, {p2tgsc} (13)

respectively. Consider the following lifted objective function

components:

∑

t∈T

γt
∑

g∈Gt

σ̄
(1)
tg (xtg, utg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) (14a)

∑

t∈T

∑

s∈St

∑

c∈Cts

ψtsc

∑

g∈Gtsc

σ̄
(2)
tg (ptgsc, otgsc, p

contract
tg ) (14b)

∑

t∈T

γt
∑

s1∈St−1

∑

s2∈St

φts1s2

∑

g∈Gts20

σ̄(3)
g (otgs20, o(t−1)gs10, htgs2s1) (14c)

where for each t ∈ T and g ∈ Gt

σ̄
(1)
tg (xtg, utg, r

+
tg, r

−
tg, w

+
tg, w

−
tg) , ζtg xtg (15a)

+ ζ↑tg (xtg − utg) (15b)

+ ζ↓tg (x(t−1)g − utg) (15c)

+ (η+tg r+tg + η−tg r−tg) (15d)

+ (µ+
tg w+

tg + µ−
tg w−

tg) (15e)

encapsulates the lifted startup and shutdown costs and

σ̄
(2)
tg (ptgsc, otgsc, p

contract
tg ) , αsqr

tg otgsc + αlin
tg ptgsc + (16a)

β+
tg+β−

tg

2
|ptgsc−pcontracttg |+

β+
tg−β−

tg

2
(ptgsc−pcontracttg ). (16b)

represents the lifted quadratic cost function. Additionally, for

each g ∈ G,

σ̄(3)
g (otgs20, o(t−1)gs10, htgs1s2) ,

κg×(otgs20 + o(t−1)gs10 − 2htgs1s2) (17)

is the lifted “wear and tear” cost.

B. LP and perspective relaxations

For every t ∈ T and g ∈ Gt, the relation between the

auxiliary variables {utg} and their corresponding monomials

can be enforced using the following valid inequalities:

max{0, x(t−1)g+xtg−1} ≤ utg ≤ min{x(t−1)g, xtg} (18)

The role of (18) is to ensure that the lifted costs (14a) is equiv-

alent to the original costs (1a). Through simple enumeration

of the set (xg(t−1), xgt) ∈ {0, 1}2, it can be observed that

(5) ∧ (18) ⇒ utg = xtgx(t−1)g
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for every t ∈ T and g ∈ Gt.

Lifting the first part of the objective and the transformation

of xgt ∈ {0, 1} to 0 ≤ xtg ≤ 1, results in the following LP

relaxation of SCUC [41]–[43]:

minimize (14a)+(1b)+(1c) (19a)

subject to 0 ≤ xtg ≤ 1 ∀t ∈ T , ∀g ∈ Gt (19b)

(6) – (9), (18) ∀t ∈ T , ∀g ∈ Gt (19c)

(10) ∀t ∈ T (19d)

As shown in [40], the performance of this approach can be

significantly improved by lifting (1b) to (14b), and relaxing

otgsc = p2tgsc to the SOCP and McCormick constraint

otgsc xtg ≥ p2tgsc, otgsc ≥ 0 ∀s ∈ St, ∀c∈Cts (20a)

otgsc +
¯
pg p̄g xtg ≤ (

¯
pg + p̄g)ptgsc ∀s ∈ St, ∀c∈Cts (20b)

which results in the following perspective relaxation:

minimize (14a)+(14b)+(1c) (21a)

subject to 0 ≤ xtg ≤ 1 ∀t ∈ T , ∀g ∈ Gt (21b)

(6) – (9), (18), (20) ∀t ∈ T , ∀g ∈ Gt (21c)

(10) ∀t ∈ T (21d)

In the remainder of this section, we will construct an SDP

relaxation as an alternative to (21).

