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Abstract

Enzyme activity in nonaqueous media (e.g. conventional organic solvents) is typically lower than
in water by several orders of magnitude. There is a rising interest of developing new nonaqueous
solvent systems that are more “water-like” and more biocompatible. Therefore, we need to learn
from the current state of nonaqueous biocatalysis to overcome its bottleneck and provide
guidance for new solvent design. This review firstly focuses on the discussion of how organic
solvent properties (such as polarity and hydrophobicity) influence the enzyme activity and
stability, and how these properties impact the enzyme’s conformation and dynamics. While
hydrophobic organic solvents usually lead to the maintenance of enzyme activity, solvents
carrying functional groups like hydroxys and ethers (including crown ethers and cyclodextrins)
can lead to enzyme activation. Ionic liquids (ILs) are designable solvents that can conveniently
incorporate these functional groups. Therefore, we systematically survey these ether- and/or
hydroxy-functionalized ILs, and find most of them are highly compatible with enzymes resulting
in high activity and stability. In particular, ILs carrying both ether and tert-alcohol groups are
among the most enzyme-activating solvents. Future direction is to learn from enzyme behaviors
in both water and nonaqueous media to design biocompatible “water-like” solvents.

Keywords: Enzyme, biocatalysis, organic solvent, ionic liquid, nonaqueous solvent
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1. Introduction

The use of biological molecules as catalysts offers many “green” features to the catalytic process
such as less hazardous materials, energy efficiency, and catalysis to enhance the reaction rate
(Timson, 2019). However, biocatalysis in aqueous solutions has some “non-green” limitations
such as the consumption of large volume of diluted aqueous solution (due to poor substrate
solubility), poor economic efficiency, and downstream processing difficulties (such as product
and enzyme recovery), etc. (Dominguez de Maria and Hollmann, 2015). On the other hand,
nonaqueous enzymatic reactions in conventional organic solvents have paved a unique direction
for biocatalysis since 1980s (Dordick, 1989; Klibanov, 1990; Zaks and Klibanov, 1984, 1985,
1988a), leading to over 100 applications in pharmaceutical, agrochemical, and fine chemical
industries (Abdelraheem et al., 2019; Gupta, 1992; Klibanov, 2001; Stepankova et al., 2015;
Wandrey et al., 2000). Later, nonaqueous media expanded from ordinary organic solvents to
supercritical fluids (Cantone et al., 2007; Hobbs and Thomas, 2007), fluorous solvents (Ghaffari-
Moghaddam et al., 2015; Hobbs and Thomas, 2007), gas phase (Barzana et al., 1989; Dunn and

Daniel, 2004), ionic liquids (ILs) (Moniruzzaman et al., 2010; van Rantwijk and Sheldon, 2007,
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Zhao, 2005, 2016), and deep eutectic solvents (DES) (Smith et al., 2014; Xu et al., 2017; Zhao
and Baker, 2013). Key advantages of nonaqueous biocatalysis include altered regio-/enantio-
selectivity, high thermal stability, easy recovery of enzyme and product, dissolution of water-
insoluble substrates in nonaqueous media, reduced microbial contamination, minimized substrate
and/or product inhibition, fewer side-reactions involving water, and reversing reaction equilibria
(such as turning hydrolase-catalyzed hydrolysis reactions into synthesis), etc. (Brink et al., 1988;
Dai and Klibanov, 1999; Dordick, 1992; Gupta, 1992; Klibanov, 1990, 2001; Zaks and Klibanov,
1988b). However, nonaqueous biocatalysis has encountered several major challenges for large-
scale applications such as high enzyme cost, protein fragility, and severely depressed enzyme
activity. In particular, enzyme activity in nonaqueous media is typically lower by 2—5 orders of
magnitude than in aqueous solutions (Klibanov, 1997; Zaks and Klibanov, 1988b). For instance,
a-chymotrypsin and subtilisin in octane were 10*-10° times less active than in water (Zaks and
Klibanov, 1988b). Likely explanations (Burke et al., 1992; Klibanov, 1997) for activity
depression include the limitation of substrate mass transfer to insoluble enzymes in organic
solvents, poor accessibility to active sites of lyophilized or cross-linked enzyme particles,
structural changes of enzyme molecules [e.g., proteins lyophilization causing drastic (although
reversible) changes in secondary structures (Griebenow and Klibanov, 1995), and
lyophilization/dehydration and organic solvents inducing active site disruption and protein
unfolding (Burke et al., 1992)], unfavorable energetics of substrate desolvation (i.e. enzyme-
substrate binding is weaken due to the tendency of substrate staying in organic solvents) and
transition state stabilization (i.e. water stabilizes highly polar transition state much better than
organic solvents), reduced conformational mobility, decreased molecular dynamics, and poor pH

optimization.
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Figure 1 Common methods for enzyme stabilization in nonaqueous solvents.

Extremophilic proteins can withstand extreme conditions (such as high temperature, high
pressure, high or low pH, and organic solvents), and are often associated with protein structures
with more hydrophobic residues (for stronger hydrophobic interaction), more charged residues
(for stronger electrostatic interaction), increased inter- and intramolecular hydrogen bonds (H-
bonds), and the formation of disulfide bonds (Liszka et al., 2012). There are a few natural
extremophilic enzymes being more tolerant to some molecular and ionic organic solvents,
including proteases (Freeman et al., 1993; Gupta et al., 2005; Ogino et al., 1999), lipases (Li et
al., 2014; Ogino et al., 2000; Shabtal and Daya-Mishne, 1992; Shimada et al., 1993; Sugihara et
al., 1992; Yilmaz and Sayar, 2015), and cellulases (Ilmberger et al., 2013; Li and Yu, 2012;
Tantayotai et al., 2016; Xu et al., 2016); in addition, thermophilic enzymes usually show high

tolerance to organic solvents (Illanes, 1999; Liszka et al., 2012). In general, most native enzymes
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are not tolerant to nonaqueous environments. Therefore, many approaches (see Figure 1 for

representative examples) have been explored to improve the enzyme activity and stability in

nonaqueous media (Stepankova et al., 2013) including:

Physical or chemical immobilization of enzymes (Cao et al., 2003; Guisan, 2006; Lee and
Dordick, 2002; Reslow et al., 1988), such as sol—gel encapsulation (Lee et al., 2007a; Lee
et al., 2007b) and cross-linked enzyme aggregates (CLEAs) (Lopez-Serrano et al., 2002;
Sheldon, 2007);

Protein chemical modifications (Inada et al., 1986b) such as PEG modification (Inada et
al., 1986a; Maruyama et al., 2004; Nakashima et al., 2005; Woodward and Kaufman,
1996);

Genetic engineering/gene cloning of enzymes from extremophiles on mesophilic hosts
(Gupta et al., 2008; Illanes, 1999; Yan et al., 2017);

Protein engineering (Arnold, 1990; Liszka et al., 2012; Ogino and Ishikawa, 2001),
including rational redesign/site-directed mutagenesis (SDM) (Antikainen and Martin,
2005; Duan et al., 2016; Takwa et al., 2011; Wong et al., 1990), directed evolution
(Alvizo et al., 2014; Garcia-Ruiz et al., 2012; Reetz, 2002; Reetz and Carballeira, 2007),
semi-rational design (Roth et al., 2017), and de novo design (Rothlisberger et al., 2008);
Lyophilization with excipients/lyoprotectants including salts (for enzyme activation)
(Dabulis and Klibanov, 1993; Dai and Klibanov, 1999; Khmelnitsky et al., 1994; Lindsay
et al., 2004; Morgan and Clark, 2004; Ru et al., 2000; Ru et al., 2001);

Molecular imprinting (Lee and Dordick, 2002) and ligand-induced ‘enzyme memory’

(Russell and Klibanov, 1988);
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Salt hydrates for water activity and pH controls (Halling, 1992; Schulze and Klibanov,
1991; Valivety et al., 1992; Yang et al., 1993);

Enzyme precipitated and rinsed with n-propanol (EPRP) (Roy and Gupta, 2004; Shah and
Gupta, 2007; Solanki and Gupta, 2008), or propanol-rinsed enzyme preparations (PREP)
(Partridge et al., 1998; Theppakorn et al., 2004);

Enzyme-amphiphile/surfactant complexes/ion-pairing (to solubilize enzymes in organic
solvents) (Akbar et al., 2007; Meyer et al., 1996, Okahata and Ijiro, 1988; Paradkar and
Dordick, 1994; Wangikar et al., 1997);

Direct dissolution of hydrophilic enzymes in hydrophobic organic solvents (Mozhaev et
al., 1991; Xu et al., 1997);

Water-in-oil microemulsion or reverse micelles (Luisi, 1985; Oldfield, 1994) and water-
in-IL microemulsion (Moniruzzaman et al., 2008; Pavlidis et al., 2009);

Enzyme coating with ILs (Itoh et al., 2006; Lee and Kim, 2002; Lozano et al., 2007; Zou
etal., 2014);

Addition of organic bases (e.g., EtsN) or acids (Lee and Dordick, 2002; Parker et al.,
1998);

Using “water-mimicking” or “molecular lubricant” solvents such as formamide, ethylene
glycol, glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and ethylene
glycol dimethyl ether (Almarsson and Klibanov, 1996; Kitaguchi et al., 1990; Kitaguchi

and Klibanov, 1989; Riva et al., 1988; Triantafyllou et al., 1993; Xu et al., 1997).

Therefore, a careful design of water-mimicking nonaqueous solvents could lead to transition
state stabilization, higher conformational mobility of enzymes, and improved enzyme-substrate

binding. This review firstly focuses on the discussion of how organic solvents affect protein



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

conformation and dynamics, how organic solvent properties (such as polarity and hydrophobicity)
influence the enzyme activity/stability, and how solvents with hydroxy and ether groups could
induce enzyme activation. Furthermore, we summarize lessons learned from nonaqueous
biocatalysis, and then systematically survey how functional groups have been incorporated into
ILs to achieve more “water-like” biocompatible solvents.

2. Protein Conformation and Dynamics in Nonaqueous Media

Water associated with enzymes can be defined as two types (Figure 2): water buried inside the
protein is known as ‘internally bound water’ (or ‘buried water’, or ‘structural water’) that can act
as reactant and/or integral part of protein structure enabling stereospecific interactions; water
within surface hydration shell of proteins is known as ‘essential water’ (or ‘free water’, or
‘hydration water’) (Gorman and Dordick, 1992; Lee et al., 1998; Meyer, 1992). Using the '3O-
labeling method, Dolman et al. (Dolman et al., 1997) determined residual water molecules per
lysozyme and subtilisin Carlsberg molecule as 3—4 and 14—16 respectively after extensive drying;
these numbers match well with those of buried or structural water molecules calculated from
molecular modeling. The Mitchell-Koch group (Dahanayake et al., 2016) carried out the
molecular dynamics (MD) simulations of Candida antarctica lipase B (CALB) and horse heart
cytochrome ¢ with four levels of crystallographic water (i.e. all crystallographic water, buried
water, slow-diffusing water, and water within 2.7 A) in organic solvents (such as acetonitrile, n-
butanol and fert-butanol), and concluded that buried waters make the most contribution to rapid
equilibration in nonaqueous media while slow-diffusing waters (diffusion coefficients are lower
than 1/3 of the average after 10 ns simulation with all crystal waters) enable similar outcomes;
keeping both buried and slow-diffusing waters quickly leads to an equilibrium protein structure

and seems ideal for simulating protein dynamics in either aqueous or organic solvents. While one



154

155

156

157

158

159

160

161

162
163
164

165

166

167

168

169

170

study (Valivety et al., 1992) suggested that the highest esterification activity of immobilized
Mucor miehei lipase in each organic solvent (i.e. hexane, toluene, trichloroethylene, diisopropyl
ether, or 3-pentanone) was obtained at about the same thermodynamic water activity (aw= 0.5),
another group (Corréa de Sampaio et al., 1996) reported highest transesterification activities of
subtilisin Carlsberg in various solvents (hexane, toluene, diisopropyl ether, and their mixtures)
being achieved at about 10% protein hydration; in these two cases, different amounts of water

were required to reach the optimum enzyme activity in different solvents.

Essential
water layer

Bulk nonaqueous solvent

O
O
Water in bulk
solvent
Solute
@)

Buried water

Figure 2 Protein/enzyme suspended in nonaqueous solvent and water distribution (solute could
be an additive such as lyoprotectant or inhibitor; essential water layer might disappear due to

water stripping by hydrophilic solvents).

