

1 **What Do We Learn from Enzyme Behaviors in Organic Solvents?**

2 **– Structural Functionalization of Ionic Liquids for Enzyme Activation and Stabilization**

3 Hua Zhao*

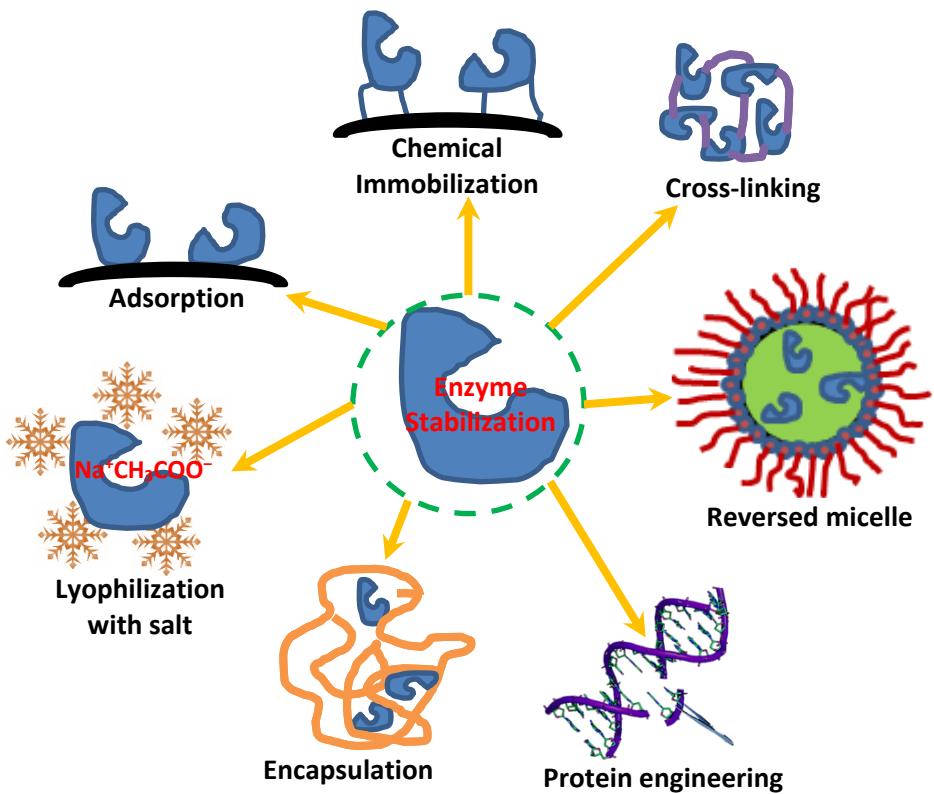
4 Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO

5 80639, United States

6 Corresponding author: email address: hua.zhao@unco.edu, or huazhao98@gmail.com

7 **Abstract**

8 Enzyme activity in nonaqueous media (e.g. conventional organic solvents) is typically lower than
9 in water by several orders of magnitude. There is a rising interest of developing new nonaqueous
10 solvent systems that are more “water-like” and more biocompatible. Therefore, we need to learn
11 from the current state of nonaqueous biocatalysis to overcome its bottleneck and provide
12 guidance for new solvent design. This review firstly focuses on the discussion of how organic
13 solvent properties (such as polarity and hydrophobicity) influence the enzyme activity and
14 stability, and how these properties impact the enzyme’s conformation and dynamics. While
15 hydrophobic organic solvents usually lead to the maintenance of enzyme activity, solvents
16 carrying functional groups like hydroxys and ethers (including crown ethers and cyclodextrins)
17 can lead to enzyme activation. Ionic liquids (ILs) are designable solvents that can conveniently
18 incorporate these functional groups. Therefore, we systematically survey these ether- and/or
19 hydroxy-functionalized ILs, and find most of them are highly compatible with enzymes resulting
20 in high activity and stability. In particular, ILs carrying both ether and *tert*-alcohol groups are
21 among the most enzyme-activating solvents. Future direction is to learn from enzyme behaviors
22 in both water and nonaqueous media to design biocompatible “water-like” solvents.


23 **Keywords:** Enzyme, biocatalysis, organic solvent, ionic liquid, nonaqueous solvent

24	Contents	
25	1. Introduction	2
26	2. Protein Conformation and Dynamics in Nonaqueous Media	7
27	3. Effect of Solvent Properties on Enzyme Activity and Stability.....	12
28	4. Enzyme Activation by Crown Ethers and Cyclodextrins.....	19
29	5. Enzyme-Compatible Organic Solvents for Nonaqueous Biocatalysis	27
30	6. Lessons Learned from Enzyme Behaviors in Organic Solvents	30
31	7. Designing Enzyme-Compatible Functionalized Ionic Liquids	36
32	8. Lessons Learned from Enzyme Behaviors in Ionic Liquids	53
33	9. Summary and Prospects	54
34		

35 **1. Introduction**

36 The use of biological molecules as catalysts offers many “green” features to the catalytic process
37 such as less hazardous materials, energy efficiency, and catalysis to enhance the reaction rate
38 (Timson, 2019). However, biocatalysis in aqueous solutions has some “non-green” limitations
39 such as the consumption of large volume of diluted aqueous solution (due to poor substrate
40 solubility), poor economic efficiency, and downstream processing difficulties (such as product
41 and enzyme recovery), etc. (Domínguez de María and Hollmann, 2015). On the other hand,
42 nonaqueous enzymatic reactions in conventional organic solvents have paved a unique direction
43 for biocatalysis since 1980s (Dordick, 1989; Klibanov, 1990; Zaks and Klibanov, 1984, 1985,
44 1988a), leading to over 100 applications in pharmaceutical, agrochemical, and fine chemical
45 industries (Abdelraheem et al., 2019; Gupta, 1992; Klibanov, 2001; Stepankova et al., 2015;
46 Wandrey et al., 2000). Later, nonaqueous media expanded from ordinary organic solvents to
47 supercritical fluids (Cantone et al., 2007; Hobbs and Thomas, 2007), fluorous solvents (Ghaffari-
48 Moghaddam et al., 2015; Hobbs and Thomas, 2007), gas phase (Barzana et al., 1989; Dunn and
49 Daniel, 2004), ionic liquids (ILs) (Moniruzzaman et al., 2010; van Rantwijk and Sheldon, 2007;

50 Zhao, 2005, 2016), and deep eutectic solvents (DES) (Smith et al., 2014; Xu et al., 2017; Zhao
51 and Baker, 2013). Key advantages of nonaqueous biocatalysis include altered regio-/enantio-
52 selectivity, high thermal stability, easy recovery of enzyme and product, dissolution of water-
53 insoluble substrates in nonaqueous media, reduced microbial contamination, minimized substrate
54 and/or product inhibition, fewer side-reactions involving water, and reversing reaction equilibria
55 (such as turning hydrolase-catalyzed hydrolysis reactions into synthesis), etc. (Brink et al., 1988;
56 Dai and Klibanov, 1999; Dordick, 1992; Gupta, 1992; Klibanov, 1990, 2001; Zaks and Klibanov,
57 1988b). However, nonaqueous biocatalysis has encountered several major challenges for large-
58 scale applications such as high enzyme cost, protein fragility, and severely depressed enzyme
59 activity. In particular, enzyme activity in nonaqueous media is typically lower by 2–5 orders of
60 magnitude than in aqueous solutions (Klibanov, 1997; Zaks and Klibanov, 1988b). For instance,
61 α -chymotrypsin and subtilisin in octane were 10^4 – 10^5 times less active than in water (Zaks and
62 Klibanov, 1988b). Likely explanations (Burke et al., 1992; Klibanov, 1997) for activity
63 depression include the limitation of substrate mass transfer to insoluble enzymes in organic
64 solvents, poor accessibility to active sites of lyophilized or cross-linked enzyme particles,
65 structural changes of enzyme molecules [e.g., proteins lyophilization causing drastic (although
66 reversible) changes in secondary structures (Griebenow and Klibanov, 1995), and
67 lyophilization/dehydration and organic solvents inducing active site disruption and protein
68 unfolding (Burke et al., 1992)], unfavorable energetics of substrate desolvation (i.e. enzyme-
69 substrate binding is weaken due to the tendency of substrate staying in organic solvents) and
70 transition state stabilization (i.e. water stabilizes highly polar transition state much better than
71 organic solvents), reduced conformational mobility, decreased molecular dynamics, and poor pH
72 optimization.

73

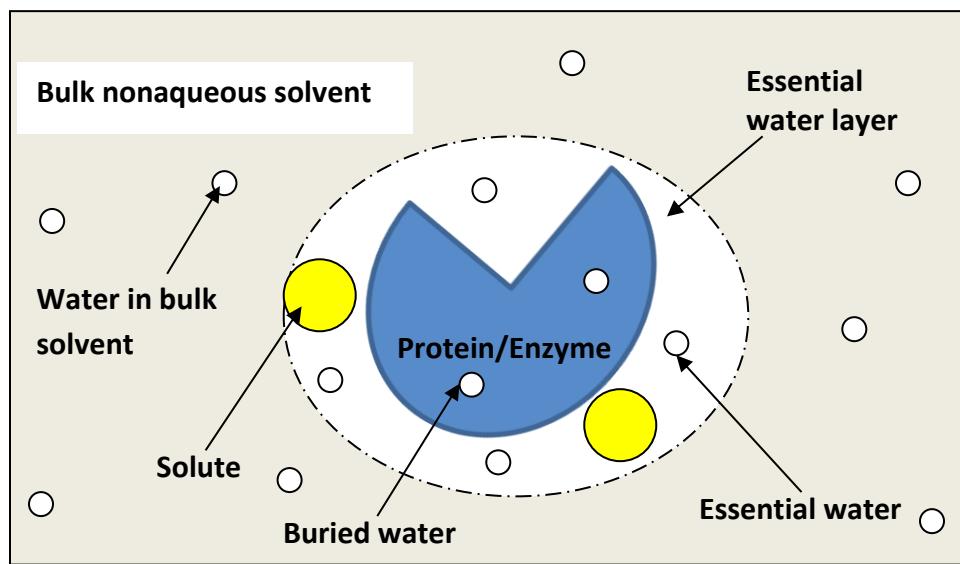
74 **Figure 1** Common methods for enzyme stabilization in nonaqueous solvents.

75 Extremophilic proteins can withstand extreme conditions (such as high temperature, high
 76 pressure, high or low pH, and organic solvents), and are often associated with protein structures
 77 with more hydrophobic residues (for stronger hydrophobic interaction), more charged residues
 78 (for stronger electrostatic interaction), increased inter- and intramolecular hydrogen bonds (H-
 79 bonds), and the formation of disulfide bonds (Liszka et al., 2012). There are a few natural
 80 extremophilic enzymes being more tolerant to some molecular and ionic organic solvents,
 81 including proteases (Freeman et al., 1993; Gupta et al., 2005; Ogino et al., 1999), lipases (Li et
 82 al., 2014; Ogino et al., 2000; Shabtai and Daya-Mishne, 1992; Shlmada et al., 1993; Sugihara et
 83 al., 1992; Yilmaz and Sayar, 2015), and cellulases (Ilmberger et al., 2013; Li and Yu, 2012;
 84 Tantayotai et al., 2016; Xu et al., 2016); in addition, thermophilic enzymes usually show high
 85 tolerance to organic solvents (Illanes, 1999; Liszka et al., 2012). In general, most native enzymes

86 are not tolerant to nonaqueous environments. Therefore, many approaches (see Figure 1 for
87 representative examples) have been explored to improve the enzyme activity and stability in
88 nonaqueous media (Stepankova et al., 2013) including:

- 89 • Physical or chemical immobilization of enzymes (Cao et al., 2003; Guisan, 2006; Lee and
90 Dordick, 2002; Reslow et al., 1988), such as sol–gel encapsulation (Lee et al., 2007a; Lee
91 et al., 2007b) and cross-linked enzyme aggregates (CLEAs) (Lopez-Serrano et al., 2002;
92 Sheldon, 2007);
- 93 • Protein chemical modifications (Inada et al., 1986b) such as PEG modification (Inada et
94 al., 1986a; Maruyama et al., 2004; Nakashima et al., 2005; Woodward and Kaufman,
95 1996);
- 96 • Genetic engineering/gene cloning of enzymes from extremophiles on mesophilic hosts
97 (Gupta et al., 2008; Illanes, 1999; Yan et al., 2017);
- 98 • Protein engineering (Arnold, 1990; Liszka et al., 2012; Ogino and Ishikawa, 2001),
99 including rational redesign/site-directed mutagenesis (SDM) (Antikainen and Martin,
100 2005; Duan et al., 2016; Takwa et al., 2011; Wong et al., 1990), directed evolution
101 (Alvizo et al., 2014; Garcia-Ruiz et al., 2012; Reetz, 2002; Reetz and Carballeira, 2007),
102 semi-rational design (Roth et al., 2017), and *de novo* design (Röthlisberger et al., 2008);
- 103 • Lyophilization with excipients/lyoprotectants including salts (for enzyme activation)
104 (Dabulis and Klibanov, 1993; Dai and Klibanov, 1999; Khmelnitsky et al., 1994; Lindsay
105 et al., 2004; Morgan and Clark, 2004; Ru et al., 2000; Ru et al., 2001);
- 106 • Molecular imprinting (Lee and Dordick, 2002) and ligand-induced ‘enzyme memory’
107 (Russell and Klibanov, 1988);

- 108 • Salt hydrates for water activity and pH controls (Halling, 1992; Schulze and Klibanov,
109 1991; Valivety et al., 1992; Yang et al., 1993);
- 110 • Enzyme precipitated and rinsed with *n*-propanol (EPRP) (Roy and Gupta, 2004; Shah and
111 Gupta, 2007; Solanki and Gupta, 2008), or propanol-rinsed enzyme preparations (PREP)
112 (Partridge et al., 1998; Theppakorn et al., 2004);
- 113 • Enzyme-amphiphile/surfactant complexes/ion-pairing (to solubilize enzymes in organic
114 solvents) (Akbar et al., 2007; Meyer et al., 1996; Okahata and Ijiro, 1988; Paradkar and
115 Dordick, 1994; Wangikar et al., 1997);
- 116 • Direct dissolution of hydrophilic enzymes in hydrophobic organic solvents (Mozhaev et
117 al., 1991; Xu et al., 1997);
- 118 • Water-in-oil microemulsion or reverse micelles (Luisi, 1985; Oldfield, 1994) and water-
119 in-IL microemulsion (Moniruzzaman et al., 2008; Pavlidis et al., 2009);
- 120 • Enzyme coating with ILs (Itoh et al., 2006; Lee and Kim, 2002; Lozano et al., 2007; Zou
121 et al., 2014);
- 122 • Addition of organic bases (e.g., Et₃N) or acids (Lee and Dordick, 2002; Parker et al.,
123 1998);
- 124 • Using “water-mimicking” or “molecular lubricant” solvents such as formamide, ethylene
125 glycol, glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and ethylene
126 glycol dimethyl ether (Almarsson and Klibanov, 1996; Kitaguchi et al., 1990; Kitaguchi
127 and Klibanov, 1989; Riva et al., 1988; Triantafyllou et al., 1993; Xu et al., 1997).


128 Therefore, a careful design of water-mimicking nonaqueous solvents could lead to transition
129 state stabilization, higher conformational mobility of enzymes, and improved enzyme-substrate
130 binding. This review firstly focuses on the discussion of how organic solvents affect protein

131 conformation and dynamics, how organic solvent properties (such as polarity and hydrophobicity)
132 influence the enzyme activity/stability, and how solvents with hydroxy and ether groups could
133 induce enzyme activation. Furthermore, we summarize lessons learned from nonaqueous
134 biocatalysis, and then systematically survey how functional groups have been incorporated into
135 ILs to achieve more “water-like” biocompatible solvents.

136 **2. Protein Conformation and Dynamics in Nonaqueous Media**

137 Water associated with enzymes can be defined as two types (Figure 2): water buried inside the
138 protein is known as ‘internally bound water’ (or ‘buried water’, or ‘structural water’) that can act
139 as reactant and/or integral part of protein structure enabling stereospecific interactions; water
140 within surface hydration shell of proteins is known as ‘essential water’ (or ‘free water’, or
141 ‘hydration water’) (Gorman and Dordick, 1992; Lee et al., 1998; Meyer, 1992). Using the ^{18}O -
142 labeling method, Dolman et al. (Dolman et al., 1997) determined residual water molecules per
143 lysozyme and subtilisin Carlsberg molecule as 3–4 and 14–16 respectively after extensive drying;
144 these numbers match well with those of buried or structural water molecules calculated from
145 molecular modeling. The Mitchell-Koch group (Dahanayake et al., 2016) carried out the
146 molecular dynamics (MD) simulations of *Candida antarctica* lipase B (CALB) and horse heart
147 cytochrome *c* with four levels of crystallographic water (i.e. all crystallographic water, buried
148 water, slow-diffusing water, and water within 2.7 Å) in organic solvents (such as acetonitrile, *n*-
149 butanol and *tert*-butanol), and concluded that buried waters make the most contribution to rapid
150 equilibration in nonaqueous media while slow-diffusing waters (diffusion coefficients are lower
151 than 1/3 of the average after 10 ns simulation with all crystal waters) enable similar outcomes;
152 keeping both buried and slow-diffusing waters quickly leads to an equilibrium protein structure
153 and seems ideal for simulating protein dynamics in either aqueous or organic solvents. While one

154 study (Valivety et al., 1992) suggested that the highest esterification activity of immobilized
155 *Mucor miehei* lipase in each organic solvent (i.e. hexane, toluene, trichloroethylene, diisopropyl
156 ether, or 3-pentanone) was obtained at about the same thermodynamic water activity ($a_w = 0.5$),
157 another group (Corrêa de Sampaio et al., 1996) reported highest transesterification activities of
158 subtilisin Carlsberg in various solvents (hexane, toluene, diisopropyl ether, and their mixtures)
159 being achieved at about 10% protein hydration; in these two cases, different amounts of water
160 were required to reach the optimum enzyme activity in different solvents.

162 **Figure 2** Protein/enzyme suspended in nonaqueous solvent and water distribution (solute could
163 be an additive such as lyoprotectant or inhibitor; essential water layer might disappear due to
164 water stripping by hydrophilic solvents).

165 The type of nonaqueous organic solvents can have drastic impact on the conformation
166 and dynamics of proteins. Knowledge of conformational and dynamic behaviors of enzymes in
167 organic solvents with low water contents is very important to the understanding of enzyme
168 activity and stability (Guinn et al., 1991). Dry proteins are substantially native and relatively
169 rigid; upon rehydration, protein flexibility increases accompanying with small local
170 conformational changes (Careri et al., 1980; Finney and Poole, 1984; Poole and Finney, 1983).

171 The Klibanov group (Zaks and Klibanov, 1984) pointed out that dry porcine pancreatic lipase
172 was thermally stable at 100 °C for hours; furthermore, this group (Zaks and Klibanov, 1988b)
173 found subtilisin and α -chymotrypsin exhibited high structural rigidity in organic solvents, which
174 led to high kinetic barriers preventing protein unfolding from native-like conformation and thus
175 enabled higher thermal and storage stability of proteins in nonaqueous environment than in water.
176 Affleck et al. (Affleck et al., 1992b) observed a sharp increase (>6-fold) in transesterification
177 activity of subtilisin Carlsberg upon the addition of 0.5% (v/v) water in tetrahydrofuran (THF),
178 followed by a steep decline of the activity with further addition of water. Based on electron
179 paramagnetic resonance (EPR) spectra, they explained the initial increase was caused by an
180 increase in active-site polarity and protein flexibility due to protein hydration, but further
181 hydration led to even higher mobility and lower enzyme activity in nonaqueous environment.
182 They also explained that partially hydrated enzyme molecules have a different conformation
183 from mostly dry protein. Based on fluorescence and EPR spectra, the same group (Ryu and
184 Dordick, 1992) noted that water-miscible solvents (e.g., >30% v/v dioxane, >50% v/v methanol,
185 and >20% v/v acetonitrile) exposed the active site of horseradish peroxidase to the solvent,
186 which reduced the local polarity of active site. Because of the large increase in K_m value, they
187 suggested the major impact of organic solvents being ground-state stabilization of phenolic
188 substrates, which caused catalytic efficiency reduction by four orders of magnitude. The
189 Carpenter group (Dong et al., 1996) determined secondary structures of lyophilized α -
190 chymotrypsin and subtilisin Carlsberg suspended in organic solvents through infrared
191 spectroscopy, and found lyophilization perturbed secondary structures of both proteins. The
192 suspension of lyophilized α -chymotrypsin powder in ethanol, hexane or pyridine exhibited
193 minimum further disturbance of protein structure. However, subtilisin Carlsberg in ethanol

194 suffered further perturbation of secondary structures while suspension in hexane or pyridine
195 showed different degrees of return to native structure. Co-lyophilization of enzymes with
196 trehalose or sorbitol as the lyoprotectant (see Figure 2) retained more native conformations, but
197 their suspension in organic solvents usually led to large structural perturbations. This group
198 found no correlation of enzymatic transesterification activity with its secondary structures. Since
199 infrared spectroscopy is unable to measure the conformational change of active sites, they
200 suggested that solvents could affect the enzymatic process in several ways: polar solvents bind at
201 the active site; the solvent may change the substrate partition into enzyme/water complex; the
202 solvent can drastically modify the thermodynamic activity of a reactant (e.g., the activity
203 coefficient of hexanol in hexane is 10 times of the value in 2-butanone (van Tol et al., 1995));
204 and polar solvents may cause protein dehydration.

205 Following spectroscopic studies using ^1H NMR, near-UV and far-UV CD (circular
206 dichroism), the Klibanov group (Knubovets et al., 1999) reported that hen egg-white lysozyme
207 lost most of its tertiary structure after dissolution in ethylene glycol, methanol, DMSO,
208 formamide, and DMF (respectively); additionally, they observed changes in secondary structures:
209 a partially folded protein in ethylene glycol, a molten globule-type in methanol, and a random
210 coil in DMSO, formamide and DMF. Based on multinuclear NMR spectra of water bound to
211 subtilisin Carlsberg in THF, the Clark group (Lee et al., 1998) proposed a three-state model to
212 describe protease hydration: tightly bound, loosely bound, and free water. Tightly bound water
213 preserves the active conformation of lyophilized subtilisin while loosely bound water boosts up
214 the enzyme activity by increasing enzyme flexibility and active site polarity. By adding up to 0.6%
215 (v/v) aqueous solution of sodium dodecyl sulfate (SDS) into diisopropyl ether for lipase-
216 catalyzed esterification of a chiral carboxylic acid, Ueji et al. (Ueji et al., 2001) observed a

217 drastic increase in reaction rate and enantioselectivity. Further, their EPR spectra suggest this
218 could be attributed to enhanced conformational flexibility of protein by adding the surfactant.
219 The Smith group (Kurkal et al., 2005) conducted picosecond dynamic neutron scattering on pig
220 liver esterase powders at 0%, 3%, 12%, and 50% hydration by mass and at temperatures of 120
221 to 300 K, and noted the existence of anharmonic and diffusive motion in the protein based on
222 significant quasielastic scattering intensity. They further indicated that hydration-induced
223 dynamical changes may increase the enzyme activity, but this is not a requirement for the
224 enzyme to function. Through examining subtilisin Carlsberg co-lyophilized with inorganic salts
225 and suspended in organic solvents by ^1H NMR relaxation experiments, the Clark group (Eppler
226 et al., 2008) found that subtilisin's k_{cat} (apparent unimolecular rate constant or turnover number)
227 was highly correlated with protein motions in the centisecond timescale, weakly related in the
228 millisecond timescale, and unrelated on the piconanosecond timescale. Their ^{19}F NMR chemical
229 shifts and hyperfine tensor measurements reveal enzyme activation being weakly correlated with
230 changes in active-site polarity. In general, faster enzyme dynamics is essential for enzyme
231 activation in nonaqueous media. Circular dichroism (CD) spectroscopy was used by Ogino and
232 co-workers (Ogino et al., 2007) to probe conformational changes of several proteases in
233 methanol. This group discovered that conformational stability and hydrolytic activities of α -
234 chymotrypsin and thermolysin were lower in 25% (v/v) methanol than those in aqueous buffer
235 while subtilisin and organic solvent-tolerant *Pseudomonas aeruginosa* protease (PST-01)
236 showed an opposite order (i.e. higher stability and activity in methanol solution). They also
237 observed less conformational changes for inhibited proteases (vs. proteases without inhibitors);
238 both conformational transitions and autolysis of enzymes contribute to changes in CD spectra
239 without the presence of protease inhibitors. In addition, since poly(amino acids) could form

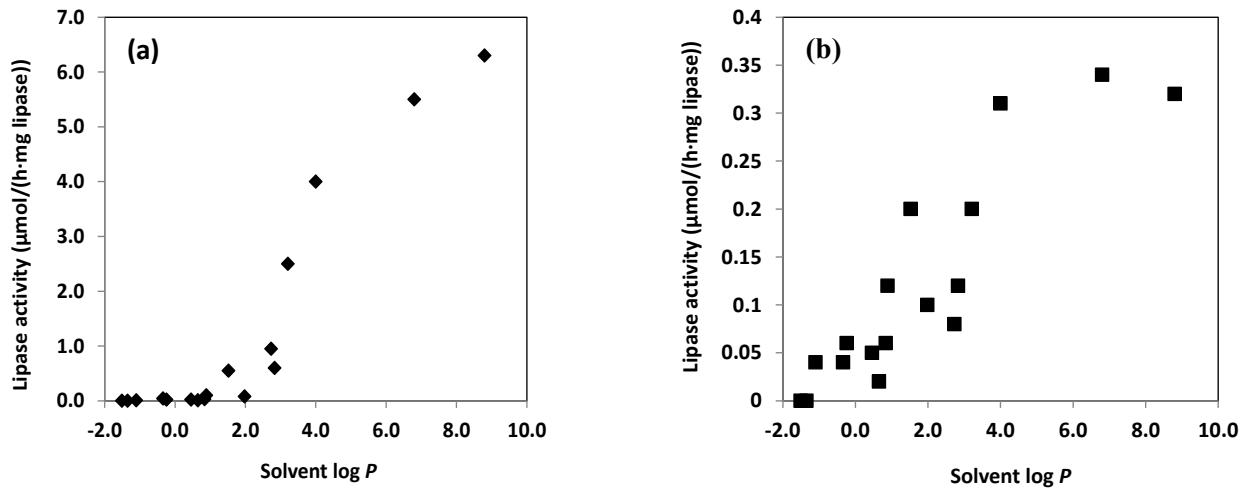
240 particular conformations (e.g., α -helix and β -sheets) under certain conditions, their
241 conformational transitions in the presence of methanol implied that proteins with a high content
242 of β -pleated structure tend to be less stable in organic solvents.