C. SDP relaxation

To forge a stronger relaxation, consider the new variables

{ztgs}t∈T , g∈Gt, s∈St
, {ytgs}t∈T , g∈Gt, s∈St

representing monomials {p(t−1)gs0xtg} and {ptgs0x(t−1)g},

respectively. In place of (19b), we impose a collection of conic

and linear inequalities (22), resulting in the following SDP

relaxation of SCUC:

minimize (14a)+(14b)+(14c) (23a)

subject to (22) ∀t ∈ T , ∀g ∈ Gt (23b)

(6) – (9), (18), (20) ∀t ∈ T , ∀g ∈ Gt (23c)

(10) ∀t ∈ T (23d)

The matrix inequality (22a) is a surrogate for:












x(t−1)g ∗ ∗ ∗ ∗
utg xtg ∗ ∗ ∗
utg utg utg ∗ ∗
p(t−1)gs10 ztgs1 ztgs1 o(t−1)gs10 ∗
ytgs1 ptgs20 ytgs1 htgs1s2 otgs20













=













x(t−1)g

xtg

utg

p(t−1)gs10

ptgs10













[

x(t−1)g xtg utg p(t−1)gs10 ptgs10
]

(24)

If equality holds at optimality, then the above relations are

satisfied and the relaxation is regarded as exact. To fur-

ther strengthen the proposed relaxation, we incorporate the

Reformulation-Linearization Technique (RLT) technique [44].

Linear inequalities (22b) – (22e) are derived from (6). Lastly,

inequalities (22g) – (22i) are immediate consequences of (5)

and (6).

The variables that appear in (22) are tightly correlated

and this is the primary motivation behind the proposed valid

inequalities. In Section (V), we will demonstrate the effect of

these additional inequalities on the quality of relaxation and

their ability to obtain feasible points.

IV. FEASIBLE POINT RECOVERY

Let {xrlx
tg }t∈T, g∈Gt

denote the resulting schedule from a

convex relaxation of SCUC. For large-scale problems, convex

relaxations can fail to satisfy the integrality constraint (5). In

this section, we propose a heuristic to infer a feasible point

{x̂tg ∈ {0, 1}}t∈T, g∈Gt
. To this end, the main challenge is to

ensure that the minimum up and minimum down constraints

(7a) and (7b) are satisfied, which is not possible by simply

rounding xrlx
tg values. To tackle this issue we adopt the

following procedure.

Feasible Point Recovery:

1) For every t ∈ T and g ∈ Gt do xrnd
tg ←round{0.4+xrlx

tg }.

2) For every g ∈ ∪t∈T Gt,

(a) Solve the following linear program

minimize
∑

t∈T

|xtg − xrnd
tg | (25a)

subject to xtg = 0 if g /∈ Gt (25b)

0 ≤ xtg ≤ 1 if g ∈ Gt (25c)

xtg ≥ xτg−x(τ−1)g ∀t∈T , ∀τ ∈{t−m↑
g+1, . . . , t} (25d)

1− xtg ≥ x(τ−1)g−xτg ∀t∈T , ∀τ ∈{t−m↓
g+1, . . . , t} (25e)

and denote the resulting solution as {x̂tg}t∈T .

(b) For t = 1, . . . , |T | do

a↑
tg ← max{x̂τg−x̂(τ−1)g | ∀τ ∈{t−m↑

g+1, . . . , t}}, (26a)

a↓
tg ← max{x̂(τ−1)g−x̂τg | ∀τ ∈{t−m↓

g+1, . . . , t}}, (26b)

if a↑
tg = 0 ∧ a↓

tg = 0 then x̂tg ← xrnd
tg , (26c)

if a↑
tg = 0 ∧ a↓

tg = 1 then x̂tg ← 0, (26d)

if a↑
tg = 1 ∧ a↓

tg = 0 then x̂tg ← 1, (26e)

if a↑
tg = 1 ∧ a↓

tg = 1 then declare failure. (26f)

3) Declare {x̂tg}t∈T, g∈Gt
as the recovered schedule and solve

the convex optimization

minimize (1a)+(1b)+(1c) (27a)

subject to xtg = x̂tg ∀t ∈ T , ∀g ∈ Gt (27b)

(6) – (9) ∀t ∈ T , ∀g ∈ Gt (27c)

(10) ∀t ∈ T (27d)

to obtain a feasible point:

{x̂tg, p̂
contract
tg , r̂+tg, r̂

−
tg, ŵ

+
tg , ŵ

−
tg ∈ R}t∈T , g∈Gt

{p̂tgsc}t∈T , g∈Gt, s∈St, c∈Cts
, {θ̂tsc ∈ R

|V|}t∈T , s∈St, c∈Cts
.

