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Abstract—This paper is concerned with the problem of
Security-Constrained Unit Commitment (SCUC) which is a long-
standing challenge in power system engineering faced by system
operators and utility companies on a daily basis. We consider a
detailed variant of this problem that suffers from complexities
posed by the presence of binary variables, the uncertainty of
renewable sources and security constraints. A convex relaxation
is formulated which is capable of finding feasible solutions within
a provable distance from global optimality. We demonstrate
the performance of this approach on detailed and challenging
instances of SCUC with IEEE and PEGASE benchmark cases
from MATPOWER [1]. The proposed approach is able to handle
over 12,000 binary variables and 2 million continuous variables
with significant improvement in solution quality over commonly-
used off-the-shelf solvers and other methods of convex relaxation.

Index Terms—Power generation scheduling, Power system
security, Optimization methods

I. INTRODUCTION

Nit commitment (UC) is the problem of determining the
U schedule and level of contributions by generators in
a power grid to meet forecasted demand for electricity as
economically as possible. The efficiency of wholesale power
markets is highly dependent on solution methods for UC.
Efficient algorithms based on high-fidelity power grid models
can alleviate a variety of problems such as uplift payments,
underfunded transmission rights and occasional disputes be-
tween market participants [2], [3]. Several variants of UC
have been studied in the literature to address considerations
such as contingency constraints and to mitigate the uncer-
tainty of demand and renewable sources. Network components
are prone to various sources of failure. Hence, contingency
planning is central to reliable functioning of power grids. To
ensure immunity to the outage of individual grid components,
it is common-practice to impose a comprehensive list of
constraints, accounting for pre-determined contingencies. This
problem is regarded as Security-Constrained Unit Commit-
ment (SCUC). Due to the ever increasing integration of renew-
able energy sources, several papers have considered stochastic
formulations of SCUC to mitigate the risks associated with
grid uncertainty. In this paper, we propose a computational
method for SCUC under the uncertainty of renewable sources.

The presence of binary variables pose a major challenge
in solving large-scale unit commitment problems. Therefore,
a variety of methods have been developed for UC since the
late 1960s. Among early attempts were rudimentary methods
such as exhaustive enumeration and priority list [4]-[8] that
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are only applicable to small instances of UC. In the 1960s and
70s a number of Dynamic Programming (DP) methods were
proposed for UC in [9]-[11], without success on large-scale
problems due to curse of dimensionality. To this date, La-
grangian Relaxation (LR) has remained one of the successful
methods to approach UC [12]-[14]. LR works by decomposing
UC problems into a master problem and subproblems that
are solved iteratively until an optimal solution is found. The
success of LR is due to its reliance on a lower complexity
dual formulation as opposed to the high dimensional primal
UC problem which is tackled by other methods. Recent papers
employ benders decomposition for separating the UC into
master and subproblems to be solved using augmented LR
or combined with DP and Genetic Algorithm (GA) [15]-[17]
to achieve reasonable computational speed, though not fast
enough for practical applications.

With the increase in computer memory and processing
power Mixed-Integer Programming (MIP) methods such as
Branch and Bound (B&B) have gained popularity as solution
approaches to UC [18], [19]. Recently, MIP solvers such as
CPLEX and GUROBI have become very popular and widely
used to solve UC problems for commercial applications [2].
However, a main disadvantage of B&B is the rapid growth
of search trees with the number of binary variables [20]. The
success of MIP solvers in tackling stochastic SCUC problems
depends on the tightness and compactness of formulation,
number of binary variables, number of wind scenarios, number
of contingencies and binding transmission line constraints
[21]-[23]. In order to improve the efficiency and solution
quality of B&B searches, the creators of CPLEX; IBM have
offered improvements such as heuristics, node presolve and
cutting planes [24]. Despite these improvements, a number of
papers have reported that the computational burden on off-
the-shelf MIP solvers increases when applied to large-scale
SCUC problems as solvers either exceed the time-limit or
CPU memory limit [21]-[23]. Many papers have also offered
partial convex hull characterizations of UC feasible sets [25]—
[28] to improve efficiency of B&B. The paper [29] offers a
critical review of the common-practice of implementing linear
programming (LP) relaxation as a reliable approach to UC.

Recently, more sophisticated convex relaxations such as
Semidefinite Programming (SDP) and Second-Order Cone
Programming (SOCP) have been used for solving different
variants of UC [30], [31]. In [30], it is shown that perspective
relaxation can significantly improve the performance of MIP
search for UC. The paper [31] applies SDP relaxation to SCUC
with AC network constraints. In [32] a strengthened SDP
relaxation is proposed, which offers improved performance
using the Reformulation Linearization Technique (RLT). The
paper [33] employs SOCP to find globally optimal solutions
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to UC with AC network constraints. Due to the computational
complexity of UC, solutions obtained from any polynomial-
solvable relaxation may not be feasible for the original non-
convex UC problem. To address this issue, the paper [34]
proposes a sequential penalization method for UC to obtain
near-globally optimal solutions.

This paper examines the complexity of tackling challenging
day-ahead scheduling problems in cases where large-scale UC
is combined with security constraints, contingency events and
uncertain wind scenarios. We adopted a stochastic approach
proposed in [35]. The base case and contingency states are
tied together by generator ramp limits. In addition, generator
re-dispatches are treated as recourse actions to contingencies.
This stochastic approach to modeling system security is pre-
ferred to other modeling approaches because it allows for cost
of each state to be weighted by its probability of occurrence.

In this paper, we leverage the power of SDP relaxation to
alleviate the burden of branch-and-bound search for detailed
and large-scale SCUC problems. While off-the-shelf SDP
relaxation produces a lower bound on the optimal objective,
it is computationally prohibitive thus not scalable [36], [37].
Hence, in this work, we are forging a low-complexity conic
relaxation that is capable of solving large-scale SCUC. This
effort is aligned with the recent body of research devoted
to scalable variants of semidefinite programming [38]. In
lieu of computationally demanding constraints, we employ
low-order SDP constraints to determine binary variables.
So as to strengthen the relaxation, valid inequalities are
introduced from the multiplication of constraints through
the Reformulation-Linearization Technique (RLT). To address
cases for which the proposed relaxation is not exact, we
propose a heuristic approach to infer near-globally optimal
points from the outcome of convex relaxation. The proposed
approach is tested on modified IEEE and PEGASE benchmark
systems with realizations of uncertain wind scenarios and N-
1 contingencies. The largest benchmark system considered
includes 12,240 binary decision variables and 1,830,560 con-
tinuous variables. The performance of the proposed convex
relaxation is compared with off-the-shelf solvers such as
CPLEX and GUROBI and other methods of relaxation like
perspective and LP relaxations.