243 Protein solvation is crucial to its structural dynamics as the solvent mobility contributes
244 to protein flexibility. Recent MD simulations have provided valuable insights into protein
245 dynamics. The Mitchell-Koch group (Dahanayake and Mitchell-Koch, 2018a; Dahanayake and
246 Mitchell-Koch, 2018b) evaluated the CALB dynamics in aqueous and organic solvents (e.g.,
247 acetonitrile, cyclohexane, *n*-butanol, and *tert*-butanol), pointed out that solvation shell dynamics
248 and protein dynamics are not the same at different regions (i.e. α -helix, β -sheet, and
249 loop/connector region). Therefore, protein flexibility is less correlated with bulk solvent
250 viscosity, but more relevant to local interfacial viscosity or the mobility ratio between organic
251 molecules in a regional solvation layer and hydration dynamics near the same region. This group
252 also compared CALB conformational transition rates (measured by the α 5– α 10 helix distance)
253 between metastable/long-lived states such as open state, crystal-like state and closed state, and
254 observed fastest transition rates in water and acetonitrile for the change of crystal-like to open
255 conformation and much slower conformational changes in other less polar solvents. Interestingly,
256 three metastable states of CALB in *tert*-butanol were all distributed in crystal-like conformation.
257 Additionally, this group examined the effect of topology and hydrophobicity of protein surface
258 on water structure and dynamics, and found a less dense and more tetrahedral solvation layer
259 near concave and hydrophobic protein surfaces.

260 **3. Effect of Solvent Properties on Enzyme Activity and Stability**

261 Nonaqueous enzymatic reactions can be influenced by many factors including water
262 content/thermodynamic water activity (a_w), pH/pH memory, temperature, biocatalyst forms and

263 preparations, and the type of nonaqueous media, etc. (Bell et al., 1995; Berberich et al., 2003;
264 Halling, 1992; Ren et al., 2008; Valivety et al., 1992; Wang et al., 2016a; Yang et al., 1993).
265 Most important solvent properties that can be correlated with enzyme activity and stability
266 include polarity and hydrophobicity.


267 Solvent polarity can be quantified by various parameters such as dielectric constants (ϵ_r),
268 Hildebrandt solubility (δ), dipole moments (μ), and solvatochromic polarity scales (such as E_T^N
269 and Kamlet-Taft scales) (Reichardt, 1994). Hydrophobicity (or lipophilicity) overlaps with the
270 polarity concept to a great extent, and is considered as a function of solvent polarity and entropic
271 effect on water (Timson, 2019). In general, polar molecules tend to be hydrophilic/lipophobic
272 and non-polar molecules tend to be hydrophobic/lipophilic. But there are some exceptions, for
273 example, hydrophobic perfluorocarbons are non-polar and lipophobic at the same time (Riess,
274 2005), and some hydrophilic ILs are polar and also lipophilic (Manic and Najdanovic-Visak,
275 2016). Hydrophobicity is usually quantified by the $\log P$ scale, which is derived from the
276 partition coefficient (K_{OW} or P) of un-ionized solutes between *n*-octanol and water at the
277 unlimited dilution concentration of solute (Eqn. 1) (Sangster, 1989).

278
$$\log P = \lim_{c \rightarrow 0} K_{OW} = \lim_{c \rightarrow 0} \frac{C^o}{C^w} \quad (1)$$

279 C^o is the solute concentration in *n*-octanol phase and C^w is the solute concentration in aqueous
280 phase.

281

282

283

284 **Figure 3** Correlation of transesterification rate of lipases with solvent log P values: (a) *Candida*
 285 *cylindracea* lipase and (b) *Mucor* sp. lipase (replotting from literature data: reaction rates of
 286 lipase-catalyzed transesterification of tributyrin and heptanol at 20 °C from Ref (Zaks and
 287 Klibanov, 1985); log P values from experimental data (Sangster, 1989) except hexadecane and
 288 dioxane from calculated data (Laane et al., 1987)).

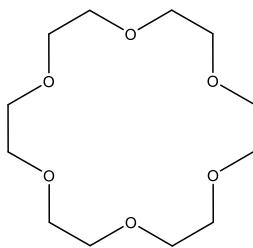
289 Solvent polarity in terms of Hildebrandt solubility (δ), dipole moment (μ), and dielectric
 290 constant (ϵ) can be an important factor to enzyme activity (Affleck et al., 1992a; Brink and
 291 Tramper, 1985; Fitzpatrick and Klibanov, 1991; Gorman and Dordick, 1992; Halling, 2000; Kim
 292 et al., 2000; Schulze and Klibanov, 1991). Hildebrand solubility parameter (δ) can be calculated
 293 from the solvent heat of evaporation, which depends on polar interactions between solvent
 294 molecules; however, for apolar solvents, δ values are not sensitive to changes in apolarity and
 295 thus fall in a narrow range (Laane et al., 1985). Therefore, solvent polarity measured by δ values
 296 does not have a strong correlation with enzyme activity in apolar organic media. On the other
 297 hand, solvent hydrophobicity in terms of log P value has been found a good correlation factor for
 298 nonaqueous biocatalysis. The Laane group (Laane et al., 1985; Laane et al., 1987) replotted
 299 immobilized-cell activity (Brink and Tramper, 1985) and gas-producing anaerobic cell activity

300 (Playne and Smith, 1983) (respectively) with one of these solvent properties: dielectric constant
301 (ϵ), Hildebrand solubility parameter (δ), and hydrophobicity ($\log P$), and concluded the activities
302 increased with $\log P$ values in general showing as “S”-shape curves. Similar correlations were
303 observed with yeast lipase and mold lipase activities with $\log P$ value (Figure 3) although
304 pancreatic lipase failed to follow the trend (lipase activity data from Ref. (Zaks and Klibanov,
305 1985)). Based on these experimental correlations, the Laane group (Laane et al., 1985; Laane et
306 al., 1987) suggested a rule of thumb for biocatalysis in nonaqueous solvents: low activity in polar
307 solvents with $\log P < 2$; moderate activity in solvents with $\log P = 2\text{--}4$, and high activity in
308 apolar solvents with $\log P > 4$. Further optimization of biocatalytic activity can be achieved
309 when $|\log P_i - \log P_s|$ and $|\log P_{cph} - \log P_p|$ are at minimal while $|\log P_{cph} - \log P_s|$ and $|\log P_i -$
310 $\log P_p|$ are at maximal, where $\log P_i$ is for microenvironment of biocatalyst, $\log P_{cph}$ is for
311 continuous organic phase, $\log P_s$ is for the substrate, and $\log P_p$ is for the product. In case of
312 substrate inhibition, $\log P_i$ is optimized with respect to $\log P_s$. For pure enzymes in neat organic
313 solvents where there is no interphase, $\log P_i$ is identical to $\log P_{cph}$ and thus the medium is
314 optimized with respect to $\log P_s$ and $\log P_p$. This group (Hilhorst et al., 1984) further suggested
315 the combination of $\log P$ and molar mass of solvent as a good indicator of cell activity retention.
316 The $\log P$ rule was applied to understand the enzymatic reduction of apolar steroids progesterone
317 and prednisone catalyzed by 20β -hydroxysteroid dehydrogenase in reversed micellar media
318 comprising cetyltrimethylammonium bromide, hexanol, another organic solvent (e.g. octane),
319 and Hepes buffer, where $|\log P_i - \log P_s|$ was minimized to reach a high steroid content in
320 interphase and $|\log P_{cph} - \log P_s|$ was maximized to maintain a low concentration of steroid in
321 continuous phase. Reslow et al. (Reslow et al., 1987a) evaluated α -chymotrypsin-catalyzed
322 transesterification reaction in various organic solvents, and noted that the enzymatic reaction

323 followed Michaelis-Menten kinetics with a slight decrease of K_m with the increasing solvent log
324 P and a drastic increase in V_{max} with the log P value. They also observed the transesterification
325 activity at 2% (v/v) water increased with the log P value to a maximum (when log P is about 1.6)
326 and then declined with a further increase in log P . The same group (Reslow et al., 1987b)
327 explained that corrected log P values taking water into consideration (see Eqn. 2) showed a
328 better correlation with the α -chymotrypsin activity.

$$329 \quad \log P_{corr} = (1 - x) \log P_{solvent} + x \log P_{water} \quad (2)$$

330 where x is the mole fraction of water (in term of water solubility in organic solvent), organic
331 solvent log P is noted as $\log P_{solvent}$, and water log P is noted as $\log P_{water}$ ($= -1.396$ as calculated
332 from Eqn. (1) using the water solubility in *n*-octanol at 25 °C). Their results suggest that less
333 water is needed for more hydrophobic solvents to reach maximum enzyme activity. A similar
334 ‘bell-shape’ trend was observed by the Zhao group (Zhao et al., 2009a) in the lipase-catalyzed
335 transesterification reaction in ILs although initial reaction rate reached its maximum at a much
336 lower log P value (-0.90). Another study by Lou et al. (Lou et al., 2005) on the lipase-catalyzed
337 ammonolysis of (*R,S*)-*p*-hydroxyphenylglycine methyl ester reported initial rates increasing with
338 hydrophobicity of BF_4^- -based ILs to a maximum, and then decreasing with even higher
339 hydrophobicity. The decrease in enzyme activity with log P after the maximum is possibly due to
340 substrate ground-state stabilization (e.g., strong substrate solvation (Kim et al., 2000), and up to
341 10⁴-fold reduction in catalytic efficiency (Ryu and Dordick, 1992)) or hydrophobic interactions
342 (moving protein’s hydrophobic moieties from interior to exterior (Timson, 2019)) in highly
343 hydrophobic solvents.


344 The Klibanov group (Zaks and Klibanov, 1988b) compared transesterification activities
345 of subtilisin and α -chymotrypsin in various organic solvents containing <0.02% (v/v) water, and

346 found the enzymatic reaction followed Michaelis-Menten kinetics with V_{\max}/K_m values
347 increasing with high solvent hydrophobicity. Both enzymes were highly active in hexadecane
348 and octane. This study on proteases and another study from the same group (on yeast alcohol
349 oxidase, mushroom polyphenol oxidase, and horse liver alcohol dehydrogenase) (Zaks and
350 Klibanov, 1988a) suggest that hydrophilic solvents could strip off ‘essential water’ from
351 enzymes (see Figure 2), and influence the enzymatic process directly. Nurok and co-workers
352 (Nurok et al., 1999) developed regression models for transesterification activities of subtilisin
353 Carlsberg and *Candida rugosa* lipase with organic solvent properties, found either $\log P$ or a
354 descriptor containing $\log P$ correlates with enzyme activities. Pogorevc et al. (Pogorevc et al.,
355 2002) observed little deactivation of two lipases and hydroxynitrile lyase by organic solvents
356 with $\log P \geq 1$; however, the detrimental impact of protic solvents (such as alcohols) caused by
357 their hydrogen-bonding is underestimated by the $\log P$ scale. Clark and co-workers (Guinn et al.,
358 1991) concluded that the activity of horse liver alcohol dehydrogenase for the oxidation of
359 cinnamyl alcohol increased in a more hydrophobic (a lower dielectric constant ε_r) organic solvent
360 such as hexane ($\varepsilon_r = 1.9$) containing ~0.02–10% water, which corresponded with more rigid
361 protein structures based on EPR spectra. Even in aqueous solutions of water-miscible organic
362 solvents (mole fraction of water 0.8–0.998), the Nagamune group (Hirakawa et al., 2005) found
363 k_{cat} of 1-pentanol oxidation catalyzed by alcohol dehydrogenase from *Aeropyrum pernix*
364 increased almost linearly with $\log P$ values of mixed solvents (using the mixing rule in literature
365 (Hilhorst et al., 1984)) and k_{cat} in aqueous acetonitrile (its mole fraction 0.1) was 10 times higher
366 than that in aqueous buffer. They suggested that enzyme activation depended on $\log P$ value of
367 solvent mixture but was independent of solvent composition. And they further indicated that with
368 an increase in $\log P$, both activation enthalpy and entropy decreased but overall free energy of

369 activation decreased. In aqueous organic solvents (25–50%, v/v), protease and lipases usually
370 stayed catalytically active and stable in C₇–C₁₀ alkanes, cyclohexane, and DMSO, but much less
371 active in most mono-alcohols (Ogino et al., 2000; Ogino et al., 1999; Shimada et al., 1993).

372 The mechanism of water stripping from enzymes by hydrophilic solvents (see Figure 2)
373 was confirmed by MD simulations. Yang et al. (Yang et al., 2004) studied surfactant-solubilized
374 subtilisin BPN' in water and three organic solvents (i.e. octane, THF, and acetonitrile), and found
375 no significant difference in terms of overall enzyme structure and flexibility in these solvents
376 over the timescale of several nanoseconds. The major difference is the partition of hydration
377 water between enzyme molecules and bulk solvent. With the increasing of solvent polarity
378 (octane → THF → acetonitrile), hydration water is more stripped from enzyme's surface, and
379 polar solvent molecules begin to penetrate into crevices on enzyme's surface and into the active
380 site to replace mobile and weakly bound water molecules. Another study of molecular
381 dynamics/molecular mechanics (MD/MM) simulations of a serine protease cutinase in water and
382 five organic solvents (i.e. hexane, diisopropyl ether, 3-pentanone, ethanol and acetonitrile)
383 demonstrated that the nature of organic solvents determines their ability in stripping off water
384 from enzyme's surface (Micaêlo and Soares, 2007). The simulations results picture that
385 enzyme's surface is surround by clusters of water molecules in organic solvents, preferentially
386 near charged/polar residues. In nonpolar solvents (e.g., hexane, diisopropyl ether, and 3-
387 pentanone), large clusters of water molecules are seen around enzyme's surface while smaller
388 aggregates of water exist in polar solvents (e.g. ethanol and acetonitrile). In addition, polar
389 solvents may replace some water molecules at enzyme's surface and affect the structure and
390 dynamics of protein molecules. At low hydration state, ions could preferentially bind to the
391 protein.

392 On the contrary, a number of studies suggest that enzyme performance is not correlated
393 with solvent polarity and hydrophobicity. The Klibanov group (Narayan and Klibanov, 1993)
394 examined transesterification activities of three lipases and one protease in anhydrous organic
395 solvents, and concluded water-immiscibility and apolarity of the solvent could not be correlated
396 with enzyme activity. The solvent hydrophobicity (usually measured by $\log P$ value) could
397 indicate general enzyme activity trend in nonaqueous media, but may not correlate with enzyme
398 activity in a selected narrow range of $\log P$ values. The Wandrey group (Villela Filho et al., 2003)
399 pointed out that the stability of three alcohol dehydrogenases (ADH) in biphasic systems failed
400 to follow the $\log P$ rule for organic solvent selection. All three alcohol dehydrogenases showed
401 the highest stability in the biphasic system of 50/50 (v/v) aqueous phase/ *tert*-butyl methyl ether.

402

403 **Figure 4** Structure of 18-crown-6.

404 **4. Enzyme Activation by Crown Ethers and Cyclodextrins**

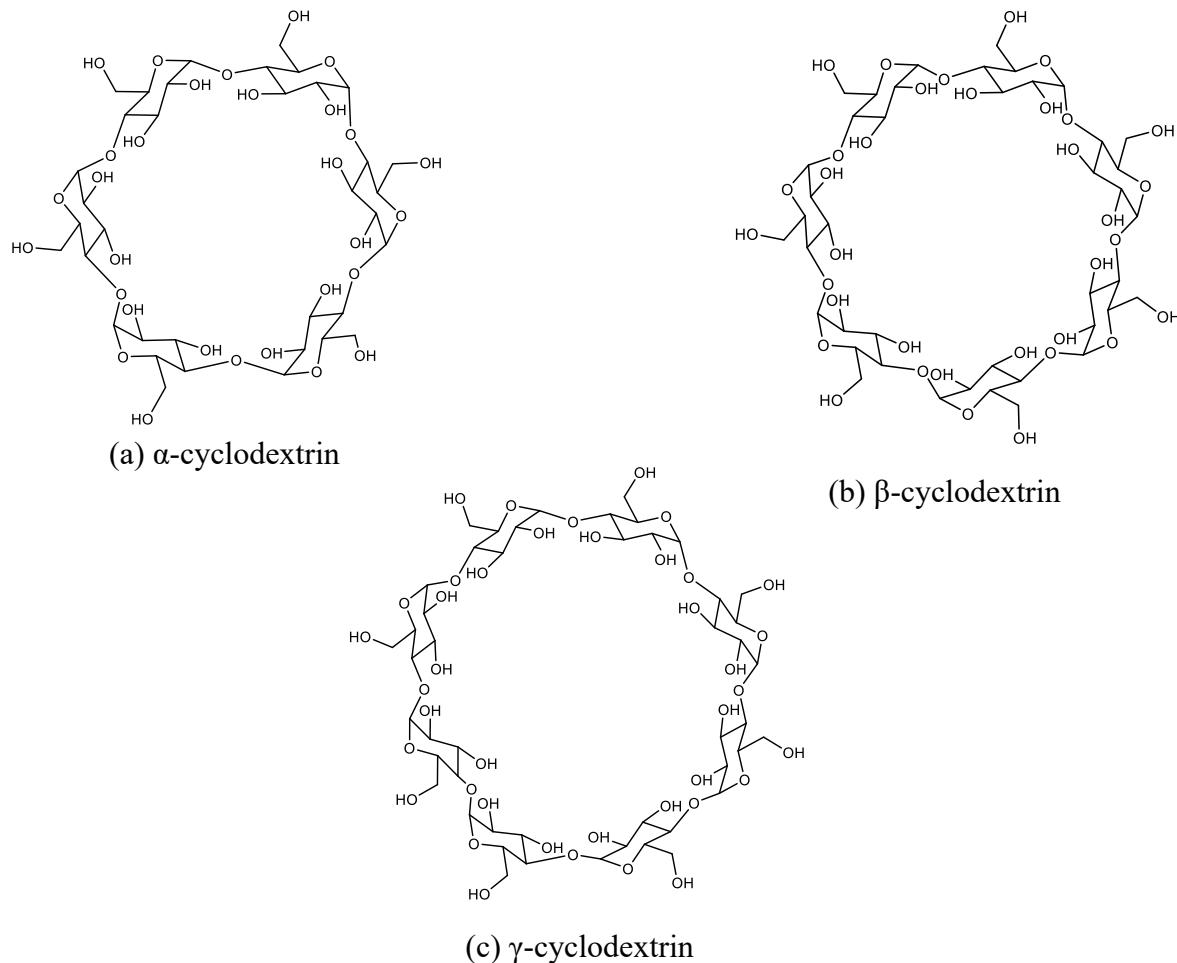
405 Crown ethers can activate enzymes by two methods: as reaction additives, or as co-lyophilizing
406 agents. The most commonly used crown ether is 18-crown-6 (Figure 4). Reinhoudt and co-
407 workers (Reinhoudt et al., 1989) studied the addition of several crown ethers (0.75 mM) in
408 protease-catalyzed transesterification of *N*-acetyl-L-phenylalanine ethyl ester with 1-propanol in
409 *n*-octane, and observed the highest enzyme activation by 18-crown-6 (up to 4.1-fold activation
410 for α -chymotrypsin and 2.0-fold activation for subtilisin). Later, this group (Broos et al., 1992;
411 Engbersen et al., 1996) reported higher α -chymotrypsin activation by using the same
412 transesterification reaction in various organic solvents, and obtained 31-fold protease activation

413 in dibutyl ether, 29-fold in octane, and 19-fold in cyclohexane via adding 2.0 mM 18-crown-6.
414 The same group (van Unen et al., 2002) further indicated that α -chymotrypsin activity increased
415 with the concentration of 18-crown-6, and reached 13-fold enzyme activation in cyclohexane at 4
416 mM crown ether. Itoh et al. (Itoh et al., 1993; Itoh et al., 1996) also employed crown ethers as
417 additives (>250 molar equiv. based on the enzyme) in the lipase-catalyzed hydrolysis of 2-cyano-
418 1-methylethyl acetate, and observed faster reactions and higher enantioselectivity in the presence
419 of crown ethers (in particular benzo-crown, armed azacrown, and thiacrown). They confirmed
420 that accelerated reaction rates were due to the binding of reaction product with crown ether, and
421 enhanced enantioselectivity was due to crown ether interaction with active sites modifying the
422 lipase local conformation. When studying the peptide formation in acetonitrile catalyzed by
423 cross-linked crystals of thermolysin and subtilisin Carlsberg, van Unen et al. (van Unen et al.,
424 1998a; van Unen et al., 1998c) found that direct addition of 18-crown-6 into the reaction mixture
425 showed no impact on enzyme activity, but observed 13 times of enzyme activation after soaking
426 enzyme crystals in acetonitrile containing crown ether followed by overnight evaporation of the
427 solvent at room temperature. Chang et al. (Chang et al., 2016) observed that 18-crown-6 was
428 able to improve the thermal stability of cellulase. An early study by Odell and Earlam (Odell and
429 Earlam, 1985) indicated that some proteins (e.g., cytochrome *c*, bovine serum, lysozyme and
430 myoglobin) could form complexes with crown ethers, resulting in protein dissolution in
431 nonaqueous media such as methanol. Following this study, the Tsukube group (Paul et al., 2003)
432 formed cytochrome *c* complexes with 18-crown-6 in methanol to convert biologically inactive
433 heme structure to catalytically cold-active synzymes. They observed non-biological six-
434 coordinate heme in methanol for each cytochrome *c*, and the degradation of hemes with H₂O₂
435 was considerably depressed at cold temperatures (e.g., -20 to -60 °C). At these low temperatures,

436 cytochrome *c* complexes were able to promote a faster oxidation of (*S*)-naphthyl methyl
437 sulfoxide than its (*R*)-isomer (up to 49% ee and 79% conversion at -40 °C by pigeon breast
438 cytochrome *c*).

439 The second method of activation is the co-lyophilization of crown ether with the enzyme.
440 The Reinhoudt group (Broos et al., 1995; Engbersen et al., 1996) co-lyophilized serine proteases
441 with crown ethers, and reported that α -chymotrypsin co-lyophilized with 250 molar equiv. of 18-
442 crown-6 resulted in 640 times increase in its transesterification activity (only 50 times lowers
443 than the hydrolytic activity in water); co-lyophilization activation was 30 times more than the
444 direct addition of crown ether in the solvent (i.e. cyclohexane). Following the same process using
445 500 equiv. 18-crown-6, subtilisin Carlsberg was more active by 28 times and trypsin was more
446 active by 216 times while acetyltrypsin was not activated. In a later communication (van Unen et
447 al., 2002), this group re-optimized 18-crown-6 concentration to 50 equiv. for co-lyophilization to
448 achieve 470-fold α -chymotrypsin activation for the same reaction; they explained higher crown
449 ether concentrations could lead to enzyme dehydration to become less active (van Unen et al.,
450 2001). Furthermore, the same group (van Unen et al., 1998a, b) found that α -chymotrypsin co-
451 lyophilized with 50 molar equiv. of 18-crown-6 exhibited 425-fold improvement in activity
452 during the enzymatic formation of dipeptide in acetonitrile. They also observed more
453 pronounced activation by crown ether in hydrophilic solvents (i.e. acetonitrile, dioxane, and 2-
454 butanone) than in hydrophobic solvents (i.e. 3-pentanone, *tert*-amyl alcohol, and toluene). On the
455 contrary, this group noted that for the transesterification reaction catalyzed by α -chymotrypsin
456 co-lyophilized with 50 equiv. of 18-crown-6, the crown ether activation decreased with a higher
457 solvent polarity (a lower log *P* value); for example, 470-fold activation in cyclohexane dropped
458 to 93-fold in acetonitrile. The explanation is that enzyme molecules in hydrophobic solvents

459 have more salt bridges that needs to be disrupted by crown ether; salt bridges tend to lock in
460 inactive enzyme conformations.