The type of nonaqueous organic solvents can have drastic impact on the conformation
and dynamics of proteins. Knowledge of conformational and dynamic behaviors of enzymes in
organic solvents with low water contents is very important to the understanding of enzyme
activity and stability (Guinn et al., 1991). Dry proteins are substantially native and relatively
rigid; upon rehydration, protein flexibility increases accompanying with small local

conformational changes (Careri et al., 1980; Finney and Poole, 1984; Poole and Finney, 1983).
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The Klibanov group (Zaks and Klibanov, 1984) pointed out that dry porcine pancreatic lipase
was thermally stable at 100 °C for hours; furthermore, this group (Zaks and Klibanov, 1988b)
found subtilisin and a-chymotrypsin exhibited high structural rigidity in organic solvents, which
led to high kinetic barriers preventing protein unfolding from native-like conformation and thus
enabled higher thermal and storage stability of proteins in nonaqueous environment than in water.
Affleck et al. (Affleck et al., 1992b) observed a sharp increase (>6-fold) in transesterification
activity of subtilisin Carlsberg upon the addition of 0.5% (v/v) water in tetrahydrofuran (THF),
followed by a steep decline of the activity with further addition of water. Based on electron
paramagnetic resonance (EPR) spectra, they explained the initial increase was caused by an
increase in active-site polarity and protein flexibility due to protein hydration, but further
hydration led to even higher mobility and lower enzyme activity in nonaqueous environment.
They also explained that partially hydrated enzyme molecules have a different conformation
from mostly dry protein. Based on fluorescence and EPR spectra, the same group (Ryu and
Dordick, 1992) noted that water-miscible solvents (e.g., >30% v/v dioxane, >50% v/v methanol,
and >20% v/v acetonitrile) exposed the active site of horseradish peroxidase to the solvent,
which reduced the local polarity of active site. Because of the large increase in Km value, they
suggested the major impact of organic solvents being ground-state stabilization of phenolic
substrates, which caused catalytic efficiency reduction by four orders of magnitude. The
Carpenter group (Dong et al., 1996) determined secondary structures of lyophilized o-
chymotrypsin and subtilisin Carlsberg suspended in organic solvents through infrared
spectroscopy, and found lyophilization perturbed secondary structures of both proteins. The
suspension of lyophilized a-chymotrypsin powder in ethanol, hexane or pyridine exhibited

minimum further disturbance of protein structure. However, subtilisin Carlsberg in ethanol



194  suffered further perturbation of secondary structures while suspension in hexane or pyridine
195 showed different degrees of return to native structure. Co-lyophilization of enzymes with
196  trehalose or sorbitol as the lyoprotectant (see Figure 2) retained more native conformations, but
197  their suspension in organic solvents usually led to large structural perturbations. This group
198  found no correlation of enzymatic transesterification activity with its secondary structures. Since
199 infrared spectroscopy is unable to measure the conformational change of active sites, they
200 suggested that solvents could affect the enzymatic process in several ways: polar solvents bind at
201  the active site; the solvent may change the substrate partition into enzyme/water complex; the
202  solvent can drastically modify the thermodynamic activity of a reactant (e.g., the activity
203 coefficient of hexanol in hexane is 10 times of the value in 2-butanone (van Tol et al., 1995));
204  and polar solvents may cause protein dehydration.

205 Following spectroscopic studies using 'H NMR, near-UV and far-UV CD (circular
206  dichroism), the Klibanov group (Knubovets et al., 1999) reported that hen egg-white lysozyme
207  lost most of its tertiary structure after dissolution in ethylene glycol, methanol, DMSO,
208  formamide, and DMF (respectively); additionally, they observed changes in secondary structures:
209  a partially folded protein in ethylene glycol, a molten globule-type in methanol, and a random
210  coil in DMSO, formamide and DMF. Based on multinuclear NMR spectra of water bound to
211 subtilisin Carlsberg in THF, the Clark group (Lee et al., 1998) proposed a three-state model to
212 describe protease hydration: tightly bound, loosely bound, and free water. Tightly bound water
213 preserves the active conformation of lyophilized subtilisin while loosely bound water boosts up
214  the enzyme activity by increasing enzyme flexibility and active site polarity. By adding up to 0.6%
215  (v/v) aqueous solution of sodium dodecyl sulfate (SDS) into diisopropyl ether for lipase-

216  catalyzed esterification of a chiral carboxylic acid, Ueji et al. (Ueji et al., 2001) observed a

10
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drastic increase in reaction rate and enantioselectivity. Further, their EPR spectra suggest this
could be attributed to enhanced conformational flexibility of protein by adding the surfactant.
The Smith group (Kurkal et al., 2005 ) conducted picosecond dynamic neutron scattering on pig
liver esterase powders at 0%, 3%, 12%, and 50% hydration by mass and at temperatures of 120
to 300 K, and noted the existence of anharmonic and diffusive motion in the protein based on
significant quasielastic scattering intensity. They further indicated that hydration-induced
dynamical changes may increase the enzyme activity, but this is not a requirement for the
enzyme to function. Through examining subtilisin Carlsberg co-lyophilized with inorganic salts
and suspended in organic solvents by 'H NMR relaxation experiments, the Clark group (Eppler
et al., 2008) found that subtilisin’s kcat (apparent unimolecular rate constant or turnover number)
was highly correlated with protein motions in the centisecond timescale, weakly related in the
millisecond timescale, and unrelated on the piconanosecond timescale. Their 'F NMR chemical
shifts and hyperfine tensor measurements reveal enzyme activation being weakly correlated with
changes in active-site polarity. In general, faster enzyme dynamics is essential for enzyme
activation in nonaqueous media. Circular dichroism (CD) spectroscopy was used by Ogino and
co-workers (Ogino et al., 2007) to probe conformational changes of several proteases in
methanol. This group discovered that conformational stability and hydrolytic activities of a-
chymotrypsin and thermolysin were lower in 25% (v/v) methanol than those in aqueous buffer
while subtilisin and organic solvent-tolerant Pseudomonas aeruginosa protease (PST-01)
showed an opposite order (i.e. higher stability and activity in methanol solution). They also
observed less conformational changes for inhibited proteases (vs. proteases without inhibitors);
both conformational transitions and autolysis of enzymes contribute to changes in CD spectra

without the presence of protease inhibitors. In addition, since poly(amino acids) could form
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particular conformations (e.g., a-helix and p-sheets) under certain conditions, their
conformational transitions in the presence of methanol implied that proteins with a high content
of B-pleated structure tend to be less stable in organic solvents.

Protein solvation is crucial to its structural dynamics as the solvent mobility contributes
to protein flexibility. Recent MD simulations have provided valuable insights into protein
dynamics. The Mitchell-Koch group (Dahanayake and Mitchell-Koch, 2018a; Dahanayake and
Mitchell-Koch, 2018b) evaluated the CALB dynamics in aqueous and organic solvents (e.g.,
acetonitrile, cyclohexane, n-butanol, and fert-butanol), pointed out that solvation shell dynamics
and protein dynamics are not the same at different regions (i.e. a-helix, B-sheet, and
loop/connector region). Therefore, protein flexibility is less correlated with bulk solvent
viscosity, but more relevant to local interfacial viscosity or the mobility ratio between organic
molecules in a regional solvation layer and hydration dynamics near the same region. This group
also compared CALB conformational transition rates (measured by the a5—a10 helix distance)
between metastable/long-lived states such as open state, crystal-like state and closed state, and
observed fastest transition rates in water and acetonitrile for the change of crystal-like to open
conformation and much slower conformational changes in other less polar solvents. Interestingly,
three metastable states of CALB in tert-butanol were all distributed in crystal-like conformation.
Additionally, this group examined the effect of topology and hydrophobicity of protein surface
on water structure and dynamics, and found a less dense and more tetrahedral solvation layer
near concave and hydrophobic protein surfaces.

3. Effect of Solvent Properties on Enzyme Activity and Stability
Nonaqueous enzymatic reactions can be influenced by many factors including water

content/thermodynamic water activity (aw), pH/pH memory, temperature, biocatalyst forms and
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preparations, and the type of nonaqueous media, etc. (Bell et al., 1995; Berberich et al., 2003;
Halling, 1992; Ren et al., 2008; Valivety et al., 1992; Wang et al., 2016a; Yang et al., 1993).
Most important solvent properties that can be correlated with enzyme activity and stability
include polarity and hydrophobicity.

Solvent polarity can be quantified by various parameters such as dielectric constants (&),

Hildebrandt solubility (), dipole moments (u), and solvatochromic polarity scales (such as £ 7
and Kamlet-Taft scales) (Reichardt, 1994). Hydrophobicity (or lipophilicity) overlaps with the
polarity concept to a great extent, and is considered as a function of solvent polarity and entropic
effect on water (Timson, 2019). In general, polar molecules tend to be hydrophilic/lipophobic
and non-polar molecules tend to be hydrophobic/lipophilic. But there are some exceptions, for
example, hydrophobic perfluorocarbons are non-polar and lipophobic at the same time (Riess,
2005), and some hydrophilic ILs are polar and also lipophilic (Manic and Najdanovic-Visak,
2016). Hydrophobicity is usually quantified by the log P scale, which is derived from the
partition coefficient (Kow or P) of un-ionized solutes between n-octanol and water at the

unlimited dilution concentration of solute (Eqn. 1) (Sangster, 1989).

o

logP = LI_I)I& Kow = LI—I}(;C_W (D

(" is the solute concentration in n-octanol phase and C" is the solute concentration in aqueous

phase.
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Figure 3 Correlation of transesterification rate of lipases with solvent log P values: (a) Candida
cylindracea lipase and (b) Mucor sp. lipase (replotting from literature data: reaction rates of
lipase-catalyzed transesterification of tributyrin and heptanol at 20 °C from Ref (Zaks and
Klibanov, 1985); log P values from experimental data (Sangster, 1989) except hexadecane and
dioxane from calculated data (Laane et al., 1987)).

Solvent polarity in terms of Hildebrandt solubility (6), dipole moment (), and dielectric
constant (¢) can be an important factor to enzyme activity (Affleck et al., 1992a; Brink and
Tramper, 1985; Fitzpatrick and Klibanov, 1991; Gorman and Dordick, 1992; Halling, 2000; Kim
et al., 2000; Schulze and Klibanov, 1991). Hildebrand solubility parameter (8) can be calculated
from the solvent heat of evaporation, which depends on polar interactions between solvent
molecules; however, for apolar solvents, & values are not sensitive to changes in apolarity and
thus fall in a narrow range (Laane et al., 1985). Therefore, solvent polarity measured by 6 values
does not have a strong correlation with enzyme activity in apolar organic media. On the other
hand, solvent hydrophobicity in terms of log P value has been found a good correlation factor for
nonaqueous biocatalysis. The Laane group (Laane et al., 1985; Laane et al., 1987) replotted

immobilized-cell activity (Brink and Tramper, 1985) and gas-producing anaerobic cell activity

14
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(Playne and Smith, 1983) (respectively) with one of these solvent properties: dielectric constant
(¢), Hildebrand solubility parameter (), and hydrophobicity (log P), and concluded the activities
increased with log P values in general showing as “S”-shape curves. Similar correlations were
observed with yeast lipase and mold lipase activities with log P value (Figure 3) although
pancreatic lipase failed to follow the trend (lipase activity data from Ref. (Zaks and Klibanov,
1985)). Based on these experimental correlations, the Laane group (Laane et al., 1985; Laane et
al., 1987) suggested a rule of thumb for biocatalysis in nonaqueous solvents: low activity in polar
solvents with log P < 2; moderate activity in solvents with log P = 2—4, and high activity in
apolar solvents with log P > 4. Further optimization of biocatalytic activity can be achieved
when |log Pi — log Ps| and |log Peph — log Pp| are at minimal while |log Peph — log Ps| and |log Pi —
log Pp| are at maximal, where log Pi is for microenvironment of biocatalyst, log Pecph is for
continuous organic phase, log Ps is for the substrate, and log Pp is for the product. In case of
substrate inhibition, log Pi is optimized with respect to log Ps. For pure enzymes in neat organic
solvents where there is no interphase, log Pi is identical to log Peph and thus the medium is
optimized with respect to log Ps and log Pp. This group (Hilhorst et al., 1984) further suggested
the combination of log P and molar mass of solvent as a good indicator of cell activity retention.
The log P rule was applied to understand the enzymatic reduction of apolar steroids progesterone
and prednisone catalyzed by 20B-hydroxysteroid dehydrogenase in reversed micellar media
comprising cetyltrimethylammonium bromide, hexanol, another organic solvent (e.g. octane),
and Hepes buffer, where |log Pi — log Ps| was minimized to reach a high steroid content in
interphase and [log Pcph — log Ps| was maximized to maintain a low concentration of steroid in
continuous phase. Reslow et al. (Reslow et al., 1987a) evaluated a-chymotrypsin-catalyzed