The remainder of this paper is organized as follows. In Sec-
tion II-A, we formulate the SCUC problem under uncertainty.
This non-convex problem is convexified by means of convex
surrogates in Section III. Next, a scalable convex relaxation
is proposed in Section III to tackle SCUC in polynomial
time. Section IV proposes a heuristic approach to infer near-
globally optimal points from the outcome of convex relaxation.
Extensive experiments are conducted in Section V on IEEE
and PEGASE benchmark systems. Section VI concludes the

paper.

A. Notations

Throughout this paper, matrices, vectors and scalars are
represented by boldface uppercase, boldface lowercase and
italic lowercase letters, respectively. |-| represents the absolute
value of a scalar or the cardinality of a set. The symbol

()T represents the transpose operator. The notation real{-}
represents the real part of a scalar or a matrix. Given a matrix
A, the notation Ajj refers to its (7,k)t" element. A = 0
means that A is symmetric and positive semidefinite.

II. UNIT COMMITMENT PROBLEM

This work considers a secure unit commitment problem
under wind generation uncertainty. As mentioned in the in-
troduction, security constraints are modeled using a stochastic
approach proposed in [35]. Contingencies in the network are
modeled by specifying outages to units or lines. Locational
reserve requirements are endogenously determined as a func-
tion of the set of included credible contingencies, which
is in stark contrast to deterministic approach where zonal
reserve requirements are predefined by system operators and
employed in various UC studies [15]. Pre-defined or fixed
reserve requirements are not used in this study, conversely
we make use of generator ramp rate modeled after [39]. Also,
we define a power contract variable which represents reference
dispatch value from which dispatch deviations are defined.

Uncertainty in wind generation is modeled as scenarios with
continuous probability distributions, such that each scenario
represents a different forecast of wind. Furthermore, a transi-
tion probability matrix is used to describe the transitions from
a limited set of base scenarios in one period to a limited set
of base scenarios in the next period. Experimental data on
generator and wind parameters including ramp rate for IEEE
and PEGASE benchmark systems are specified in Section V.

A. Problem Formulation

The goal of unit commitment is to schedule the generation
of electricity within a time horizon 7 = {1,2,...,|T|}. For
every t € T, let S; represent the set of all possible uncertainty
scenarios for renewable sources at time ¢. Additionally, let G,
represent the set of all generating units that are available at
time t € T. For every, t € T and s € S, define C;; as the set
of all contingency cases with 0 € C;; representing the base
case (normal operation). Lastly, G;sc C G; is defined as the
set of all generating units that are available at time ¢ € T,
scenario s € S; and contingency ¢ € Cys, such that

gt = USESt UCECtS gtsc-

Consider a power system with ) as the set of buses, and &, C
Y x V as the set of branches at time ¢ € 7 and contingency
ceE UsEStCts-

Motivated by [35], we formulate SCUC using the following
list of decision variables:

{.Ttg € {07 1}}tET7H€gt7

contract =+ — =+ —
{ptg ) Ttg’ Ttg7 wtg7 wtg € R}tETagegt

VI
{6:5c € R }teT,seSt,cGCtS'

Each w4 is a binary variable indicating the on/off status of
unit g € G at time t € 7 and pg™*t is its contract
active power quantity. Variables (7';_:;’7’15_9) are upward and

{ptgsc}tET,gegu SES, cECyss
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downward contingency reserve quantities, and (w;;, wy,) Tep-
resent upward and downward load-following ramping reserve
quantities, respectively. If g ¢ G;, then

+ _
tg —

contract

—_ — - _— .t
Ttg = Pig =T Tg = Wy

tg = Wig = 0.

tg
Each variable p;4,. denotes the active power injection at time
t € T by generator g € G, in scenario s € S; and contingency
¢ € C,. Lastly, 0;,. € RV represents the vector of nodal
phase angles at time ¢ € 7, scenario s € &; and contingency
cec Cts-

B. Objective function

We consider a holistic objective accounting for the ex-
pected value of the total cost throughout the time horizon 7T,
and across the set of all scenarios and contingencies. This
objective is made up of the expected base case and post-
contingency generation costs, ramping “wear and tear” costs,
load-following ramp reserve and contingency reserve costs, as
well as the generator start-up, shutdown and fixed costs. This
objective function can be cast with respect to the following
three expressions:

1 — _
Z% Z Ut(g)(xtg’rzz’rtg’w;;’wtg) (1a)
teT  geg:
Z Z Z wtsc Z U§§)(ptgsc;p§gontra(:t> (1b)

teT s€St c€Cys 9E€Gtsc

Z’Yt Z Z ¢t51522 Uf]g) (pt98207p(t71)g510) (IC)
teT $1E€S:_152€St 9E€Gts50
In the first line of the objective (1a), the cost function a,g
defined as

(1)

1).
g is

Tig (mtgmjg,ri?,w;,w@) £ (g Tty (2a)
+ Gy (L= ng)y  (2)
+ Ciq T—1g(l —29) (20
+ (g iy g i) 2D
+ (1dy Wiy + pig wiy)  (20)

with the expressions (2a), (2b) and (2c) corresponding to
generator fixed, startup and shutdown costs, respectively; while
(2d) and (2e) account for the cost of contingency and load-
following ramping reserves, respectively. The start-up and
shutdown costs CtTg and Ctig incur with every time slot at
which the unit changes status. The fixed production cost (g4
is enforced if the unit is active. The coefficients 77;; and 7,
are the costs incurred when reserves are purchased from a
generating unit in the event of a contingency. The coefficients
M;@ and p,, are the costs incurred due to variations of active
power between two consecutive time slots in which the unit
g is committed. These costs are weighted by 7, which is the
probability of transitioning to period ¢ without branching off
from the central base case path to a contingency.