In case of infeasibility, declare failure.
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











x(t−1)g ∗ ∗ ∗ ∗
utg xtg ∗ ∗ ∗
utg utg utg ∗ ∗
p(t−1)gs10 ztgs1 ztgs1 o(t−1)gs10 ∗
ytgs1 ptgs20 ytgs1 htgs1s2 otgs20













� 0 ∀s1 ∈ St−1, ∀s2 ∈ St (22a)

¯
pg (ptgs10 + ptgs20) ≤ htgs1s2 +

¯
p2g utg ∀s1 ∈ St−1, ∀s2 ∈ St (22b)

p̄g (ptgs10 + ptgs20) ≤ htgs1s2 + p̄2g utg ∀s1 ∈ St−1, ∀s2 ∈ St (22c)

htgs1s2 +
¯
pgp̄g utg ≤ p̄g ytgs1 +

¯
pg ztgs1 ∀s1 ∈ St−1, ∀s2 ∈ St (22d)

htgs1s2 +
¯
pgp̄g utg ≤

¯
pg ytgs1 + p̄g ztgs1 ∀s1 ∈ St−1, ∀s2 ∈ St (22e)

¯
pg utg ≤ ytgs1 ≤ p̄g utg ∀s ∈ St (22f)

¯
pg utg ≤ ztgs1 ≤ p̄g utg ∀s ∈ St (22g)

p̄g (utg − xtg) ≤ ytgs1 − ptgs0 ≤
¯
pg (utg − xtg) ∀s ∈ St (22h)

p̄g (utg − x(t−1)g) ≤ ztgs1 − p(t−1)gs0 ≤
¯
pg (utg − x(t−1)g) ∀s ∈ St (22i)

As we will demonstrate in Section (V), this heuristic is able

to obtain good quality feasible points for challenging instances

of SCUC. We use the following measure to evaluate the quality

of the resulting feasible points:

Optimality Gap % = 100×
σ̂ − σrlx

σ̂
(28)

where σrlx and σ̂ are the optimal objective values for convex

relaxation and the recovery problem (27), respectively.

V. EXPERIMENTS

In this section, we demonstrate the performance of the

proposed convex relaxation on a wide range of challeng-

ing SCUC problems. Simulations are performed on a 64-bit

computer with an Intel 3.0 GHz, 12-core CPU and 256 GB

RAM using MATLAB 2019a. The solver MOSEK v8.0.0.60

[45] is used for convex optimization through CVX v2.1 [46],

[47]. SCUC problems are formulated using the MATPOWER

Optimal Scheduling Tool (MOST) v1.0.2 [48]. For compari-

son, CPLEX v12.9.0.0 [49] and GUROBI v9.0 are used for

mixed-integer programming through MOST. We would like to

emphasis that CPLEX and GUROBI may exhibit far better per-

formance on the same problem, if applied differently. System

operators and utility companies may leverage stronger MILP

formulations and valid inequalities in order to strengthen the

performance of SCUC.

A. Data

Transmission Network Data: We use IEEE and Pan Euro-

pean Grid Advanced Simulation and State Estimation (PE-

GASE) benchmark grids from MATPOWER [48]. Certain mod-

ifications are made to the following parts of the data in order

to make the resulting SCUC problems feasible and sufficiently

challenging:

• fmax
tc : Line thermal limits specified in MATPOWER data

files were used without modifications. Source data on

line flow limits are specified in the documentation of

MATPOWER data files [48].

• dtc: With no loss of generality, we assume that all loads

are deterministic and we do not consider the contingency

of loads. In all of the simulations, load variations through-

out the day, follow the vector:

πgen, νgen×[ 0.684, 0.645, 0.620, 0.604, 0.606, 0.627

0.677, 0.694, 0.730, 0.808, 0.893, 0.922

0.946, 0.952, 0.972, 0.999, 1.000, 0.964

0.961, 0.927, 0.927, 0.909, 0.765, 0.764 ]

where νgen = 0.9 for case New England 39-bus system

and νgen = 0.5 for all of the other benchmark cases. In

other words, for every t ∈ T and c ∈ ∪s∈St
Cts we have

dtc = πgen
t d, where d is the vector of nodal demand

from MATPOWER.