transesterification reaction in various organic solvents, and noted that the enzymatic reaction
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followed Michaelis-Menten kinetics with a slight decrease of Km with the increasing solvent log
P and a drastic increase in Vmax with the log P value. They also observed the transesterification
activity at 2% (v/v) water increased with the log P value to a maximum (when log P is about 1.6)
and then declined with a further increase in log P. The same group (Reslow et al., 1987b)
explained that corrected log P values taking water into consideration (see Eqn. 2) showed a
better correlation with the a-chymotrypsin activity.
log Peorr = (1 = x) 108 Psorvent + xlogPyater (2)
where x is the mole fraction of water (in term of water solubility in organic solvent), organic
solvent log P is noted as log Psolvent, and water log P is noted as log Pwater (= —1.396 as calculated
from Eqn. (1) using the water solubility in n-octanol at 25 °C). Their results suggest that less
water is needed for more hydrophobic solvents to reach maximum enzyme activity. A similar
‘bell-shape’ trend was observed by the Zhao group (Zhao et al., 2009a) in the lipase-catalyzed
transesterification reaction in ILs although initial reaction rate reached its maximum at a much
lower log P value (—-0.90). Another study by Lou et al. (Lou et al., 2005) on the lipase-catalyzed
ammonolysis of (R,S)-p-hydroxyphenylglycine methyl ester reported initial rates increasing with
hydrophobicity of BFs-based ILs to a maximum, and then decreasing with even higher
hydrophobicity. The decrease in enzyme activity with log P after the maximum is possibly due to
substrate ground-state stabilization (e.g., strong substrate solvation (Kim et al., 2000), and up to
10*-fold reduction in catalytic efficiency (Ryu and Dordick, 1992)) or hydrophobic interactions
(moving protein’s hydrophobic moieties from interior to exterior (Timson, 2019)) in highly
hydrophobic solvents.
The Klibanov group (Zaks and Klibanov, 1988b) compared transesterification activities

of subtilisin and a-chymotrypsin in various organic solvents containing <0.02% (v/v) water, and
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found the enzymatic reaction followed Michaelis-Menten kinetics with Vmax/Km values
increasing with high solvent hydrophobicity. Both enzymes were highly active in hexadecane
and octane. This study on proteases and another study from the same group (on yeast alcohol
oxidase, mushroom polyphenol oxidase, and horse liver alcohol dehydrogenase) (Zaks and
Klibanov, 1988a) suggest that hydrophilic solvents could strip off ‘essential water’ from
enzymes (see Figure 2), and influence the enzymatic process directly. Nurok and co-workers
(Nurok et al., 1999) developed regression models for transesterification activities of subtilisin
Carlsberg and Candida rugosa lipase with organic solvent properties, found either log P or a
descriptor containing log P correlates with enzyme activities. Pogorevc et al. (Pogorevc et al.,
2002) observed little deactivation of two lipases and hydroxynitrile lyase by organic solvents
with log P > 1; however, the detrimental impact of protic solvents (such as alcohols) caused by
their hydrogen-bonding is underestimated by the log P scale. Clark and co-workers (Guinn et al.,
1991) concluded that the activity of horse liver alcohol dehydrogenase for the oxidation of
cinnamyl alcohol increased in a more hydrophobic (a lower dielectric constant &r) organic solvent
such as hexane (er = 1.9) containing ~0.02-10% water, which corresponded with more rigid
protein structures based on EPR spectra. Even in aqueous solutions of water-miscible organic
solvents (mole fraction of water 0.8-0.998), the Nagamune group (Hirakawaa et al., 2005) found
keat of 1-pentanol oxidation catalyzed by alcohol dehydrogenase from Aeropyrum pernix
increased almost linearly with log P values of mixed solvents (using the mixing rule in literature
(Hilhorst et al., 1984)) and kcat in aqueous acetonitrile (its mole fraction 0.1) was 10 times higher
than that in aqueous buffer. They suggested that enzyme activation depended on log P value of
solvent mixture but was independent of solvent composition. And they further indicated that with

an increase in log P, both activation enthalpy and entropy decreased but overall free energy of

17



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

activation decreased. In aqueous organic solvents (25-50%, v/v), protease and lipases usually
stayed catalytically active and stable in C7—Cio alkanes, cyclohexane, and DMSO, but much less
active in most mono-alcohols (Ogino et al., 2000; Ogino et al., 1999; Shimada et al., 1993).

The mechanism of water stripping from enzymes by hydrophilic solvents (see Figure 2)
was confirmed by MD simulations. Yang et al. (Yang et al., 2004) studied surfactant-solubilized
subtilisin BPN' in water and three organic solvents (i.e. octane, THF, and acetonitrile), and found
no significant difference in terms of overall enzyme structure and flexibility in these solvents
over the timescale of several nanoseconds. The major difference is the partition of hydration
water between enzyme molecules and bulk solvent. With the increasing of solvent polarity
(octane — THF — acetonitrile), hydration water is more stripped from enzyme’s surface, and
polar solvent molecules begin to penetrate into crevices on enzyme’s surface and into the active
site to replace mobile and weakly bound water molecules. Another study of molecular
dynamics/molecular mechanics (MD/MM) simulations of a serine protease cutinase in water and
five organic solvents (i.e. hexane, diisopropyl ether, 3-pentanone, ethanol and acetonitrile)
demonstrated that the nature of organic solvents determines their ability in stripping off water
from enzyme’s surface (Micaélo and Soares, 2007). The simulations results picture that
enzyme’s surface is surround by clusters of water molecules in organic solvents, preferentially
near charged/polar residues. In nonpolar solvents (e.g., hexane, diisopropyl ether, and 3-
pentanone), large clusters of water molecules are seen around enzyme’s surface while smaller
aggregates of water exist in polar solvents (e.g. ethanol and acetonitrile). In addition, polar
solvents may replace some water molecules at enzyme’s surface and affect the structure and
dynamics of protein molecules. At low hydration state, ions could preferentially bind to the

protein.
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On the contrary, a number of studies suggest that enzyme performance is not correlated
with solvent polarity and hydrophobicity. The Klibanov group (Narayan and Klibanov, 1993)
examined transesterification activities of three lipases and one protease in anhydrous organic
solvents, and concluded water-immiscibility and apolarity of the solvent could not be correlated
with enzyme activity. The solvent hydrophobicity (usually measured by log P value) could
indicate general enzyme activity trend in nonaqueous media, but may not correlate with enzyme
activity in a selected narrow range of log P values. The Wandrey group (Villela Filho et al., 2003)
pointed out that the stability of three alcohol dehydrogenases (ADH) in biphasic systems failed
to follow the log P rule for organic solvent selection. All three alcohol dehydrogenases showed

the highest stability in the biphasic system of 50/50 (v/v) aqueous phase/ tert-butyl methyl ether.

)

0 o

.
PN
Figure 4 Structure of 18-crown-6.

4. Enzyme Activation by Crown Ethers and Cyclodextrins
Crown ethers can activate enzymes by two methods: as reaction additives, or as co-lyophilizing
agents. The most commonly used crown ether is 18-crown-6 (Figure 4). Reinhoudt and co-
workers (Reinhoudt et al., 1989) studied the addition of several crown ethers (0.75 mM) in
protease-catalyzed transesterification of N-acetyl-L-phenylalanine ethyl ester with 1-propanol in
n-octane, and observed the highest enzyme activation by 18-crown-6 (up to 4.1-fold activation
for a-chymotrypsin and 2.0-fold activation for subtilisin). Later, this group (Broos et al., 1992;
Engbersen et al., 1996) reported higher a-chymotrypsin activation by using the same

transesterification reaction in various organic solvents, and obtained 31-fold protease activation
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in dibutyl ether, 29-fold in octane, and 19-fold in cyclohexane via adding 2.0 mM 18-crown-6.
The same group (van Unen et al., 2002) further indicated that a-chymotrypsin activity increased
with the concentration of 18-crown-6, and reached 13-fold enzyme activation in cyclohexane at 4
mM crown ether. Itoh et al. (Itoh et al., 1993; Itoh et al., 1996) also employed crown ethers as
additives (>250 molar equiv. based on the enzyme) in the lipase-catalyzed hydrolysis of 2-cyano-
I-methylethyl acetate, and observed faster reactions and higher enantioselectivity in the presence
of crown ethers (in particular benzo-crown, armed azacrown, and thiacrown). They confirmed
that accelerated reaction rates were due to the binding of reaction product with crown ether, and
enhanced enantioselectivity was due to crown ether interaction with active sites modifying the
lipase local conformation. When studying the peptide formation in acetonitrile catalyzed by
cross-linked crystals of thermolysin and subtilisin Carlsberg, van Unen et al. (van Unen et al.,
1998a; van Unen et al., 1998¢) found that direct addition of 18-crown-6 into the reaction mixture
showed no impact on enzyme activity, but observed 13 times of enzyme activation after soaking
enzyme crystals in acetonitrile containing crown ether followed by overnight evaporation of the
solvent at room temperature. Chang et al. (Chang et al., 2016) observed that 18-crown-6 was
able to improve the thermal stability of cellulase. An early study by Odell and Earlam (Odell and
Earlam, 1985) indicated that some proteins (e.g., cytochrome ¢, bovine serum, lysozyme and
myoglobin) could form complexes with crown ethers, resulting in protein dissolution in
nonaqueous media such as methanol. Following this study, the Tsukube group (Paul et al., 2003)
formed cytochrome ¢ complexes with 18-crown-6 in methanol to convert biologically inactive
heme structure to catalytically cold-active synzymes. They observed non-biological six-
coordinate heme in methanol for each cytochrome ¢, and the degradation of hemes with H202

was considerably depressed at cold temperatures (e.g., —20 to —60 °C). At these low temperatures,
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cytochrome ¢ complexes were able to promote a faster oxidation of (S)-naphthyl methyl
sulfoxide than its (R)-isomer (up to 49% ee and 79% conversion at —40 °C by pigeon breast
cytochrome c).

The second method of activation is the co-lyophilization of crown ether with the enzyme.
The Reinhoudt group (Broos et al., 1995; Engbersen et al., 1996) co-lyophilized serine proteases
with crown ethers, and reported that a-chymotrypsin co-lyophilized with 250 molar equiv. of 18-
crown-6 resulted in 640 times increase in its transesterification activity (only 50 times lowers
than the hydrolytic activity in water); co-lyophilization activation was 30 times more than the
direct addition of crown ether in the solvent (i.e. cyclohexane). Following the same process using
500 equiv. 18-crown-6, subtilisin Carlsberg was more active by 28 times and trypsin was more
active by 216 times while acetyltrypsin was not activated. In a later communication (van Unen et
al., 2002), this group re-optimized 18-crown-6 concentration to 50 equiv. for co-lyophilization to
achieve 470-fold a-chymotrypsin activation for the same reaction; they explained higher crown
ether concentrations could lead to enzyme dehydration to become less active (van Unen et al.,
2001). Furthermore, the same group (van Unen et al., 1998a, b) found that a-chymotrypsin co-
lyophilized with 50 molar equiv. of 18-crown-6 exhibited 425-fold improvement in activity
during the enzymatic formation of dipeptide in acetonitrile. They also observed more
pronounced activation by crown ether in hydrophilic solvents (i.e. acetonitrile, dioxane, and 2-
butanone) than in hydrophobic solvents (i.e. 3-pentanone, tert-amyl alcohol, and toluene). On the
contrary, this group noted that for the transesterification reaction catalyzed by a-chymotrypsin
co-lyophilized with 50 equiv. of 18-crown-6, the crown ether activation decreased with a higher
solvent polarity (a lower log P value); for example, 470-fold activation in cyclohexane dropped

to 93-fold in acetonitrile. The explanation is that enzyme molecules in hydrophobic solvents
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have more salt bridges that needs to be disrupted by crown ether; salt bridges tend to lock in
inactive enzyme conformations.