In the second line (1b), the function at(j)(-, -) is defined as

(2) contracty & _sqr 2 lin
th (ptgscvptg ) - atg ptgsc + atg ptgsc +

+ 8- +_p—
Btggﬂtg |ptgsc 7p§gntract|+ﬂtg 5 ﬁtg (ptgsc _ pggntract) (3b)
including the quadratic expression (3a) with nonnegative
quadratic and linear coefficients o/)" and o, and the term
(3b) for assigning costs to deviations from contract values
with nonnegative coefficients ﬂ:; and f;,. These costs are
weighted by the probability of contingency ¥ys..

Finally, we have the third term (1c) representing a quadratic

load-following ramp “wear and tear” cost

o

(3a)

(ptg5207p(t71)gslo) £ Rg X (Ptg520 - p(tfl)gslo)2 (4)

weighted by -, the nonnegative coefficients ry, and ¢y, 4,
which is the probability of transitioning to scenario s, in
period ¢ provided that scenario s; was realized in period ¢t — 1.

C. Constraints

We apply the following constraints which can be separated
into five main categories:

1) Integrality constraints: For every t € T and g € G, the
binary requirements are:

x19 € {0,1} (5)

These constraints are the main sources of complexity in SCUC.
We will relax the integrality constraints (5) and implicitly
impose them via proxy conic and linear inequalities.

2) Unit capacity constraints: For every t € T and g € G,
the unit capacity constraints consist of:

Pg Tig S Ptgsc § 159 Tty Vs € Sta Ve e Cts (6)

Constraint (6) ensures that when unit ¢ € G; is committed
during the interval ¢, then its active power injections lies
within the pre-specified limits p;gs. and pigse.

3) Minimum up/down time constraints: For every t € T
and g € G;, the Minimum up/down time constraints are:

Ty > Trg — T(r—1)g VT € {t — mg +1,...,t} (Ta)

1=y > 1)y — Trg VT E{t—m}+1,....t} (7b)

where mg and mi] denote the minimum up and down time
limits of generator ¢, respectively.
4) Ramp constraints: For every t € T and g € G;, the

generator ramp constraints consist of:

0 < wyly < iy,

0 < wyy < wig,

(3a)
(8b)

Dtgss0 — P(t—1)gs10 < w:;—l)g’ Vs1 € Si—1, Vs2 € St (8¢)

P(t—1)gs10 ~ Ptgsa0 < Wi_q),r V81 € Sy, Vs € S;(8d)
Constraints (8a)—(8b) impose the limits w;, and w;, on the
upward and downward load-following reserve quantities of
generator t, respectively. Constraints (8c)—(8d) limit changes

in active power injection between two consecutive time slots
during which the unit ¢ is committed.
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5) Post-contingency reserve constraints: For every t € T
and g € G;, the post-contingency reserve constraints are:

OS’I“;;S'thv )
0 <7y <riy, (Ob)
Ptgsc — pg(;ntract < 7‘;;7 Vs € St’ Vee Cts (90)
p;:;)ntract — Prgse < 7&7 Vs € St7 Ve e Cs (9d)
— Ag < Ptgsc — Ptgs0 < Ag, Vs € St, Ve € Cts (%e)

Constraints (9a)—(9b) impose the upward/downward reserve
capacity limits 7, and 71, on post-contingency dispatch
quantities, respectively. Deviations from active power contract
quantities are limited by constraints (9¢c)—(9d). Additionally,
the constraint (9e) enforces the physical ramp limits A, and
Ag on downward and upward transitions from base to post-
contigency cases.

6) DC network constraints: The DC modeling is employed
to describe the flow of power throughout the network. To this
end, let B denote the the imaginary part of the network bus
admittance matrix and for each t € T and ¢ € Ugegs,Crs,
let étc € Rl&exVl and B,. € RIVIXIVI represent the cor-
responding susceptance matrices. Additionally, define Cg. €
{0, 1}19¢seIxIVl a5 the incidence matrix whose (j, k) element
is equal to 1, if and only if the unit g belongs to the bus k.
For every t € T, the DC network constraints can be cast as

dic + By 015 = Ctz(, Disc, Vs € S, Ve € Cyg (10a)
|Bie Ousc + Fi0™| < f12°% Vs €8, Ve€Cys  (10D)

where
Ptsc = [ptlsm DPt2scy -+ - pt'gtsc|SC]T (11)

Constraint (10a) imposes power balance equation in which
d;. € RIVI represents nodal demand and the vector By 0;,. €
RVl contains approximate values for active power exchanges
between each vertex and the rest of the network. Additionally,
constraint (10b) restricts the flow of power by the vector of
line thermal limits f22% € RI€wl where £3Mf accounts for
the effect of transformers and phase shifters.

Given the above three-part expression in (1) and constraints
in (5)—(10), the Stochastic SCUC problem can be formulated
as the optimization:

minimize  (la)+(1b)+(1c) (12a)
subject to  (5)—(9) VieT, Yge G, (12b)
(10) Vte T (12¢)

with respect to variables {24}, {Prgsc}s {pgg““act}, {7';;},
{r;g}, {wjg}, and {w,}.

III. CONVEXIFICATION OF SCUC PROBLEM

In this section, we construct convex relaxations in order
to efficiently tackle the SCUC problem (12). We employ
conic relaxations combined with a set of valid inequalities
which lead to a computationally-tractable convex formulation.
To this end, we transition to a lifted space by introducing
additional auxiliary variables each accounting for a quadratic
monomial. We then formulate a SOCP relaxation based on

the “perspective relaxation” in [40]. Finally, a strong SDP
relaxation is formulated using additional variables and valid
inequalities.