461 In terms of activation mechanism, this group (Broos et al., 1995) initially suspected that
462 crown ethers act as amphiphiles between enzyme's polar surface and nonpolar organic solvents
463 to move water molecules from active site upon substrate binding (de Jong et al., 1976). Later, the
464 Reinhoudt group (van Unen et al., 2001) measured Michaelis-Menten kinetics of α -chymotrypsin
465 in toluene, and found significantly higher V_{max} value but slightly lower K_m value in the presence
466 of 18-crown-6, implying noncompetitive interactions and no direct interaction of crown ether
467 with active sites to induce enzyme activation. Odell and Earlam (Odell and Earlam, 1985)
468 suggested that some proteins could form complexes with crown ethers possibly through
469 interactions with alkylammonium ions of lysine residues. Through electrospray ionization (ESI)
470 quadrupole ion-trap mass spectrometry, Julian and Beauchamp (Julian and Beauchamp, 2001)
471 suggested that peptides form stable supramolecular adducts with 18-crown-6 preferentially with
472 protonated amine on the side chain of lysine and further form multi-charged complexes through
473 crown ether interacting with adjacent lysines, while the complexation with side chains of
474 histidine and arginine is less competitive. Therefore, enzyme activation by crown ethers could be
475 due to interactions of 18-crown-6 with lysine ammonium and/or tyrosine hydroxy groups (so
476 called "macrocyclic interactions") (Broos et al., 1995; van Unen et al., 2001, 2002): there are
477 more lysine residues in α -chymotrypsin (14) and trypsin (14) than in subtilisin Carlsberg (7-8);
478 however, in acetyltrypsin, lysine ammonium and tyrosine hydroxys are acetylated (Labouesse
479 and Gervais, 1967). This explains the earlier data (Broos et al., 1995) that α -chymotrypsin and
480 trypsin could be more activated by 18-crown-6 than subtilisin Carlsberg while acetyltrypsin was
481 not activated. Such macrocyclic interactions minimize the formation of inter-and intramolecular

482 salt bridges, and reduce kinetic conformational barrier allowing the protein to refold back to
483 thermodynamically stable and catalytically active conformations. Enzyme activation due to the
484 direct addition of crown ethers into reaction mixture can be primarily attributed to these
485 macrocyclic interactions. However, for enzymes co-lyophilized with crown ether, the Griebelow
486 group (Santos et al., 2001) pointed out the primary contribution to enzyme activation being
487 “molecular imprinting effect”. This means that enzyme’s active site structure is locally preserved
488 by crown ethers during lyophilization, and even after exposure to organic solvents when crown
489 ethers leach out. The preserved enzyme structure can be understood as kinetically but not
490 thermodynamically stable in organic solvents. This group (Santos et al., 2001) indicated that
491 subtilisin co-lyophilized with crown ethers showed poor storage stability (at 4 or 25 °C), losing
492 its activities in days. Furthermore, the Griebelow group (Griebelow et al., 2001) determined
493 secondary structures of subtilisin co-dried with 18-crown-6 in 1,4-dioxane and its thermal
494 denaturation temperature (T_d) by infrared spectroscopy, and suggested that crown ether-to-
495 subtilisin preparation at 0.7 mass ratio showed similar secondary structures and rigidity as the
496 protease in water, corresponding to the highest transesterification activity obtained in 1,4-
497 dioxane. On a similar note, the Reinhoudt group (van Unen et al., 2002) concluded that enzyme
498 activation resulted from co-lyophilization with crown ethers is only partially due to specific
499 macrocyclic complexation, but largely due to nonmacrocyclic lyoprotection.

500 Cyclodextrins are macrocyclic oligosaccharides produced by the enzymatic conversion of
501 starch catalyzed by cyclodextrin glycosyltransferase. Three common naturally-occurring
502 cyclodextrins (α -, β -, and γ -) comprise 6, 7, and 8 α -D-glucopyranosyl units respectively, via α -
503 1,4-glycosidic linkages (Figure 5). Cyclodextrins are generally soluble in water but insoluble in
504 most organic solvents (except DMSO, MDF, and *N*-methylpyrrolidone) (Hedges, 2009).

505 Cyclodextrins and their modified forms have wide industrial applications in food, chemical,
506 pharmaceutical, drug delivery, agriculture, and environmental engineering sectors. The review is
507 interested in the use of cyclodextrins as additives or lyoprotectants to activate the enzyme.

508

509

510 **Figure 5** Structures of α -, β -, and γ -cyclodextrins.

511 The Kise group (Ooe et al., 1999) co-lyophilized α -chymotrypsin with various
512 cyclodextrins, and found 2,3,6-tri-*O*-methyl β -cyclodextrin was able to increase the enzymatic
513 transesterification activity by 40-fold in acetonitrile containing 3% (v/v) water. In addition,
514 hydroxypropylated β - or γ -cyclodextrin was able to maintain >98% of α -chymotrypsin initial
515 activity after 6 h of incubation at 30 °C in acetonitrile (with 3% v/v water). The Griebenow

516 group (Santos et al., 1999) co-lyophilized subtilisin Carlsberg with methyl β -cyclodextrin (1:6
517 mass ratio), and reported that this enzyme preparation drastically improved the protease activity
518 and/or enantioselectivity in two transesterification reactions performed in dry THF and
519 acetonitrile: the initial rate of *N*-acetyl-L-phenylalanine ethyl ether with 1-propanol increased by
520 53 folds in THF; the initial rate (*S*-enantiomer) of vinylbutyrate with 1-phenylethanol increased
521 by 164 times and its enantioselectivity increased by 1.8 times. However, a small amount of water
522 (as low as 0.1%, v/v) in nonaqueous media began to diminish the enhancement in activity and
523 enantioselectivity induced by methyl β -cyclodextrin co-lyophilization. The activation mechanism
524 was explained as methyl β -cyclodextrin increasing enzyme flexibility in organic media, and
525 minimizing structural changes of the protein during lyophilization. Secondary structures of this
526 subtilisin preparation obtained from FTIR by the same group (Griebenow et al., 1999) suggested
527 that the enantioselectivity correlated well with protein's structural integrity: subtilisin
528 enantioselectivity increased with a higher α -helix content (i.e. less perturbed structure). For
529 *Candida rugosa* lipase co-lyophilized with methyl β -cyclodextrin, a similar enzyme
530 improvement (16.8-fold increase in initial rate for *R*-enantiomer and 2.7-fold increase in
531 enantioselectivity) was seen in the transesterification between 1-phenylethanol and vinyl butyrate
532 (Griebenow et al., 1999). The Barletta group (Montañez-Clemente et al., 2002) further expanded
533 the subtilisin-catalyzed transesterification of vinyl butyrate with 1-phenylethanol to several
534 racemic alcohols as substrates in organic solvents (THF, 1,4-dioxane, acetonitrile,
535 dichloromethane, toluene, and octane), and confirmed that subtilisin co-lyophilized with methyl-
536 β -cyclodextrin enhanced its activity and enantioselectivity due to structural preservation during
537 lyophilization. THF and 1,4-dioxane were identified as the best solvents for these enzymatic
538 reactions while acetonitrile was the worst. Watanabe and co-workers (Watanabe et al., 2006)

539 observed that a small amount (5 mM) of α -, β -, or γ -cyclodextrin could activate 4- α -
540 glucanotransferase by 6.5, 6.6, and 4.9 folds respectively to cleave maltotriosyl residue from the
541 maltotetraosyl branch. Other mechanisms of enzyme activation by cyclodextrins include
542 complexing with the inhibitor (Li et al., 2013; López-Nicolás et al., 2007; Orenes-Piñero et al.,
543 2007), increasing the substrate solubility (Cui et al., 2013), delivering negatively charged
544 substrate to the enzyme (Davis et al., 2004), and enzyme complexing with cyclodextrin through
545 higher secondary interactions (i.e. hydrophobic interactions, hydrogen-bonding, and van der
546 Waals forces) (Canbolat et al., 2017; Denadai et al., 2006). As these mechanisms are primarily
547 explored for aqueous enzymatic processes, they are not discussed in detail by this review.

548 On the other hand, cyclodextrins and derivatives might inhibit enzyme activities due to
549 the sequestration of substrate to reduce its free concentration as illustrated by several examples,
550 such as cyclodextrins complexes with chlorogenic acid or 4-methyl catechol inhibiting the
551 activity of apple polyphenol oxidase (causing juice browning) (Irwin et al., 1994; Peralta-Altier
552 et al., 2018), the inhibition of hydroperoxidase activity of lipoxygenase due to the formation of
553 xenobiotics complex in the cavity of cyclodextrins (Núñez-Delicado et al., 1999), the
554 complexation of *tert*-butylcathechol in the cavity of hydroxypropyl- β -cyclodextrin and γ -
555 cyclodextrin causing the substrate sequestrant effect and the inhibition of *Streptomyces*
556 *antibioticus* tyrosinase (Orenes-Piñero et al., 2007). Another inhibition mechanism was reported
557 by Sule et al. (Sule et al., 2015) when they observed *Escherichia coli* methionine aminopeptidase
558 (MetAP) was inhibited by 2-hydroxypropyl- β -cyclodextrin (HP- β -CD). The inhibition reason
559 was described as the formation of non-productive ternary complex by bridging two ends of the
560 substrate (methionyl-7-amino-4-methylcoumarin) with MetAP and HP- β -CD, respectively.

561 **5. Enzyme-Compatible Organic Solvents for Nonaqueous Biocatalysis**

562 Long-chain alkanes and halogenated alkanes are hydrophobic and compatible with many
 563 enzymes such as subtilisin and α -chymotrypsin in hexadecane and octane (Zaks and Klibanov,
 564 1988b), α -chymotrypsin in 1,2-dichloroethane, chloroform and toluene (Reslow et al., 1987a), α -
 565 chymotrypsin in isoctane containing 2 mM Aerosol OT (AOT) as the surfactant (Paradkar and
 566 Dordick, 1994), alcohol dehydrogenase in heptane (Guinn et al., 1991), and lipases and
 567 hydroxynitrile lyase in hexane and dodecane (Pogorevc et al., 2002), etc. Some representative
 568 examples are illustrated in Table 1.

569 **Table 1** Enzyme-compatible organic solvents for nonaqueous biocatalysis

Enzyme	Compatible organic solvents	Ref
subtilisin (protease)	hexadecane and octane	(Zaks and Klibanov, 1988b)
	DMF	(Riva et al., 1988)
	1,4-dioxane, benzene, Et_3N and THF (enantioselectivity)	(Fitzpatrick and Klibanov, 1991)
	hexane, diisopropyl ether, and THF	(Corrêa de Sampaio et al., 1996; Khmelnitsky et al., 1994)
α -chymotrypsin (protease)	<i>tert</i> -amyl alcohol	(Kim et al., 2000)
	hexadecane and octane	(Zaks and Klibanov, 1988b)
	isoctane	(Paradkar and Dordick, 1994)
	diisopropyl ether, 1,2-dichloroethane, chloroform and toluene	(Reslow et al., 1987a)
Porcine pancreatic lipase	hexane, diethyl ether, diisopropyl ether, dibutyl ether and dodecane	(Zaks and Klibanov, 1985)
	nitromethane, DMF, Et_3N and <i>tert</i> -amyl alcohol (enantioselectivity)	(Fitzpatrick and Klibanov, 1991)
	hexadecane, dodecane and hexane	(Zaks and Klibanov, 1985)
<i>Candida cylindracea</i> lipase	hexane and dodecane	(Pogorevc et al., 2002)
Lipases from <i>Pseudomonas</i> sp. and <i>Candida rugosa</i>	Diisopropyl ether	(Ueki et al., 2001)
	heptane	(Guinn et al., 1991)
	hexane and dodecane	(Pogorevc et al., 2002)

570 Polyols and sugars (e.g. sorbitol and trehalose) are so called ‘compensatory solutes’ that
571 provide stabilization to proteins in aqueous media (Kaushik and Bhat, 1998, 2003). For instance,
572 the thermal stability of glucose dehydrogenase in aqueous solutions can be correlated with the
573 number of hydroxy groups in polyols in an increasing order of glycerol (3) < erythritol (4) <
574 xylitol (5) < sorbitol (6) (Obón et al., 1996). A likely explanation is that polyols increase the
575 surface tension of water leading to preferential hydration of proteins in aqueous media (Kaushik
576 and Bhat, 1998). Protease and lipases could be more stable in 25–50% (v/v) aqueous solutions of
577 ethylene glycol or 1-hexanol than in buffer alone, but not always stable in aqueous alcohols such
578 as methanol, ethanol, isopropanol, 1-butanol, and *tert*-butanol (Ogino et al., 2000; Ogino et al.,
579 1999; Shimada et al., 1993).

580 However, some alcohols and ethers at (nearly) dried state are highly compatible with
581 enzymes. *tert*-Butanol could afford high enzyme activities in many enzymatic processes, such as
582 peptide preparation catalyzed by immobilized papain (Theppakorn et al., 2004), and lipase-
583 catalyzed transesterification and ammoniolysis reactions (Degn et al., 1999; Madeira Lau et al.,
584 2004; Madeira Lau et al., 2000; Royon et al., 2007; Toral et al., 2007; van Rantwijk et al., 2006;
585 Zhang et al., 2011). When carrying out the Novozym 435-catalyzed transesterification
586 between ethyl sorbate and 1-propanol, the Zhao group (Zhao et al., 2019b) observed that the
587 lipase (CALB) was more active in *tert*-butanol than in several ILs including the ether-
588 functionalized type. Compared with primary alcohols (such as 1-butanol), *tert*-butanol is less
589 inhibitory to the enzyme, and less reactive as a substrate (Madeira Lau et al., 2000). MD
590 simulations of CALB suggest a high similarity of CALB structures in *tert*-butanol and in
591 three-site model (TIP3P) water; high compatibility of CALB in *tert*-butanol is due to several
592 reasons (Park et al., 2013) such as high protein flexibility in *tert*-butanol, well-maintained

593 substrate's entrance size and enzyme's binding pocket size, and preservation of hydrogen-
594 bonding of Ser105 with His 224 [Ser105–His224–Asp187 is known as the 'catalytic triad' in
595 the active site of CALB (Uppenberg et al., 1994; Uppenberg et al., 1995)]. Some ethers are also
596 highly compatible with enzymes in nonaqueous biocatalysis. Diisopropyl ether has enabled high
597 transesterification activities when catalyzed by lipases (Itoh et al., 2001; Itoh et al., 2004; Itoh et
598 al., 2006; Itoh et al., 2003; van Tol et al., 1995) or α -chymotrypsin (Reslow et al., 1987a). Other
599 ethers (such as 2,2-dimethoxypropane and 2-ethoxyethyl ether) led to high conversions in
600 enzymatic acylation of 6-aminopenicillanic acid and D-phenylglycine amide catalyzed by cross-
601 linked enzyme aggregates (CLEAs) of Penicillin G acylase (Cao et al., 2001).

602 Ou et al. (Ou et al., 2011a) suggested that enzyme-compatible and enzyme-soluble
603 solvents should have high dielectric constants (ε_r) and high electron pair donating and accepting
604 ability just like water ($\varepsilon_r = 78.30$). Following this rationale, they selected glycerol carbonate ($\varepsilon_r =$
605 82.66) as enzyme-soluble solvent for the transesterification of ethyl butyrate and 1-butanol at
606 40 °C catalyzed by CALB and *Candida rugosa* lipase (CRL) respectively. Glycerol carbonate
607 enabled a much higher ethyl butyrate conversion than acetonitrile and DMF; although
608 comparable conversions were reported in glycerol carbonate and water, the substrate conversion
609 reported in water by this group probably referred to enzymatic hydrolysis of ethyl butyrate
610 instead of transesterification. This group (Ou et al., 2012) further conducted the same enzymatic
611 transesterification reaction in glycerol carbonate or *N*-hydroxymethyl formamide catalyzed by
612 CALB and *Pseudomonas cepacia* lipase respectively, and observed comparable initial rates
613 (based on ethyl butyrate conversion) as that in water. It is important to point out that the substrate
614 conversion includes both enzymatic transesterification and hydrolysis, and does not truly reflect
615 the transesterification activity. Especially in water, the hydrolysis is expected to predominate

616 over transesterification [although in the presence of surfactant, enzymatic esterification could
617 proceed in aqueous solutions containing miniemulsions (Aschenbrenner et al., 2009)].

618 **6. Lessons Learned from Enzyme Behaviors in Organic Solvents**

619 Despite some exceptions (Fitzpatrick and Klibanov, 1991; Narayan and Klibanov, 1993), many
620 enzymatic reactions in nonaqueous media tend to follow the ‘bell-shape’ rule of thumb: the
621 enzyme activity and stability increase with the solvent hydrophobicity (i.e. enzymes tend to be
622 more active and stable in hydrophobic solvents than in hydrophilic ones), but may begin to
623 decline when the solvent is too hydrophobic. Very hydrophobic solvents may cause strong
624 substrate solvation and substrate’s ground-state stabilization with up to four orders of magnitude
625 in catalytic efficiency reduction (Kim et al., 2000; Ryu and Dordick, 1992).

626 Although enzymes and their various preparations insoluble in nonaqueous media are
627 advantageous to the recycle and reuse of biocatalysts and to product separation, their suspension
628 in reaction mixture as a heterogeneous system causes the limitation of substrate mass transfer
629 and depression of enzyme activity (Burke et al., 1992; Klibanov, 1997). Efforts have been put
630 forward to solubilize enzymes in nonaqueous environments. Some molecular and ionic organic
631 solvents are capable of dissolving enzymes. Hen egg-white lysozyme could be dissolved at >10
632 mg/mL solubility in polar, protic, and hydrophilic organic solvents (such as alcohols including
633 glycerol, amides and DMSO), and more than 50 mg/mL in diols (e.g., ethylene glycol and 1,3-
634 propanediol) as demonstrated by the Klibanov group (Chin et al., 1994). The protein solubility
635 shows weak correlations with dielectric constants or Hildebrand solubility parameters of organic
636 solvents. The same group (Rariy and Klibanov, 1999) reported that the addition of 1.0 M salts
637 like LiCl into 60% (v/v) protein-dissolving diols could considerably (up to >100 times) improve
638 the folding of unfolded hen egg-white lysozyme. The underlying cause is that salts increase the

639 protein solubility and thus suppress nonspecific protein aggregation during refolding.

640 Hydrophilic ILs with hydrogen-bonding basic anions (e.g., NO_3^- , lactate, EtSO_4^- , and CH_3COO^- ,
641 etc.) could dissolve enzymes [while other hydrophilic ILs carrying anions like BF_4^- do not
642 dissolve enzymes (Madeira Lau et al., 2004)], but these ionic solvents strongly interact with the
643 protein (mainly through hydrogen-bonding) causing enzyme deactivation (Bermejo et al., 2008;
644 de los Ríos et al., 2007; Madeira Lau et al., 2004; Toral et al., 2007; Turner et al., 2003; Zhao et
645 al., 2008; Zhao et al., 2009a). On the other hand, several IL systems are capable of dissolving
646 enzymes and maintaining their activities. Cholinium dihydrogen phosphate ($[\text{Ch}][\text{H}_2\text{PO}_4]$, m.p.
647 119°C) containing 20% (wt) water could dissolve and stabilize cytochrome *c* (Fujita et al., 2006;
648 Fujita et al., 2005; Fujita et al., 2007). This same group (Fujita and Ohno, 2010) further pointed
649 out that $[\text{Ch}][\text{H}_2\text{PO}_4]$ (with 30 wt% water) was able to dissolve various metallo proteins
650 (cytochrome *c*, peroxidase, ascorbate oxidase, azurin, pseudoazurin, and D-fructose
651 dehydrogenase) and also maintained their active sites and secondary structures, leading to the
652 findings that some proteins retained their activities and D-fructose dehydrogenase exhibited
653 much improved thermal stability. Bisht et al. (Bisht et al., 2017) found aqueous cholinium
654 glutarate ($[\text{Ch}][\text{Glu}]:\text{H}_2\text{O}$, 1:1 mass ratio) lead to over 50-time increase in peroxidase activity of
655 cytochrome *c* than buffer, and aqueous $[\text{Ch}][\text{H}_2\text{PO}_4]$ (salt: H_2O , 1:2 mass ratio) led over 25-fold
656 increase in enzyme activity. They further indicated that aqueous cholinium dicarboxylates could
657 also improve the stability of cytochrome *c* in terms of offsetting denaturing factors such as H_2O_2 ,
658 guanidinium chloride, pH, and temperature, and thus increasing the long-term storage of
659 cytochrome *c* at room temperature (for 21 weeks). Another study (Zhang et al., 2018) suggested
660 that aqueous 20% cholinium L-glutamate could improve the reaction yield by 3.5 times for multi-
661 dehydrogenase-catalyzed conversion of carbon dioxide to methanol. MD simulations hint that

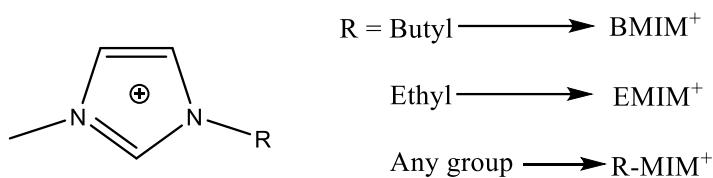
662 the presence of cholinium L-glutamate enables the conformation of formate dehydrogenase to
663 keep carbon dioxide near its active site for a longer time. The Santos-Ebinuma group
664 (Nascimento et al., 2019) examined the hydrolytic activity of *Aspergillus niger* lipase in aqueous
665 solutions (0.05–1.00 M) of several cholinium carboxylates, and observed that the lipase activity
666 was preserved or improved at low IL concentrations (< 0.1 M) while at >0.1M concentrations,
667 anions with longer alkyl chains such as cholinium pentanoate and cholinium hexanoate induced
668 complete enzyme inhibition. Interestingly, the lipase maintained its activity well at all
669 concentrations of cholinium acetate even after 24 h incubation in ionic solutions at 35 °C.
670 Triethylmethylammonium methyl sulfate ($[\text{Et}_3\text{MeN}][\text{MeSO}_4]$) could solubilize >1.2 mg/mL
671 *Candida antarctica* lipase B (CALB) and maintain its catalytic capability (Madeira Lau et al.,
672 2004; van Rantwijk et al., 2006). The Zhao group (Zhao et al., 2008; Zhao et al., 2009c)
673 synthesized several medium-ether-chained ILs carrying acetate anions, and found that these ionic
674 media could dissolve >5 mg/mL CALB (at 50 °C) but still maintained reasonable lipase activity
675 (see detailed discussion in Section 7). The Bruce group (Falcioni et al., 2010) examined protic
676 hydroxyalkylammonium-based ILs (containing ~1–2 wt% water) for dissolving proteases (i.e.
677 chymotrypsin and subtilisin), and noted that subtilisin maintained its activity in
678 diethanolammonium chloride while chymotrypsin was inactive in these protic ILs. Furthermore,
679 they employed far and near UV CD spectra to confirm the preservation of secondary and tertiary
680 structures of subtilisin in diethanolammonium chloride. In addition to the manipulation of
681 solvent systems to dissolve enzymes, the modification of enzymes is an alternative route to
682 solubilize them in nonaqueous media, which includes many well-established methods such as
683 PEG modification (Inada et al., 1995; Inada et al., 1986a; Maruyama et al., 2004; Nakashima et
684 al., 2005; Woodward and Kaufman, 1996), graft polymerization to poly(*N*-vinylpyrrolidone),

685 polystyrene or poly (methyl methacrylate) (Ito et al., 1994), and complexing/ion-pairing enzymes
686 with amphiphile/surfactant (Akbar et al., 2007; Meyer et al., 1996; Okahata and Ijiro, 1988;
687 Paradkar and Dordick, 1994; Wangikar et al., 1997). Drastically improved enzyme activities (i.e.
688 an increase by several orders of magnitude) have not been seen for most homogeneous
689 biocatalytic processes, therefore, future endeavors should enable a better solubilization and
690 activation of enzymes.

691 Another two future major efforts in nonaqueous biocatalysis include engineering
692 enzymes to become more tolerant to organic solvent and ILs, and engineering solvents to provide
693 “water-like” environments for enzymes to maintain their high dynamics and flexibility. As
694 pointed out by the Reinhoudt group (van Unen et al., 2001), unlike in aqueous media, charge
695 separation in nonpolar media becomes undesirable process. During enzymatic reactions, anionic
696 tetrahedral intermediates (such as acyl-enzyme intermediates formed in lipase- or protease-
697 catalyzed transesterifications) are less likely to be stabilized by organic solvents (especially
698 nonpolar solvents; but polar solvents may strip water off enzyme molecules) than by water,
699 which causes the intermediate formation to be a rate-limiting step and a dramatic decrease of
700 enzyme activity in nonaqueous media. Very often, the tetrahedral intermediate is formed for the
701 second time during the reaction, such as the nucleophilic attack of acyl-enzyme intermediate by
702 an alcohol during the transesterification; one of these intermediate formations becomes the
703 reaction bottleneck. Typically, the addition of water into organic media can stabilize the
704 transition state and improve catalytic efficiency. Therefore, it is crucial to design ‘task-specific’
705 solvents (such as functionalized-ILs) that can interact with the transition state favorably.