In terms of activation mechanism, this group (Broos et al., 1995) initially suspected that
crown ethers act as amphiphiles between enzyme’s polar surface and nonpolar organic solvents
to move water molecules from active site upon substrate binding (de Jong et al., 1976). Later, the
Reinhoudt group (van Unen et al., 2001) measured Michaelis-Menten kinetics of a-chymotrypsin
in toluene, and found significantly higher Vmax value but slightly lower Km value in the presence
of 18-crown-6, implying noncompetitive interactions and no direct interaction of crown ether
with active sites to induce enzyme activation. Odell and Earlam (Odell and Earlam, 1985)
suggested that some proteins could form complexes with crown ethers possibly through
interactions with alkylammonium ions of lysine residues. Through electrospray ionization (ESI)
quadrupole ion-trap mass spectrometry, Julian and Beauchamp (Julian and Beauchamp, 2001)
suggested that peptides form stable supramolecular adducts with 18-crown-6 preferentially with
protonated amine on the side chain of lysine and further form multi-charged complexes through
crown ether interacting with adjacent lysines, while the complexation with side chains of
histidine and arginine is less competitive. Therefore, enzyme activation by crown ethers could be
due to interactions of 18-crown-6 with lysine ammonium and/or tyrosine hydroxy groups (so
called “macrocyclic interactions) (Broos et al., 1995; van Unen et al., 2001, 2002): there are
more lysine residues in a-chymotrypsin (14) and trypsin (14) than in subtilisin Carlsberg (7-8);
however, in acetyltrypsin, lysine ammonium and tyrosine hydroxys are acetylated (Labouesse
and Gervais, 1967). This explains the earlier data (Broos et al., 1995) that a-chymotrypsin and
trypsin could be more activated by 18-crown-6 than subtilisin Carlsberg while acetyltrypsin was

not activated. Such macrocyclic interactions minimize the formation of inter-and intramolecular
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salt bridges, and reduce kinetic conformational barrier allowing the protein to refold back to
thermodynamically stable and catalytically active conformations. Enzyme activation due to the
direct addition of crown ethers into reaction mixture can be primarily attributed to these
macrocyclic interactions. However, for enzymes co-lyophilized with crown ether, the Griebenow
group (Santos et al., 2001) pointed out the primary contribution to enzyme activation being
“molecular imprinting effect”. This means that enzyme’s active site structure is locally preserved
by crown ethers during lyophilization, and even after exposure to organic solvents when crown
ethers leach out. The preserved enzyme structure can be understood as kinetically but not
thermodynamically stable in organic solvents. This group (Santos et al., 2001) indicated that
subtilisin co-lyophilized with crown ethers showed poor storage stability (at 4 or 25 °C), losing
its activities in days. Furthermore, the Griebenow group (Griebenow et al., 2001) determined
secondary structures of subtilisin co-dried with 18-crown-6 in 1,4-dioxane and its thermal
denaturation temperature (7d4) by infrared spectroscopy, and suggested that crown ether-to-
subtilisin preparation at 0.7 mass ratio showed similar secondary structures and rigidity as the
protease in water, corresponding to the highest transesterification activity obtained in 1,4-
dioxane. On a similar note, the Reinhoudt group (van Unen et al., 2002) concluded that enzyme
activation resulted from co-lyophilization with crown ethers is only partially due to specific
macrocyclic complexation, but largely due to nonmacrocyclic lyoprotection.

Cyclodextrins are macrocyclic oligosaccharides produced by the enzymatic conversion of
starch catalyzed by cyclodextrin glycosyltransferase. Three common naturally-occurring
cyclodextrins (a-, B-, and y-) comprise 6, 7, and 8 a-D-glucopyranosyl units respectively, via a-
1,4-glycosidic linkages (Figure 5). Cyclodextrins are generally soluble in water but insoluble in

most organic solvents (except DMSO, MDF, and N-methylpyrrolidone) (Hedges, 2009).
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Cyclodextrins and their modified forms have wide industrial applications in food, chemical,
pharmaceutical, drug delivery, agriculture, and environmental engineering sectors. The review is

interested in the use of cyclodextrins as additives or lyoprotectants to activate the enzyme.
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Figure 5 Structures of a-, -, and y-cyclodextrins.

The Kise group (Ooe et al., 1999) co-lyophilized a-chymotrypsin with various
cyclodextrins, and found 2,3,6-tri-O-methyl B-cyclodextrin was able to increase the enzymatic
transesterification activity by 40-fold in acetonitrile containing 3% (v/v) water. In addition,
hydroxypropylated B- or y-cyclodextrin was able to maintain >98% of a-chymotrypsin initial

activity after 6 h of incubation at 30 °C in acetonitrile (with 3% v/v water). The Griebenow
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group (Santos et al., 1999) co-lyophilized subtilisin Carlsberg with methyl B-cyclodextrin (1:6
mass ratio), and reported that this enzyme preparation drastically improved the protease activity
and/or enantioselectivity in two transesterification reactions performed in dry THF and
acetonitrile: the initial rate of N-acetyl-L-phenylalanine ethyl ether with 1-propanol increased by
53 folds in THF; the initial rate (S-enantiomer) of vinylbutyrate with 1-phenylethanol increased
by 164 times and its enantioselectivity increased by 1.8 times. However, a small amount of water
(as low as 0.1%, v/v) in nonaqueous media began to diminish the enhancement in activity and
enantioselectivity induced by methyl B-cyclodextrin co-lyophilization. The activation mechanism
was explained as methyl B-cyclodextrin increasing enzyme flexibility in organic media, and
minimizing structural changes of the protein during lyophilization. Secondary structures of this
subtilisin preparation obtained from FTIR by the same group (Griebenow et al., 1999) suggested
that the enantioselectivity correlated well with protein’s structural integrity: subtilisin
enantioselectivity increased with a higher a-helix content (i.e. less perturbed structure). For
Candida rugosa lipase co-lyophilized with methyl B-cyclodextrin, a similar enzyme
improvement (16.8-fold increase in initial rate for R-enantiomer and 2.7-fold increase in
enantioselectivity) was seen in the transesterification between 1-phenylethanol and vinyl butyrate
(Griebenow et al., 1999). The Barletta group (Montafiez-Clemente et al., 2002) further expanded
the subtilisin-catalyzed transesterification of vinyl butyrate with 1-phenylethanol to several
racemic alcohols as substrates in organic solvents (THF, 1,4-dioxane, acetonitrile,
dichloromethane, toluene, and octane), and confirmed that subtilisin co-lyophilized with methyl-
B-cyclodextrin enhanced its activity and enantioselectivity due to structural preservation during
lyophilization. THF and 1,4-dioxane were identified as the best solvents for these enzymatic

reactions while acetonitrile was the worst. Watanabe and co-workers (Watanabe et al., 2006)
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observed that a small amount (5 mM) of a-, B-, or y-cyclodextrin could activate 4-a-
glucanotransferase by 6.5, 6.6, and 4.9 folds respectively to cleave maltotriosyl residue from the
maltotetraosyl branch. Other mechanisms of enzyme activation by cyclodextrins include
complexing with the inhibitor (Li et al., 2013; Lopez-Nicolas et al., 2007; Orenes-Pifiero et al.,
2007), increasing the substrate solubility (Cui et al., 2013), delivering negatively charged
substrate to the enzyme (Davis et al., 2004), and enzyme complexing with cyclodextrin through
higher secondary interactions (i.e. hydrophobic interactions, hydrogen-bonding, and van der
Waals forces) (Canbolat et al., 2017; Denadai et al., 2006). As these mechanisms are primarily
explored for aqueous enzymatic processes, they are not discussed in detail by this review.

On the other hand, cyclodextrins and derivatives might inhibit enzyme activities due to
the sequestration of substrate to reduce its free concentration as illustrated by several examples,
such as cyclodextrins complexes with chlorogenic acid or 4-methyl catechol inhibiting the
activity of apple polyphenol oxidase (causing juice browning) (Irwin et al., 1994; Peralta-Altier
et al., 2018), the inhibition of hydroperoxidase activity of lipoxygenase due to the formation of
xenobiotics complex in the cavity of cyclodextrins (Nufiez-Delicado et al., 1999), the
complexation of fert-butylcathechol in the cavity of hydroxypropyl-B-cyclodextrin and vy-
cyclodextrin causing the substrate sequestrant effect and the inhibition of Streptomyces
antibioticus tyrosinase (Orenes-Pifiero et al., 2007). Another inhibition mechanism was reported
by Sule et al. (Sule et al., 2015) when they observed Escherichia coli methionine aminopeptidase
(MetAP) was inhibited by 2-hydroxypropyl-B-cyclodextrin (HP-B-CD). The inhibition reason
was described as the formation of non-productive ternary complex by bridging two ends of the

substrate (methionyl-7-amino-4-methylcoumarin) with MetAP and HP-B-CD, respectively.
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5. Enzyme-Compatible Organic Solvents for Nonaqueous Biocatalysis

Long-chain alkanes and halogenated alkanes are hydrophobic and compatible with many

enzymes such as subtilisin and a-chymotrypsin in hexadecane and octane (Zaks and Klibanov,

1988b), a-chymotrypsin in 1,2-dichloroethane, chloroform and toluene (Reslow et al., 1987a), a-

chymotrypsin in isooctane containing 2 mM Aerosol OT (AOT) as the surfactant (Paradkar and

Dordick, 1994), alcohol dehydrogenase in heptane (Guinn et al., 1991), and lipases and

hydroxynitrile lyase in hexane and dodecane (Pogorevc et al., 2002), etc. Some representative

examples are illustrated in Table 1.

Table 1 Enzyme-compatible organic solvents for nonaqueous biocatalysis

Enzyme Compatible organic solvents Ref
subtilisin (protease) hexadecane and octane (Zaks and Klibanov,
1988b)
DMF (Riva et al., 1988)
1,4-dioxane, benzene, EtsN and THF  (Fitzpatrick and
(enantioselectivity) Klibanov, 1991)

a-chymotrypsin (protease)

Porcine pancreatic lipase

Candida cylindracea lipase

Lipases from Pseudomonas sp.

and Candida rugosa

hexane, diisopropyl ether, and THF

tert-amyl alcohol
hexadecane and octane

isooctane

diisopropyl ether, 1,2-dichloroethane,
chloroform and toluene

hexane, diethyl ether, diisopropyl
ether, dibutyl ether and dodecane
nitromethane, DMF, EtsN and fert-
amyl alcohol (enantioselectivity)
hexadecane, dodecane and hexane

hexane and dodecane

(Corréa de Sampaio et
al., 1996; Khmelnitsky
et al., 1994)

(Kim et al., 2000)
(Zaks and Klibanov,
1988b)

(Paradkar and
Dordick, 1994)
(Reslow et al., 1987a)

(Zaks and Klibanov,
1985)

(Fitzpatrick and
Klibanov, 1991)

(Zaks and Klibanov,
1985)

(Pogorevc et al., 2002)

Candida rugosa lipase Diisopropyl ether (Ueji et al., 2001)
alcohol dehydrogenase heptane (Guinn et al., 1991)
hydroxynitrile lyase hexane and dodecane (Pogorevc et al., 2002)
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Polyols and sugars (e.g. sorbitol and trehalose) are so called ‘compensatory solutes’ that
provide stabilization to proteins in aqueous media (Kaushik and Bhat, 1998, 2003). For instance,
the thermal stability of glucose dehydrogenase in aqueous solutions can be correlated with the
number of hydroxy groups in polyols in an increasing order of glycerol (3) < erythritol (4) <
xylitol (5) < sorbitol (6) (Obdn et al., 1996). A likely explanation is that polyols increase the
surface tension of water leading to preferential hydration of proteins in aqueous media (Kaushik
and Bhat, 1998). Protease and lipases could be more stable in 25-50% (v/v) aqueous solutions of
ethylene glycol or 1-hexanol than in buffer alone, but not always stable in aqueous alcohols such
as methanol, ethanol, isopropanol, 1-butanol, and zert-butanol (Ogino et al., 2000; Ogino et al.,
1999; Shimada et al., 1993).

However, some alcohols and ethers at (nearly) dried state are highly compatible with
enzymes. fert-Butanol could afford high enzyme activities in many enzymatic processes, such as
peptide preparation catalyzed by immobilized papain (Theppakorn et al., 2004), and lipase-
catalyzed transesterification and ammoniolysis reactions (Degn et al., 1999; Madeira Lau et al.,
2004; Madeira Lau et al., 2000; Royon et al., 2007; Toral et al., 2007; van Rantwijk et al., 2006;
Zhang et al., 2011). When carrying out the Novozym 435-catalyzed transesterification
between ethyl sorbate and 1-propanol, the Zhao group (Zhao et al., 2019b) observed that the
lipase (CALB) was more active in tert-butanol than in several ILs including the ether-
functionalized type. Compared with primary alcohols (such as 1-butanol), tert-butanol is less
inhibitory to the enzyme, and less reactive as a substrate (Madeira Lau et al., 2000). MD
simulations of CALB suggest a high similarity of CALB structures in tert-butanol and in
three-site model (TIP3P) water; high compatibility of CALB in tert-butanol is due to several

reasons (Park et al., 2013) such as high protein flexibility in tert-butanol, well-maintained
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substrate’s entrance size and enzyme’s binding pocket size, and preservation of hydrogen-
bonding of Ser105 with His 224 [Ser105-His224—Asp187 is known as the ‘catalytic triad’ in
the active site of CALB (Uppenberg et al., 1994; Uppenberg et al., 1995)]. Some ethers are also
highly compatible with enzymes in nonaqueous biocatalysis. Diisopropyl ether has enabled high
transesterification activities when catalyzed by lipases (Itoh et al., 2001; Itoh et al., 2004; Itoh et
al., 2006; Itoh et al., 2003; van Tol et al., 1995) or a-chymotrypsin (Reslow et al., 1987a). Other
ethers (such as 2,2-dimethoxypropane and 2-ethoxyethyl ether) led to high conversions in
enzymatic acylation of 6-aminopenicillanic acid and D-phenylglycine amide catalyzed by cross-
linked enzyme aggregates (CLEAs) of Penicillin G acylase (Cao et al., 2001).