In addition to the above modifications, we have added wind

generators to certain buses and altered generator costs due

to the absence of fixed, quadratic, reserve and load-following

costs in MATPOWER data. These changes are detailed next.

Deterministic Generator Cost Data:

• αsqr
tg , αlin

tg , ζtg , ζ↑tg , ζ↓tg: These cost coefficients are

randomly chosen based on uniform distributions within

±20% of mean values $0.0025/(MW.h)2, $20/(MW.h),

$500/h, $5000/h, and $500/h, respectively following [50],

[51] .

• η+tg , η−tg , µ+
tg , µ−

tg: Reserve cost coefficients are selected

as η+tg = η−tg = 5.0αlin
tg and µ+

tg = µ−
tg = 0.2αlin

tg .

• β+
tg , β−

tg: Active power re-dispatch cost coefficients are

selected as β+
tg = β−

tg = 0.2αlin
tg .

• κg: Ramp “wear and tear” cost coefficients are selected

as κg = 500αsqr
tg .

Deterministic Generator Limits:

•
¯
pg: Minimum active power is selected as

¯
pg = 0.

• m↑
g , m↓

g: A quarter of the generators are randomly se-

lected with m↑
g = m↓

g = 1 to act as fast-start units that
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have the capacity to ramp-up quickly in order to support

generation shortfalls. For the remaining generators

m↑
g = min

{

m̃↑
g + 1, ⌊|T |/2⌋

}

m↓
g = min

{

m̃↓
g + 1, ⌊|T |/2⌋

}

where each m̃↑
g and m̃↓

g has Poisson distribution with

parameter 4.

• The initial state of each generator is uniformly chosen

from the set of integers {k ∈ Z | −5 ≤ k ≤ 5}\{0} with

negative and positive numbers, respectively, indicating the

number of uptime and downtime periods at t = 0.

• w̄tg ,
¯
wtg , r̄tg ,

¯
rtg , ∆̄g ,

¯
∆g: Following [39], ramp limits

are selected as w̄tg =
¯
wtg = 0.3p̄ and r̄tg =

¯
rtg = ∆̄g =

¯
∆g = 0.1p̄.

Wind Generator Data: Data on wind generators and hourly

wind profile are obtained from the SW Minnesota wind power

plant [52]. Let |G| indicate the total number of deterministic

generators. We consider round{|G|/3} wind generators, each

located at a randomly chosen bus. We consider 5 wind

scenarios representing 100%, 80%, 60% 40%, and %20 wind

generation, with initial probabilities

Φ1 =
[

0.11 0.48 0.17 0.17 0.07
]⊤

(29)

respectively. Additionally, for every t ∈ T \ {1} the transition

probability matrix is set to

Φt =













0.7858 0.2001 0.0109 0.0032 0
0.1022 0.6215 0.2381 0.0371 0.0012
0.0154 0.3184 0.5042 0.1439 0.0181
0.0022 0.0356 0.2488 0.5435 0.1698

0 0.0004 0.0073 0.0543 0.9379













(30)

The scenario transition probabilities φts1s2 are obtained from

the SW Minnesota wind power plant [52]. The coefficients of

(29) – (30) is used to weight ramp “wear and tear” cost in (1c).

• αlin
tg , ζtg , ζ↑tg , ζ↓tg: Wind energy cost coefficients are

selected as αlin
tg = $20/(MW.h), ζtg = $20/h, and ζ↑tg =

ζ↓tg = $0/h.

• Wind generator output is given by the product of the

maximum wind generator output from MATPOWER [1]

and the ratios

πwind , [ 0.72, 0.61, 0.35, 0.28, 0.15, 0.39

0.25, 0.35, 0.29, 0.57, 0.49, 0.37

0.52, 0.34, 0.42, 0.41, 0.63, 0.42

0.29, 0.53, 0.79, 0.83, 0.81, 0.87 ]

Contingencies: We consider N-1 contingency analysis in this

study. 3 generators and 3 lines are randomly selected each

representing a contingency with probability 1/60.

• ψtsc: Base scenario conditional probabilities are selected

as ψts0 = 0.1/|C| for every s ∈ S . Additionally, for every

c ∈ C post-contingency probabilities are given by:










ψt1c

ψt2c

...