706

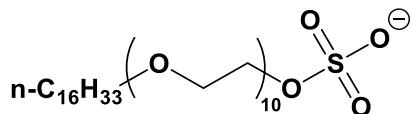
Table 2 Representative biocatalytic reactions in enzyme-compatible ILs

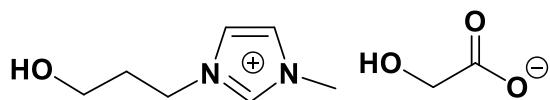

Enzyme	IL	Reaction/Outcome	Ref.
cytochrome <i>c</i>	Aqueous [Ch][Glu] (50 wt%), Aqueous [Ch][H ₂ PO ₄] (33 wt%)	Peroxidase activity measured by using ABTS ¹ as a substrate in the presence of H ₂ O ₂ . Enzyme activity increased by 25–50 times.	(Bisht et al., 2017)
CALB ²	[CH ₃ OCH ₂ CH ₂ -MIM][BF ₄]	Acylation of D-glucose with vinyl acetate. A faster reaction (99% conversion) than in non-functionalized ILs and a high regioselectivity (93% monoacetylation). Transesterifications of secondary alcohols (e.g. 1-phenylethanol) and vinyl acetate. Enhanced enantioselectivity and/or improved reaction rate.	(Park and Kazlauskas, 2001)
<i>Pseudomonas cepacia</i> lipase	Imidazolium cations paired with polyoxyethylene(10) cetyl sulfate anion (Figure 7) as additives or lipase-coating-agents		(Itoh et al., 2004; Itoh et al., 2006)
morphine dehydrogenase	Both cation and anion functionalized by hydroxy groups (Figure 8)	Oxidize of codeine to codeinone. Dissolving morphine dehydrogenase and its cofactor nicotinamide, and a high enzymatic activity.	(Walker and Bruce, 2004a, b)
CALB	Ammoeng type of ILs (Figure 9)	Enzymatic glycerolysis reactions. High lipase activities in Ammoeng 100 and 102.	(Guo et al., 2006; Guo and Xu, 2006)
CALA, ³ CALB	[CPMA][MeSO ₄]	Transesterification of vinyl esters with alcohols. Higher lipase activities than in hexane and other ILs.	(De Diego et al., 2009)
alcohol dehydrogenase	[(HOCH ₂ CH ₂) ₃ MeN][MeSO ₄]	Reduction of ketones. Maintain high activity in up to 90% (v/v) IL.	(de Gonzalo et al., 2007)
horseradish peroxidase	[(HOCH ₂ CH ₂) ₄ N][CF ₃ SO ₃]	Oxidation of guaiacol with H ₂ O ₂ . 10-Fold more active than in methanol and 30–240 times more active than in conventional ILs.	(Das et al., 2007)
feruloyl esterase	[HOCH ₂ CH ₂ -MIM][PF ₆], [CH ₃ (OCH ₂ CH ₂) ₂ -MIM][PF ₆]	Esterification of glycerol with sinapic acid. Conversion yields up to 72.5% and 76.7% (respectively).	(Vafiadi et al., 2009)
lipase PS from <i>Burkholderia cepacia</i>	[CH ₃ OCH ₂ CH ₂ -Bu ₃ P][Tf ₂ N]	Transesterification of (<i>E</i>)-4-phenylbut-3-en-2-ol or 1-phenylethanol with vinyl acetate. Higher activity than in diisopropyl ether.	(Abe et al., 2008)
CALB	[CH ₃ (OCH ₂ CH ₂) _n -Et-Im][OAc],	Transesterification of ethyl butyrate and 1-butanol.	(Zhao et al., 2009c)

	$[\text{CH}_3(\text{OCH}_2\text{CH}_2)_n\text{-Et}_3\text{N}][\text{OAc}]$ ($n = 2, 3, \text{ or } 7$)	High activities that are comparable to <i>tert</i> -butanol.	
CALB and other lipases	$[\text{CH}_3(\text{OCH}_2\text{CH}_2)_3\text{-Et-Im}][\text{OAc}]$, $[\text{CH}_3(\text{OCH}_2\text{CH}_2)_3\text{-Et}_3\text{N}][\text{OAc}]$	Transesterification of Miglyol oil with methanol. Dissolving Miglyol oil and enabling high conversions.	(Zhao et al., 2010c)
proteases (subtilisin and α -chymotrypsin)	$[\text{CH}_3(\text{OCH}_2\text{CH}_2)_3\text{-Et-Im}][\text{Tf}_2\text{N}]$, $[\text{CH}_3(\text{OCH}_2\text{CH}_2)_3\text{-Et}_3\text{N}][\text{Tf}_2\text{N}]$	Transesterification of <i>N</i> -acetyl-L-phenylalanine ethyl ester with 1-propanol. High synthetic activity (1–3 $\mu\text{mol}/\text{min g}$) and selectivity (97–99%).	(Zhao et al., 2010b)
CALB	$[\text{EtOCH}_2\text{CH}_2\text{CH}_2\text{-MIM}][\text{Tf}_2\text{N}]$, $[\text{EtOCH}_2\text{CH}_2\text{CH}_2\text{-BIM}][\text{Tf}_2\text{N}]$, $[\text{EtOCH}_2\text{CH}_2\text{CH}_2\text{-MMIM}][\text{Tf}_2\text{N}]$	Enantioselective transesterification of <i>rac</i> -1-phenylethanol and vinyl acetate. Enantioselectivity higher than 99% and 50% conversion.	(Zhou et al., 2011)
CALB and <i>Pseudomonas cepacia</i> lipase	Imidazolium- and ammonium- ILs containing hydroxy groups on both cations and anions (Figure 12)	Transesterification of ethyl butyrate and 1-butanol. High lipase activities.	(Ou et al., 2016)
CALB	Mono-ether-functionalized phosphonium, imidazolium, pyridinium, alkylammonium, piperidinium, and sulfonium (Figure 13)	Transesterification of ethyl sorbate with 1-propanol; enzymatic ring-opening polymerization (ROP) of L-lactide and ϵ -caprolactone. High lipase activities, producing polyesters with high molecular mass ($M_w \sim 20\text{--}25 \text{ kDa}$) and moderate yields (30–65%).	(Zhao et al., 2018; Zhao et al., 2019b)
CALB	Dual-functionalized imidazolium-based ILs incorporating both <i>tert</i> -alcohol and ether groups (e.g. ILs 10–12 in Figure 14)	Transesterification of ethyl sorbate with 1-propanol. Up to 40–100% higher than activities in <i>tert</i> -butanol and diisopropyl ether.	(Zhao et al., 2019a)
CALB	dual-functionalized ammonium-based IL (ILs 13–15 in Figure 14)	Transesterification of ethyl sorbate with 1-propanol; enzymatic ROP of ϵ -caprolactone. Lipase activity 1.5-fold higher than that in <i>tert</i> -butanol, and slightly higher than that in diisopropyl ether. Producing polyesters with high molecular mass M_w (up to 18,000 Da) and high yields (up to 74%).	(Zhao and Toe, 2020)

708 **Note:** ¹ABTS = 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); ²CALB = *Candida antarctica* lipase B; ³CALA = *Candida antarctica* lipase A.

710 **7. Designing Enzyme-Compatible Functionalized Ionic Liquids**


711 As discussed earlier, some solvents containing alcohol and ether groups can lead to high enzyme
712 activity and stability possibly due to the favorable hydrogen-bond donating and accepting
713 environment created by these functional groups. Therefore, many studies have incorporated
714 hydroxy- and/or ether-functionality into their IL structures to yield enzyme-compatible ILs.
715 Representative examples are summarized in Table 2 and discussed in detail below.


717 **Figure 6** Structure of imidazolium (IM) cations.

718 The Kazlauskas (Park and Kazlauskas, 2001) dissolved ~5 mg/mL D-glucose in an ether-
719 functionalized IL [CH₃OCH₂CH₂-MIM][BF₄] (see general illustration of imidazolium cations in
720 Figure 6) at 55 °C, followed by CALB-catalyzed acylation of D-glucose with vinyl acetate
721 resulting in a faster reaction (99% conversion) than those in non-functionalized imidazolium and
722 pyridinium ILs accompanying with a high regioselectivity (93% monoacetylation). Similarly, Kim
723 et al. (Kim et al., 2003) performed *Candida rugosa* lipase-promoted acylation of monoprotected
724 glycosides with vinyl acetate, achieving faster and more selective reactions in ILs ([BMIM][PF₆]
725 and [CH₃OCH₂CH₂-MIM][PF₆], see the illustration of cations in Figure 6) than in organic
726 solvents (THF and chloroform). Possible reasons are high substrate dissolution in ILs and more
727 favorable structural adaptation of lipase in polar ILs. Instead of typical cation functionalization,
728 Itoh and co-workers (Itoh et al., 2004; Itoh et al., 2006) paired polyoxyethylene(10) cetyl sulfate
729 anion (Figure 7) with imidazolium cations to form new ILs, which served as additives or lipase-
730 coating-agents in lipase-catalyzed transesterifications of secondary alcohols (e.g. 1-

phenylethanol) and vinyl acetate in diisopropyl ether or hexane. This group reported that both methods using functionalized ILs enhanced the enantioselectivity whereas the lipase-coating method further improved the reaction rate. For IL-coated lipase PS, the binding of 1-butyl-2,3-dimethylimidazolium poly[oxyethylene(10)] cetyl sulfate with the protein was confirmed by MALDI-TOF mass spectrometry (Itoh et al., 2006). The Stephens group (Rehmann et al., 2012) observed that laccase was active in aqueous 20% (v/v) water-miscible ILs containing alkyl sulfate anions with long alkyl chains or alkoxy chains, and also in 20% (v/v) hydrophobic ILs with anions of Tf_2N^- , AOT^- (= 1,4-bis(2-ethylhexyl)sulfosuccinate), or PF_6^- . They further pointed out that water-immiscibility is not always associated with high enzyme activity; for instance, laccase was not active in 20% (v/v) $[\text{C}_{10}\text{MIM}][\text{SCN}]$ and $[\text{C}_{10}\text{MIM}][\text{saccharin}]$. Walker and Bruce (Walker and Bruce, 2004a, b) synthesized a hydrophilic IL with both cation and anion functionalized by hydroxy groups, 1-(3-hydroxypropyl)-3-methylimidazolium glycolate (Figure 8). The dual-functionalized IL could solubilize morphine dehydrogenase and its cofactor nicotinamide, and enabled a high enzymatic activity for oxidizing codeine to codeinone.

Figure 7 Structure of polyoxyethylene(10) cetyl sulfate.

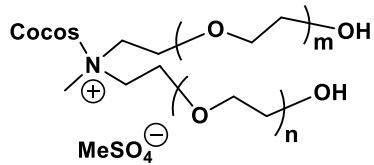
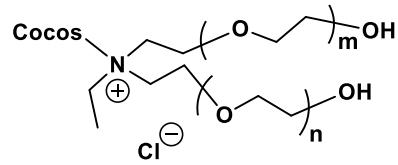
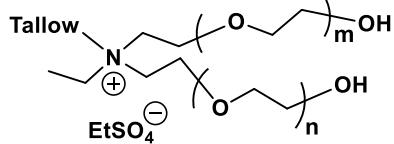


Figure 8 Structure of 1-(3-hydroxypropyl)-3-methylimidazolium glycolate.

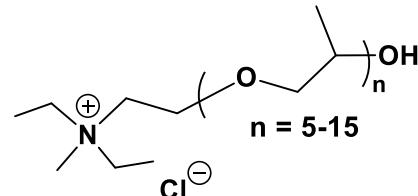
Figure 9 illustrates a group of Ammoeng type of ILs, which are ionic mixtures carrying multiple alkoxy and/or hydroxy groups. These ionic solvents resemble polyglycols, having both hydrophilic and hydrophobic properties. The Xu group (Chen et al., 2008; Guo et al., 2006; Guo


752 et al., 2009; Guo and Xu, 2005, 2006; Kahveci et al., 2009) systematically evaluated enzymatic
753 glycerolysis performed in these tetraammonium-based ILs, and reported that both Ammoeng 100
754 (also known as [CPMA][MeSO₄], CPMA = cocosalkyl pentaethoxy methylammonium
755 methylsulfate) and Ammoeng 102 could solubilize triglycerides and enabled high lipase
756 activities in glycerolysis reaction (Guo et al., 2006; Guo and Xu, 2006). Another IL
757 [TOMA][Tf₂N] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) along with its
758 mixture with Ammoeng 102 were also found suitable solvents for enzymatic glycerolysis (Guo
759 et al., 2009; Kahveci et al., 2009, 2010). De Diego et al. (De Diego et al., 2009) obtained high
760 CALB transesterification activities in [CPMA][MeSO₄] although two other lipases from
761 *Thermomyces lanuginosus* (TLL) and *Rhizomuncor miehei* (RML) exhibited lower activities in
762 [CPMA][MeSO₄] than in ILs carrying PF₆⁻ and BF₄⁻ anions. The Kroutil group (de Gonzalo et
763 al., 2007) reported that hydroxy-functionalized ILs at 50–90% (v/v) concentrations allowed
764 higher alcohol dehydrogenase activities than non-functionalized ILs, and established a
765 decreasing trend of enzyme activity with the type of ILs as [(HOCH₂CH₂)₃MeN][MeSO₄] >
766 Ammoeng 101 > Ammoeng 100 > Ammoeng 102. Dreyer and Kragl (Dreyer and Kragl, 2008)
767 formed aqueous two-phase (ATP) using Ammoeng 110 (Figure 9) to purify two different alcohol
768 dehydrogenases, and observed this ionic solvent was able to stabilize enzymes and increase the
769 solubility of hydrophobic substrates. Wallert et al. (Wallert et al., 2005) deployed ether-
770 /hydroxy-functionalized ILs (e.g. Ammoeng 100, 101 and 112, and [HOCH₂CH₂-MIM]Cl) as
771 additives (1%) in pig liver esterase (PLE)-catalyzed enantioselective hydrolysis of diester
772 malonates in 10% aqueous isopropanol, and achieved higher enzyme activities (up to 4-fold
773 increase) and enantioselectivities (up to 97% ee).

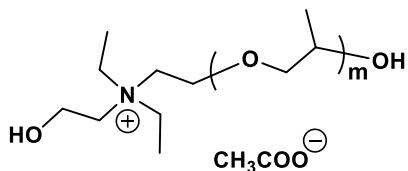
774


(a) Ammoeng 100

Cocos = C_{14} alkyl group; $m + n = 4-14$

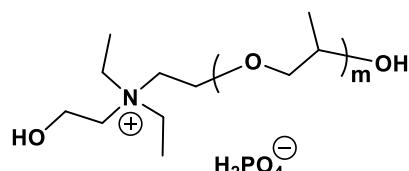

(b) Ammoeng 101

$m + n = 14-25$

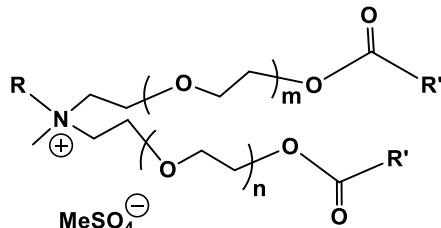


(c) Ammoeng 102

Tallow = C_{18} acyl group; $m + n = 14-25$



(d) Ammoeng 110

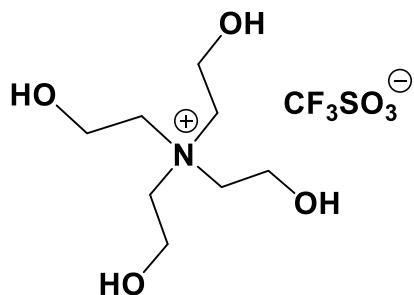

(e) Ammoeng 111

$m = 50-60$

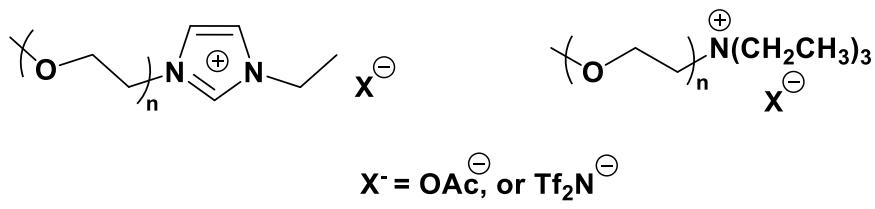
(f) Ammoeng 112

$m = 50-60$

(g) Ammoeng 120


$\text{R, R}' = \text{C}_{18}$ acyl group; m, n , unavailable

775

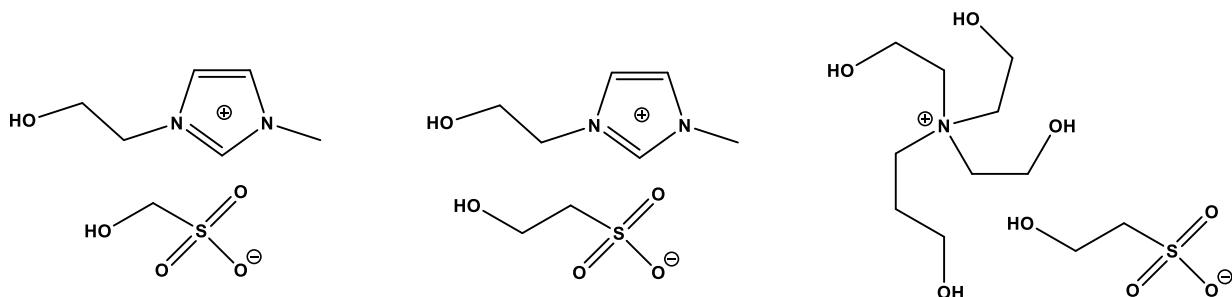

776 **Figure 9** Structures of functionalized ammonium-based ILs (Ammoeng series).

777 Tris(hydroxymethyl)aminomethane (Tris) is a common component of buffer solutions
 778 (pH usually in the range of 7–9). Tris was also used as an excipient to provide lyoprotectant
 779 effect for horseradish peroxidase during lyophilization (Dai and Klibanov, 1999). Based on the
 780 Tris structure, Das et al (Das et al., 2007) synthesized tetrakis(2-hydroxyethyl)ammonium

trifluoromethanesulfonate ($[(\text{HOCH}_2\text{CH}_2)_4\text{N}][\text{CF}_3\text{SO}_3]$, Figure 10), and discovered that horseradish peroxidase in this new ionic solvent was 10-fold more active than in methanol and 30–240 times more active than in non-functionalized ILs. Vafiadi et al. (Vafiadi et al., 2009) carried out feruloyl esterase-catalyzed esterification of glycerol with sinapic acid in two functionalized ILs $[\text{HOCH}_2\text{CH}_2\text{-MIM}][\text{PF}_6]$ and $[\text{CH}_3(\text{OCH}_2\text{CH}_2)_2\text{-MIM}][\text{PF}_6]$, achieving conversion yields up to 72.5% and 76.7% (respectively) under optimum conditions. Itoh and co-workers (Abe et al., 2008) prepared an ether-functionalized IL known as $[\text{CH}_3\text{OCH}_2\text{CH}_2\text{-Bu}_3\text{P}][\text{Tf}_2\text{N}]$, and conducted lipase PS-catalyzed transesterification of secondary alcohols in this new medium resulting in a faster reaction rate in diisopropyl ether.

791 **Figure 10** Structure of tetrakis(2-hydroxyethyl)ammonium trifluoromethanesulfonate.

793 **Figure 11** Ether-functionalized imidazolium (IM) and ammonium ILs ($[\text{CH}_3(\text{OCH}_2\text{CH}_2)_n\text{-Et-IM}]\text{X}$ and $[\text{CH}_3(\text{OCH}_2\text{CH}_2)_n\text{-Et}_3\text{N}]\text{X}$, respectively) ($n = 1, 2, 3, \dots$).


795 The Zhao group (Zhao et al., 2010a; Zhao et al., 2008; Zhao et al., 2009c; Zhao and Song, 2010; Zhao et al., 2010c) synthesized a series of glycol-functionalized imidazolium and 796 alkylammonium-based ILs carrying acetate anions (Figure 11), and found these 797 ionic solvents could dissolve a variety of ‘unusual’ substrates such as cellulose, xylan, lignin, D-glucose, 3,4- 798

799 dihydroxy-DL-phenylalanine (DOPA), betulinic acid, and Miglyol oil (a mixture of triglycerides
800 of caprylic acid and capric acid). The high dissolution power is mainly attributed to high
801 hydrogen-bond basicity of anions (e.g. acetate and formate) of these ILs, but this is also the
802 reason that causes enzyme inactivation. However, with a longer glycol chain grafted to ILs, the
803 molar concentration of denaturing anions is reduced; therefore, the deactivating effect of these
804 ILs is minimized (Zhao et al., 2009c). This concept was also demonstrated by another study
805 (Lourenço et al., 2007) where Novozym 435 showed little activity in denaturing [BMIM][dca]
806 (dca⁻ = dicyanamide), but a relatively high activity and enantioselectivity in [aliq][dca] [aliq⁺ =
807 trioctylmethylammonium (Aliquat 336[®] is a mixture of C₈ and C₁₀ chains with C₈
808 predominating)]. Due to the bulky size and high molar mass of aliq⁺ (verse BMIM⁺), the molar
809 concentration of denaturing dca⁻ in [aliq][dca] is much lower than in [BMIM][dca]. As a result,
810 synthetic activities of free and immobilized CALB in most acetate- and formate-based ILs are
811 higher than or comparable with those in *tert*-butanol and [BMIM][Tf₂N] as determined by the
812 transesterification of ethyl butyrate and 1-butanol. Due to their strong dissolution ability toward
813 D-glucose and cellulose, these ILs were also successful for achieving the regioselective
814 transesterification of these substrates catalyzed by Novozym 435 (Zhao et al., 2008). Enzymatic
815 transesterification of Miglyol oil with methanol was conducted in these ILs to prepare biodiesel,
816 resulting in up to 70% triglyceride conversion in 1 h and 85% conversion in 48 h (Zhao et al.,
817 2010c). Additionally, since these ILs could dissolve a significant portion of lignocelluloses, these
818 solvents were employed to effectively pretreat biomass prior to their enzymatic saccharification
819 (Tang et al., 2012a; Zhao et al., 2010a; Zhao et al., 2009b). Proteases are not active in these
820 acetate- or formate-based ILs, thus the Zhao group (Zhao et al., 2010b) synthesized the
821 hydrophobic version of ionic solvents carrying Tf₂N⁻ anions (e.g. [CH₃(OCH₂CH₂)₃-Et₃N][Tf₂N],

822 [CH₃(OCH₂CH₂)₃-Et-IM][Tf₂N] and [CH₃(OCH₂CH₂)₃-Me-Et-IM][Tf₂N] in Figure 11) and
823 found that immobilized subtilisin and α -chymotrypsin showed high synthetic activities (1–3
824 $\mu\text{mol min}^{-1} \text{ g}^{-1}$) and selectivity (97–99%, transesterification *verse* hydrolysis) in these
825 hydrophobic ILs containing 10–15% (v/v) water for the transesterification of *N*-acetyl-L-
826 phenylalanine ethyl ester with 1-propanol. The same enzymatic reaction in *tert*-butanol or
827 [BMIM][Tf₂N] displayed low synthetic activities (0.2–1 $\mu\text{mol min}^{-1} \text{ g}^{-1}$ in *tert*-butanol) and/or
828 poor selectivity (40%) when the water content was higher than 2% (v/v). These hydrophobic
829 glycol-functionalized ILs also showed comparable or higher activities than [BMIM][Tf₂N] and
830 *tert*-butanol in Novozym 435-catalyzed transesterification of ethyl sorbate and 1-propanol (Zhao
831 et al., 2011).

832 Zhou and co-workers (Zhou et al., 2011) prepared six monoether-functionalized
833 imidazolium ILs containing Tf₂N[–] or PF₆[–] anions, and attained higher enantioselectivities (95–99%
834 *ee*) in some functionalized ILs than in diisopropyl ether or non-functionalized ILs ([BMIM][BF₄]
835 and [BMIM][PF₆]) during lipase-catalyzed kinetic resolution of secondary alcohols. It was
836 argued that ether groups could adjust the hydrophilic environment of media and interact
837 favorably with the enzyme and/or substrates. Ståhlberg et al. (Ståhlberg et al., 2012) conducted
838 enzymatic isomerization of glucose to fructose and reported high glucose isomerase activity in
839 *N,N*-dibutylethanolammonium octanoate with 20 wt% water, but no activity in other ILs
840 carrying smaller/denaturing alkanoate anions (e.g. formate, acetate, and propionate). Vila-Real et
841 al. (Vila-Real et al., 2011) prepared sol-gel immobilization of α -L-rhamnosidase and β -D-
842 glucosidase expressed by naringinase using ILs as additives, and observed that a more
843 hydrophobic IL additive led to a higher α -rhamnosidase efficiency; the inclusion of
844 [OMIM][Tf₂N] and [(HOCH₂CH₂)-MIM][PF₆] in sol-gel matrices could minimize enzyme

845 deactivation in TMOS/Glycerol matrices (TMOS = tetramethoxysilane). Ou et al. (Ou et al.,
 846 2011b) detected no transesterification activity for CALB in denaturing [BMIM][NO₃], but some
 847 activities in hydroxy-functionalized ILs (e.g. [HOCH₂CH₂-MIM][NO₃] and [HOCH₂CH₂-
 848 MIM][BF₄], especially in the latter IL) and these activities were further enhanced by 2–5 times
 849 by adding ‘IL buffer’ ([BMIM][H₂PO₄]). The preservation of native compact structure of CALB
 850 in hydroxy-functionalized ILs was confirmed by fluorescence spectra. The same group (Ou et al.,
 851 2016) suggested that enzyme-compatible ILs should behave like water molecules having high
 852 dielectric constants and both solvent donor and acceptor properties to properly ionize protein’s
 853 ionizable groups so that enzyme molecules can be dissolved and stabilized. Following this
 854 rationale, they designed imidazolium- and ammonium-based ILs containing hydroxy groups on
 855 both cations and anions (Figure 12), and confirmed that these ILs enabled high transesterification
 856 activities for two lipases (CALB and *Pseudomonas cepacia* lipase). One obvious disadvantage of
 857 (multi-)hydroxy-functionalized ILs is their relatively high viscosities due to hydrogen-bonding
 858 (Ou et al., 2016; Tang et al., 2012b). Kundu et al. (Kundu et al., 2018) constructed a surface-
 859 active protic IL, L-proline propyl ester lauryl sulfate ([ProC₃][LS]), for the formation of reverse
 860 micelles along with cyclohexane and water. The encapsulation of bovine serum albumin (BSA)
 861 in these micelles led to a higher content of secondary structures without any buffer than the
 862 native protein in the droplet core with higher hydration.