Ou et al. (Ou et al.,, 2011a) suggested that enzyme-compatible and enzyme-soluble
solvents should have high dielectric constants (¢r) and high electron pair donating and accepting
ability just like water (¢ = 78.30). Following this rationale, they selected glycerol carbonate (- =
82.66) as enzyme-soluble solvent for the transesterification of ethyl butyrate and 1-butanol at
40 °C catalyzed by CALB and Candida rugosa lipase (CRL) respectively. Glycerol carbonate
enabled a much higher ethyl butyrate conversion than acetonitrile and DMF; although
comparable conversions were reported in glycerol carbonate and water, the substrate conversion
reported in water by this group probably referred to enzymatic hydrolysis of ethyl butyrate
instead of transesterification. This group (Ou et al., 2012) further conducted the same enzymatic
transesterification reaction in glycerol carbonate or N-hydroxymethyl formamide catalyzed by
CALB and Pseudomonas cepacia lipase respectively, and observed comparable initial rates
(based on ethyl butyrate conversion) as that in water. It is important to point out that the substrate
conversion includes both enzymatic transesterification and hydrolysis, and does not truly reflect

the transesterification activity. Especially in water, the hydrolysis is expected to predominate
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over transesterification [although in the presence of surfactant, enzymatic esterification could
proceed in aqueous solutions containing miniemulsions (Aschenbrenner et al., 2009)].

6. Lessons Learned from Enzyme Behaviors in Organic Solvents

Despite some exceptions (Fitzpatrick and Klibanov, 1991; Narayan and Klibanov, 1993), many
enzymatic reactions in nonaqueous media tend to follow the ‘bell-shape’ rule of thumb: the
enzyme activity and stability increase with the solvent hydrophobicity (i.e. enzymes tend to be
more active and stable in hydrophobic solvents than in hydrophilic ones), but may begin to
decline when the solvent is too hydrophobic. Very hydrophobic solvents may cause strong
substrate solvation and substrate’s ground-state stabilization with up to four orders of magnitude
in catalytic efficiency reduction (Kim et al., 2000; Ryu and Dordick, 1992).

Although enzymes and their various preparations insoluble in nonaqueous media are
advantageous to the recycle and reuse of biocatalysts and to product separation, their suspension
in reaction mixture as a heterogeneous system causes the limitation of substrate mass transfer
and depression of enzyme activity (Burke et al., 1992; Klibanov, 1997). Efforts have been put
forward to solubilize enzymes in nonaqueous environments. Some molecular and ionic organic
solvents are capable of dissolving enzymes. Hen egg-white lysozyme could be dissolved at >10
mg/mL solubility in polar, protic, and hydrophilic organic solvents (such as alcohols including
glycerol, amides and DMSO), and more than 50 mg/mL in diols (e.g., ethylene glycol and 1,3-
propanediol) as demonstrated by the Klibanov group (Chin et al., 1994). The protein solubility
shows weak correlations with dielectric constants or Hildebrand solubility parameters of organic
solvents. The same group (Rariy and Klibanov, 1999) reported that the addition of 1.0 M salts
like LiCl into 60% (v/v) protein-dissolving diols could considerably (up to >100 times) improve

the folding of unfolded hen egg-white lysozyme. The underlying cause is that salts increase the
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protein solubility and thus suppress nonspecific protein aggregation during refolding.
Hydrophilic ILs with hydrogen-bonding basic anions (e.g., NO3~, lactate, EtSO4~, and CH3COO",
etc.) could dissolve enzymes [while other hydrophilic ILs carrying anions like BF4™ do not
dissolve enzymes (Madeira Lau et al., 2004)], but these ionic solvents strongly interact with the
protein (mainly through hydrogen-bonding) causing enzyme deactivation (Bermejo et al., 2008;
de los Rios et al., 2007; Madeira Lau et al., 2004; Toral et al., 2007; Turner et al., 2003; Zhao et
al., 2008; Zhao et al., 2009a). On the other hand, several IL systems are capable of dissolving
enzymes and maintaining their activities. Cholinium dihydrogen phosphate ([Ch][H2PO4], m.p.
119°C) containing 20% (wt) water could dissolve and stabilize cytochrome c¢ (Fujita et al., 2006;
Fujita et al., 2005; Fujita et al., 2007). This same group (Fujita and Ohno, 2010) further pointed
out that [Ch][H2PO4] (with 30 wt% water) was able to dissolve various metallo proteins
(cytochrome ¢, peroxidase, ascorbate oxidase, azurin, pseudoazurin, and D-fructose
dehydrogenase) and also maintained their active sites and secondary structures, leading to the
findings that some proteins retained their activities and D-fructose dehydrogenase exhibited
much improved thermal stability. Bisht et al. (Bisht et al., 2017) found aqueous cholinium
glutarate ([Ch][Glu]:H20, 1:1 mass ratio) lead to over 50-time increase in peroxidase activity of
cytochrome ¢ than buffer, and aqueous [Ch][H2PO4] (salt:H20, 1:2 mass ratio) led over 25-fold
increase in enzyme activity. They further indicated that aqueous cholinium dicarboxylates could
also improve the stability of cytochrome c in terms of offsetting denaturing factors such as H202,
guanidinium chloride, pH, and temperature, and thus increasing the long-term storage of
cytochrome ¢ at room temperature (for 21 weeks). Another study (Zhang et al., 2018) suggested
that aqueous 20% cholinium L-glutamate could improve the reaction yield by 3.5 times for multi-

dehydrogenase-catalyzed conversion of carbon dioxide to methanol. MD simulations hint that
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the presence of cholinium L-glutamate enables the conformation of formate dehydrogenase to
keep carbon dioxide near its active site for a longer time. The Santos-Ebinuma group
(Nascimento et al., 2019) examined the hydrolytic activity of Aspergillus niger lipase in aqueous
solutions (0.05-1.00 M) of several cholinium carboxylates, and observed that the lipase activity
was preserved or improved at low IL concentrations (< 0.1 M) while at >0.1M concentrations,
anions with longer alkyl chains such as cholinium pentanoate and cholinium hexanoate induced
complete enzyme inhibition. Interestingly, the lipase maintained its activity well at all
concentrations of cholinium acetate even after 24 h incubation in ionic solutions at 35 °C.
Triethylmethylammonium methyl sulfate ([EtsMeN][MeSOa4]) could solubilize >1.2 mg/mL
Candida antarctica lipase B (CALB) and maintain its catalytic capability (Madeira Lau et al.,
2004; van Rantwijk et al., 2006). The Zhao group (Zhao et al., 2008; Zhao et al., 2009c)
synthesized several medium-ether-chained ILs carrying acetate anions, and found that these ionic
media could dissolve >5 mg/mL CALB (at 50 “C) but still maintained reasonable lipase activity
(see detailed discussion in Section 7). The Bruce group (Falcioni et al., 2010) examined protic
hydroxyalkylammonium-based ILs (containing ~1-2 wt% water) for dissolving proteases (i.e.
chymotrypsin and subtilisin), and noted that subtilisin maintained its activity in
diethanolammonium chloride while chymotrypsin was inactive in these protic ILs. Furthermore,
they employed far and near UV CD spectra to confirm the preservation of secondary and tertiary
structures of subtilisin in diethanolammonium chloride. In addition to the manipulation of
solvent systems to dissolve enzymes, the modification of enzymes is an alternative route to
solubilize them in nonaqueous media, which includes many well-established methods such as
PEG modification (Inada et al., 1995; Inada et al., 1986a; Maruyama et al., 2004; Nakashima et

al., 2005; Woodward and Kaufman, 1996), graft polymerization to poly(N-vinylpyrrolidone),
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polystyrene or poly (methyl methacrylate) (Ito et al., 1994), and complexing/ion-pairing enzymes
with amphiphile/surfactant (Akbar et al., 2007; Meyer et al., 1996; Okahata and Ijiro, 1988;
Paradkar and Dordick, 1994; Wangikar et al., 1997). Drastically improved enzyme activities (i.e.
an increase by several orders of magnitude) have not been seen for most homogeneous
biocatalytic processes, therefore, future endeavors should enable a better solubilization and
activation of enzymes.

Another two future major efforts in nonaqueous biocatalysis include engineering
enzymes to become more tolerant to organic solvent and ILs, and engineering solvents to provide
“water-like” environments for enzymes to maintain their high dynamics and flexibility. As
pointed out by the Reinhoudt group (van Unen et al., 2001), unlike in aqueous media, charge
separation in nonpolar media becomes undesirable process. During enzymatic reactions, anionic
tetrahedral intermediates (such as acyl-enzyme intermediates formed in lipase- or protease-
catalyzed transesterifications) are less likely to be stabilized by organic solvents (especially
nonpolar solvents; but polar solvents may strip water off enzyme molecules) than by water,
which causes the intermediate formation to be a rate-limiting step and a dramatic decrease of
enzyme activity in nonaqueous media. Very often, the tetrahedral intermediate is formed for the
second time during the reaction, such as the nucleophilic attack of acyl-enzyme intermediate by
an alcohol during the transesterification; one of these intermediate formations becomes the
reaction bottleneck. Typically, the addition of water into organic media can stabilize the
transition state and improve catalytic efficiency. Therefore, it is crucial to design ‘task-specific’

solvents (such as functionalized-ILs) that can interact with the transition state favorably.
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Table 2 Representative biocatalytic reactions in enzyme-compatible ILs

Enzyme

IL

Reaction/Outcome

Ref.

cytochrome ¢

CALB?

Pseudomonas
cepacia lipase

morphine
dehydrogenase

CALB

CALA,* CALB

alcohol
dehydrogenase
horseradish
peroxidase

feruloyl esterase

lipase PS from
Burkholderia
cepacia

CALB

Aqueous [Ch][Glu] (50 wt%),
Aqueous [Ch][H2PO4] (33 wt%)

[CH30CH>CH2-MIM][BF4]

Imidazolium cations paired with
polyoxyethylene(10) cetyl sulfate
anion (Figure 7) as additives or
lipase-coating-agents

Both cation and anion
functionalized by hydroxy groups
(Figure 8)

Ammoeng type of ILs (Figure 9)

[CPMA][MeSOx]

[(HOCH2CH2);MeN][MeSO4]
[(HOCH2CH2)sN][CF3S03]
[HOCH2CH2-MIM][PFs],
[CH3(OCH2CH2)2-MIM][PFs]

[CH30OCH2CH2-BusP][Tf2N]

[CH3(OCH2CH2)n-Et-Im][OACc],

Peroxidase activity measured by using ABTS! as a
substrate in the presence of H202. Enzyme activity
increased by 25-50 times.

Acylation of D-glucose with vinyl acetate. A faster
reaction (99% conversion) than in non-
functionalized ILs and a high regioselectivity (93%
monoacylation).

Transesterifications of secondary alcohols (e.g. 1-
phenylethanol) and vinyl acetate. Enhanced
enantioselectivity and/or improved reaction rate.

Oxidize of codeine to codeinone. Dissolving
morphine dehydrogenase and its cofactor
nicotinamide, and a high enzymatic activity.
Enzymatic glycerolysis reactions. High lipase
activities in Ammoeng 100 and 102.
Transesterification of vinyl esters with alcohols.
Higher lipase activities than in hexane and other
ILs.

Reduction of ketones. Maintain high activity in up
to 90% (v/v) IL.

Oxidation of guaiacol with H202. 10-Fold more
active than in methanol and 30-240 times more
active than in conventional ILs.

Esterification of glycerol with sinapic acid.
Conversion yields up to 72.5% and 76.7%
(respectively).

Transesterification of (£)-4-phenylbut-3-en-2-ol or
I-phenylethanol with vinyl acetate. Higher activity
than in diisopropyl ether.

Transesterification of ethyl butyrate and 1-butanol.

(Bisht et al., 2017)

(Park and
Kazlauskas, 2001)

(Itoh et al., 2004;
Itoh et al., 2006)

(Walker and Bruce,
2004a, b)

(Guo et al., 2006;
Guo and Xu, 2006)
(De Diego et al.,
2009)

(de Gonzalo et al.,

2007)
(Das et al., 2007)

(Vafiadi et al.,
2009)

(Abe et al., 2008)

(Zhao et al., 2009c¢)
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[CH3(OCH2CH2)n-EtsN][OAc] (n = High activities that are comparable to fert-butanol.