ψt|S|c











=
1

|C|
× Φt











ψ(t−1)10

ψ(t−1)20

...

ψ(t−1)|S|0











(31)

• γt: Lastly, the probability of making it to period t without

branching off the central path in a contingency is given

by:

γt =
∑

s∈St

ψ(t−1)s0 =
∑

s∈St, c∈Cts

ψtsc ≤ 1, for t ≥ 1 (32)

B. Evaluation of Lower Bound

In order to evaluate the performance of our proposed SDP

relaxation, we consider 5 benchmark grids based on IEEE and

PEGASE modified data. Each benchmark grid is simulated in

4 realizations producing 20 test cases. The planning horizon

is divided into 24 hourly intervals, 6 stochastic wind scenarios

and 6 independent contingencies. The largest grid considered

is PEGASE 2869 benchmark grid with 2,869 buses (vertices)

and 510 generating units. For the largest benchmark, the model

has 12,240 binary decision variables and 1,830,560 continuous

variables. Table I presents details on the benchmark grids.

Table II reports performance of SDP relaxation compared to

CPLEX and GUROBI numerical solvers and also perspective

and LP relaxation methods. Performance is compared in terms

of: i) convex lower bound (LB) on the optimal cost, ii)

cost of the recovered feasible solution, iii) optimality gap

and iv) computation time t(s). In all experiments performed

using SDP relaxation, we successfully infer a feasible point

using heuristics presented in Section (IV). The reported gaps

in Table II show that SDP relaxation achieves average of

0.05% and does not exceed 0.36% optimality gap for all the

test cases. This is better than average gap reported by both

perspective and LP relaxations. Computation time reported by

SDP relaxation averages at 35 mins. 35 sec.

C. Solution Quality

Figures 1a and 2a emphasize disparities in the number

of inexact binaries generated by SDP, perspective and LP

methods of relaxation for large test cases such as PEGASE

1354 and PEGASE 2869. As shown in Figures 1a and 2a, SDP

relaxation generates fewer inexact binaries between ‘0’ and ‘1’

as compared to perspective and LP relaxations. Figures 1b,

1c, 2b and 2c shows that perspective and LP relaxations

report higher number of inexact binaries. Poor solution qual-

ity negatively impacts ability of the proposed heuristic to

infer a feasible point resulting in failed recoveries. Table II

shows failed recoveries in experiments 15, 17 and 19 using

perspective relaxation and experiments 14, 15 and 19 using

LP relaxation due to poor solution quality. As seen from the

table, all experiments using SDP relaxation produced feasible

solutions because of fewer inexact binaries.
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(b) Perspective relaxation
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(c) LP relaxation

Fig. 1: Distribution of Binary variables for PEGASE 1354 (Experiment 14) in 24-hour horizon scheduling
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(b) Perspective relaxation
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(c) LP relaxation

Fig. 2: Distribution of Binary variables for PEGASE 2869 (Experiment 17) in 24-hour horizon scheduling

TABLE I: Experiments for 24-hour horizon scheduling of

benchmark systems

Experiment Test Cases
# of # of # of

Generators Binaries Continuous variables

1 New England 39-bus 10 240 67,750
2 New England 39-bus 10 240 67,750
3 New England 39-bus 10 240 67,750
4 New England 39-bus 10 240 67,750
5 IEEE 118 54 1,296 191,664
6 IEEE 118 54 1,296 191,664
7 IEEE 118 54 1,296 191,664
8 IEEE 118 54 1,296 191,664
9 IEEE 300 69 1,656 247,664

10 IEEE 300 69 1,656 247,664
11 IEEE 300 69 1,656 247,664
12 IEEE 300 69 1,656 247,664
13 PEGASE 1354 260 6,240 928,925
14 PEGASE 1354 260 6,240 928,925
15 PEGASE 1354 260 6,240 928,925
16 PEGASE 1354 260 6,240 928,925
17 PEGASE 2869 510 12,240 1,830,560
18 PEGASE 2869 510 12,240 1,830,560
19 PEGASE 2869 510 12,240 1,830,560
20 PEGASE 2869 510 12,240 1,830,560