864 **Figure 12** Structures of hydroxy-grafted imidazolium and ammonium ILs.

865 The Zhao group (Zhao et al., 2018; Zhao et al., 2019b) further expanded monoether-
866 functionalized ILs to a series of glycol-functionalized ILs with various chain lengths grafted to
867 different cations cores (i.e. phosphonium, imidazolium, pyridinium, alkylammonium,
868 piperidinium, and sulfonium; see Figure 13); these glycol-functionalized ILs usually have low
869 dynamic viscosities (33–123 mPa s at 30 °C), and high decomposition temperatures (T_{dec}) in the
870 range of 318–403 °C (except sulfoniums such as IL **9** in Figure 13 with $T_{\text{dec}} = 254$ °C – data not
871 published). In Novozym 435-catalyzed transesterification of ethyl sorbate with 1-propanol at
872 50 °C (0.02 wt% water in all solvents), $[\text{CH}_3\text{OCH}_2\text{CH}_2\text{-Et}_3\text{N}][\text{Tf}_2\text{N}]$ (**7**) and $[\text{CH}_3\text{OCH}_2\text{CH}_2\text{-}$
873 $\text{Py}][\text{Tf}_2\text{N}]$ (**6**) enabled highest enzyme activities (6.57 and 6.08 $\mu\text{mol min}^{-1} \text{g}^{-1}$ CALB,
874 respectively) among all functionalized ILs; these activities are higher than that in $[\text{BMIM}][\text{Tf}_2\text{N}]$
875 (5.12 $\mu\text{mol min}^{-1} \text{g}^{-1}$ CALB) and comparable with that in *tert*-butanol (7.38 $\mu\text{mol min}^{-1} \text{g}^{-1}$
876 CALB); in addition, the thermal stability of Novozym 435 in $[\text{CH}_3\text{OCH}_2\text{CH}_2\text{-Et}_3\text{N}][\text{Tf}_2\text{N}]$ (**7**)
877 was much higher than that in *tert*-butanol at 50 and 70 °C. Furthermore, these glycol-
878 functionalized ionic solvents were used as co-solvents in enzymatic ring-opening polymerization
879 (ROP) of L-lactide (130 °C for 7 days) and ϵ -caprolactone (70 °C for 2 days), producing
880 polyesters with high molecular mass ($M_w \sim 20\text{--}25$ kDa) and moderate yields (30–65%). The Shi
881 group (Yang et al., 2020) prepared several glycol-functionalized ammonium ILs such as
882 $[\text{Me}_2\text{N}(\text{Et})(\text{CH}_2\text{CH}_2\text{O})_2\text{H}][\text{PF}_6]$, which can be mixed with 1,2-dimethoxyethane at the 5:18 (v/v)
883 ratio to form a homogeneous solution under 33 °C and a two-layer system above this temperature.
884 This temperature-sensitive phase system was applied to conduct the enantioselective reduction of
885 ethyl 2-oxo-4-phenylbutyrate to an alcohol catalyzed by baker's yeast at 30 °C, and at the
886 completion of reaction, temperature was raised to form the IL layer and organic layer for easy

887 separation. This unique reaction process improved the product *ee* by 25–30% and yield by 35%
888 compared with the same reduction performed in 1,2-dimethoxyethane.

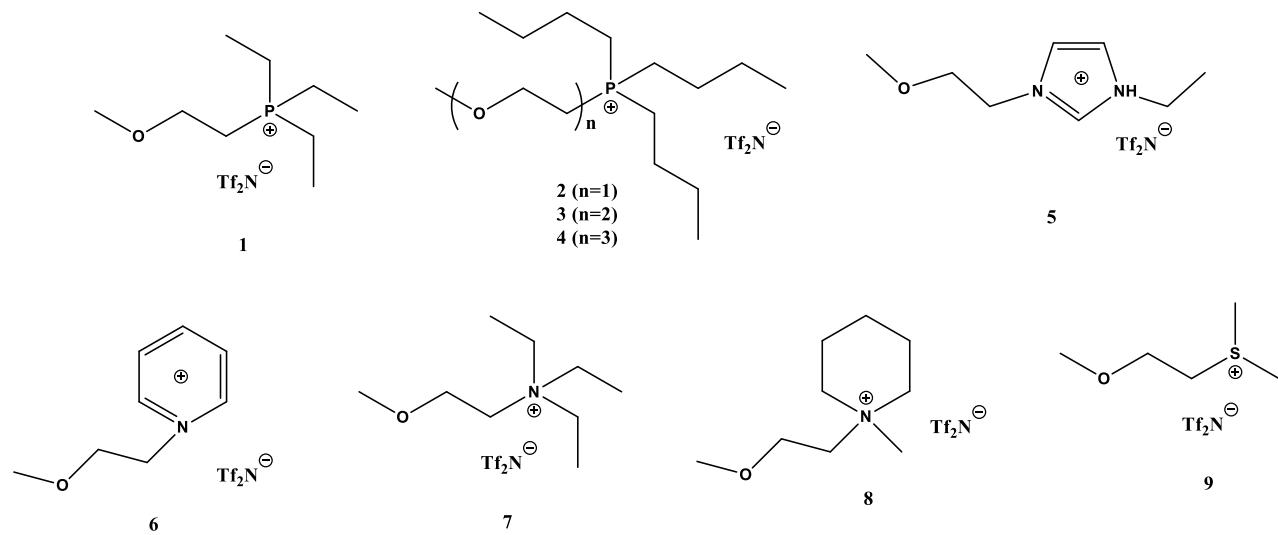
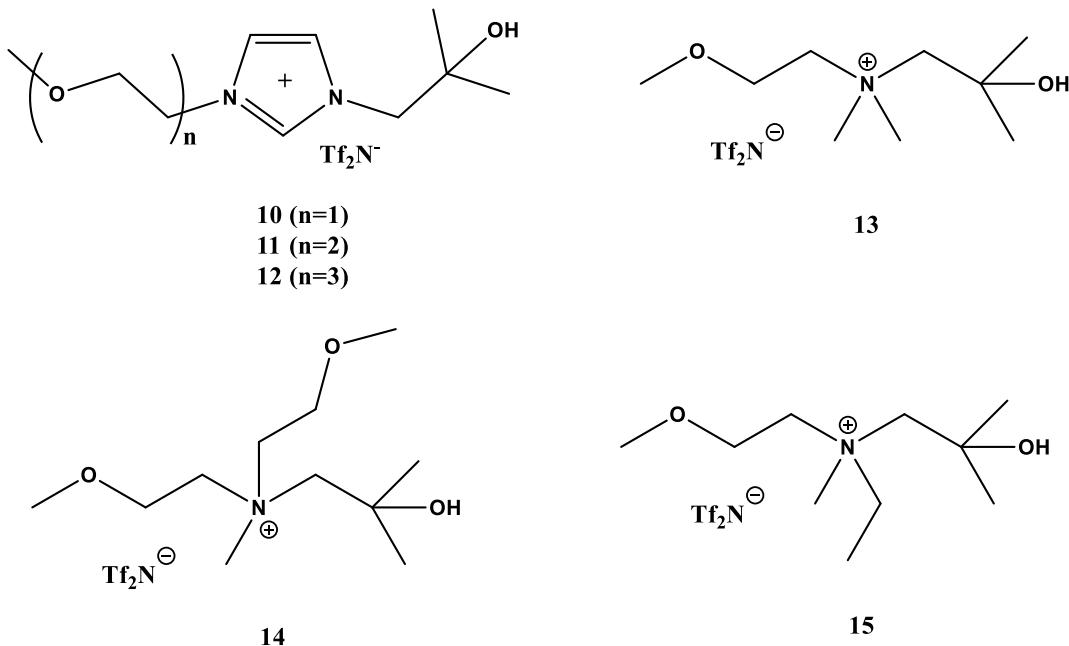



Figure 13 Structures of ether-functionalized ILs.

889 Earlier functionalized ILs are mostly mono-functionalization with either ether or alcohol
890 groups. Ammoeng series of ILs (Figure 9) contain both ether and hydroxy groups, but their
891 drawbacks include ionic mixtures lacking of absolute structure/composition and well-defined
892 properties, high viscosities, and primary or secondary alcohols being potentially reactive. As
893 mentioned earlier, *tert*-alcohols are less inhibitory to enzymes and much less reactive as
894 substrates than primary and secondary alcohols in nonaqueous enzymatic reactions (Madeira Lau
895 et al., 2000; Zaks and Klibanov, 1984). Therefore, the Zhao group (Zhao et al., 2019a) designed
896 dual-functionalized imidazolium-based ILs incorporating both *tert*-alcohol and ether groups (e.g.
897 ILs **10–12** in Figure 14) to resemble the water structure by having both hydrogen-bond donating
898 (-OH) and accepting (R-O-R) properties. As a result, they observed a drastic increase of
899 Novozym 435's transesterification activity in these "water-like" ionic solvents: up to 2–4 times
900 higher than in ordinary ILs such as [BMIM][Tf₂N], and up to 40–100% higher than in *tert*-
901 butanol and diisopropyl ether. The lipase in these dual-functionalized ILs also exhibited much
902 903

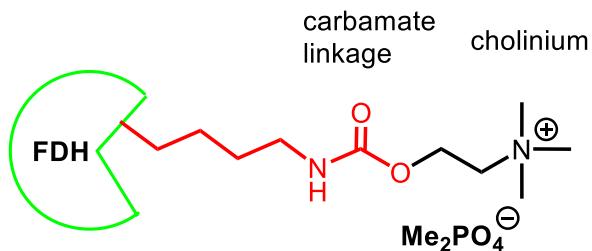
higher thermal stability than in *tert*-butanol, and comparable thermal stability with that in diisopropyl ether. One disadvantage of these imidazolium-ILs is their slightly high dynamic viscosities (~300 mPa s at 30 °C). The same group (Zhao and Toe, 2020) further prepared dual-functionalized ammonium-based IL (**13–15** in Figure 14) with lower viscosities (as low as 129 mPa s at 30 °C), and reported high transesterification activities for Novozym 435 in these new solvents (1.5-fold higher than in *tert*-butanol, and slightly higher than in diisopropyl ether). Enzymatic ROP reactions of ϵ -caprolactone in these “water-like” ILs as co-solvents produced polyesters with high molecular mass M_w (up to 18,000 Da) and high yields (up to 74%).

Figure 14 Structures of “water-like” dual-functionalized imidazolium and ammonium ILs.

In limited cases, functionalized ILs did not perform better than regular ILs. For example, in enantioselective transesterification of 1-phenylethanol and vinyl propionate, Lozano et al. (Lozano et al., 2004) observed a higher selectivity but lower CALB activity and stability in $[\text{HOCH}_2\text{CH}_2\text{CH}_2\text{Me}_3\text{N}][\text{Tf}_2\text{N}]$ than in non-functionalized ammonium ILs. The Goto group grafted an unusual comb-shaped PEG (so called PM_{13}) onto *Candida rugosa* lipase (Nakashima

919 et al., 2006b) and subtilisin Carlsberg (Nakashima et al., 2005, 2006a) to form covalently
920 immobilized PM₁₃-lipase (Nakashima et al., 2006b) and PM₁₃-subtilisin (Nakashima et al.,
921 2006a). These enzyme preparations are soluble in Tf₂N⁻ based ILs with high enzyme activity and
922 stability, and are more active in a more hydrophobic IL ([EMIM][Tf₂N], see Figure 6 for the
923 cation structure) than in functionalized ones ([CH₃OCH₂CH₂-MIM][Tf₂N] and [HOCH₂CH₂-
924 MIM][Tf₂N]).

925 There have been some mechanistic discussions about why oxygenated chains in ILs are
926 enzyme-compatible. The incorporation of hydroxy, ether or nitrile group to the side chain of ILs
927 usually reduced the solvent lipophilicity, and thus lowers the inhibition of acetylcholinesterase
928 (as a broad toxicity screening assay) by ILs (Arning et al., 2008; Ranke et al., 2007; Siopa et al.,
929 2018; Yan et al., 2012). Luo et al. (Luo et al., 2010) reported the formation of stable complexes
930 between imidazolium and pyridinium cations with PEG-800 or PEG-1000 through ion-dipole
931 interaction; literally, cations were wrapped by PEG molecules. Etherated chains in ether-
932 functionalized ILs are known more flexible than rigid alkyl chains (Siqueira and Ribeiro, 2009),
933 and the grafting of ether chain minimizes intermolecular correlation (especially tail-tail
934 segregation) and cation-anion specific interactions (Ganapatibhotla et al., 2010; Smith et al.,
935 2008). For these reasons, ether-functionalized cations preferentially interact with ether chains
936 (intramolecular and/or intermolecular), decreasing the cation-protein interaction. On the other
937 hand, IL cations with long alkyl chains (e.g. P₆₆₆₍₁₄₎⁺) tend to interact with the Leu17 residue of
938 *Burkholderia cepacia* lipase via hydrophobic interactions based on molecular docking study,
939 resulting in lower enzymatic/hydrolytic activities (Barbosa et al., 2019a; Barbosa et al., 2019b).
940 Spectroscopic and computational tools provide valuable insights into interactions between
941 proteins and functionalized ILs. By using fluorescence and CD spectroscopy, Turner et al.


942 (Turner et al., 2005) reported that human serum albumin (HSA) was less denatured by aqueous
943 solutions of hydroxy/ether-functionalized imidazolium ILs than [BMIM]Cl. This is possibly due
944 to some favorable hydrogen-bond interactions between functionalized ILs and HSA. Mann et al.
945 (Mann et al., 2009) determined the thermal stability and refolding patterns of lysozyme in
946 aqueous ILs by near-UV CD, and observed that ethanolammonium formate could stabilize
947 lysozyme against unfolding at high temperature, as well as nearly complete renaturation upon
948 cooling. Additionally, they found that lysozyme in aqueous ethanolammonium formate was six
949 times more active than in aqueous buffer itself. This can be attributed to hydroxy-functionality
950 enabling additional hydrogen-bonding donor/acceptor sites to minimize hydrophobic interactions
951 between IL and the protein. On the other hand, the thermal stability of lysozyme in 2-
952 methoxyethylammonium formate solutions showed no improvement, which was rationalized that
953 ether group only acts as hydrogen-bond acceptor and an additional hydrogen-bond donor is
954 needed for protein stabilization. After subtilisin was dissolved in diethanolammonium chloride,
955 the Bruce group (Falcioni et al., 2010) found the protease remained active, but no activity was
956 detected for subtilisin in other protic hydroxyalkylammonium ILs nor for chymotrypsin in any of
957 these ILs. Fluorescence spectroscopy could not explain the differences, but far and near UV
958 spectra for subtilisin in diethanolammonium chloride agreed well with that in water, implying
959 secondary and tertiary structures were better preserved in this hydroxy-functionalized ionic
960 solvent. The Greaves group (Wijaya et al., 2016) studied the activity and conformation of
961 lysozyme in molecular solvents and protic ILs, and concluded that non-ionic solvents containing
962 hydroxy group and bulky group could maintain enzyme's conformation and activity at high
963 solvent concentrations, but solvents with amine group could only improve the enzyme activity at
964 low concentrations. On the other hand, lysozyme activity increased with the type of protic ILs in

965 the order of (2-hydroxy)ethylammonium nitrate < ethylammonium formate < (2-
966 hydroxy)ethylammonium formate < ethylammonium nitrate, which was explained by the similar
967 water affinity between two kosmotropes or between two chaotropes. Based on fluorescence
968 spectroscopy and DSC measurements, Bose et al. (Bose et al., 2010) reported high stability of
969 *Trichoderma reesei* cellulase in tris(2-hydroxyethyl)methylammonium methylsulfate (HEMA)
970 even at 115 °C, but this enzyme became irreversibly denatured in pH 4.8 citrate buffer at 50 °C.
971 In contrast to imidazolium ILs, this ammonium-based IL does not seem to quench fluorescence
972 signal of tryptophan. That study also confirms that fluorescence quenching of enzymes is not
973 necessarily correlated with protein denaturation, as identified by other groups (Falcioni et al.,
974 2010; Zhao et al., 2009c). The same group (Bose et al., 2012) further examined endo-1,4- β -D-
975 glucanase (EG) in various solvents by fluorescence spectroscopy, and observed the enzyme
976 denaturation at ~55 °C in buffer but a higher transition temperature of ~75 °C in HEMA, which
977 agreed with a high enzyme activity at this temperature. In contrast to enzyme-destabilizing effect
978 of imidazolium cations, HEMA cations tend to stabilize the enzyme. By following the
979 Conductor-like Screening Model for Real Solvents (COSMS-RS), Xu and co-workers (Chen et
980 al., 2008; Guo et al., 2006) obtained various parameters (such as misfit, H-bonding, and van der
981 Waals interaction energy) to understand multiple interactions in ILs; this model enabled a
982 rationale design of particular structures of cations and anions (Guo et al., 2007). The Torkzadeh-
983 Mahani group (Ghanbari-Ardestani et al., 2019) reported that urate oxidase showed an increased
984 activity in 1% (v/v) aqueous triethanolammonium butyrate, but lower activities in 5% and 10%
985 IL solutions. Their MD simulations results suggest that 1% IL was able to increase
986 intramolecular hydrogen bonds of the enzyme, which led to a small decrease in random coil and
987 increase in α -helix and β -sheet, and a more compact enzyme structure. A further molecular

988 docking study reveals that IL cations and anions interact with urate oxidase primarily through
989 hydrogen bond, electrostatic, and hydrophobic interactions. On the other hand, based on MD
990 simulations, Klähn et al. (Klähn et al., 2011) indicated that CALB is more destabilized by polar
991 methoxyethyl group and decyl side chain on IL cations than by non-functionalized and short
992 methyl groups, respectively. However, the destabilization follows different mechanisms:
993 methoxyethyl group destabilizes the protein surface through strong Coulomb interactions with
994 CALB while long alkyl chain interacts directly with protein's hydrophobic core.

995 At microscopic scale, ILs consist of nanostructured segregates/microphases of polar
996 domain (high-charge density region) and nonpolar domain (low-charge density region); with the
997 increase in alkyl-side chains, the nonpolar domain can grow from dispersed/isolated islands to a
998 continuous phase (Brehm et al., 2015; Canongia Lopes and Pádua, 2006; Shimizu et al., 2010).
999 Depending on the similarity of solute molecules to each domain, different solutes could be
1000 solvated in different IL microphases; dipolar or quadrupolar solutes tend to interact strongly with
1001 the polar nanophase and reorganize the polar network in their neighborhood (Shimizu et al.,
1002 2010). Water molecules can modify the local microscopic structure of ILs through the competing
1003 hydrogen-bonding and electrostatic interaction: a) at low water content, water molecules are
1004 dispersed and inserted cavities forming solvent-shared ion pairs via cation–water–anion triple
1005 complexes; b) with the increase in water content, water molecules begin to aggregate forming
1006 small clusters, chain-like structures, large aggregates and finally a water network; c) in diluted
1007 aqueous solutions of ILs, self-organized micelles-like aggregates are formed in a highly
1008 branched water network (Wang et al., 2015). These microscopic structure changes result in
1009 thermodynamically nonideal volumetric properties and unique dynamic properties (Wang et al.,
1010 2016b). Generally, the interaction between water and ILs increases with higher hydrogen-bond

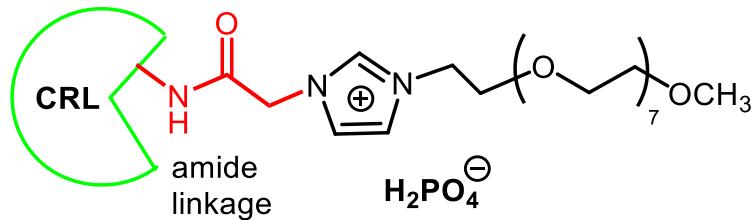

1011 basicity of anions (Khan et al., 2014). The Dupont group (Dupont, 2004) suggested the enclosure
1012 of other molecules and macromolecules in IL network; when aqueous droplets of enzyme are
1013 dissolved or dispersed into the polar domain of ILs, favorable solvophobic interactions could
1014 preserve the enzyme's active conformation (Fehér et al., 2007). The nanostructured
1015 supramolecular IL network allows enzyme molecules to maintain their native structures,
1016 avoiding thermal unfolding (Lozano et al., 2005). Compared with conventional ILs,
1017 functionalized ILs have different physical properties including viscosity, structural flexibility,
1018 phase transition, density, polarity, hydrophilicity, and hydrogen-bonding capability (Tang et al.,
1019 2012b). These structural and property changes likely lead to the modification of IL
1020 nanostructures, resulting in different IL-enzyme interactions; a further study in this area should
1021 be explored in the future.

Figure 15 Covalent attachment of a cholinium salt to the lysine residue of formate dehydrogenase (FDH).

1025 Instead of focusing on solvent functionalization, an alternative approach is to modify the
1026 enzyme with functionalized ILs. Itoh and co-workers (Abe et al., 2010) coated lipase PS with
1027 $[\text{CH}_3\text{OCH}_2\text{CH}_2\text{OCH}_2\text{PBu}_4][\text{Tf}_2\text{N}]$ to catalyze the acylation of secondary alcohols with vinyl
1028 acetate obtaining high enzymatic activities and selectivities. Bekhouche et al. (Bekhouche et al.,
1029 2010) grafted hydroxy groups of three ILs to lysine residues of formate dehydrogenase (FDH)
1030 from *Candida boidinii* via carbamate linkages (Figure 15). IL-modified FDH maintained about

1031 30–45% of its activity in 70% (v/v) [MMIM][Me₂PO₄] whereas the native FDH was not active in
 1032 this ionic solution. IL-modification of FDH further enhanced the enzyme stability in aqueous
 1033 buffer solution by 3–6 folds; in addition, unmodified and one modified FDH showed increased
 1034 half-time $t_{1/2}$ values in 37.5% (v/v) [MMIM][Me₂PO₄] than in carbonate buffer. Li et al. (Li et al.,
 1035 2015) grafted ether-functionalized ILs (carrying carboxylic acid group) through covalent linkage
 1036 onto *Candida rugosa* lipase (CRL) using *N,N'*-carbodiimide as the coupling reagent (see Figure
 1037 16). The lipase modified with ILs exhibited improvements in catalytic activity, thermal stability,
 1038 organic solvent tolerance, and adaptability to temperature and pH changes during the enzymatic
 1039 hydrolysis of olive oil. Furthermore, CD spectra indicate the lipase modification leading to
 1040 changes in secondary structures: an increase in β -sheet and a decrease in α -helix contents. A
 1041 similar approach linked CALB and porcine pancreatic lipase (PPL) with carboxylic acid-
 1042 functionalized imidazolium and cholinium cation respectively, leading to enhanced lipase
 1043 thermal stability and/or enantioselectivity (Jia et al., 2013a; Jia et al., 2013b). In addition, various
 1044 functionalized ILs have been used as coupling agents to covalently link enzymes with solid
 1045 supports such as chitosan-mesoporous silica hybrid nanomaterials (Xiang et al., 2018) and
 1046 multiwalled carbon nanotubes (MWNTs) (Wan et al., 2017a; Wan et al., 2017b), affording
 1047 higher enzyme's thermal/storage stability and better reusability.

1050 **8. Lessons Learned from Enzyme Behaviors in Ionic Liquids**

1051 To develop functionalized ILs for biocatalytic applications, there are competing factors that often
1052 need to be addressed. (1) *Substrate dissolution or enzyme stabilization*. For example, to dissolve
1053 carbohydrates, ILs typically carry anions with high hydrogen-bond basicity (such as Cl^- , OAc^- ,
1054 and dca^-); however, these ILs are expected to interact with enzymes strongly for the same reason
1055 interacting with carbohydrates, leading to enzyme inactivation. Therefore, appending a long
1056 glycol-chain to the cation could reduce the molar concentration of these anions, minimizing the
1057 destabilizing effect of anions (Zhao et al., 2009c). In this case, it is a compromise between
1058 substrate dissolution and enzyme stabilization. (2) *Functionalization or low viscosity*. Hydroxy-
1059 functionalized ILs could stabilize enzymes while amine-/amino-functionalized ILs could
1060 dissolve more substrates (e.g. carbon dioxide), but these functionalizations often lead to high IL
1061 viscosities due to their capability of forming hydrogen bonds (Goodrich et al., 2011; Tang et al.,
1062 2012b; Zhang et al., 2009). To mitigate the hydrogen-bonding effect, incorporating another
1063 functional group (such as ether) or pairing with different anions (e.g. Tf_2N^- , $\text{C}(\text{CN})_3^-$, or $\text{B}(\text{CN})_4^-$)
1064 could alleviate the increase in viscosity (Tang et al., 2012b). (3) *Functionalization or low cost*.
1065 Functionalization of ILs potentially increases the cost of already expensive solvents. Therefore,
1066 the use of functionalized ILs could be restricted by their applications; for example, these costly
1067 solvents could be ideal for developing expensive medicinal molecules but may not be suitable for
1068 the production of less expensive biofuel. On another dimension, ILs should be recycled and
1069 reused to decrease the overall operation cost. Various methods have been explored to recover ILs
1070 including extraction, distillation, adsorption, membrane separation, crystallization, and external
1071 force field separation (Zhou et al., 2018).