2,3,0r7)

CALB and other [CH3(OCH2CH2)3-Et-Im][OAc], Transesterification of Miglyol oil with methanol. (Zhao et al., 2010c)

lipases [CH3(OCH2CH2)3-EtsN][OAc] Dissolving Miglyol oil and enabling high

conversions.

proteases [CH3(OCH2CH2)3-Et-Im][ Tf2N], Transesterification of N-acetyl-L-phenylalanine (Zhao et al., 2010b)

(subtilisin and a- [CH3(OCH2CH2)3-EtsN][Tf2N] ethyl ester with 1-propanol. High synthetic

chymotrypsin) activity (1-3 pmol/min g) and selectivity (97—

99%).

CALB [EtOCH2CH2CH2-MIM][T2N], Enantioselective transesterification of rac-1- (Zhou et al., 2011)
[EtOCH2CH2CH2-BIM][Tf2N], phenylethanol and vinyl acetate. Enantioselectivity
[EtOCH2CH2CH2-MMIM][T2N] higher than 99% and 50% conversion.

CALB and Imidazolium- and ammonium- ILs  Transesterification of ethyl butyrate and 1-butanol. ~ (Ou et al., 2016)

Pseudomonas containing hydroxy groups on both ~ High lipase activities.

cepacia lipase cations and anions (Figure 12)

CALB Mono-ether-functionalized Transesterification of ethyl sorbate with 1- (Zhao et al., 2018;
phosphonium, imidazolium, propanol; enzymatic ring-opening polymerization Zhao et al., 2019b)
pyridinium, alkylammonium, (ROP) of L-lactide and e-caprolactone. High lipase
piperidinium, and sulfonium activities, producing polyesters with high molecular
( Figure 13) mass (Mw ~20-25 kDa) and moderate yields (30—

65%).
CALB Dual-functionalized imidazolium-  Transesterification of ethyl sorbate with 1- (Zhao et al., 2019a)

based ILs incorporating both fert- propanol. Up to 40-100% higher than activities in
alcohol and ether groups (e.g. ILs tert-butanol and diisopropyl ether.
10-12 in Figure 14)
CALB dual-functionalized ammonium- Transesterification of ethyl sorbate with 1- (Zhao and Toe,
based IL (ILs 13—15 in Figure 14)  propanol; enzymatic ROP of g-caprolactone. Lipase 2020)
activity 1.5-fold higher than that in ter#-butanol,
and slightly higher than that in diisopropyl ether.
Producing polyesters with high molecular mass Mw
(up to 18,000 Da) and high yields (up to 74%).
708  Note: 'ABTS = 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid; 2CALB = Candida antarctica lipase B; 3CALA = Candida
709  antarctica lipase A.
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7. Designing Enzyme-Compatible Functionalized Ionic Liquids

As discussed earlier, some solvents containing alcohol and ether groups can lead to high enzyme
activity and stability possibly due to the favorable hydrogen-bond donating and accepting
environment created by these functional groups. Therefore, many studies have incorporated
hydroxy- and/or ether-functionality into their IL structures to yield enzyme-compatible ILs.

Representative examples are summarized in Table 2 and discussed in detail below.

R = Butyl ——> BMIM"

[ @ \ Ethyl ——— EMIM*

/N\/N\R

Any group —R-MIM"
Figure 6 Structure of imidazolium (IM) cations.

The Kazlauskas (Park and Kazlauskas, 2001) dissolved ~5 mg/mL D-glucose in an ether-
functionalized IL [CH30OCH2CH2-MIM][BF4] (see general illustration of imidazolium cations in
Figure 6) at 55 °C, followed by CALB-catalyzed acylation of D-glucose with vinyl acetate
resulting in a faster reaction (99% conversion) than those in non-functionalized imidazolium and
pyridinium ILs accompanying with a high regioselectivity (93% monoacylation). Similarly, Kim
et al. (Kim et al., 2003) performed Candida rugosa lipase-promoted acylation of monoprotected
glycosides with vinyl acetate, achieving faster and more selective reactions in ILs ((BMIM][PF¢]
and [CH30CH2CH2-MIM][PFs], see the illustration of cations in Figure 6) than in organic
solvents (THF and chloroform). Possible reasons are high substrate dissolution in ILs and more
favorable structural adaptation of lipase in polar ILs. Instead of typical cation functionalization,
Itoh and co-workers (Itoh et al., 2004; Itoh et al., 2006) paired polyoxyethylene(10) cetyl sulfate
anion (Figure 7) with imidazolium cations to form new ILs, which served as additives or lipase-

coating-agents in lipase-catalyzed transesterifications of secondary alcohols (e.g. 1-
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phenylethanol) and vinyl acetate in diisopropyl ether or hexane. This group reported that both
methods using functionalized ILs enhanced the enantioselectivity whereas the lipase-coating
method further improved the reaction rate. For IL-coated lipase PS, the binding of 1-butyl-2,3-
dimethylimidazolium poly[oxyethylene(10)] cetyl sulfate with the protein was confirmed by
MALDI-TOF mass spectrometry (Itoh et al., 2006). The Stephens group (Rehmann et al., 2012)
observed that laccase was active in aqueous 20% (v/v) water-miscible ILs containing alkyl
sulfate anions with long alkyl chains or alkoxy chains, and also in 20% (v/v) hydrophobic ILs
with anions of THzaN", AOT™ (= 1,4-bis(2-ethylhexyl)sulfosuccinate), or PFs. They further
pointed out that water-immiscibility is not always associated with high enzyme activity; for
instance, laccase was not active in 20% (v/v) [C1oMIM][SCN] and [CioMIM][saccharin]. Walker
and Bruce (Walker and Bruce, 2004a, b) synthesized a hydrophilic IL with both cation and anion
functionalized by hydroxy groups, 1-(3-hydroxypropyl)-3-methylimidazolium glycolate (Figure
8). The dual-functionalized IL could solubilize morphine dehydrogenase and its cofactor

nicotinamide, and enabled a high enzymatic activity for oxidizing codeine to codeinone.

\\ o
-C16H33</ v\%o/ %

Figure 7 Structure of polyoxyethylene(10) cetyl sulfate.

— (o)
N
Figure 8 Structure of 1-(3-hydroxypropyl)-3-methylimidazolium glycolate.
Figure 9 illustrates a group of Ammoeng type of ILs, which are ionic mixtures carrying

multiple alkoxy and/or hydroxy groups. These ionic solvents resemble polyglycols, having both

hydrophilic and hydrophobic properties. The Xu group (Chen et al., 2008; Guo et al., 2006; Guo
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et al., 2009; Guo and Xu, 2005, 2006; Kahveci et al., 2009) systematically evaluated enzymatic
glycerolysis performed in these tetraammonium-based ILs, and reported that both Ammoeng 100
(also known as [CPMA][MeSO4], CPMA = cocosalkyl pentacthoxy methylammonium
methylsulfate) and Ammoeng 102 could solubilize triglycerides and enabled high lipase
activities in glycerolysis reaction (Guo et al, 2006; Guo and Xu, 2006). Another IL
[TOMA][T2N] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) along with its
mixture with Ammoeng 102 were also found suitable solvents for enzymatic glycerolysis (Guo
et al., 2009; Kahveci et al., 2009, 2010). De Diego et al. (De Diego et al., 2009) obtained high
CALB transesterification activities in [CPMA][MeSO4] although two other lipases from
Thermomyces lanuginosus (TLL) and Rhizomuncor miehei (RML) exhibited lower activities in
[CPMA][MeSO4] than in ILs carrying PFe~ and BF4™ anions. The Kroutil group (de Gonzalo et
al., 2007) reported that hydroxy-functionalized ILs at 50-90% (v/v) concentrations allowed
higher alcohol dehydrogenase activities than non-functionalized ILs, and established a
decreasing trend of enzyme activity with the type of ILs as [(HOCH2CH:2);MeN][MeSO4] >
Ammoeng 101 > Ammoeng 100 > Ammoeng 102. Dreyer and Kragl (Dreyer and Kragl, 2008)
formed aqueous two-phase (ATP) using Ammoeng 110 (Figure 9) to purify two different alcohol
dehydrogenases, and observed this ionic solvent was able to stabilize enzymes and increase the
solubility of hydrophobic substrates. Wallert et al. (Wallert et al., 2005) deployed ether-
/hydroxy-functionalized ILs (e.g. Ammoeng 100, 101 and 112, and [HOCH2CH2-MIM]CI) as
additives (1%) in pig liver esterase (PLE)-catalyzed enantioselective hydrolysis of diester
malonates in 10% aqueous isopropanol, and achieved higher enzyme activities (up to 4-fold

increase) and enantioselectivities (up to 97% ee).
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(c) Ammoeng 102 (d) Ammoeng 110
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(g) Ammoeng 120
R, R' = Cyg acyl group; m, n, unavailable

Figure 9 Structures of functionalized ammonium-based ILs (Ammoeng series).
Tris(hydroxymethyl)aminomethane (Tris) is a common component of buffer solutions
(pH usually in the range of 7-9). Tris was also used as an excipient to provide lyoprotectant
effect for horseradish peroxidase during lyophilization (Dai and Klibanov, 1999). Based on the

Tris structure, Das et al (Das et al., 2007) synthesized tetrakis(2-hydroxyethyl)ammonium
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triflouromethanesulfonate ([(HOCH2CH2)saN][CF3SOs], Figure 10), and discovered that
horseradish peroxidase in this new ionic solvent was 10-fold more active than in methanol and
30-240 times more active than in non-functionalized ILs. Vafiadi et al. (Vafiadi et al., 2009)
carried out feruloyl esterase-catalyzed esterification of glycerol with sinapic acid in two
functionalized ILs [HOCH2CH2-MIM][PFs] and [CH3(OCH2CH2).-MIM][PFs], achieving
conversion yields up to 72.5% and 76.7% (respectively) under optimum conditions. Itoh and co-
workers (Abe et al., 2008) prepared an ether-functionalized IL known as [CH30CH2CHz-
BusP][Tf2N], and conducted lipase PS-catalyzed transesterification of secondary alcohols in this

new medium resulting in a faster reaction rate in diisopropyl ether.

OH
©
HO CF.SO
@g 3 3
\/\N\/\
S OH

HO

Figure 10 Structure of tetrakis(2-hydroxyethyl)ammonium triflouromethanesulfonate.

X [\ ﬁ(CH CHa)
ONININ— @ To .

X = OAg? or szN@
Figure 11 Ether-functionalized imidazolium (IM) and ammonium ILs ([CH3(OCH2CH2)n-Et-
IM]X and [CH3(OCH2CH2)n-Et3N]X, respectively) (n=1, 2, 3,...).
The Zhao group (Zhao et al., 2010a; Zhao et al., 2008; Zhao et al., 2009¢c; Zhao and Song,
2010; Zhao et al., 2010c) synthesized a series of glycol-functionalized imidazolium and
alkylammonium-based ILs carrying acetate anions (Figure 11), and found these ionic solvents

could dissolve a variety of ‘unusual’ substrates such as cellulose, xylan, lignin, D-glucose, 3,4-
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dihydroxy-DL-phenylalanine (DOPA), betulinic acid, and Miglyol oil (a mixture of triglycerides
of caprylic acid and capric acid). The high dissolution power is mainly attributed to high
hydrogen-bond basicity of anions (e.g. acetate and formate) of these ILs, but this is also the
reason that causes enzyme inactivation. However, with a longer glycol chain grafted to ILs, the
molar concentration of denaturing anions is reduced; therefore, the deactivating effect of these
ILs is minimized (Zhao et al., 2009c). This concept was also demonstrated by another study
(Lourenco et al., 2007) where Novozym 435 showed little activity in denaturing [BMIM][dca]
(dca” = dicyanamide), but a relatively high activity and enantioselectivity in [aliq][dca] [aliq" =
trioctylmethylammonium (Aliquat 336® is a mixture of Cs and Cio chains with Cs
predominating)]. Due to the bulky size and high molar mass of aliq" (verse BMIM"), the molar
concentration of denaturing dca™ in [aliq][dca] is much lower than in [BMIM][dca]. As a result,
synthetic activities of free and immobilized CALB in most acetate- and formate-based ILs are
higher than or comparable with those in fert-butanol and [BMIM][Tf2N] as determined by the
transesterification of ethyl butyrate and 1-butanol. Due to their strong dissolution ability toward
D-glucose and cellulose, these ILs were also successful for achieving the regioselective
transesterification of these substrates catalyzed by Novozym 435 (Zhao et al., 2008). Enzymatic
transesterification of Miglyol oil with methanol was conducted in these ILs to prepare biodiesel,
resulting in up to 70% triglyceride conversion in 1 h and 85% conversion in 48 h (Zhao et al.,
2010c). Additionally, since these ILs could dissolve a significant portion of lignocelluloses, these
solvents were employed to effectively pretreat biomass prior to their enzymatic saccharification
(Tang et al., 2012a; Zhao et al., 2010a; Zhao et al., 2009b). Proteases are not active in these
acetate- or formate-based ILs, thus the Zhao group (Zhao et al., 2010b) synthesized the

hydrophobic version of ionic solvents carrying Tf2N™ anions (e.g. [CH3(OCH2CH2)3-EtsN][Tf2N],
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822  [CH3(OCH2CH2)3-Et-IM][Tf2N] and [CH3(OCH2CH2)3-Me-Et-IM][Tf2N] in Figure 11) and
823  found that immobilized subtilisin and a-chymotrypsin showed high synthetic activities (1-3
824 umol min! g') and selectivity (97-99%, transesterification verse hydrolysis) in these
825  hydrophobic ILs containing 10-15% (v/v) water for the transesterification of N-acetyl-L-
826  phenylalanine ethyl ester with 1-propanol. The same enzymatic reaction in fert-butanol or
827 [BMIM][Tf:N] displayed low synthetic activities (0.2—1 pumol min g in fert-butanol) and/or
828  poor selectivity (40%) when the water content was higher than 2% (v/v). These hydrophobic
829  glycol-functionalized ILs also showed comparable or higher activities than [BMIM][Tf2N] and
830 tert-butanol in Novozym 435-catalyzed transesterification of ethyl sorbate and 1-propanol (Zhao
831 etal., 2011).