D. Hourly Profile

Fig. 3 depicts the 24-hr profile of selected generators and

transmission lines in SCUC experiment 1 on New-England 39

bus benchmark system. The data and the resulting commitment

keys for this particular experiment are given by Tables III

and IV. In the figure, Gen. #5 and line #38 are shown in pre

and post-contingency states, and Gen. #2 in post-contingency

state. Post-contingency #1 represents outage of Gen. #3 while

post-contingency #6 represents loss of line #35. In Fig. 3,

hourly profile is divided into 3 scenarios with probability

assigned to transition from one scenario to the other. Notice

that during on-peak hours 12PM – 10PM, Gen. #2 drives up to

maximum output power in order to supply peak load in pre and

post-contingency states. Likewise, Gen. #5 sees a significant

upward climb in output power in post-contingency #1 in order

to compensate for outage to Gen. #3. This presents stress on

the network which is discussed next and illustrated by 4.

As seen in Fig. 3, line #38 shows signs of congestion in

post-contingency #6 due to loss of line #35 during on-peak

hours. Of significance, line flows in post-contingency state is

almost three times higher than line flows before contingency

occurred. The impact of high wind penetration on generator

and line congestion is seen between 9PM – 1AM. Between

9PM – 1AM, wind penetration is at its highest point coinciding

with congested generators and line flows. This results in the

noticeable decline in line flows and power generation seen

between 9PM – 1AM in Fig. 3.

E. Network Congestion

Fig. 4 shows the contrast in network congestion between

pre and post-contingency states of New England 39-bus bench-

mark grid. As seen in Fig. 4a, all 46 transmission lines operate

within thermal limits with some lines transmitting more power

than others as indicated by varying thickness of lines in the

figure. Directional arrows are used to show the flow of power

throughout the grid network.

In post-contingency state #6 depicted in Fig. 4b, we observe

network congestion during peak hours of the day. The loss

of line #35 in this contingency results in congestion on

transmission line connecting bus 23 to 24 at severe levels

attributed to increased flow of power in order to supply peak

load at bus 24. The contingency also results in reversal of flow

on line connecting bus 16 to 21 and line connecting bus 16 to

24. Power flow is increased on neighboring lines in attempts

to compensate for loss of line #35 as observed in line from

bus 22 to bus 23, as well as bus 32 to bus 10 to mention a

few.

We observe that line contingencies make the SCUC problem

more challenging since power flow is redirected to compensate

for the sudden loss of a line or a generator. Since line flows
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TABLE II: The performance of SDP relaxation algorithm for 24-hour horizon scheduling of benchmark systems (4 realizations

in each benchmark system)

Exp. Test Case
CPLEX GUROBI SDP Relaxation Perspective Relaxation LP Relaxation

Feasible GAP (%) t(s) Feasible GAP (%) t(s) LB Feasible GAP (%) Determined t(s) LB Feasible GAP (%) Determined t(s) LB Feasible GAP (%) Determined t(s)

Binaries (%) Binaries (%) Binaries (%)

1 NE 39 bus -2.621e+6 0.00 94.26 -2.621e+6 0.00 442.81 -2.621e+6 -2.621e+6 0.002 100 42.7 -2.623e+6 -2.620e+6 0.076 92.92 7.55 -2.627e+6 -2.620e+6 0.153 92.92 7.05

2 NE 39 bus -1.337e+6 0.00 119.59 -1.337e+6 0.00 473.75 -1.337e+6 -1.337e+6 0.008 99.58 39.78 -1.339e+6 -1.337e+6 0.147 96.67 7.05 -1.340e+6 -1.337e+6 0.055 96.67 6.06

3 NE 39 bus -1.867e+6 0.15 81.94 -1.867e+6 0.00 247.77 -1.867e+6 -1.867e+6 0.020 98.75 30.7 -1.871e+6 -1.867e+6 0.174 85 7.53 -1.873e+6 -1.867e+6 0.123 85 6.88

4 NE 39 bus -2.149e+6 0.08 163.27 -2.149e+6 0.00 588.68 -2.150e+6 -2.149e+6 0.065 97.92 33.67 -2.152e+6 -2.149e+6 0.064 90.42 8.16 -2.159e+6 -2.149e+6 0.331 90.42 6.11