1072 **9. Summary and Prospects**

1073 There are many viable ways to improve enzyme activity and stability in nonaqueous media
1074 (particularly organic solvents and ILs), such as protein engineering to produce enzymes that are
1075 tolerant to organic solvents (Ogino and Ishikawa, 2001) and ILs (Pramanik et al., 2019), enzyme
1076 immobilization, chemical modification of enzymes, and solvent engineering. One interesting
1077 development in chemical modification of enzymes is liquefaction of proteins through
1078 cationization of protein surface by coupling glutamic and aspartic acid residues to *N,N'*-dimethyl-
1079 1,3-propanediamine (DMPA), followed by the protein conjugation with anionic PEG-type
1080 surfactant, resulting in liquid proteins/enzymes (Gallat et al., 2012; Perriman et al., 2010;
1081 Perriman et al., 2009; Sharma et al., 2014). In terms of solvent engineering, hydrophobic organic
1082 solvents generally tend to maintain reasonable enzyme activities whereas solvents with
1083 functional groups, especially hydroxys and ethers (including crown ethers and cyclodextrins),
1084 could lead to enzyme activation. There are limited options to design organic solvents carrying
1085 these functional groups (e.g. glycerol carbonate and *N*-hydroxymethyl formamide). In contrast,
1086 ILs offer greater flexibility for structural manipulation. Based on current studies, enzyme-
1087 compatible ILs tend to have these desirable properties and structural features: (1) Hydrophilic
1088 ILs (especially with denaturing anions such as halides, dca^- and OAc^-) typically have relatively
1089 large molecular structures (i.e. large molar mass), or other functional groups (e.g. 1-(3-
1090 hydroxypropyl)-3-methylimidazolium glycolate) to minimize their hydrogen-bond basicity and
1091 nucleophilicity of anions; (2) Most enzyme-compatible/activating ILs are the hydrophobic type
1092 (containing Tf_2N^- and PF_6^- anions). Their structures usually incorporate ether and/or hydroxy
1093 groups to provide desirable hydrogen-bond donating and accepting environments for enzymes.
1094 The incorporation of these functional groups also results in favorable solvent properties (such as

1095 desirable IL viscosity, hydrogen-bond basicity, and water affinity). Dual-functionalized ILs
1096 containing both ether and *tert*-alcohol groups are amongst nonaqueous solvents that lead to the
1097 greatest enzyme activation.

1098 In contrast to nonaqueous biocatalysis, aqueous enzymatic reactions have also gained
1099 some new developments. For example, in the presence of a nonionic surfactant Lutensol AT50
1100 (poly(ethyleneoxide)hexadecyl ether), lipase-catalyzed esterification could proceed (~90%
1101 conversions) in aqueous solutions as reactants being dispersed with the surfactant to form
1102 miniemulsions (Aschenbrenner et al., 2009). In aqueous solutions containing a nonionic
1103 surfactant TPGS-750-M, micelles were formed to promote alcohol dehydrogenase-catalyzed
1104 enantioselective reduction of ketones to chiral alcohols (Cortes-Clerget et al., 2019). Perhaps the
1105 future direction is to learn from both aqueous and nonaqueous biocatalysis to develop a new
1106 generation of “water-like” solvent systems.

1107 **Acknowledgements**

1108 This material is based upon work supported by the National Science Foundation Division of
1109 Chemistry under Grant No. [1954120]. Acknowledgment is made to the Donors of the American
1110 Chemical Society Petroleum Research Fund (PRF# 60077-ND4) for partial support of this
1111 research.

1112 **References**

- 1113 Abdelraheem, E.M.M., Busch, H., Hanefeld, U., Tonin, F., 2019. Biocatalysis explained: from
1114 pharmaceutical to bulk chemical production. *React. Chem. Eng.* 4, 1878–1894.
- 1115 Abe, Y., Kude, K., Hayase, S., Kawatsura, M., Tsunashima, K., Itoh, T., 2008. Design of
1116 phosphonium ionic liquids for lipase-catalyzed transesterification. *J. Mol. Catal. B: Enzym.*
1117 51(3-4), 81-85.
- 1118 Abe, Y., Yoshiyama, K., Yagi, Y., Hayase, S., Kawatsura, M., Itoh, T., 2010. A rational design
1119 of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction. *Green*
1120 *Chem.* 12, 1976-1980.

- 1121 Affleck, R., Haynes, C.A., Clark, D.S., 1992a. Solvent dielectric effects on protein dynamics.
1122 Proc. Natl. Acad. Sci. USA 89(11), 5167-5170.
- 1123 Affleck, R., Xu, Z.F., Suzawa, V., Focht, K., Clark, D.S., Dordick, J.S., 1992b. Enzymatic
1124 catalysis and dynamics in low-water environment. Proc. Natl. Acad. Sci. USA 89, 1100-1104.
- 1125 Akbar, U., Aschenbrenner, C.D., Harper, M.R., Johnson, H.R., Dordick, J.S., Clark, D.S., 2007.
1126 Direct solubilization of enzyme assemblies with enhanced activity in nonaqueous media.
1127 Biotechnol. Bioeng. 96 (6), 1030-1039.
- 1128 Almarsson, Ö., Klibanov, A.M., 1996. Remarkable activation of enzymes in nonaqueous media
1129 by denaturing organic cosolvents. Biotechnol. Bioeng. 49, 87-92.
- 1130 Alvizo, O., Nguyen, L.J., Savile, C.K., Bresson, J.A., Lakhapatri, S.L., Solis, E.O.P., Fox, R.J.,
1131 Broering, J.M., Benoit, M.R., Zimmerman, S.A., Novick, S.J., Liang, J., Lalonde, J.J., 2014.
1132 Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from
1133 flue gas. Proc. Natl. Acad. Sci. U. S. A. 111(46), 16436-16441.
- 1134 Antikainen, N.M., Martin, S.F., 2005. Altering protein specificity: Techniques and applications
1135 Bioorg. Med. Chem. 13, 2701-2716.
- 1136 Arning, J., Stolte, S., Böschen, A., Stock, F., Pitner, W.-R., Welz-Biermann, U., Jastorff, B.,
1137 Ranke, J., 2008. Qualitative and quantitative structure activity relationships for the inhibitory
1138 effects of cationic head groups, functionalised side chains and anions of ionic liquids on
1139 acetylcholinesterase. Green Chem. 10, 47-58.
- 1140 Arnold, F.H., 1990. Engineering enzymes for non-aqueous solvents. Trends Biotechnol. 8, 244-
1141 249.
- 1142 Aschenbrenner, E.M., Weiss, C.K., Landfester, K., 2009. Enzymatic esterification in aqueous
1143 miniemulsions. Chem. Eur. J. 15, 2434-2444.
- 1144 Barbosa, M.S., Freire, C.C.C., Souza, R.L., Cabrera-Padilla, R.Y., Pereira, M.M., Freire, M.G.,
1145 Lima, Á.S., Soares, C.M.F., 2019a. Effects of phosphonium-based ionic liquids on the lipase
1146 activity evaluated by experimental results and molecular docking. Biotechnol. Prog. 35(4), e2816.
- 1147 Barbosa, M.S., Santos, A.J., Carvalho, N.B., Figueiredo, R.T., Pereira, M.M., Lima, Á.S., Freire,
1148 M.G., Cabrera-Padilla, R.Y., Soares, C.M.F., 2019b. Enhanced activity of immobilized lipase by
1149 phosphonium-based ionic liquids used in the support preparation and immobilization process.
1150 ACS Sustainable Chem. Eng. 7(18), 15648-15659.
- 1151 Barzana, E., Klibanov, A.M., Karel, M., 1989. A colorimetric method for the enzymatic analysis
1152 of gases: The determination of ethanol and formaldehyde vapors using solid alcohol oxidase.
1153 Anal. Biochem. 182, 109-115.
- 1154 Bekhouche, M., Doumèche, B., Blum, L.J., 2010. Chemical modifications by ionic liquid-
1155 inspired cations improve the activity and the stability of formate dehydrogenase in
1156 [MMIm][Me₂PO₄]. J. Mol. Catal. B: Enzym. 65(1-4), 73-78.

- 1157 Bell, G., Halling, P.J., Moore, B.D., Partridge, J., Rees, D.G., 1995. Biocatalyst behaviour in
1158 low-water systems. *Trends Biotechnol.* 13, 468-473.
- 1159 Berberich, J.A., Kaar, J.L., Russell, A.J., 2003. Use of salt hydrate pairs to control water activity
1160 for enzyme catalysis in ionic liquids. *Biotechnol. Prog.* 19, 1029-1032.
- 1161 Bermejo, M.D., Kotlewska, A.J., Florusse, L.J., Cocero, M.J., van Rantwijk, F., Peters, C.J.,
1162 2008. Influence of the enzyme concentration on the phase behaviour for developing a
1163 homogeneous enzymatic reaction in ionic liquid-CO₂ media. *Green Chem.* 10, 1049-1054.
- 1164 Bisht, M., Mondal, D., Pereira, M.M., Freire, M.G., Venkatesu, P., Coutinho, J.A.P., 2017.
1165 Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and
1166 enhanced stability of cytochrome *c* against multiple stresses. *Green Chem.* 19, 4900-4911.
- 1167 Bose, S., Armstrong, D.W., Petrich, J.W., 2010. Enzyme-catalyzed hydrolysis of cellulose in
1168 ionic liquids: A green approach toward the production of biofuels. *J. Phys. Chem. B* 114(24),
1169 8221-8227.
- 1170 Bose, S., Barnes, C.A., Petrich, J.W., 2012. Enhanced stability and activity of cellulase in an
1171 ionic liquid and the effect of pretreatment on cellulose hydrolysis. *Biotechnol. Bioeng.* 109(2),
1172 434-443.
- 1173 Brehm, M., Weber, H., Thomas, M., Hollóczki, O., Kirchner, B., 2015. Domain analysis in
1174 nanostructured liquids: A post-molecular dynamics study at the example of ionic liquids.
1175 *ChemPhysChem* 16(15), 3271-3277.
- 1176 Brink, L.E.S., Tramper, J., 1985. Optimization of organic solvent in multiphase biocatalysis.
1177 *Biotechnol. Bioeng.* 27(8), 1258-1269.
- 1178 Brink, L.E.S., Tramper, J., Luyben, K.C.A.M., Van't Riet, K., 1988. Biocatalysis in organic
1179 media. *Enzyme Microb. Technol.* 10(12), 736-743.
- 1180 Broos, J., Sakodinskaya, I.K., Engbersen, J.F.J., Verboom, W., Reinhoudt, D.N., 1995. Large
1181 activation of serine proteases by pretreatment with crown ethers. *J. Chem. Soc., Chem. Commun.*,
1182 255-256.
- 1183 Broos, J., Verboom, W., Engbersen, J.F.J., Reinhoudt, D.N., 1992. Crown Ethers Can Enhance
1184 Enzyme Activity in Organic Solvents, in: Tramper, J., Vermüe, M.H., Bechtink, H.H., von
1185 Stockar, U. (Eds.), *Biocatalysis in Non-Conventional Media*. Elsevier, pp. 691-695.
- 1186 Burke, P.A., Griffin, R.G., Klibanov, A.M., 1992. Solid-state NMR assessment of enzyme active
1187 center structure under nonaqueous conditions. *J. Biol. Chem.* 267, 20057-20064.
- 1188 Canbolat, M.F., Savas, H.B., Gultekin, F., 2017. Improved catalytic activity by catalase
1189 immobilization using γ -cyclodextrin and electrospun PCL nanofibers. *J. Appl. Polym. Sci.* 134,
1190 44404.

- 1191 Canongia Lopes, J.N.A., Pádua, A.A.H., 2006. Nanostructural organization in ionic liquids. *J.*
1192 *Phys. Chem. B* 110(7), 3330-3335.
- 1193 Cantone, S., Hanefeld, U., Basso, A., 2007. Biocatalysis in non-conventional media—ionic
1194 liquids, supercritical fluids and the gas phase. *Green Chem.* 9, 954-971.
- 1195 Cao, L., van Langen, L., Sheldon, R.A., 2003. Immobilised enzymes: carrier-bound or carrier-
1196 free? *Curr. Opin. Biotechnol.* 14(4), 387-394.
- 1197 Cao, L., van Langen, L.M., van Rantwijk, F., Sheldon, R.A., 2001. Cross-linked aggregates of
1198 penicillin acylase: robust catalysts for the synthesis of β -lactam antibiotics. *J. Mol. Catal. B:*
1199 *Enzym.* 11(4-6), 665-670.
- 1200 Careri, G., Gratton, E., Yang, P.-H., Rupley, J.A., 1980. Correlation of IR spectroscopic, heat
1201 capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. *Nature*
1202 284(5756), 572-573.
- 1203 Chang, C.-J., Lee, C.-C., Chan, Y.-T., Trudeau, D.L., Wu, M.-H., Tsai, C.-H., Yu, S.-M., Ho, T.-
1204 H.D., Wang, A.H.-J., Hsiao, C.-D., Arnold, F.H., Chao, Y.-C., 2016. Exploring the mechanism
1205 responsible for cellulase thermostability by structure-guided recombination. *PLoS ONE* 11(3),
1206 e0147485.
- 1207 Chen, B., Guo, Z., Tan, T., Xu, X., 2008. Structures of ionic liquids dictate the conversion and
1208 selectivity of enzymatic glycerolysis: Theoretical characterization by COSMO-RS. *Biotechnol.*
1209 *Bioeng.* 99(1), 18-29.
- 1210 Chin, J.T., Wheeler, S.L., Klibanov, A.M., 1994. On protein solubility in organic solvents.
1211 *Biotechnol. Bioeng.* 44(1), 140-145.
- 1212 Corrêa de Sampaio, T., Melo, R.B., Moura, T.F., Michel, S., Barreiros, S., 1996. Solvent effects
1213 on the catalytic activity of subtilisin suspended in organic solvents. *Biotechnol. Bioeng.* 50(3),
1214 257-264.
- 1215 Cortes-Clerget, M., Akporji, N., Zhou, J., Gao, F., Guo, P., Parmentier, M., Gallou, F., Berthon,
1216 J.-Y., Lipshutz, B.H., 2019. Bridging the gap between transition metal- and bio-catalysis via
1217 aqueous micellar catalysis. *Nature Comm.* 10, 2169.
- 1218 Cui, L., Zhang, Z., Sun, E., Jia, X., Qian, Q., 2013. Effect of β -cyclodextrin complexation on
1219 solubility and enzymatic hydrolysis rate of icariin. *J. Nat. Sci. Biol. Med.* 4(1), 201-206.
- 1220 Dabulis, K., Klibanov, A.M., 1993. Dramatic enhancement of enzymatic-activity in organic-
1221 solvents by lyoprotectants. *Biotechnol. Bioeng.* 41, 566-571.
- 1222 Dahanayake, J.N., Gautam, D.N., Verma, R., Mitchell-Koch, K.R., 2016. To keep or not to keep?
1223 the question of crystallographic waters for enzyme simulations in organic solvent. *Molecular*
1224 *Simulation* 42(12), 1001-1013.

- 1225 Dahanayake, J.N., Mitchell-Koch, K.R., 2018a. Entropy connects water structure and dynamics
1226 in protein hydration layer. *Phys. Chem. Chem. Phys.* 20(21)), 14765-14777.
- 1227 Dahanayake, J.N., Mitchell-Koch, K.R., 2018b. How does solvation layer mobility affect protein
1228 structural dynamics? *Frontiers in Molecular Biosciences* 5, 65/61-65/20.
- 1229 Dai, L., Klibanov, A.M., 1999. Striking activation of oxidative enzymes suspended in
1230 nonaqueous media. *Proc. Natl. Acad. Sci. USA* 96, 9475-9478.
- 1231 Das, D., Dasgupta, A., Das, P.K., 2007. Improved activity of horseradish peroxidase (HRP) in
1232 'specifically designed' ionic liquid. *Tetrahedron Lett.* 48(32), 5635-5639.
- 1233 Davis, A.J., Perera, I.Y., Boss, W.F., 2004. Cyclodextrins enhance recombinant
1234 phosphatidylinositol phosphate kinase activity. *J. Lipid Res.* 45(9), 1783-1789.
- 1235 De Diego, T., Lozano, P., Abad, M.A., Steffensky, K., Vaultier, M., Iborra, J.L., 2009. On the
1236 nature of ionic liquids and their effects on lipases that catalyze ester synthesis. *J. Biotechnol.*
1237 140(3-4), 234-241.
- 1238 de Gonzalo, G., Lavandera, I., Durchschein, K., Wurm, D., Faber, K., Kroutil, W., 2007.
1239 Asymmetric biocatalytic reduction of ketones using hydroxy-functionalised water-miscible ionic
1240 liquids as solvents. *Tetrahedron: Asymmetry* 18(21), 2541-2546.
- 1241 de Jong, F., Reinhoudt, D.N., Smit, C.J., 1976. On the role of water in the complexation of
1242 alkylammonium salts by crown ethers. *Tetrahedron Lett.* 17(17), 1371-1374.
- 1243 de los Ríos, A.P., Hernández-Fernández, F.J., Martínez, F.A., Rubio, M., Víllora, G., 2007. The
1244 effect of ionic liquid media on activity, selectivity and stability of *Candida antarctica* lipase B in
1245 transesterification reactions. *Biocatalysis Biotransform.* 25(2-4), 151-156.
- 1246 Degn, P., Pedersen, L.H., Duus, J.ø., Zimmermann, W., 1999. Lipase-catalysed synthesis of
1247 glucose fatty acid esters in *tert*-butanol. *Biotechnol. Lett.* 21(4), 275-280.
- 1248 Denadai, Â.M.L., Santoro, M.M., Lopes, M.T.P., Chenna, A., de Sousa, F.B., Avelar, G.M.,
1249 Túlio Gomes, M.R., Guzman, F., Salas, C.E., Sinisterra, R.D., 2006. A supramolecular complex
1250 between proteinases and β -cyclodextrin that preserves enzymatic activity. *BioDrugs* 20, 283-291.
- 1251 Dolman, M., Halling, P.J., Moore, B.D., Waldron, S., 1997. How dry are anhydrous enzymes?
1252 Measurement of residual and buried ^{18}O -labeled water molecules using mass spectrometry.
1253 *Biopolymers* 41(3), 313-321.
- 1254 Domínguez de María, P., Hollmann, F., 2015. On the (un)greenness of biocatalysis: Some
1255 challenging figures and some promising options. *Front. Microbiol.* 6, 1257.
- 1256 Dong, A., Meyer, J.D., Kendrick, B.S., Manning, M.C., Carpenter, J.F., 1996. Effect of
1257 secondary structure on the activity of enzymes suspended in organic solvents. *Arch. Biochem.
1258 Biophys.* 334(2), 406-414.

- 1259 Dordick, J.S., 1989. Enzymatic catalysis in monophasic organic solvents. *Enzyme Microb.*
1260 *Technol.* 11(4), 194-211.
- 1261 Dordick, J.S., 1992. Designing enzymes for use in organic solvents. *Biotechnol. Prog.* 8, 259-267.
- 1262 Dreyer, S., Kragl, U., 2008. Ionic liquids for aqueous two-phase extraction and stabilization of
1263 enzymes. *Biotechnol. Bioeng.* 99(6), 1416-1424.
- 1264 Duan, X., Cheng, S., Ai, Y., Wu, J., 2016. Enhancing the thermostability of *serratia plymuthica*
1265 sucrose isomerase using B-factor-directed mutagenesis. *PLoS One* 11(2), e0149208.
- 1266 Dunn, R.V., Daniel, R.M., 2004. The use of gas-phase substrates to study enzyme catalysis at
1267 low hydration. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 359(1448), 1309-1320.
- 1268 Dupont, J., 2004. On the solid, liquid and solution structural organization of imidazolium ionic
1269 liquids. *J. Braz. Chem. Soc.* 15(3), 341-350.
- 1270 Engbersen, J.F.J., Broos, J., Verboom, W., Reinhoudt, D.N., 1996. Effects of crown ethers and
1271 small amounts of cosolvent on the activity and enantioselectivity of α -chymotrypsin in organic
1272 solvents. *Pure Appl. Chem.* 68(11), 2171-2178.
- 1273 Eppler, R.K., Hudson, E.P., Chase, S.D., Dordick, J.S., Reimer, J.A., Clark, D.S., 2008.
1274 Biocatalyst activity in nonaqueous environments correlates with centisecond-range protein
1275 motions. *Proc. Natl. Acad. Sci. U. S. A.* 105(41), 15672-15677.
- 1276 Falcioni, F., Housden, H.R., Ling, Z., Shimizu, S., Walker, A.J., Bruce, N.C., 2010. Soluble,
1277 folded and active subtilisin in a protic ionic liquid. *Chem. Commun.* 46, 749-751.
- 1278 Fehér, E., Major, B., Bélafi-Bakó, K., Gubicza, L., 2007. On the background of enhanced
1279 stability and reusability of enzymes in ionic liquids. *Biochem. Soc. Trans.* 35(6), 1624-1627.
- 1280 Finney, J.L., Poole, P.L., 1984. Protein hydration and enzyme activity: The role of hydrogen-
1281 induced conformation and dynamic changes in the activity of lysozyme. *Comments Mod. Biol.*
1282 Part A *Comments Mol. Cell. Biophys.* 2, 129-151.
- 1283 Fitzpatrick, P.A., Klibanov, A.M., 1991. How can the solvent affect enzyme enantioselectivity? *J.*
1284 *Am. Chem. Soc.* 113(8), 3166-3171.
- 1285 Freeman, S.-A., Peek, K., Prescott, M., Daniel, R., 1993. Characterization of a chelator-resistant
1286 proteinase from *Thermus* strain Rt4A2. *Biochem. J.* 295, 463-469.
- 1287 Fujita, K., Forsyth, M., MacFarlane, D.R., Reid, R.W., Elliott, G.D., 2006. Unexpected
1288 improvement in stability and utility of cytochrome *c* by solution in biocompatible ionic liquids.
1289 *Biotechnol. Bioeng.* 94(6), 1209-1213.
- 1290 Fujita, K., MacFarlane, D.R., Forsyth, M., 2005. Protein solubilising and stabilising ionic liquids.
1291 *Chem. Commun.*(38), 4804-4806.

- 1292 Fujita, K., MacFarlane, D.R., Forsyth, M., Yoshizawa-Fujita, M., Murata, K., Nakamura, N.,
1293 Ohno, H., 2007. Solubility and stability of cytochrome *c* in hydrated ionic liquids: effect of oxo
1294 acid residues and kosmotropicity. *Biomacromolecules* 8(7), 2080-2086.
- 1295 Fujita, K., Ohno, H., 2010. Enzymatic activity and thermal stability of metallo proteins in
1296 hydrated ionic liquids. *Biopolymers* 93(12), 1093-1099.
- 1297 Gallat, F.-X., Brogan, A.P.S., Fichou, Y., McGrath, N., Moulin, M., Härtlein, M., Combet, J.,
1298 Wuttke, J., Mann, S., Zaccai, G., Jackson, C.J., Perriman, A.W., Weik, M., 2012. A polymer
1299 surfactant corona dynamically replaces water in solvent-free protein liquids and ensures
1300 macromolecular flexibility and activity. *J. Am. Chem. Soc.* 134(32), 13168-13171.
- 1301 Ganapatibhotla, L.V.N.R., Zheng, J., Roy, D., Krishnan, S., 2010. PEGylated imidazolium ionic
1302 liquid electrolytes: Thermophysical and electrochemical properties. *Chem. Mater.* 22(23), 6347-
1303 6360.
- 1304 Garcia-Ruiz, E., Gonzalez-Perez, D., Ruiz-Dueñas, F.J., Martinez, A.T., Alcalde, M., 2012.
1305 Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase.
1306 *Biochem. J.* 441, 487-498.
- 1307 Ghaffari-Moghaddam, M., Eslahi, H., Aydin, Y.A., Saloglu, D., 2015. Enzymatic processes in
1308 alternative reaction media: A mini review. *Journal of Biological Methods* 2(3), e25.
- 1309 Ghanbari-Ardestani, S., Khojasteh-Band, S., Zaboli, M., Hassani, Z., Mortezavi, M., Mahani, M.,
1310 Torkzadeh-Mahani, M., 2019. The effect of different percentages of triethanolammonium
1311 butyrate ionic liquid on the structure and activity of urate oxidase: Molecular docking, molecular
1312 dynamics simulation, and experimental study. *J. Mol. Liq.* 292, 111318.
- 1313 Goodrich, B.F., de la Fuente, J.C., Gurkan, B.E., Zadigian, D.J., Price, E.A., Huang, Y.,
1314 Brennecke, J.F., 2011. Experimental measurements of amine-functionalized anion-tethered ionic
1315 liquids with carbon dioxide. *Ind. Eng. Chem. Res.* 50(1), 111-118.
- 1316 Gorman, L.S., Dordick, J.S., 1992. Organic solvents strip water off enzyme. *Biotechnol. Bioeng.*
1317 39, 392-397.
- 1318 Griebenow, K., Klibanov, A.M., 1995. Lyophilization-induced reversible changes in the
1319 secondary structure of proteins. *Proc. Natl. Acad. Sci. USA* 92, 10969-10976.
- 1320 Griebenow, K., Laureano, Y.D., Santos, A.M., Clemente, I.M., Rodríguez, L., Vidal, M.W.,
1321 Barletta, G., 1999. Improved enzyme activity and enantioselectivity in organic solvents by
1322 methyl- β -cyclodextrin. *J. Am. Chem. Soc.* 121, 8157-8163.
- 1323 Griebenow, K., Vidal, M., Baéz, C., Santos, A.M., Barletta, G., 2001. Nativelike enzyme
1324 properties are important for optimum activity in neat organic solvents. *J. Am. Chem. Soc.* 123,
1325 5380-5381.
- 1326 Guinn, R.M., Skerker, P.S., Kavanaugh, P., Clark, D.S., 1991. Activity and flexibility of alcohol
1327 dehydrogenase in organic solvents. *Biotechnol. Bioeng.* 37(4), 303-308.