A. Lifted objective

To formulate convex relaxations we first lift the objective
function (1) into a higher-dimensional space in which it is
piecewise linear. This is done by introducing the variables

{Utg}teT,geg“ {ht93152}teT7gegt7Slest—1732est’
{Otgsc}tET, g€G:, SESt, cECys
representing the products

{x(tfl)g xtg}a {p(t71)9510 X pt9820}7 {pfgsc} 13)

respectively. Consider the following lifted objective function
components:

_(1 — —
Z Tt Z O—Eg)(xtga Utg, T;;a Ttga w;;a wtg) (14&)
teT  g€Gi
—(2 contrac
Z Z Z wtsc Z Ugg)(ptgscaotgscvptg ‘ t) (l4b)

teT s€S; c€Cys 9E€Gtse

Z’Ytz Z(btslsz Z 5'53) (OtQSQ()v O(t—1)gs105 ht98251) (14¢)

teT s1€84152€8; 9€Gts50

where for each t € 7 and g € G;

6%)(%9,utgmjgw;ﬁwt}wt;) £ (g Ty (15a)
+ ¢ (g — wg) (15b)
+ Gy @1y — ug) (150)
+ (i 4+ iy i) (15d)
+ (1dy Wity + pyy wiy) (15€)
encapsulates the lifted startup and shutdown costs and

~(2) contracty A& _sqr
Otg (ptgsmotgscaptg ) = Qg

BrtBig Bit =B
% |ptgsc _pggntract |_|_ % (ptgsc _pg])ntract ) ] (16b)

represents the lifted quadratic cost function. Additionally, for
each g € G,

Otgsc + a?; ptgsc + (16&)

6’5(73) (Otg5207 O(t—1)gs10> htgslsz) £
Kg X (Otg520 + O(t—1)gs,0 — 2h’tg5152) 17

is the lifted “wear and tear” cost.

B. LP and perspective relaxations

For every t € T and g € G, the relation between the
auxiliary variables {u;,} and their corresponding monomials
can be enforced using the following valid inequalities:

max{0, T(_1)g+Tig—1} < uyg <min{zy_1)g, 249} (18)

The role of (18) is to ensure that the lifted costs (14a) is equiv-
alent to the original costs (1a). Through simple enumeration
of the set (zy(_1),%q) € {0,1}?, it can be observed that

G)yNn18) =

Utg = TtgL(t—1)g
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for every t € T and g € G;.

Lifting the first part of the objective and the transformation
of x4 € {0,1} to 0 < Zyg < 1, results in the following LP
relaxation of SCUC [41]-[43]:

minimize  (14a)+(1b)+(1c) (19a)
subject to 0 <y <1 VteT,Vge G, (19b)
(6)-(9), (18) VteT,VgeG: (19c)
(10) VteT (19d)

As shown in [40], the performance of this approach can be
significantly improved by lifting (1b) to (14b), and relaxing
Otgsc = pfgsc to the SOCP and McCormick constraint

Vs € St, Ve € Cys (20a)
Vs € St7 VCECts (20b)

2
Otgsc Ttg > ptgsca Otgsc > 0
Otgse + Pg Dg Ttg < (Pg + Dg)Prgse

which results in the following perspective relaxation:

minimize  (14a)+(14b)+(1c) (21a)
subjectto 0 <z <1 VteT,Vge G, (21b)
6)-09),(18),(20) VteT,VgeG: (2lc)
(10) Vte T (21d)

In the remainder of this section, we will construct an SDP
relaxation as an alternative to (21).

C. SDP relaxation

To forge a stronger relaxation, consider the new variables

{Ztgs}tE'T,gng,,SESu {ytgs}teT,gegt,sest

representing monomials {p(;—1)g507¢g} and {pigs0T(t—1)g}
respectively. In place of (19b), we impose a collection of conic
and linear inequalities (22), resulting in the following SDP
relaxation of SCUC:

minimize (14a)+(14b)+(14c) (23a)
subject to  (22) Vte T, Vge g, (23b)
(6)—(9), (18),(20) VteT,Vge G, (23¢)
(10) Vte T (23d)

The matrix inequality (22a) is a surrogate for:

Z(t-1)g * * * *
Utg Ttg * * *

Utg Ugg Ugg * =
P(t—1)gs, 0 2tgsi Rtgsi O(t—1)gs,0 *

_ytgsl thSQ() ytgsl tgsi1s2 Otg520

T(t-1)g

xtg

Utg [T(—1)g Tty Utg Dt—1)gs10 Prgsi0] (24)
P(t—1)gs10

_ptgslo

If equality holds at optimality, then the above relations are
satisfied and the relaxation is regarded as exact. To fur-
ther strengthen the proposed relaxation, we incorporate the
Reformulation-Linearization Technique (RLT) technique [44].

5

Linear inequalities (22b) — (22e) are derived from (6). Lastly,
inequalities (22g) — (22i) are immediate consequences of (5)
and (6).

The variables that appear in (22) are tightly correlated
and this is the primary motivation behind the proposed valid
inequalities. In Section (V), we will demonstrate the effect of
these additional inequalities on the quality of relaxation and
their ability to obtain feasible points.

IV. FEASIBLE POINT RECOVERY

Let {2}}1e7,geg, denote the resulting schedule from a
convex relaxation of SCUC. For large-scale problems, convex
relaxations can fail to satisfy the integrality constraint (5). In
this section, we propose a heuristic to infer a feasible point
{Ztg € {0,1}}4eT, geg,. To this end, the main challenge is to
ensure that the minimum up and minimum down constraints
(7a) and (7b) are satisfied, which is not possible by simply
rounding mi};‘ values. To tackle this issue we adopt the
following procedure.

Feasible Point Recovery:
1) Forevery t € T and g € G; do 254 <—round{0.4 + x1x}.

tg tg
2) For every g € Uie7Gy,
(a) Solve the following linear program
minimize Z |zeg — xin?| (25a)
teT
subject to ZTeg =0 if g ¢ G (25b)
0<my,<1 if geG (25¢)
Tig > Trg—T(ro1)y VELET, VTE{t—m)+1,... t} (25d)
1 -2y > x(r_1)g—2rg VLET, VTE {t—mé—i—l, ..., t} (25e)
and denote the resulting solution as {Zg }reT-
(b) Fort =1,...,|T| do
atTg e max{drg—d(r_1), | VTE{t—mi+1,.. . )}, (26a)
aty < max{i(,_1yg—drg | VTE{t—mi+1,...,t}},  (26b)
if al,=0 A af,=0 then @&y « 2}y, (26¢)
if al,=0 A af,=1 then iy « 0, (26d)
if al,=1A al,=0 then @y « 1, (26¢)
if al,=1 A af,=1 then declare failure. (26f)

3) Declare {@4}+c7, geg, as the recovered schedule and solve
the convex optimization

minimize  (1a)+(1b)+(1c) (27a)
subject to  zyy = Ty VteT, Vge G, (27b)
(6)-(9) VteT, Yge G, (27c)
(10) vte T (27d)

to obtain a feasible point:

£ ~contract A+ A— A4 A=
{219, Dig" "5 Tigs Tigs Wig, Wiy € R}reT geg,

0 V]
{etsc €eR }teT,SESt,CECtS'

In case of infeasibility, declare failure.