5 IEEE 118 – – 3,600† – – 3,600† -5.592e+5 -5.592e+5 6.496e-4 100 721.7 -5.592e+5 -5.592e+5 3.493e-5 100 40.8 -5.621e+5 -5.592e+5 0.518 100 38.34

6 IEEE 118 – – 3,600† – – 3,600† -8.022e+5 -8.022e+5 4.642e-4 100 879.89 -8.022e+5 -8.022e+5 4.053e-6 100 46.56 -8.062e+5 -8.022e+5 0.491 100 40.19

7 IEEE 118 – – 3,600† – – 3,600† -9.297e+5 -9.297e+5 5.577e-5 100 789.39 -9.297e+5 -9.297e+5 3.270e-6 100 38.17 -9.304e+5 -9.297e+5 0.073 100 39.94

8 IEEE 118 – – 3,600† – – 3,600† -3.064e+5 -3.064e+5 2.006e-4 100 783.75 -3.064e+5 -3.064e+5 6.499e-4 100 46.38 -3.145e+5 -3.064e+5 2.646 100 41.69

9 IEEE 300 – – 3,600† – – 3,600† -9.214e+6 -9.208e+6 0.069 93.78 1,128.7 -9.215e+6 -9.207e+6 0.016 93.12 67.89 -9.229e+6 -9.207e+6 0.145 93.12 51.25

10 IEEE 300 – – 3,600† – – 3,600† -3.498e+6 -3.498e+6 2.903e-4 100 1,071.2 -3.501e+6 -3.497e+6 0.070 98.25 52.23 -3.516e+6 -3.497e+6 0.446 98.25 47.7

11 IEEE 300 – – 3,600† – – 3,600† -6.558e+6 -6.558e+6 1.012e-4 100 1,279.2 -6.560e+6 -6.555e+6 0.028 96.01 47.59 -6.574e+6 -6.555e+6 0.220 96.01 39.88

12 IEEE 300 – – 3,600† – – 3,600† -8.045e+6 -8.040e+6 0.057 95.59 1,291.5 -8.048e+6 -8.038e+6 0.032 93.06 56.06 -8.060e+6 -8.038e+6 0.158 93.06 50.77

13 PEGASE 1354 – – 3,600† – – 3,600† -3.463e+7 -3.459e+7 0.129 97.76 6,444.9 -3.470e+7 -9.231e+6 0.194 91.55 364.22 -3.488e+7 -9.886e+6 0.512 91.55 298.52

14 PEGASE 1354 – – 3,600† – – 3,600† -3.441e+7 -3.440e+7 0.003 99.63 9,278.9 -3.447e+7 -9.828e+6 0.184 94.38 400.83 -3.457e+7 – 0.303 94.38 301.88

15 PEGASE 1354 – – 3,600† – – 3,600† -2.827e+7 -2.826e+7 0.036 97.45 5,496.4 -2.834e+7 – 0.238 91.43 347.55 -2.851e+7 – 0.604 91.43 279.64

16 PEGASE 1354 – – 3,600† – – 3,600† -3.837e+7 -3.823e+7 0.354 96.39 6,203.6 -3.849e+7 -1.282e+7 0.323 90.79 368.33 -3.864e+7 -1.363e+7 0.374 90.79 321.2

17 PEGASE 2869 – – 3,600† – – 3,600† -4.753e+7 -4.751e+7 0.025 98.59 1,311.8 -4.760e+7 – 0.149 92.51 568.5 -4.787e+7 2.414e+6 0.565 92.51 425.47

18 PEGASE 2869 – – 3,600† – – 3,600† -5.420e+7 -5.415e+7 0.090 98.38 1,529.8 -5.429e+7 -1.310e+6 0.174 92.38 600.66 -5.450e+7 -1.861e+6 0.378 92.38 425.17

19 PEGASE 2869 – – 3,600† – – 3,600† -5.394e+7 -5.393e+7 0.031 98.44 1,600.5 -5.310e+7 – 0.102 94.14 534.64 -5.412e+7 – 0.235 94.14 433.41