832 Zhou and co-workers (Zhou et al, 2011) prepared six monoether-functionalized
833  imidazolium ILs containing Tf2N" or PFs™ anions, and attained higher enantioselectivities (95-99%
834  ee) in some functionalized ILs than in diisopropyl ether or non-functionalized ILs ((BMIM][BF4]
835 and [BMIM][PFs]) during lipase-catalyzed kinetic resolution of secondary alcohols. It was
836  argued that ether groups could adjust the hydrophilic environment of media and interact
837  favorably with the enzyme and/or substrates. Stdhlberg et al. (Stdhlberg et al., 2012) conducted
838  enzymatic isomerization of glucose to fructose and reported high glucose isomerase activity in
839  N,N-dibutylethanolammonium octanoate with 20 wt% water, but no activity in other ILs
840  carrying smaller/denaturing alkanoate anions (e.g. formate, acetate, and propionate). Vila-Real et
841 al. (Vila-Real et al., 2011) prepared sol-gel immobilization of a-L-rhamnosidase and B-D-
842  glucosidase expressed by naringinase using ILs as additives, and observed that a more
843  hydrophobic IL additive led to a higher a-rhamnosidase efficiency; the inclusion of

844 [OMIM][Tf2N] and [(HOCH2CH2)-MIM][PFs] in sol-gel matrices could minimize enzyme
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deactivation in TMOS/Glycerol matrices (TMOS = tetramethoxysilane). Ou et al. (Ou et al.,
2011b) detected no transesterification activity for CALB in denaturing [BMIM][NO3], but some
activities in hydroxy-functionalized ILs (e.g. [HOCH2CH2-MIM][NO3] and [HOCH2CHz-
MIM][BF4], especially in the latter IL) and these activities were further enhanced by 2—-5 times
by adding ‘IL buffer’ ({[BMIM][H2POu4]). The preservation of native compact structure of CALB
in hydroxy-functionalized ILs was confirmed by fluorescence spectra. The same group (Ou et al.,
2016) suggested that enzyme-compatible ILs should behave like water molecules having high
dielectric constants and both solvent donor and acceptor properties to properly ionize protein’s
ionizable groups so that enzyme molecules can be dissolved and stabilized. Following this
rationale, they designed imidazolium- and ammonium-based ILs containing hydroxy groups on
both cations and anions (Figure 12), and confirmed that these ILs enabled high transesterification
activities for two lipases (CALB and Pseudomonas cepacia lipase). One obvious disadvantage of
(multi-)hydroxy-functionalized ILs is their relatively high viscosities due to hydrogen-bonding
(Ou et al., 2016; Tang et al., 2012b). Kundu et al. (Kundu et al., 2018) constructed a surface-
active protic IL, L-proline propyl ester lauryl sulfate ([ProCs][LS]), for the formation of reverse
micelles along with cyclohexane and water. The encapsulation of bovine serum albumin (BSA)
in these micelles led to a higher content of secondary structures without any buffer than the

native protein in the droplet core with higher hydration.
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Figure 12 Structures of hydroxy-grafted imidazolium and ammonium ILs.
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The Zhao group (Zhao et al., 2018; Zhao et al., 2019b) further expanded monoether-
functionalized ILs to a series of glycol-functionalized ILs with various chain lengths grafted to
different cations cores (i.e. phosphonium, imidazolium, pyridinium, alkylammonium,
piperidinium, and sulfonium; see Figure 13); these glycol-functionalized ILs usually have low
dynamic viscosities (33—123 mPa s at 30 °C), and high decomposition temperatures (7dcp) in the
range of 318—403 °C (except sulfoniums such as IL 9 in Figure 13 with Tacp = 254 °C — data not
published). In Novozym 435-catalyzed transesterification of ethyl sorbate with 1-propanol at
50 °C (0.02 wt% water in all solvents), [CH3OCH2CH2-EtsN][Tf2N] (7) and [CH3OCH2CHa-
Py][Tf:N] (6) enabled highest enzyme activities (6.57 and 6.08 umol min' g! CALB,
respectively) among all functionalized ILs; these activities are higher than that in [BMIM][Tf2N]
(5.12 umol min™! g! CALB) and comparable with that in terz-butanol (7.38 umol min!' g!
CALB); in addition, the thermal stability of Novozym 435 in [CH3OCH2CH2-EtsN][Tf2N] (7)
was much higher than that in tert-butanol at 50 and 70 °C. Furthermore, these glycol-
functionalized ionic solvents were used as co-solvents in enzymatic ring-opening polymerization
(ROP) of L-lactide (130 °C for 7 days) and e-caprolactone (70 °C for 2 days), producing
polyesters with high molecular mass (Mw ~20-25 kDa) and moderate yields (30—65%). The Shi
group (Yang et al., 2020) prepared several glycol-functionalized ammonium ILs such as
[Me2N(Et)(CH2CH20)2H][PFs], which can be mixed with 1,2-dimethoxyethane at the 5:18 (v/v)
ratio to form a homogeneous solution under 33 °C and a two-layer system above this temperature.
This temperature-sensitive phase system was applied to conduct the enantioselective reduction of
ethyl 2-oxo-4-phenylbutyrate to an alcohol catalyzed by baker’s yeast at 30 °C, and at the

completion of reaction, temperature was raised to form the IL layer and organic layer for easy
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separation. This unique reaction process improved the product ee by 25-30% and yield by 35%
compared with the same reduction performed in 1,2-dimethoxyethane.
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Figure 13 Structures of ether-functionalized ILs.

Earlier functionalized ILs are mostly mono-functionalization with either ether or alcohol
groups. Ammoeng series of ILs (Figure 9) contain both ether and hydroxy groups, but their
drawbacks include ionic mixtures lacking of absolute structure/composition and well-defined
properties, high viscosities, and primary or secondary alcohols being potentially reactive. As
mentioned earlier, fert-alcohols are less inhibitory to enzymes and much less reactive as
substrates than primary and secondary alcohols in nonaqueous enzymatic reactions (Madeira Lau
et al., 2000; Zaks and Klibanov, 1984). Therefore, the Zhao group (Zhao et al., 2019a) designed
dual-functionalized imidazolium-based ILs incorporating both fert-alcohol and ether groups (e.g.
ILs 10-12 in Figure 14) to resemble the water structure by having both hydrogen-bond donating
(-OH) and accepting (R-O-R) properties. As a result, they observed a drastic increase of
Novozym 435’s transesterification activity in these “water-like” ionic solvents: up to 2—4 times
higher than in ordinary ILs such as [BMIM][Tf:2N], and up to 40-100% higher than in tert-

butanol and diisopropyl ether. The lipase in these dual-functionalized ILs also exhibited much
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higher thermal stability than in tert-butanol, and comparable thermal stability with that in
diisopropyl ether. One disadvantage of these imidazolium-ILs is their slightly high dynamic
viscosities (~300 mPa s at 30 °C). The same group (Zhao and Toe, 2020) further prepared dual-
functionalized ammonium-based IL (13—15 in Figure 14) with lower viscosities (as low as 129
mPa s at 30 °C), and reported high transesterification activities for Novozym 435 in these new
solvents (1.5-fold higher than in tert-butanol, and slightly higher than in diisopropyl ether).
Enzymatic ROP reactions of e-caprolactone in these “water-like” ILs as co-solvents produced
polyesters with high molecular mass Mw (up to 18,000 Da) and high yields (up to 74%).
OH
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Figure 14 Structures of “water-like” dual-functionalized imidazolium and ammonium ILs.

In limited cases, functionalized ILs did not perform better than regular ILs. For example,
in enantioselective transesterification of 1-phenylethanol and vinyl propionate, Lozano et al.
(Lozano et al., 2004) observed a higher selectivity but lower CALB activity and stability in
[HOCH2CH2CH2-MesN][Tf2N] than in non-functionalized ammonium ILs. The Goto group

grafted an unusual comb-shaped PEG (so called PM13) onto Candida rugosa lipase (Nakashima

46



919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

et al., 2006b) and subtilisin Carlsberg (Nakashima et al., 2005, 2006a) to form covalently
immobilized PMis-lipase (Nakashima et al., 2006b) and PMis-subtilisin (Nakashima et al.,
2006a). These enzyme preparations are soluble in TE2N™ based ILs with high enzyme activity and
stability, and are more active in a more hydrophobic IL ([EMIM][Tf2N], see Figure 6 for the
cation structure) than in functionalized ones ([CH3;OCH2CH2-MIM][Tf2N] and [HOCH2CHz-
MIM][TE2N]).

There have been some mechanistic discussions about why oxygenated chains in ILs are
enzyme-compatible. The incorporation of hydroxy, ether or nitrile group to the side chain of ILs
usually reduced the solvent lipophilicity, and thus lowers the inhibition of acetylcholinesterase
(as a broad toxicity screening assay) by ILs (Arning et al., 2008; Ranke et al., 2007; Siopa et al.,
2018; Yan et al., 2012). Luo et al. (Luo et al., 2010) reported the formation of stable complexes
between imidazolium and pyridinium cations with PEG-800 or PEG-1000 through ion-dipole
interaction; literally, cations were wrapped by PEG molecules. Etherated chains in ether-
functionalized ILs are known more flexible than rigid alkyl chains (Siqueira and Ribeiro, 2009),
and the grafting of ether chain minimizes intermolecular correlation (especially tail-tail
segregation) and cation-anion specific interactions (Ganapatibhotla et al., 2010; Smith et al.,
2008). For these reasons, ether-functionalized cations preferentially interact with ether chains
(intramolecular and/or intermolecular), decreasing the cation-protein interaction. On the other
hand, IL cations with long alkyl chains (e.g. Pess(14)") tend to interact with the Leul7 residue of
Burkholderia cepacia lipase via hydrophobic interactions based on molecular docking study,
resulting in lower enzymatic/hydrolytic activities (Barbosa et al., 2019a; Barbosa et al., 2019b).
Spectroscopic and computational tools provide valuable insights into interactions between

proteins and functionalized ILs. By using fluorescence and CD spectroscopy, Turner et al.
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(Turner et al., 2005) reported that human serum albumin (HSA) was less denatured by aqueous
solutions of hydroxy/ether-functionalized imidazolium ILs than [BMIM]CI. This is possibly due
to some favorable hydrogen-bond interactions between functionalized ILs and HSA. Mann et al.
(Mann et al., 2009) determined the thermal stability and refolding patterns of lysozyme in
aqueous ILs by near-UV CD, and observed that ethanolammonium formate could stabilize
lysozyme against unfolding at high temperature, as well as nearly complete renaturation upon
cooling. Additionly, they found that lysozyme in aqueous ethanolammonium formate was six
times more active than in aqueous buffer itself. This can be attributed to hydroxy-functionality
enabling additional hydrogen-bonding donor/acceptor sites to minimize hydrophobic interactions
between IL and the protein. On the other hand, the thermal stability of lysozyme in 2-
methoxyethylammonium formate solutions showed no improvement, which was rationalized that
ether group only acts as hydrogen-bond acceptor and an additional hydrogen-bond donor is
needed for protein stabilization. After subtilisin was dissolved in diethanolammonium chloride,
the Bruce group (Falcioni et al., 2010) found the protease remained active, but no activity was
detected for subtilisin in other protic hydroxyalkylammonium ILs nor for chymotrypsin in any of
these ILs. Fluorescence spectroscopy could not explain the differences, but far and near UV
spectra for subtilisin in diethanolammonium chloride agreed well with that in water, implying
secondary and tertiary structures were better preserved in this hydroxy-functionalized ionic
solvent. The Greaves group (Wijaya et al., 2016) studied the activity and conformation of
lysozyme in molecular solvents and protic ILs, and concluded that non-ionic solvents containing
hydroxy group and bulky group could maintain enzyme’s conformation and activity at high
solvent concentrations, but solvents with amine group could only improve the enzyme activity at