{ﬁtgsc}tET, gEGt, SESt, cECys s
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6
x(t_l)g * * * *
Utg Tig * * *
Utg Utg Utg * * =0 Vs € Si_1, Vs €S (22a)
P(t—1)gs10 Rtgs;  Ztgsy O(t—1)gs10 *
Ytgsq Ptgso0 Ytgs, htg5152 Otgs,0
Dy (ptgslo + pthQO) < htg5152 + pg Utg Vs € Stfl, Vsqg € St (22b)
pg (ptg510 + pthQO) < ht95132 + ]53 Utg Vs, € St—17 Vsy € St (22¢)
htg3152 + PgPg Uty < DgYtgs, T Pg Ztgs, Vs € S;_1, Vso € 8 (22d)
htg5132 +Pg]3g Utg < Pg Ytgs, +pg Ztgs, Vs1 € St—l, Vsy € S (22e)
Dg Utg S Ytgs, S ]59 Utg Vs € St (22f)
Dg Utg S Ztgsy S ﬁg Utg Vs € St (22g)
Dy (utg — Tig) < Ytgs) — Ptgso < pg (Utg — Tig) Vs € S (22h)
Dy (Utg — Tr—1)g) < Ztgs, — Pt—1)gs0 < Pg (Utg — T(1—1)g) Vs € S, (22i)

As we will demonstrate in Section (V), this heuristic is able
to obtain good quality feasible points for challenging instances
of SCUC. We use the following measure to evaluate the quality
of the resulting feasible points:

a.rlx

Optimality Gap % = 100 x ~— 2 (28)
g

where o' and & are the optimal objective values for convex

relaxation and the recovery problem (27), respectively.

V. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed convex relaxation on a wide range of challeng-
ing SCUC problems. Simulations are performed on a 64-bit
computer with an Intel 3.0 GHz, 12-core CPU and 256 GB
RAM using MATLAB 2019a. The solver MOSEK v8.0.0.60
[45] is used for convex optimization through CVX v2.1 [46],
[47]. SCUC problems are formulated using the MATPOWER
Optimal Scheduling Tool (MOST) v1.0.2 [48]. For compari-
son, CPLEX v12.9.0.0 [49] and GUROBI v9.0 are used for
mixed-integer programming through MOST. We would like to
emphasis that CPLEX and GUROBI may exhibit far better per-
formance on the same problem, if applied differently. System
operators and utility companies may leverage stronger MILP
formulations and valid inequalities in order to strengthen the
performance of SCUC.

A. Data

Transmission Network Data: We use IEEE and Pan Euro-
pean Grid Advanced Simulation and State Estimation (PE-
GASE) benchmark grids from MATPOWER [48]. Certain mod-
ifications are made to the following parts of the data in order
to make the resulting SCUC problems feasible and sufficiently
challenging:

o f2®*: Line thermal limits specified in MATPOWER data
files were used without modifications. Source data on
line flow limits are specified in the documentation of
MATPOWER data files [48].

e d;.: With no loss of generality, we assume that all loads
are deterministic and we do not consider the contingency
of loads. In all of the simulations, load variations through-
out the day, follow the vector:

N £ 18N [0.684, 0.645, 0.620, 0.604, 0.606, 0.627
0.677, 0.694, 0.730, 0.808, 0.893, 0.922
0.946, 0.952, 0.972, 0.999, 1.000, 0.964
0.961, 0.927, 0.927, 0.909, 0.765, 0.764 |

where v%°" = (0.9 for case New England 39-bus system
and 8" = 0.5 for all of the other benchmark cases. In
other words, for every ¢t € 7 and ¢ € Uges,Crs We have
di. = 78" d, where d is the vector of nodal demand
from MATPOWER.

In addition to the above modifications, we have added wind
generators to certain buses and altered generator costs due
to the absence of fixed, quadratic, reserve and load-following
costs in MATPOWER data. These changes are detailed next.

Deterministic Generator Cost Data:

o af) i, g CtTg, Ctig: These cost coefficients are

randomly chosen based on uniform distributions within
+20% of mean values $0.0025/(MW.h)2, $20/(MW.h),
$500/h, $5000/h, and $500/h, respectively following [50],
[51] .

o 77:;, Migs ug, Hig: Reserve cost coefficients are selected
as 1 = 0,y = 5.0 and pf) = pz, = 0.2/

. 5;;, Big: Active power re-dispatch cost coefficients are
selected as 3 = B, = 0.2

e rg: Ramp “wear and tear” cost coefficients are selected
as kg = 5000y, .

Deterministic Generator Limits:
e pg: Minimum active power is selected as p, = 0.

. m;, mé: A quarter of the generators are randomly se-

lected with mg = mg = 1 to act as fast-start units that
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have the capacity to ramp-up quickly in order to support
generation shortfalls. For the remaining generators

mj = min {m] +1, [|T1/2/}
m} =min {m} + 1, [|T]/2]}

where each ﬁL:(]; and ﬁ@é has Poisson distribution with
parameter 4.

o The initial state of each generator is uniformly chosen
from the set of integers {k € Z| —5 < k < 5}\ {0} with
negative and positive numbers, respectively, indicating the
number of uptime and downtime periods at ¢ = 0.

o Wig, Wiy, Tig, Ttg» Ng, Ag: Following [39], ramp limits
are selected as Wiy = Wiy = 0.3p and T4y =119 = Ay =
Ay =0.1p.