20 PEGASE 2869 – – 3,600† – – 3,600† -5.402e+7 -5.400e+7 0.027 98.22 2,755.3 -5.410e+7 -3.900e+6 0.147 92.94 399.14 -5.420e+7 -4.629e+6 0.1861 92.94 436.77

Avg – – – – 0.046 2,135.7 0.106 200.49 0.426 164.90

Max – – – – 0.354 2,755.3 0.323 600.66 2.646 436.77

† Solvers are terminated within 3600 seconds.
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Fig. 3: New-England 39-bus (Experiment 1) 24-hr profile showing generator output and line flows. First from top: Gen. 2 base

case and post-contingency power output showing transition probabilities across 3 scenarios. Second from top: Gen. 5 base case

and post-contingency power output across 3 scenarios. Third from top: Line 38 basecase and post-contingency power flows

across 3 scenarios.

must not exceed the maximum thermal limits, lines tend to

become congested and in some cases reach critical levels.
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TABLE III: Generator data for New England 39-bus benchmark system (Experiment 1)

Unit Gen. #1 Gen. #2 Gen. #3 Gen. #4 Gen. #5 Gen. #6 Gen. #7 Gen. #8 Gen. #9 Gen. #10 Wnd. #1 Wnd. #2 Wnd. #3

α
sqr
tg ($/MW2h) 0.0026 0.0022 0.0013 0.0018 0.0009 0.002 0.0018 0.0019 0.0038 0.0026 0 0 0

αlin
tg ($/MWh) 20.68 28.78 7.85 24.01 15.09 14.71 22.39 31.65 10.35 25.52 20 20 20

ζtg ($/h) 821.47 259.33 338.63 497.22 811.92 501.13 321.60 527.17 559.40 430.24 20 20 20

ζ
↑
tg ($/h) 1,118.1 6,622.1 5,054 4,050.1 1,519.5 3,868.6 2,874 2,628 7,510.2 4,147.5 0 0 0

ζ
↓
tg ($/h) 142.86 400.04 720 232.24 829.78 355.36 363.82 263.39 713.77 155.98 0 0 0

µ
+
tg , µ−

tg ($/MWh) 4.13 5.75 1.56 4.80 3.01 2.94 4.47 6.32 2.07 5.10 4 4 4

η
+
tg , η−

tg ($/MWh) 4.30 5.82 3.66 6.64 1.35 7.19 5.46 4.37 1.71 6.16 4 4 4

β
+
tg , β−

tg ($/MWh) 103.37 143.88 39.24 120.07 75.46 73.53 111.93 158.23 51.77 127.59 100 100 100

κg ($/MW2h) 1.29 1.10 0.66 0.89 0.47 1 0.91 0.93 1.88 1.31 0 0 0
Pmax (MW) 1040 646 725 652 508 687 580 564 865 1100 100 100 100
Pmin (MW) 0 0 0 0 0 0 0 0 0 0 0 0 0

m↑
g (h) 7 5 10 7 1 7 10 7 1 1 1 1 1

m↓
g (h) 3 10 4 7 1 4 5 10 1 1 1 1 1

Initial state (h) 5 -3 -4 3 3 -1 1 4 4 -1 1 1 1

TABLE IV: Binary commitment decisions for New England 39-bus benchmark system (Experiment 1)

Cost: $604,856.05

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Gen. #1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen. #10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd. #1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd. #2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd. #3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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(b) Post-contingency case @ 4PM, high wind penetra-
tion, line contingency @ line 22 → 21. As a result of
the contingnecy, line 23 → 24 is congested.

Fig. 4: Directed graph of New England 39-bus (Experiment 1) Pre and Post-contingencies

VI. CONCLUSIONS

In this paper, we study the SCUC problem under uncertainty

by adopting a stochastic formulation proposed in [35]. The

proposed method for tackling the computationally challenging

problem is tested extensively on IEEE and PEGASE bench-

mark systems to establish its relative performance against two

widely used off-the-shelf solvers, CPLEX and GUROBI and

common-practice methods of relaxation, namely perspective

and LP relaxations. It is shown that SDP relaxation consis-

tently finds near-globally optimal solutions in each benchmark

system under uncertain wind scenarios and with an extensive

list of contingencies with up to 12,240 binary variables and

1,830,560 continuous variables.
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