low concentrations. On the other hand, lysozyme activity increased with the type of protic ILs in
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the order of (2-hydroxy)ethylammonium nitrate < ethylammonium formate < (2-
hydroxy)ethylammonium formate < ethylammonium nitrate, which was explained by the similar
water affinity between two kosmotropes or between two chaotropes. Based on fluorescence
spectroscopy and DSC measurements, Bose et al. (Bose et al., 2010) reported high stability of
Tricoderma reesei cellulase in tris(2-hydroxyethyl)methylammonium methylsulfate (HEMA)
even at 115 °C, but this enzyme became irreversibly denatured in pH 4.8 citrate buffer at 50 °C.
In contrast to imidazolium ILs, this ammonium-based IL does not seem to quench fluorescence
signal of tryptophan. That study also confirms that fluorescence quenching of enzymes is not
necessarily correlated with protein denaturation, as identified by other groups (Falcioni et al.,
2010; Zhao et al., 2009c). The same group (Bose et al., 2012) further examined endo-1,4-B-D-
glucanase (EG) in various solvents by fluorescence spectroscopy, and observed the enzyme
denaturation at ~55 °C in buffer but a higher transition temperature of ~75 °C in HEMA, which
agreed with a high enzyme activity at this temperature. In contrast to enzyme-destabilizing effect
of imidazolium cations, HEMA cations tend to stabilize the enzyme. By following the
Conductor-like Screening Model for Real Solvents (COSMS-RS), Xu and co-workers (Chen et
al., 2008; Guo et al., 2006) obtained various parameters (such as misfit, H-bonding, and van der
Waals interaction energy) to understand multiple interactions in ILs; this model enabled a
rationale design of particular structures of cations and anions (Guo et al., 2007). The Torkzadeh-
Mahani group (Ghanbari-Ardestani et al., 2019) reported that urate oxidase showed an increased
activity in 1% (v/v) aqueous triethanolammonium butyrate, but lower activities in 5% and 10%
IL solutions. Their MD simulations results suggest that 1% IL was able to increase
intramolecular hydrogen bonds of the enzyme, which led to a small decrease in random coil and

increase in a-helix and B-sheet, and a more compact enzyme structure. A further molecular
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docking study reveals that IL cations and anions interact with urate oxidase primarily through
hydrogen bond, electrostatic, and hydrophobic interactions. On the other hand, based on MD
simulations, Kldhn et al. (Kldhn et al., 2011) indicated that CALB is more destabilized by polar
methoxyethyl group and decyl side chain on IL cations than by non-functionalized and short
methyl groups, respectively. However, the destabilization follows different mechanisms:
methoxyethyl group destabilizes the protein surface through strong Coulomb interactions with
CALB while long alkyl chain interacts directly with protein’s hydrophobic core.

At microscopic scale, ILs consist of nanostructured segregates/microphases of polar
domain (high-charge density region) and nonpolar domain (low-charge density region); with the
increase in alkyl-side chains, the nonpolar domain can grow from dispersed/isolated islands to a
continuous phase (Brehm et al., 2015; Canongia Lopes and Padua, 2006; Shimizu et al., 2010).
Depending on the similarity of solute molecules to each domain, different solutes could be
solvated in different IL microphases; dipolar or quadrupolar solutes tend to interact strongly with
the polar nanophase and reorganize the polar network in their neighborhood (Shimizu et al.,
2010). Water molecules can modify the local microscopic structure of ILs through the competing
hydrogen-bonding and electrostatic interaction: a) at low water content, water molecules are
dispersed and inserted cavities forming solvent-shared ion pairs via cation—water—anion triple
complexes; b) with the increase in water content, water molecules begin to aggregate forming
small clusters, chain-like structures, large aggregates and finally a water network; c) in diluted
aqueous solutions of ILs, self-organized micelles-like aggregates are formed in a highly
branched water network (Wang et al., 2015). These microscopic structure changes result in
thermodynamically nonideal volumetric properties and unique dynamic properties (Wang et al.,

2016b). Generally, the interaction between water and ILs increases with higher hydrogen-bond

50



1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

basicity of anions (Khan et al., 2014). The Dupont group (Dupont, 2004) suggested the enclosure
of other molecules and macromolecules in IL network; when aqueous droplets of enzyme are
dissolved or dispersed into the polar domain of ILs, favorable solvophobic interactions could
preserve the enzyme’s active conformation (Fehér et al.,, 2007). The nanostructured
supramolecular IL network allows enzyme molecules to maintain their native structures,
avoiding thermal unfolding (Lozano et al., 2005). Compared with conventional ILs,
functionalized ILs have different physical properties including viscosity, structural flexibility,
phase transition, density, polarity, hydrophilicity, and hydrogen-bonding capability (Tang et al.,
2012b). These structural and property changes likely lead to the modification of IL
nanostructures, resulting in different IL-enzyme interactions; a further study in this area should
be explored in the future.

carbamate
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Figure 15 Covalent attachment of a cholinium salt to the lysine residue of formate

dehydrogenase (FDH).

Instead of focusing on solvent functionalization, an alternative approach is to modify the
enzyme with functionalized ILs. Itoh and co-workers (Abe et al., 2010) coated lipase PS with
[CH30CH2CH20CH2PBu4][Tf2N] to catalyze the acylation of secondary alcohols with vinyl
acetate obtaining high enzymatic activities and selectivities. Bekhouche et al. (Bekhouche et al.,
2010) grafted hydroxy groups of three ILs to lysine residues of formate dehydrogenase (FDH)

from Candida boidinii via carbamate linkages (Figure 15). IL-modified FDH maintained about
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30-45% of its activity in 70% (v/v) [MMIM][Me2PO4] whereas the native FDH was not active in
this ionic solution. IL-modification of FDH further enhanced the enzyme stability in aqueous
buffer solution by 3-6 folds; in addition, unmodified and one modified FDH showed increased
half-time #1/2 values in 37.5% (v/v) [MMIM][Me2POs4] than in carbonate buffer. Li et al. (Li et al.,
2015) grafted ether-functionalized ILs (carrying carboxylic acid group) through covalent linkage
onto Candida rugosa lipase (CRL) using N,N'-carbodiimide as the coupling reagent (see Figure
16). The lipase modified with ILs exhibited improvements in catalytic activity, thermal stability,
organic solvent tolerance, and adaptability to temperature and pH changes during the enzymatic
hydrolysis of olive oil. Furthermore, CD spectra indicate the lipase modification leading to
changes in secondary structures: an increase in P-sheet and a decrease in a-helix contents. A
similar approach linked CALB and porcine pancreatic lipase (PPL) with carboxylic acid-
functionalized imidazolium and cholinium cation respectively, leading to enhanced lipase
thermal stability and/or enantioselectivity (Jia et al., 2013a; Jia et al., 2013b). In addition, various
functionalized ILs have been used as coupling agents to covalently link enzymes with solid
supports such as chitosan-mesoporous silica hybrid nanomaterials (Xiang et al., 2018) and
multiwalled carbon nanotubes (MWNTs) (Wan et al., 2017a; Wan et al., 2017b), affording

higher enzyme’s thermal/storage stability and better reusability.

O
N J]\/N/\N/\/(o\/)\
CRL{ N \ @ , OCH;

amide )
linkage H,PO,

Figure 16 Covalent modification of Candida rugosa lipase (CRL) by a glycol-functionalized IL.
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8. Lessons Learned from Enzyme Behaviors in Ionic Liquids

To develop functionalized ILs for biocatalytic applications, there are competing factors that often
need to be addressed. (1) Substrate dissolution or enzyme stabilization. For example, to dissolve
carbohydrates, ILs typically carry anions with high hydrogen-bond basicity (such as CI", OAc,
and dca); however, these ILs are expected to interact with enzymes strongly for the same reason
interacting with carbohydrates, leading to enzyme inactivation. Therefore, appending a long
glycol-chain to the cation could reduce the molar concentration of these anions, minimizing the
destabilizing effect of anions (Zhao et al., 2009c). In this case, it is a compromise between
substrate dissolution and enzyme stabilization. (2) Functionalization or low viscosity. Hydroxy-
functionalized ILs could stabilize enzymes while amine-/amino-functionalized ILs could
dissolve more substrates (e.g. carbon dioxide), but these functionalizations often lead to high IL
viscosities due to their capability of forming hydrogen bonds (Goodrich et al., 2011; Tang et al.,
2012b; Zhang et al., 2009). To mitigate the hydrogen-bonding effect, incorporating another
functional group (such as ether) or pairing with different anions (e.g. T2N", C(CN)3~, or B(CN)4")
could alleviate the increase in viscosity (Tang et al., 2012b). (3) Functionalization or low cost.
Functionalization of ILs potentially increases the cost of already expensive solvents. Therefore,
the use of functionalized ILs could be restricted by their applications; for example, these costly
solvents could be ideal for developing expensive medicinal molecules but may not be suitable for
the production of less expensive biofuel. On another dimension, ILs should be recycled and
reused to decrease the overall operation cost. Various methods have been explored to recover ILs
including extraction, distillation, adsorption, membrane separation, crystallization, and external

force field separation (Zhou et al., 2018).
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9. Summary and Prospects

There are many viable ways to improve enzyme activity and stability in nonaqueous media
(particularly organic solvents and ILs), such as protein engineering to produce enzymes that are
tolerant to organic solvents (Ogino and Ishikawa, 2001) and ILs (Pramanik et al., 2019), enzyme
immobilization, chemical modification of enzymes, and solvent engineering. One interesting
development in chemical modification of enzymes is liquefaction of proteins through
cationization of protein surface by coupling glutamic and aspartic acid residues to N,N'-dimethyl-
1,3-propanediamine (DMPA), followed by the protein conjugation with anionic PEG-type
surfactant, resulting in liquid proteins/enzymes (Gallat et al., 2012; Perriman et al., 2010;
Perriman et al., 2009; Sharma et al., 2014). In terms of solvent engineering, hydrophobic organic
solvents generally tend to maintain reasonable enzyme activities whereas solvents with
functional groups, especially hydroxys and ethers (including crown ethers and cyclodextrins),
could lead to enzyme activation. There are limited options to design organic solvents carrying
these functional groups (e.g. glycerol carbonate and N-hydroxymethyl formamide). In contrast,
ILs offer greater flexibility for structural manipulation. Based on current studies, enzyme-
compatible ILs tend to have these desirable properties and structural features: (1) Hydrophilic
ILs (especially with denaturing anions such as halides, dca™ and OAc") typically have relatively
large molecular structures (i.e. large molar mass), or other functional groups (e.g. 1-(3-
hydroxypropyl)-3-methylimidazolium glycolate) to minimize their hydrogen-bond basicity and
nucleophilicity of anions; (2) Most enzyme-compatible/activating ILs are the hydrophobic type
(containing Tf2N" and PF¢ anions). Their structures usually incorporate ether and/or hydroxy
groups to provide desirable hydrogen-bond donating and accepting environments for enzymes.

The incorporation of these functional groups also results in favorable solvent properties (such as
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desirable IL viscosity, hydrogen-bond basicity, and water affinity). Dual-functionalized ILs
containing both ether and fert-alcohol groups are amongst nonaqueous solvents that lead to the
greatest enzyme activation.

In contrast to nonaqueous biocatalysis, aqueous enzymatic reactions have also gained
some new developments. For example, in the presence of a nonionic surfactant Lutensol AT50
(poly(ethyleneoxide)hexadecyl ether), lipase-catalyzed esterification could proceed (~90%
conversions) in aqueous solutions as reactants being dispersed with the surfactant to form
miniemulsions (Aschenbrenner et al., 2009). In aqueous solutions containing a nonionic
surfactant TPGS-750-M, micelles were formed to promote alcohol dehydrogenase-catalyzed
enantioselective reduction of ketones to chiral alcohols (Cortes-Clerget et al., 2019). Perhaps the
future direction is to learn from both aqueous and nonaqueous biocatalysis to develop a new
generation of “water-like” solvent systems.
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