- 1328 Guisan, J.M., 2006. *Immobilization of Enzymes and Cells*, 2nd ed. Humana Press Inc., Totowa.
- 1329 Guo, Z., Chen, B., Murillo, R.L., Tan, T., Xu, X., 2006. Functional dependency of structures of
1330 ionic liquids: do substituents govern the selectivity of enzymatic glycerolysis? *Org. Biomol.*
1331 *Chem.* 4(14), 2772-2776.
- 1332 Guo, Z., Kahveci, D., Özçelik, B., Xu, X., 2009. Improving enzymatic production of diglycerides
1333 by engineering binary ionic liquid medium system. *New Biotechnol.* 26(1-2), 37-43.
- 1334 Guo, Z., Lue, B.-M., Thomasen, K., Meyer, A.S., Xu, X., 2007. Predictions of flavonoid
1335 solubility in ionic liquids by COSMO-RS: experimental verification, structural elucidation, and
1336 solvation characterization. *Green Chem.* 9(12), 1362-1373.
- 1337 Guo, Z., Xu, X., 2005. New opportunity for enzymatic modification of fats and oils with
1338 industrial potentials. *Org. Biomol. Chem.* 3, 2615-2619.
- 1339 Guo, Z., Xu, X., 2006. Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further
1340 study on the reaction system. *Green Chem.* 8(1), 54-62.
- 1341 Gupta, A., Ray, S., Kapoor, S., Khare, S.K., 2008. Solvent-stable *Pseudomonas aeruginosa* PseA
1342 protease dene: Identification, molecular characterization, phylogenetic and bioinformatic
1343 analysis to study reasons for solvent. *J. Mol. Microbiol. Biotechnol.* 15, 234–243.
- 1344 Gupta, A., Roy, I., Khare, S.K., Gupta, M.N., 2005. Purification and characterization of a solvent
1345 stable protease from *Pseudomonas aeruginosa* PseA. *J. Chromatogr. A* 1069, 155-161.
- 1346 Gupta, M.N., 1992. Enzyme function in organic solvents. *Eur. J. Biochem.* 203(1-2), 25-32.
- 1347 Halling, P.J., 1992. Salt hydrates for water activity control with biocatalysts in organic media.
1348 *Biotechnol. Tech.* 6(3), 271-276.
- 1349 Halling, P.J., 2000. Biocatalysis in low-water media: understanding effects of reaction conditions.
1350 *Curr. Opin. Chem. Biol.* 4(1), 74-80.
- 1351 Hedges, A., 2009. Cyclodextrins: Properties and applications, in: BeMiller, J., Whistler, R.
1352 (Eds.), *Starch: Chemistry and Technology*. Academic Press, New York, NY, pp. 833-851.
- 1353 Hilhorst, R., Spruijt, R., Laane, C., Veeger, C., 1984. Rules for the regulation of enzyme activity
1354 in reserved micelles as illustrated by the conversion of apolar steroids by 20 β -hydroxysteroid
1355 dehydrogenase. *Eur. J. Biochem.* 144(3), 459-466.
- 1356 Hirakawa, H., Kamiyab, N., Kawarabayashic, Y., Nagamune, T., 2005. Log *P* effect of organic
1357 solvents on a thermophilic alcohol dehydrogenase. *Biochim. Biophys. Acta - Proteins*
1358 *Proteomics* 1748(1), 94-99.
- 1359 Hobbs, H.R., Thomas, N.R., 2007. Biocatalysis in supercritical fluids, in fluorous solvents, and
1360 under solvent-free conditions. *Chem. Rev.* 107(6), 2786–2820.

- 1361 Illanes, A., 1999. Stability of biocatalysts. Electron. J. Biotechnol. 2(1), doi: 10.2225/vol2222-
1362 issue2221-fulltext-2222.
- 1363 Ilmberger, N., Pottkämper, J., Streit, W.R., 2013. Cellulases in ionic liquids—The long term
1364 stability of *Aspergillus sp.* cellulase. Catalysts 3, 584-587.
- 1365 Inada, Y., Furukawa, M., Sasaki, H., Kodera, Y., Hiroto, M., Nishimura, H., Matsushima, A.,
1366 1995. Biomedical and biotechnological applications of PEG- and PM-modified proteins. Trends
1367 Biotechnol. 13(3), 86-91.
- 1368 Inada, Y., Takahashi, K., Yoshimoto, T., Ajima, A., Matsushima, A., Saito, Y., 1986a.
1369 Application of polyethylene glycol-modified enzymes in biotechnological processes: organic
1370 solvent-soluble enzymes. Trends Biotechnol. 4(7), 190-194.
- 1371 Inada, Y., Yoshimoto, T., Matsushima, A., Saito, Y., 1986b. Engineering physicochemical and
1372 biological properties of proteins by chemical modification. Trends Biotechnol. 4(3), 68-73.
- 1373 Irwin, P.L., Pfeffer, P.E., Doner, L.W., Sapers, G.M., Brewster, J.D., Nagahashi, G., Hicks, K.B.,
1374 1994. Binding geometry, stoichiometry, and thermodynamics of cyclomaltooligosaccharide
1375 (cyclodextrin) inclusion complex formation with chlorogenic acid, the major substrate of apple
1376 polyphenol oxidase. Carbohydr. Res. 256, 13-27.
- 1377 Ito, Y., Fujii, H., Imanishi, Y., 1994. Modification of lipase with various synthetic polymers and
1378 their catalytic activities in organic solvent. Biotechnol. Prog. 10(4), 398-402.
- 1379 Itoh, T., Akasaki, E., Kudo, K., Shirakami, S., 2001. Lipase-catalyzed enantioselective acylation
1380 in the ionic liquid solvent system: Reaction of enzyme anchored to the solvent. Chem. Lett. 30(3),
1381 262-263.
- 1382 Itoh, T., Han, S., Matsushita, Y., Hayase, S., 2004. Enhanced enantioselectivity and remarkable
1383 acceleration on the lipase-catalyzed transesterification using novel ionic liquids. Green Chem. 6,
1384 437-439.
- 1385 Itoh, T., Hiyama, Y., Betchaku, A., Tsukube, H., 1993. Enhanced reaction rate and
1386 enantioselectivity in lipase-catalyzed hydrolysis by addition of a crown ether. Tetrahedron Lett.
1387 34(16), 2617-2620.
- 1388 Itoh, T., Matsushita, Y., Abe, Y., Han, S., Wada, S., Hayase, S., Kawatsura, M., Takai, S.,
1389 Morimoto, M., Hirose, Y., 2006. Increased enantioselectivity and remarkable acceleration of
1390 lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid.
1391 Chem. Eur. J. 12(36), 9228-9237.
- 1392 Itoh, T., Nishimura, Y., Ouchi, N., Hayase, S., 2003. 1-Butyl-2,3-dimethylimidazolium
1393 tetrafluoroborate: the most desirable ionic liquid solvent for recycling use of enzyme in lipase-
1394 catalyzed transesterification using vinyl acetate as acyl donor. J. Mol. Catal. B: Enzym. 26(1-2),
1395 41-45.

- 1396 Itoh, T., Takagi, Y., Murakami, T., Hiyama, Y., Tsukube, H., 1996. Crown ethers as regulators
1397 of enzymatic reactions: Enhanced reaction rate and enantioselectivity in lipase-catalyzed
1398 hydrolysis of 2-cyano-1-methylethyl acetate. *J. Org. Chem.* 61, 2158-2163.
- 1399 Jia, R., Hu, Y., Liu, L., Jiang, L., Huang, H., 2013a. Chemical modification for improving
1400 activity and stability of lipase B from *Candida antarctica* with imidazolium-functional ionic
1401 liquids *Org. Biomol. Chem.* 11, 7192-7198.
- 1402 Jia, R., Hu, Y., Liu, L., Jiang, L., Zou, B., Huang, H., 2013b. Enhancing catalytic performance of
1403 porcine pancreatic lipase by covalent modification using functional ionic liquids. *ACS Catal.* 3,
1404 1976-1983.
- 1405 Julian, R.R., Beauchamp, J.L., 2001. Site specific sequestering and stabilization of charge in
1406 peptides by supramolecular adduct formation with 18-crown-6 ether by way of electrospray
1407 ionization. *Int. J. Mass spectrom.* 210-211, 613-623.
- 1408 Kahveci, D., Guo, Z., Özçelik, B., Xu, X., 2009. Lipase-catalyzed glycerolysis in ionic liquids
1409 directed towards diglyceride synthesis. *Process Biochem.* 44(12), 1358-1365.
- 1410 Kahveci, D., Guo, Z., Özçelik, B., Xu, X., 2010. Optimisation of enzymatic synthesis of
1411 diacylglycerols in binary medium systems containing ionic liquids. *Food Chem.* 119(3), 880-885.
- 1412 Kaushik, J.K., Bhat, R., 1998. Thermal stability of proteins in aqueous polyol solutions: Role of
1413 the surface tension of water in the stabilizing effect of polyols. *J. Phys. Chem. B* 102, 7058-7066.
- 1414 Kaushik, J.K., Bhat, R., 2003. Why Is trehalose an exceptional protein stabilizer? An analysis of
1415 the thermal stability of proteins in the presence of the compatible osmolyte trehalose. *J. Biol.*
1416 *Chem.* 278(29), 26458-26465.
- 1417 Khan, I., Kurnia, K.A., Mutelet, F., Pinho, S.P., Coutinho, J.A.P., 2014. Probing the interactions
1418 between ionic liquids and water: Experimental and quantum chemical approach. *J. Phys. Chem.*
1419 *B* 118, 1848-1860.
- 1420 Khmelnitsky, Y.L., Welch, S.H., Clark, D.S., Dordick, J.S., 1994. Salts dramatically enhance
1421 activity of enzymes suspended in organic solvents. *J. Am. Chem. Soc.* 116, 2647-2648.
- 1422 Kim, J., Clark, D.S., Dordick, J.S., 2000. Intrinsic effects of solvent polarity on enzymic
1423 activation energies. *Biotechnol. Bioeng.* 67(1), 112-116.
- 1424 Kim, M.-J., Choi, M.Y., Lee, J.K., Ahn, Y., 2003. Enzymatic selective acylation of glycosides in
1425 ionic liquids: significantly enhanced reactivity and regioselectivity. *J. Mol. Catal. B: Enzym.*
1426 26(3-6), 115-118.
- 1427 Kitaguchi, H., Itoh, I., Ono, M., 1990. Effects of water and water-mimicking solvents on the
1428 lipase catalyzed esterification in apolar solvent. *Chem. Lett.* 19(7), 1203-1206.
- 1429 Kitaguchi, H., Klibanov, A.M., 1989. Enzymatic peptide synthesis via segment condensation in
1430 the presence of water mimics. *J. Am. Chem. Soc.* 111, 9272-9273.

- 1431 Klähn, M., Lim, G.S., Wu, P., 2011. How ion properties determine the stability of a lipase
1432 enzyme in ionic liquids: A molecular dynamics study. *Phys. Chem. Chem. Phys.* 13, 18647-
1433 18660.
- 1434 Klibanov, A.M., 1990. Asymmetric transformations catalyzed by enzymes in organic solvents.
1435 *Acc. Chem. Res.* 23(4), 114-120.
- 1436 Klibanov, A.M., 1997. Why are enzymes less active in organic solvents than in water? *Trends
1437 Biotechnol.* 15, 97-101.
- 1438 Klibanov, A.M., 2001. Improving enzymes by using them in organic solvents. *Nature* 409(6817),
1439 241-246.
- 1440 Knubovets, T., Osterhout, J.J., Klibanov, A.M., 1999. Structure of lysozyme dissolved in neat
1441 organic solvents as assessed by NMR and CD spectroscopies. *Biotechnol. Bioeng.* 63(2), 242-
1442 248.
- 1443 Kundu, K., Singh, A.P., Panda, S., Singh, V., Gardas, R.L., Senapati, S., 2018. Study on the
1444 conformation of entrapped protein inside the reverse micellar confinement based on the amino
1445 acid derived ionic liquid. *ChemistrySelect* 3, 4768-4776.
- 1446 Kurkal, V., Daniel, R.M., Finney, J.F., Tehei, M., Dunn, R.V., Smith, J.C., 2005 Enzyme activity
1447 and flexibility at very low hydration. *Biophys. J.* 89, 1282-1287.
- 1448 Laane, C., Boeren, S., Vos, K., 1985. On optimizing organic solvents in multi-liquid-phase
1449 biocatalysis. *Trends Biotechnol.* 3(10), 251-252.
- 1450 Laane, C., Boeren, S., Vos, K., Veeger, C., 1987. Rules for optimization of biocatalysis in
1451 organic solvents. *Biotechnol. Bioeng.* 30(1), 81-87.
- 1452 Labouesse, J., Gervais, M., 1967. Preparation of chemically defined ϵ N-acetylated trypsin. *Eur.
1453 J. Biochem.* 2(2), 215-223.
- 1454 Lee, C.S., Ru, M.T., Haake, M., Dordick, J.S., Reimer, J.A., Clark, D.S., 1998. Multinuclear
1455 NMR study of enzyme hydration in an organic solvent. *Biotechnol. Bioeng.* 57(6), 686-693
- 1456 Lee, J.K., Kim, M.-J., 2002. Ionic liquid-coated enzyme for biocatalysis in organic solvent. *J.
1457 Org. Chem.* 67(19), 6845-6847.
- 1458 Lee, M.-Y., Dordick, J.S., 2002. Enzyme activation for nonaqueous media. *Curr. Opin.
1459 Biotechnol.* 13, 376-384.
- 1460 Lee, S.H., Doan, T.T.N., Ha, S.H., Chang, W.-J., Koo, Y.-M., 2007a. Influence of ionic liquids
1461 as additives on sol-gel immobilized lipase. *J. Mol. Catal. B: Enzym.* 47(3-4), 129-134.
- 1462 Lee, S.H., Doan, T.T.N., Ha, S.H., Koo, Y.-M., 2007b. Using ionic liquids to stabilize lipase
1463 within sol-gel derived silica. *J. Mol. Catal. B: Enzym.* 45(1-2), 57-61.

- 1464 Li, Q., Zhai, T., Du, K., Li, Y., Feng, W., 2013. Enzymatic activity regulated by a surfactant and
1465 hydroxypropyl β -cyclodextrin. *Colloids Surf., B* 112, 315-321.
- 1466 Li, X., Qian, P., Wu, S., Yu, H., 2014. Characterization of an organic solvent-tolerant lipase from
1467 *Idiomarina sp.* W33 and its application for biodiesel production using Jatropha oil.
1468 *Extremophiles* 18, 171-178.
- 1469 Li, X., Yu, H., 2012. Purification and characterization of an organic-solvent-tolerant cellulase
1470 from a halotolerant isolate, *Bacillus* sp. L1. *J. Ind. Microbiol. Biotechnol.* 39, 1117-1124.
- 1471 Li, X., Zhang, C., Li, S., Huang, H., Hu, Y., 2015. Improving catalytic performance of *Candida*
1472 *rugosa* lipase by chemical modification with polyethylene glycol functional ionic liquids. *Ind.*
1473 *Eng. Chem. Res.* 54(33), 8072-8079.
- 1474 Lindsay, J.P., Clark, D.S., Dordick, J.S., 2004. Combinatorial formulation of biocatalyst
1475 preparations for increased activity in organic solvents: salt activation of penicillin amidase.
1476 *Biotechnol. Bioeng.* 85(5), 553-560.
- 1477 Liszka, M.J., Clark, M.E., Schneider, E., Clark, D.S., 2012. Nature versus nurture: Developing
1478 enzymes that function under extreme conditions. *Annu. Rev. Chem. Biomol. Eng.* 3, 77-102.
- 1479 López-Nicolás, J.M., Pérez-López, A.J., Carbonell-Barrachina, Á., García-Carmona, F., 2007.
1480 Kinetic study of the activation of banana juice enzymatic browning by the addition of maltosyl-
1481 β -cyclodextrin. *J. Agric. Food Chem.* 55, 9655-9662.
- 1482 Lopez-Serrano, P., Cao, L., van Rantwijk, F., Sheldon, R.A., 2002. Cross-linked enzyme
1483 aggregates with enhanced activity: application to lipases. *Biotechnol. Lett.* 24(16), 1379-1383.
- 1484 Lou, W.-Y., Zong, M.-H., Wu, H., Xu, R., Wang, J.-F., 2005. Markedly improving lipase-
1485 mediated asymmetric ammonolysis of D,L-*p*-hydroxyphenylglycine methyl ester by using an
1486 ionic liquid as the reaction medium. *Green Chem.* 7, 500-506.
- 1487 Lourenço, N.M.T., Barreiros, S., Afonso, C.A.M., 2007. Enzymatic resolution of Indinavir
1488 precursor in ionic liquids with reuse of biocatalyst and media by product sublimation. *Green*
1489 *Chem.* 9, 734-736.
- 1490 Lozano, P., de Diego, T., Gmouh, S., Vaultier, M., Iborra, J.L., 2004. Criteria to design green
1491 enzymatic processes in ionic liquid/supercritical carbon dioxide systems. *Biotechnol. Prog.* 20(3),
1492 661-669.
- 1493 Lozano, P., De Diego, T., Gmouh, S., Vaultier, M., Iborra, J.L., 2005. Dynamic structure-
1494 function relationships in enzyme stabilization by ionic liquids. *Biocatalysis Biotransform.* 23(3-
1495 4), 169-176.
- 1496 Lozano, P., Piamtongkam, R., Kohns, K., De Diego, T., Vaultier, M., Iborra, J.L., 2007. Ionic
1497 liquids improve citronellyl ester synthesis catalyzed by immobilized *Candida antarctica* lipase B
1498 in solvent-free media. *Green Chem.* 9, 780-784.

- 1499 Luisi, P.L., 1985. Enzymes hosted in reverse micelles in hydrocarbon solution. *Angew. Chem. Int. Ed. Engl.* 24(6), 439-450.
- 1501 Luo, S., Zhang, S., Wang, Y., Xia, A., Zhang, G., Du, X., Xu, D., 2010. Complexes of ionic liquids with poly(ethylene glycol)s. *J. Org. Chem.* 75(6), 1888–1891.
- 1503 Madeira Lau, R., Sorgedrager, M.J., Carrea, G., van Rantwijk, F., Secundo, F., Sheldon, R.A., 2004. Dissolution of *Candida antarctica* lipase B in ionic liquids: effects on structure and activity. *Green Chem.* 6, 483-487.
- 1506 Madeira Lau, R., van Rantwijk, F., Seddon, K.R., Sheldon, R.A., 2000. Lipase-catalyzed reactions in ionic liquids. *Org. Lett.* 2(26), 4189-4191.
- 1508 Manic, M.S., Najdanovic-Visak, V., 2016. Solubility of mixtures containing soybean oil, ionic liquid and methanol *Open Chem. Eng. J.* 10(Suppl-1, M6), 41-49.
- 1510 Mann, J.P., McCluskey, A., Atkin, R., 2009. Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—fluence of cation modification. *Green Chem.* 11, 785-792.
- 1513 Maruyama, T., Yamamura, H., Kotani, T., Kamiya, N., Goto, M., 2004. Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids. *Org. Biomol. Chem.* 2, 1239-1244.
- 1516 Meyer, E., 1992. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. *Protein Sci.* 1, 1543-1562.
- 1518 Meyer, J.D., Kendrick, B.S., Matsuura, J.E., Ruth, J.A., Bryan, P.N., Manning, M.C., 1996. Generation of soluble and active subtilisin and α -chymotrypsin in organic solvents via hydrophobic ion pairing. *Int. J. Peptide Protein Res.* 47(3), 177-181.
- 1521 Micaêlo, N.M., Soares, C.M., 2007. Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents. *FEBS J.* 274, 2424-2436.
- 1523 Moniruzzaman, M., Kamiya, N., Nakashima, K., Goto, M., 2008. Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. *Green Chem.* 10(5), 497-500.
- 1525 Moniruzzaman, M., Nakashima, K., Kamiya, N., Goto, M., 2010. Recent advances of enzymatic reactions in ionic liquids. *Biochem. Eng. J.* 48(3), 295-314.
- 1527 Montañez-Clemente, I., Alvira, E., Macias, M., Ferrer, A., Fonceca, M., Rodriguez, J., Gonzalez, A., Barletta, G., 2002. Enzyme activation in organic solvents: Co-lyophilization of subtilisin Carlsberg with methyl- β -cyclodextrin renders an enzyme catalyst more active than the cross-linked enzyme crystals. *Biotechnol. Bioeng.* 78(1), 53-59.
- 1531 Morgan, J.A., Clark, D.S., 2004. Salt-activation of nonhydrolase enzymes for use in organic solvents. *Biotechnol. Bioeng.* 85(4), 456-459.

- 1533 Mozhaev, V.V., Poltevsky, K.G., Slepnev, V.I., Badun, G.A., Levashov, A.V., 1991.
1534 Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents: New systems for
1535 fundamental studies and biocatalytic transformations. FEBS Lett. 292, 159-161.
- 1536 Nakashima, K., Maruyama, T., Kamiya, N., Goto, M., 2005. Comb-shaped poly(ethylene
1537 glycol)-modified subtilisin Carlsberg is soluble and highly active in ionic liquids. Chem.
1538 Commun., 4297-4299.
- 1539 Nakashima, K., Maruyama, T., Kamiya, N., Goto, M., 2006a. Homogeneous enzymatic reactions
1540 in ionic liquids with poly(ethylene glycol)-modified subtilisin. Org. Biomol. Chem. 4(18), 3462-
1541 3467.
- 1542 Nakashima, K., Okada, J., Maruyama, T., Kamiya, N., Goto, M., 2006b. Activation of lipase in
1543 ionic liquids by modification with comb-shaped poly(ethylene glycol). Sci. Technol. Adv. Mat.
1544 7(7), 692-698.
- 1545 Narayan, V.S., Klibanov, A.M., 1993. Are water-immiscibility and apolarity of the solvent
1546 relevant to enzyme efficiency? Biotechnol. Bioeng. 41, 390-393.
- 1547 Nascimento, P.A.M., Picheli, F.P., Lopes, A.M., Pereira, J.F.B., Santos-Ebinuma, V.C., 2019.
1548 Effects of cholinium-based ionic liquids on *Aspergillus niger* lipase: Stabilizers or inhibitors.
1549 Biotechnol. Prog. 35, e2838.
- 1550 Núñez-Delicado, E., Mar Sojo, M., Sánchez-Ferrer, A., García-Carmona, F., 1999.
1551 Hydroperoxidase activity of lipoxygenase in the presence of cyclodextrins. Arch. Biochem.
1552 Biophys. 367, 274-280.
- 1553 Nurok, D., Kleyle, R.M., Muhoberac, B.B., Frost, M.C., Hajdu, P., Robertson, D.H., Kamat, S.V.,
1554 Russell, A.J., 1999. Study of enzyme-catalyzed reactions in organic solvents using multiple
1555 linear regression. J. Mol. Catal. B: Enzym. 7(5-6), 273-282.
- 1556 Obón, J.M., Manjón, A., Iborra, J.L., 1996. Comparative thermostability of glucose
1557 dehydrogenase from *Haloferax mediterranei*. Effects of salts and polyols. Enzyme Microb.
1558 Technol. 19(5), 352-360.
- 1559 Odell, B., Earlam, G., 1985. Dissolution of proteins in organic solvents using macrocyclic
1560 polyethers: Association constants of a cytochrome c-[1,2-¹⁴C₂]-18-crown-6 complex in methanol.
1561 J. Chem. Soc., Chem. Commun., 359-361.
- 1562 Ogino, H., Gemba, Y., Yutori, Y., Doukyu, N., Ishimi, K., Ishikawa, H., 2007. Stabilities and
1563 conformational transitions of various proteases in the presence of an organic solvent. Biotechnol.
1564 Prog. 23, 155-161.
- 1565 Ogino, H., Ishikawa, H., 2001. Enzymes which are stable in the presence of organic solvents. J.
1566 Biosci. Bioeng. 91(2), 109-116.