Wind Generator Data: Data on wind generators and hourly
wind profile are obtained from the SW Minnesota wind power
plant [52]. Let |G| indicate the total number of deterministic
generators. We consider round{|G|/3} wind generators, each
located at a randomly chosen bus. We consider 5 wind
scenarios representing 100%, 80%, 60% 40%, and %20 wind
generation, with initial probabilities

®,=[011 048 017 017 007 (29

respectively. Additionally, for every ¢t € T \ {1} the transition
probability matrix is set to

0.7858 0.2001 0.0109 0.0032 0
0.1022 0.6215 0.2381 0.0371 0.0012
$, = |0.0154 0.3184 0.5042 0.1439 0.0181 (30)
0.0022 0.0356 0.2488 0.5435 0.1698
0 0.0004 0.0073 0.0543 0.9379

The scenario transition probabilities ¢;s,s, are obtained from
the SW Minnesota wind power plant [52]. The coefficients of
(29)-(30) is used to weight ramp “wear and tear” cost in (1c).
. ag‘, Ctg» CtTg, dg: Wind energy cost coefficients are
selected as a?gn =$20/(MW.h), (g =$20/h, and ng =

(i, =$0/.

o Wind generator output is given by the product of the
maximum wind generator output from MATPOWER [1]
and the ratios

wvind 210,72, 0.61, 0.35, 0.28, 0.15, 0.39
0.25, 0.35, 0.29, 0.57, 0.49, 0.37
0.52, 0.34, 0.42, 0.41, 0.63, 0.42
0.29, 0.53, 0.79, 0.83, 0.81, 0.87]

Contingencies: We consider N-1 contingency analysis in this
study. 3 generators and 3 lines are randomly selected each
representing a contingency with probability 1/60.

o sc: Base scenario conditional probabilities are selected
as Y0 = 0.1/|C| for every s € S. Additionally, for every

7

¢ € C post-contingency probabilities are given by:

Yr1c Ye—1)10
Yiac 1 o Y—1)20 61
= _— x
: [
Yys|e Ye-1)|8]0

o 7y, Lastly, the probability of making it to period ¢ without
branching off the central path in a contingency is given
by:

Y=Y P10 = P e <1, fort>1 (32)

SES: SES, cECys

B. Evaluation of Lower Bound

In order to evaluate the performance of our proposed SDP
relaxation, we consider 5 benchmark grids based on IEEE and
PEGASE modified data. Each benchmark grid is simulated in
4 realizations producing 20 test cases. The planning horizon
is divided into 24 hourly intervals, 6 stochastic wind scenarios
and 6 independent contingencies. The largest grid considered
is PEGASE 2869 benchmark grid with 2,869 buses (vertices)
and 510 generating units. For the largest benchmark, the model
has 12,240 binary decision variables and 1,830,560 continuous
variables. Table I presents details on the benchmark grids.

Table II reports performance of SDP relaxation compared to
CPLEX and GUROBI numerical solvers and also perspective
and LP relaxation methods. Performance is compared in terms
of: i) convex lower bound (LB) on the optimal cost, ii)
cost of the recovered feasible solution, iii) optimality gap
and iv) computation time #(s). In all experiments performed
using SDP relaxation, we successfully infer a feasible point
using heuristics presented in Section (IV). The reported gaps
in Table II show that SDP relaxation achieves average of
0.05% and does not exceed 0.36% optimality gap for all the
test cases. This is better than average gap reported by both
perspective and LP relaxations. Computation time reported by
SDP relaxation averages at 35 mins. 35 sec.

C. Solution Quality

Figures la and 2a emphasize disparities in the number
of inexact binaries generated by SDP, perspective and LP
methods of relaxation for large test cases such as PEGASE
1354 and PEGASE 2869. As shown in Figures 1a and 2a, SDP
relaxation generates fewer inexact binaries between ‘0’ and ‘1’
as compared to perspective and LP relaxations. Figures 1b,
Ic, 2b and 2c shows that perspective and LP relaxations
report higher number of inexact binaries. Poor solution qual-
ity negatively impacts ability of the proposed heuristic to
infer a feasible point resulting in failed recoveries. Table II
shows failed recoveries in experiments 15, 17 and 19 using
perspective relaxation and experiments 14, 15 and 19 using
LP relaxation due to poor solution quality. As seen from the
table, all experiments using SDP relaxation produced feasible
solutions because of fewer inexact binaries.
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Fig. 1: Distribution of Binary variables for PEGASE 1354 (Experiment 14) in 24-hour horizon scheduling
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Fig. 2: Distribution of Binary variables for PEGASE 2869 (Experiment 17) in 24-hour horizon scheduling

TABLE I: Experiments for 24-hour horizon scheduling of
benchmark systems

Experiment Test Cases ‘ # of # of . # of .
Generators Binaries Continuous variables

1 New England 39-bus 10 240 67,750
2 New England 39-bus 10 240 67,750
3 New England 39-bus 10 240 67,750
4 New England 39-bus 10 240 67,750
5 IEEE 118 54 1,296 191,664
6 IEEE 118 54 1,296 191,664
7 IEEE 118 54 1,296 191,664
8 IEEE 118 54 1,296 191,664
9 IEEE 300 69 1,656 247,664
10 IEEE 300 69 1,656 247,664
11 IEEE 300 69 1,656 247,664
12 IEEE 300 69 1,656 247,664
13 PEGASE 1354 260 6,240 928,925
14 PEGASE 1354 260 6,240 928,925
15 PEGASE 1354 260 6,240 928,925
16 PEGASE 1354 260 6,240 928,925
17 PEGASE 2869 510 12,240 1,830,560
18 PEGASE 2869 510 12,240 1,830,560
19 PEGASE 2869 510 12,240 1,830,560
20 PEGASE 2869 510 12,240 1,830,560

D. Hourly Profile

Fig. 3 depicts the 24-hr profile of selected generators and
transmission lines in SCUC experiment 1 on New-England 39
bus benchmark system. The data and the resulting commitment
keys for this particular experiment are given by Tables III
and IV. In the figure, Gen. #5 and line #38 are shown in pre
and post-contingency states, and Gen. #2 in post-contingency
state. Post-contingency #1 represents outage of Gen. #3 while
post-contingency #6 represents loss of line #35. In Fig. 3,
hourly profile is divided into 3 scenarios with probability
assigned to transition from one scenario to the other. Notice
that during on-peak hours 12PM — 10PM, Gen. #2 drives up to
maximum output power in order to supply peak load in pre and
post-contingency states. Likewise, Gen. #5 sees a significant
upward climb in output power in post-contingency #1 in order

to compensate for outage to Gen. #3. This presents stress on
the network which is discussed next and illustrated by 4.

As seen in Fig. 3, line #38 shows signs of congestion in
post-contingency #6 due to loss of line #35 during on-peak
hours. Of significance, line flows in post-contingency state is
almost three times higher than line flows before contingency
occurred. The impact of high wind penetration on generator
and line congestion is seen between 9PM — 1AM. Between
9PM - 1AM, wind penetration is at its highest point coinciding
with congested generators and line flows. This results in the
noticeable decline in line flows and power generation seen
between 9PM — 1AM in Fig. 3.

E. Network Congestion

Fig. 4 shows the contrast in network congestion between
pre and post-contingency states of New England 39-bus bench-
mark grid. As seen in Fig. 4a, all 46 transmission lines operate
within thermal limits with some lines transmitting more power
than others as indicated by varying thickness of lines in the
figure. Directional arrows are used to show the flow of power
throughout the grid network.

In post-contingency state #6 depicted in Fig. 4b, we observe
network congestion during peak hours of the day. The loss
of line #35 in this contingency results in congestion on
transmission line connecting bus 23 to 24 at severe levels
attributed to increased flow of power in order to supply peak
load at bus 24. The contingency also results in reversal of flow
on line connecting bus 16 to 21 and line connecting bus 16 to
24. Power flow is increased on neighboring lines in attempts
to compensate for loss of line #35 as observed in line from
bus 22 to bus 23, as well as bus 32 to bus 10 to mention a
few.

We observe that line contingencies make the SCUC problem
more challenging since power flow is redirected to compensate
for the sudden loss of a line or a generator. Since line flows
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TABLE II: The performance of SDP relaxation algorithm for 24-hour horizon scheduling of benchmark systems (4 realizations
in each benchmark system)

Exp.| Test Case CPLEX GUROBI SDP i Perspective i LP
B s ) Feasible [GAP (%)[ t(s) || Feasible [GAP (%)] t(s) LB Feasible [GAP (%) Determined [ #(s) LB Feasible [GAP (%)[ Determined | #(s) LB Feasible [GAP (%)] Determined | #(s)
Binaries (%) Binaries (%) Binaries (%)
1 NE 39 bus ||-2.621e+6| 0.00 | 94.26 ||-2.621e+6| 0.00 |442.81|-2.621e+6|-2.621e+6| 0.002 100 42.7 ||-2.623e+6|-2.620e+6| 0.076 92.92 7.55 ||-2.627e+6|-2.620e+6| 0.153 92.92 7.05
2 NE 39 bus ||-1.337e+6| 0.00 [119.59|-1.337e+6| 0.00 |473.75|-1.337e+6|-1.337e+6| 0.008 99.58 39.78 ||-1.339e+6|-1.337e+6| 0.147 96.67 7.05 |[-1.340e+6|-1.337e+6| 0.055 96.67 6.06
3 NE 39 bus ||-1.867e+6| 0.15 81.94 ||-1.867e+6| 0.00 |247.77|-1.867e+6|-1.867e+6| 0.020 98.75 30.7 ||-1.871e+6|-1.867e+6| 0.174 85 7.53 ||-1.873e+6|-1.867e+6| 0.123 85 6.88
4 NE 39 bus ||-2.14%+6| 0.08 [163.27|]-2.149e+6| 0.00 |588.68|-2.150e+6|-2.149e+6| 0.065 97.92 33.67 ||-2.152e+6|-2.14%e+6| 0.064 90.42 8.16 ||-2.159e+6|-2.149e+6| 0.331 90.42 6.11
5 IEEE 118 - - 3,6007 - - 3,6007 [|-5.592e+5|-5.592e+5 | 6.496e-4 100 T721.7 ||-5.592e+5|-5.592e+5| 3.493e-5 100 40.8 |-5.621e+5|-5.592e+5| 0.518 100 38.34
6 IEEE 118 - - 3,6007 - - 3,6007 [|-8.022e+5|-8.022e+5 | 4.642¢-4 100 879.89 ||-8.022e+5|-8.022e+5| 4.053e-6 100 46.56 (|-8.062e+5|-8.022e+5| 0.491 100 40.19
7 IEEE 118 - - 3,6007 - - 3,600 (|-9.297e+5|-9.297e+5| 5.577e-5 100 789.39 (|-9.297e+5|-9.297e+5| 3.270e-6 100 38.17 ||-9.304e+5|-9.297e+5| 0.073 100 39.94
8 IEEE 118 - - 3,6007 - - 3,6007 [|-3.064e+5|-3.064e+5 | 2.006e-4 100 783.75 ||-3.064e+5|-3.064e+5| 6.499%e-4 100 46.38 ||-3.145e+5|-3.064e+5| 2.646 100 41.69
9 IEEE 300 - - 3,6007 - - 3,6001||-9.214e+6-9.208e+6| 0.069 93.78 1,128.7(]-9.215e+6|-9.207e+6| 0.016 93.12 67.89 (|-9.229¢+6|-9.207e+6| 0.145 93.12 51.25
10 IEEE 300 - - 3,6007 - - 3,600 ||-3.498e+6|-3.498e+6 | 2.903e-4 100 1,071.2(-3.501e+6|-3.497e+6| 0.070 98.25 52.23 ||-3.516e+6|-3.497e+6| 0.446 98.25 41.7
11 IEEE 300 - - 3,6007 - - 3,600 ||-6.558e+6|-6.558e+6| 1.012e-4 100 1,279.2(]-6.560e+6|-6.555¢+6| 0.028 96.01 47.59 ||-6.574e+6|-6.555¢+6| 0.220 96.01 39.88
12 IEEE 300 - - 3,6007 - - 3,6001 ||-8.045e+6|-8.040e+6| 0.057 95.59 1,291.5(|-8.048e+6|-8.038e+6| 0.032 93.06 56.06 (|-8.060e+6|-8.038e+6| 0.158 93.06 50.77
13 |PEGASE 1354 - - 3,6007 - - 3,6001 ||-3.463e+7|-3.459e+7| 0.129 97.76 6,444.9|-3.470e+7|-9.231e+6| 0.194 91.55 364.22||-3.488e+7|-9.886e+6| 0.512 91.55 298.52
14 |PEGASE 1354 - - 3,600" - - 3,6001 ||-3.441e+7|-3.440e+7| 0.003 99.63 9,278.9||-3.447e+7|-9.828e+6| 0.184 94.38 400.83|-3.457e+7 - 0.303 94.38 301.88
15 |PEGASE 1354 - - 3,600" - - 3,6001 ||-2.827e+7|-2.826e+7| 0.036 97.45 5,496.4|-2.834e+7 - 0.238 91.43 347.55||-2.851e+7 - 0.604 91.43 279.64
16 |PEGASE 1354 - - 3,600" - - 3,6001 ||-3.837e+7|-3.823e+7| 0.354 96.39 6,203.6||-3.849e+7|-1.282¢e+7| 0.323 90.79 368.33||-3.864e+7|-1.363e+7| 0.374 90.79 321.2
17 |PEGASE 2869 - - 3,600" - - 3,6001 ||-4.753e+7|-4.751e+7| 0.025 98.59 1,311.8(]-4.760e+7 - 0.149 9251 568.5 ||-4.787e+7|2.414e+6 | 0.565 92.51 425.47
18 |PEGASE 2869 - - 3,600" - - 3,6001 ||-5.420e+7|-5.415e+7| 0.090 98.38 1,529.8(|-5.429¢+7|-1.310e+6| 0.174 92.38 600.66||-5.450e+7|-1.861e+6| 0.378 92.38 425.17
19 |PEGASE 2869 - - 3,600" - - 3,600" ||-5.394e+7|-5.393e+7| 0.031 98.44 1,600.5|-5.310e+7 - 0.102 94.14 534.64||-5.412e+7 - 0.235 94.14 433.41
20 |PEGASE 2869 - - 3,600" - - 3,600" ||-5.402e+7|-5.400e+7| 0.027 98.22 2,755.3||-5.410e+7|-3.900e+6| 0.147 92.94 399.14||-5.420e+7|-4.629¢+6| 0.1861 92.94 436.77
Avg - - - - 0.046 2,135.7 0.106 200.49 0.426 164.90
Max - - - - 0.354 2,755.3 0.323 600.66 2.646 436.77

T Solvers are terminated within 3600 seconds.
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Fig. 3: New-England 39-bus (Experiment 1) 24-hr profile showing generator output and line flows. First from top: Gen. 2 base
case and post-contingency power output showing transition probabilities across 3 scenarios. Second from top: Gen. 5 base case
and post-contingency power output across 3 scenarios. Third from top: Line 38 basecase and post-contingency power flows
across 3 scenarios.

must not exceed the maximum thermal limits, lines tend to
become congested and in some cases reach critical levels.
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TABLE III: Generator data for New England 39-bus benchmark system (Experiment 1)
Unit [ Gen. #1 | Gen. #2 | Gen. #3 [ Gen. #4 [ Gen. #5 [ Gen. #6 | Gen. #7 | Gen. #8 | Gen. #9 [ Gen. #10 [ Wnd. #1 | Wnd. #2 | Wnd. #3
oI ($/MW?h) 0.0026 | 0.0022 | 0.0013 | 0.0018 | 0.0009 0.002 | 0.0018 | 0.0019 | 0.0038 0.0026 0 0 0
o ($/MWh) 20.68 28.78 7.85 24.01 15.09 14.71 22.39 31.65 10.35 25.52 20 20 20
Ceg ($/) 82147 | 25933 | 33863 | 49722 | 81192 | 50113 | 32160 | 527.17 | 559.40 430.24 20 20 20
Cly (/) L1181 | 6,622.1 5054 | 4050.1 | 15195 | 3.868.6 2,874 2,628 | 7.5102 4,147.5 0 0 0
¢t ($m) 142.86 |  400.04 720 | 23224 | 82978 | 35536 | 363.82 | 26339 | 713.77 155.98 0 0 0
Higs Hig (SMWh) 4.13 575 1.56 4.80 3.01 2.94 447 6.32 2.07 5.10 4 4 4
Ny Nig (SIMWh) 430 5.82 3.66 6.64 1.35 7.19 5.46 4.37 171 6.16 4 4 4
ﬁjz, Big (SMWh)| 10337 | 143.88 3924 | 12007 75.46 7353 | 11193 | 15823 51.77 127.59 100 100 100
g ($MW?h) 1.29 1.10 0.66 0.89 0.47 1 091 0.93 1.88 1.31 0 0 0
Pmax (MW) 1040 646 725 652 508 687 580 564 865 1100 100 100 100
Pmin (MW) 0 0 0 0 0 0 0 0 0 0 0 0 0
m! (h) 7 5 10 7 1 7 10 7 1 1 1 1 1
my (h) 3 10 4 7 1 4 5 10 1 1 1 1 1
Initial state (h) 5 -3 -4 3 3 -1 1 4 4 -1 1 1 1
TABLE IV: Binary commitment decisions for New England 39-bus benchmark system (Experiment 1)
Cost: $604,856.05
Unit [T 2 3 4 5 6 7 8 O 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Gn# |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gan.#2 [0 0 0 0 0 0 o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen.#3 |1 1 1 1 1 1 1 1 1 1 1 I R D S 1 1 1 U U D
Gen.#4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gn.#s |1 1 1 1 1 1 1 1 1 1 1 1 1t 1 1 1 1 1 1 1 1 1 1 1
Gem.#6 |O 0 o0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen.#7 |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen.#6 |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen.#9 |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gen#0|1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wnd#1 |1 1 1 1 1 1 1 1 1 1 1 1 1t 1 1 1 1 1 1 1 1 1 1 1
Wnd#2 |1 1 1 1 1 1 1 1 |1 11 1 11111 (O U R R D D
Wnd.#3 |1 1 1 1 1 1 1 1 1 1 1 1 1t 1 1 1 1 1 1 1 1 1 1 1
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(a) Pre-contingency case @ 4PM , high wind penetra- (b) Post-contingency case @ 4PM, high wind penetra-
tion, no contingency tion, line contingency @ line 22 — 21. As a result of
the contingnecy, line 23 — 24 is congested.
Fig. 4: Directed graph of New England 39-bus (Experiment 1) Pre and Post-contingencies
VI. CONCLUSIONS 1,830,560 continuous variables.
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