- 1567 Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasuda, M., Ishikawa, H., 2000.
1568 Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant
1569 *Pseudomonas aeruginosa* LST-03. *J. Biosci. Bioeng.* 89(5), 451-457.
- 1570 Ogino, H., Watanabe, F., Yamada, M., Nakagawa, S., Hirose, T., Noguchi, A., Yasuda, M.,
1571 Ishikawa, H., 1999. Purification and characterization of organic solvent-stable protease from
1572 organic solvent-tolerant *Pseudomonas aeruginosa* PST-01. *J. Biosci. Bioeng.* 87, 61-68.
- 1573 Okahata, Y., Ijiro, K., 1988. A lipid-coated lipase as a new catalyst for triglyceride synthesis in
1574 organic solvents. *J. Chem. Soc., Chem. Commun.*, 1392-1394.
- 1575 Oldfield, C., 1994. Enzymes in water-in-oil microemulsions ('reversed micelles'): Principles and
1576 applications. *Biotechnol. Genet. Eng. Rev.* 12(1), 255-327.
- 1577 Ooe, Y., Yamamoto, S., Kobayashi, M., Kise, H., 1999. Increase of catalytic activity of α -
1578 chymotrypsin in organic solvent by co-lyophilization with cyclodextrins. *Biotechnol. Lett.* 21,
1579 385-389.
- 1580 Orenes-Piñero, E., García-Carmona, F., Sánchez-Ferrer, A., 2007. Kinetic characterization of
1581 diphenolase activity from *Streptomyces antibioticus* tyrosinase in the presence and absence of
1582 cyclodextrins. *J. Mol. Catal. B Enzym.* 47, 143-148.
- 1583 Ou, G., He, B., Halling, P., 2016. Ionization basis for activation of enzymes soluble in ionic
1584 liquids. *Biochim. Biophys. Acta* 1860, 1404-1408.
- 1585 Ou, G., He, B., Yuan, Y., 2011a. Lipases are soluble and active in glycerol carbonate as a novel
1586 biosolvent. *Enzyme Microb. Technol.* 49, 167-170.
- 1587 Ou, G., He, B., Yuan, Y., 2012. Design of biosolvents through hydroxyl functionalization of
1588 compounds with high dielectric constant. *Appl. Biochem. Biotechnol.* 166, 1472-1479.
- 1589 Ou, G., Yang, J., He, B., Yuan, Y., 2011b. Buffer-mediated activation of *Candida antarctica*
1590 lipase B dissolved in hydroxyl-functionalized ionic liquids. *J. Mol. Catal. B: Enzym.* 68(1), 66-
1591 70.
- 1592 Paradkar, V.M., Dordick, J.S., 1994. Aqueous-like activity of α -chymotrypsin dissolved in
1593 nearly anhydrous organic solvents. *J. Am. Chem. Soc.* 116(11), 5009-5010.
- 1594 Park, H.J., Park, K., Yoo, Y.J., 2013. Understanding the effect of *tert*-butanol on *Candida*
1595 *antarctica* lipase B using molecular dynamics simulations. *Molecular Simulation* 39(8), 653-659.
- 1596 Park, S., Kazlauskas, R.J., 2001. Improved preparation and use of room-temperature ionic liquids
1597 in lipase-catalyzed enantio- and regioselective acylations. *J. Org. Chem.* 66(25), 8395-8401.
- 1598 Parker, M.-C., Brown, S.A., Robertson, L., Turner, N.J., 1998. Enhancement of *Candida*
1599 *antarctica* lipase B enantioselectivity and activity in organic solvents. *Chem. Commun.*, 2247-
1600 2248.

- 1601 Partridge, J., Halling, P.J., Moore, B.D., 1998. Practical route to high activity enzyme
1602 preparations for synthesis in organic media. *Chem. Commun.*, 841-842.
- 1603 Paul, D., Suzumura, A., Sugimoto, H., Teraoka, J., Shinoda, S., Tsukube, H., 2003. Chemical
1604 activation of cytochrome c proteins via crown ether complexation: Cold-active synzymes for
1605 enantiomer-selective sulfoxide oxidation in methanol. *J. Am. Chem. Soc.* 125(38), 11478-11479.
- 1606 Pavlidis, I.V., Gournis, D., Papadopoulos, G.K., Stamatis, H., 2009. Lipases in water-in-ionic
1607 liquid microemulsions. Structural and activity studies. *J. Mol. Catal. B: Enzym.* 60(1-2), 50-56.
- 1608 Peralta-Altier, G., Manta, C., Ovsejevi, K., 2018. Thiol-cyclodextrin: A new agent for
1609 controlling the catalytic activity of polyphenol oxidase from red delicious apple. *SDRP J. Food*
1610 *Sci. Technol.* 3(2), 269-279.
- 1611 Perriman, A.W., Brogan, A.P.S., Cölfen, H., Tsoureas, N., Owen, G.R., Mann, S., 2010.
1612 Reversible dioxygen binding in solvent-free liquid myoglobin. *Nature Chem.* 2, 622-626.
- 1613 Perriman, A.W., Cölfen, H., Hughes, R.W., Barrie, C.L., Mann, S., 2009. Solvent-free protein
1614 liquids and liquid crystals. *Angew. Chem. Int. Ed.* 48, 6242 -6246.
- 1615 Playne, M.J., Smith, B.R., 1983. Toxicity of organic extraction reagents to anaerobic bacteria.
1616 *Biotechnol. Bioeng.* 25(5), 1251-1265.
- 1617 Pogorevc, M., Stecher, H., Faber, K., 2002. A caveat for the use of log P values for the
1618 assessment of the biocompatibility of organic solvents. *Biotechnol. Lett.* 24(11), 857-860.
- 1619 Poole, P.L., Finney, J.L., 1983. Hydration-induced conformational and flexibility changes in
1620 lysozyme at low water content. *Int. J. Biol. Macromol.* 5 (5), 308-310.
- 1621 Pramanik, S., Dhone, G.V., Jaeger, K.-E., Schwaneberg, U., Davari, M.D., 2019. How To
1622 engineer ionic liquids resistant enzymes: Insights from combined molecular dynamics and
1623 directed evolution study. *ACS Sustainable Chem. Eng.* 7, 11293–11302.
- 1624 Ranke, J., Stolte, S., Störmann, R., Arning, J., Jastorff, B., 2007. Design of sustainable chemical
1625 products - The example of ionic liquids. *Chem. Rev.* 107(6), 2183-2206.
- 1626 Rariy, R.V., Klibanov, A.M., 1999. Protein refolding in predominantly organic media markedly
1627 enhanced by common salts. *Biotechnol. Bioeng.* 62(6), 704-710.
- 1628 Reetz, M.T., 2002. Directed evolution of selective enzymes and hybrid catalysts. *Tetrahedron*
1629 58(32), 6595-6602.
- 1630 Reetz, M.T., Carballeira, J.D., 2007. Iterative saturation mutagenesis (ISM) for rapid directed
1631 evolution of functional enzymes. *Nat. Protoc.* 2, 891-903.
- 1632 Rehmann, L., Ivanova, E., Ferguson, J.L., Gunaratne, H.Q.N., Seddon, K.R., Stephens, G.M.,
1633 2012. Measuring the effect of ionic liquids on laccase activity using a simple, parallel method.
1634 *Green Chem.* 14, 725-733.

- 1635 Reichardt, C., 1994. Solvatochromic dyes as solvent polarity indicators. *Chem. Rev.* 94, 2319-
1636 2358.
- 1637 Reinhoudt, D.N., Eendebak, A.M., Nijenhuis, W.F., Verboom, W., Kloosterman, M.,
1638 Schoemaker, H.E., 1989. The effect of crown ethers on enzyme-catalysed reactions in organic
1639 solvents. *J. Chem. Soc., Chem. Commun.*, 399-400.
- 1640 Ren, M.-Y., Bai, S., Zhang, D.-H., Sun, Y., 2008. pH memory of immobilized lipase for (±)-
1641 menthol resolution in ionic liquid. *J. Agric. Food Chem.* 56(7), 2388-2391.
- 1642 Reslow, M., Adlercreutz, P., Mattiasson, B., 1987a. Organic solvents for bioorganic synthesis 1.
1643 Optimization of parameters for a chymotrypsin catalyzed process. *Appl. Micro. Biotechnol.*
1644 26(1), 1-8.
- 1645 Reslow, M., Adlercreutz, P., Mattiasson, B., 1987b. Organic solvents for bioorganic synthesis 2.
1646 Influence of log P and water solubility in solvents on enzymatic activity, in: Laane, C., Tramper,
1647 J., Lilly, M.D. (Eds.), *Biocatalysis in Organic Media*. Elsevier, Amsterdam, pp. 349-353.
- 1648 Reslow, M., Adlercreutz, P., Mattiasson, B., 1988. On the importance of the support material for
1649 bioorganic synthesis : Influence of water partition between solvent, enzyme and solid support in
1650 water-poor reaction media. *Eur. J. Biochem.* 172(3), 573-578.
- 1651 Riess, J.G., 2005. Understanding the fundamentals of perfluorocarbons and perfluorocarbon
1652 emulsions relevant to in vivo oxygen delivery. *Artificial Cells, Blood Substitutes, and*
1653 *Biotechnology* 33(1), 47-63.
- 1654 Riva, S., Chopineau, J., Kieboom, A.P.G., Klibanov, A.M., 1988. Protease-catalyzed
1655 regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. *J.*
1656 *Am. Chem. Soc.* 110(2), 584-589.
- 1657 Roth, T., Beer, B., Pick, A., Sieber, V., 2017. Thermostabilization of the uronate dehydrogenase
1658 from *agrobacterium tumefaciens* by semi-rational design. *AMB Express* 7, 103.
- 1659 Röthlisberger, D., Khersonsky, O., Wollacott, A.M., Jiang, L., DeChancie, J., Betker, J.,
1660 Gallaher, J.L., Althoff, E.A., Zanghellini, A., Dym, O., Albeck, S., Houk, K.N., Tawfik, D.S.,
1661 Baker, D., 2008. Kemp elimination catalysts by computational enzyme design. *Nature* 453(7192),
1662 190-195.
- 1663 Roy, I., Gupta, M.N., 2004. Preparation of highly active α -chymotrypsin for catalysis in organic
1664 media. *Bioorg. Med. Chem. Lett.* 14(9), 2191-2193.
- 1665 Royon, D., Daz, M., Ellenrieder, G., Locatelli, S., 2007. Enzymatic production of biodiesel from
1666 cotton seed oil using *t*-butanol as a solvent. *Bioresour. Technol.* 98(3), 648-653.
- 1667 Ru, M.T., Hirokane, S.Y., Lo, A.S., Dordick, J.S., Reimer, J.A., Clark, D.S., 2000. On the salt-
1668 induced activation of lyophilized enzymes in organic solvents: effect of salt kosmotropicity on
1669 enzyme activity. *J. Am. Chem. Soc.* 122(8), 1565-1571.

- 1670 Ru, M.T., Wu, K.C., Lindsay, J.P., Dordick, J.S., Reimer, J.A., Clark, D.S., 2001. Towards more
1671 active biocatalysts in organic media: Increasing the activity of salt-activated enzymes.
1672 Biotechnol. Bioeng. 75(2), 187-196.
- 1673 Russell, A.J., Klibanov, A.M., 1988. Inhibitor-induced enzyme activation in organic solvents. J.
1674 Biol. Chem. 263, 11624-11626.
- 1675 Ryu, K., Dordick, J.S., 1992. How do organic solvents affect peroxidase structure and function?
1676 Biochemistry (Mosc). 31(9), 2588-2598.
- 1677 Sangster, J., 1989. Octanol-water partition coefficients of simple organic compounds. J. Phys.
1678 Chem. Ref. Data 18(3), 1111-1229.
- 1679 Santos, A.M., Clemente, I.M., Barletta, G., Griebelnow, K., 1999. Activation of serine protease
1680 subtilisin Carlsberg in organic solvents: combined effect of methyl- β -cyclodextrin and water.
1681 Biotechnol. Lett. 21, 1113-1118.
- 1682 Santos, A.M., Vidal, M., Pacheco, Y., Frontera, J., Báez, C., Ornellas, O., Barletta, G.,
1683 Griebelnow, K., 2001. Effect of crown ethers on structure, stability, activity, and
1684 enantioselectivity of subtilisin Carlsberg in organic solvents. Biotechnol. Bioeng. 74(4), 295-308.
- 1685 Schulze, B., Klibanov, A.M., 1991. Inactivation and stabilization of stabilisins in neat organic
1686 solvents. Biotechnol. Bioeng. 38(9), 1001-1006.
- 1687 ShabtaI, Y., Daya-Mishne, N., 1992. Production, purification, and properties of a lipase from a
1688 bacterium (*Pseudomonas aeruginosa* Ys-7) capable of growing in water-restricted environments.
1689 Appl. Environ. Microbial. 58(1), 174-180.
- 1690 Shah, S., Gupta, M.N., 2007. Obtaining high transesterification activity for subtilisin in ionic
1691 liquids. Biochim. Biophys. Acta - Gen. Sub. 1770(1), 94-98.
- 1692 Sharma, K.P., Zhang, Y., Thomas, M.R., Brogan, A.P.S., Perriman, A.W., Mann, S., 2014. Self-
1693 organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids
1694 and liquids. J. Phys. Chem. B 118, 11573-11580.
- 1695 Sheldon, R.A., 2007. Cross-linked enzyme aggregates (CLEAs): stable and recyclable
1696 biocatalysts. Biochem. Soc. Trans. 35(6), 1583-1587.
- 1697 Shimada, Y., Koga, C., Sugihara, A., Nagao, T., Takada, N., Tsunasawa, S., Tominaga, Y., 1993.
1698 Purification and characterization of a novel solvent-tolerant lipase from *Fusarium heterosporum*.
1699 J. Ferment. Bioeng. 75(5), 349-352.
- 1700 Shimizu, K., Costa Gomes, M.F., Pádua, A.A.H., Rebelo, L.P.N., Canongia Lopes, J.N., 2010.
1701 Three commentaries on the nano-segregated structure of ionic liquids. J. Mol. Struct.:
1702 THEOCHEM 946(1-3), 70-76.

- 1703 Shlmada, Y., Koga, C., Sngihara, A., Nagao, T., Takada, N., Tsnoasawa, S., Tomioaga, Y., 1993.
1704 Purification and characterization of a novel solvent-tolerant lipase from *Fusurium heterosporum*.
1705 J. Ferment. Bioeng. 75(5), 349-352.
- 1706 Siopa, F., Frade, R.F.M., Diniz, A., Andrade, J.M., Nicolai, M., Meirinhos, A., Lucas, S.D.,
1707 Marcelo, F., Afonso, C.A.M., Rijo, P., 2018. Acetylcholinesterase choline-based ionic liquid
1708 inhibitors: In vitro and in silico molecular docking studies. ACS Omega 3, 17145–17154.
- 1709 Siqueira, L.J.A., Ribeiro, M.C.C., 2009. Alkoxy chain effect on the viscosity of a quaternary
1710 ammonium ionic liquid: Molecular dynamics simulations. J. Phys. Chem. B. 113(4), 1074-1079.
- 1711 Smith, E.L., Abbott, A.P., Ryder, K.S., 2014. Deep eutectic solvents (DESs) and their
1712 applications. Chem. Rev. 114, 11060–11082.
- 1713 Smith, G.D., Borodin, O., Li, L., Kim, H., Liu, Q., Bara, J.E., Gin, D.L., Nobel, R., 2008. A
1714 comparison of ether- and alkyl-derivatized imidazolium-based room-temperature ionic liquids: a
1715 molecular dynamics simulation study. Phys. Chem. Chem. Phys. 10, 6301-6312.
- 1716 Solanki, K., Gupta, M.N., 2008. Optimising biocatalyst design for obtaining high
1717 transesterification activity by α -chymotrypsin in non-aqueous media. Chem. Central J. 2, 2.
- 1718 Ståhlberg, T., Woodley, J.M., Riisager, A., 2012. Enzymatic isomerization of glucose and xylose
1719 in ionic liquids. Catal. Sci. Technol. 2, 291-295.
- 1720 Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., Damborsky, J.,
1721 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3, 2823–2836.
- 1722 Stepankova, V., Damborsky, J., Chaloupkova, R., 2015. Hydrolases in non-conventional media:
1723 Implications for industrial biocatalysis, in: Grunwald, P. (Ed.) Industrial Biocatalysis. Pan
1724 Stanford Publishing.
- 1725 Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., Tominaga, Y., 1992. Purification and
1726 characterization of a novel thermostable lipase from *Pseudomonas cepucia*. J. Biochem. 112(5),
1727 598-603.
- 1728 Sule, N.V., Ugrinov, A., Mallik, S., Srivastava, D.K., 2015. Bridging of a substrate between
1729 cyclodextrin and an enzyme's active site pocket triggers a unique mode of inhibition. Biochim.
1730 Biophys. Acta 1850, 141-149.
- 1731 Takwa, M., Larsen, M.W., Hult, K., Martinelle, M., 2011. Rational redesign of *Candida*
1732 *antarctica* lipase B for the ring opening polymerization of D,D-lactide. Chem. Commun. 47,
1733 7392-7394.
- 1734 Tang, S., Baker, G.A., Ravula, S., Jones, J.E., Zhao, H., 2012a. PEG-functionalized ionic liquids
1735 for cellulose dissolution and saccharification. Green Chem. 14(10), 2922-2932.
- 1736 Tang, S., Baker, G.A., Zhao, H., 2012b. Ether- and alcohol-functionalized task-specific ionic
1737 liquids: attractive properties and applications. Chem. Soc. Rev. 41(10), 4030-4066.

- 1738 Tantayotai, P., Rachmontree, P., Rodiahwati, W., Rattanaporn, K., Sriariyanun, M., 2016.
1739 Production of ionic liquid-tolerant cellulase produced by microbial consortium and its
1740 application in biofuel production. Energy Procedia 100, 155-159.
- 1741 Theppakorn, T., Kanasawud, P., Halling, P.J., 2004. Activity of immobilized papain dehydrated
1742 by *n*-propanol in low-water media. Biotechnol. Lett. 26(2), 133-136.
- 1743 Timson, D.J., 2019. Four challenges for better biocatalysts. Fermentation 5, 39.
- 1744 Toral, A.R., de los Ríos, A.P., Hernández, F.J., Janssen, M.H.A., Schoevaart, R., van Rantwijk,
1745 F., Sheldon, R.A., 2007. Cross-linked *Candida antarctica* lipase B is active in denaturing ionic
1746 liquids. Enzyme Microb. Technol. 40(5), 1095-1099.
- 1747 Triantafyllou, A.Ö., Adlercreutz, P., Mattiasson, B., 1993. Influence of the reaction medium on
1748 enzyme activity in bio-organic synthesis: Behaviour of lipase from *Candida rugosa* in the
1749 presence of polar additives. Biotechnol. Appl. Biochem. 17, 167-179.
- 1750 Turner, M.B., Holbrey, J.D., Spear, S.K., Pusey, M.L., Rogers, R.D., 2005. Effect of oxygen-
1751 containing functional groups on protein stability in ionic liquid solutions, in: Rogers, R.D.,
1752 Seddon, K.R. (Eds.), ACS Symposium Series 902 (Ionic Liquids IIIB: Fundamentals, Progress,
1753 Challenges, and Opportunities). American Chemical Society, Washington DC, pp. 233-243.
- 1754 Turner, M.B., Spear, S.K., Huddleston, J.G., Holbrey, J.D., Rogers, R.D., 2003. Ionic liquid salt-
1755 induced inactivation and unfolding of cellulase from *Trichoderma reesei*. Green Chem. 5, 443-
1756 447.
- 1757 Ueji, S., Nishimura, M., Kudo, R., Matsumi, R., Watanabe, K., Ebara, Y., 2001. A dramatic
1758 improvement of enantioselectivity of lipase in organic solvents by addition of aqueous SDS: A
1759 close correlation between enantioselectivity and conformational flexibility of lipase. Chem. Lett.
1760 30(9), 912-913.
- 1761 Uppenberg, J., Hansen, M.T., Patkar, S., Jones, T.A., 1994. The sequence, crystal structure
1762 determination and refinement of two crystal forms of lipase B from *Candida antarctica*.
1763 Structure 2(4), 293-308.
- 1764 Uppenberg, J., Oehrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V.,
1765 Anthonsen, T., Jones, T.A., 1995. Crystallographic and molecular-modeling studies of lipase B
1766 from *Candida antarctica* reveal a stereospecificity pocket for secondary alcohols. Biochemistry
1767 (Mosc). 34(51), 16838-16851.
- 1768 Vafiadi, C., Topakas, E., Nahmias, V.R., Faulds, C.B., Christakopoulos, P., 2009. Feruloyl
1769 esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. J. Biotechnol.
1770 139(1), 124-129.
- 1771 Valivety, R.H., Halling, P.J., Macrae, A.R., 1992. Reaction rate with suspended lipase catalyst
1772 show similar dependence on water activity in differeny organic solvents. Biochim. Biophys. Acta
1773 - Protein Structure and Molecular Enzymology 1118(3), 218-222.

- 1774 van Rantwijk, F., Secundo, F., Sheldon, R.A., 2006. Structure and activity of *Candida antarctica*
1775 lipase B in ionic liquids. *Green Chem.* 8, 282-286.
- 1776 van Rantwijk, F., Sheldon, R.A., 2007. Biocatalysis in ionic liquids. *Chem. Rev.* 107(6), 2757-
1777 2785.
- 1778 van Tol, J.B.A., Stevens, R.M.M., Veldhuizen, W.J., Jongejan, J.A., Duine, J.A., 1995. Do
1779 organic solvents affect the catalytic properties of lipase? Intrinsic kinetic parameters of lipases in
1780 ester hydrolysis and formation in various organic solvents. *Biotechnol. Bioeng.* 47(1), 71-81.
- 1781 van Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N., 1998a. Effects of crown ethers on the
1782 activity of enzymes in peptide formation in organic media, in: Ballesteros, A., Plou, F.J., Iborra,
1783 J.L., Halling, P.J. (Eds.), *Stability and Stabilization of Biocatalysts*. Elsevier, pp. 429-434.
- 1784 van Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N., 1998b. Large acceleration of α -
1785 chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents. *Biotechnol.*
1786 *Bioeng.* 59(5), 553-556.
- 1787 van Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N., 2001. Studies on the mechanism of crown-
1788 ether-induced activation of enzymes in non-aqueous media. *J. Mol. Catal. B: Enzym.* 11(4-6),
1789 877-882.
- 1790 van Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N., 2002. Why do crown ethers activate
1791 enzymes in organic solvents? *Biotechnol. Bioeng.* 77(3), 248-255.
- 1792 van Unen, D.-J., Sakodinskaya, I.K., Engbersen, J.F.J., Reinhoudt, D.N., 1998c. Crown ether
1793 activation of cross-linked subtilisin Carlsberg crystals in organic solvents. *J. Chem. Soc., Perkin*
1794 *Trans. 1*, 3341-3343.
- 1795 Vila-Real, H., Alfaia, A.J., Rosa, J.N., Gois, P.M.P., Rosa, M.E., Calado, A.R.T., Ribeiro, M.H.,
1796 2011. α -Rhamnosidase and β -glucosidase expressed by naringinase immobilized on new ionic
1797 liquid sol-gel matrices: Activity and stability studies. *J. Biotechnol.* 152(4), 147-158.
- 1798 Villela Filho, M., Stillger, T., Müller, M., Liese, A., Wandrey, C., 2003. Is $\log P$ a convenient
1799 criterion to guide the choice of solvents for biphasic enzymatic reactions? *Angew. Chem. Int. Ed.*
1800 42(26), 2993-2996.
- 1801 Walker, A.J., Bruce, N.C., 2004a. Cofactor-dependent enzyme catalysis in functionalized ionic
1802 solvents. *Chem. Commun.*, 2570-2571.
- 1803 Walker, A.J., Bruce, N.C., 2004b. Combined biological and chemical catalysis in the preparation
1804 of oxycodone. *Tetrahedron* 60(3), 561-568.
- 1805 Wallert, S., Drauz, K., Grayson, I., Gröger, H., Dominguez de Maria, P., Bolm, C., 2005. Ionic
1806 liquids as additives in the pig liver esterase (PLE) catalysed synthesis of chiral disubstituted
1807 malonates. *Green Chem.* 7, 602-605.

- 1808 Wan, X., Tang, S., Xiang, X., Huang, H., Hu, Y., 2017a. Immobilization of *Candida antarctic*
1809 lipase B on functionalized ionic liquid modified MWNTs. *Appl. Biochem. Biotechnol.* 183, 807-
1810 819.
- 1811 Wan, X., Xiang, X., Tang, S., Yu, D., Huang, H., Hu, Y., 2017b. Immobilization of *Candida*
1812 *antarctic* lipase B on MWNTs modified by ionic liquids with different functional groups.
1813 *Colloids Surf. B* 160, 416-422.
- 1814 Wandrey, C., Liese, A., Kihumbu, D., 2000. Industrial biocatalysis: Past, present, and future.
1815 *Org. Proc. Res. Dev.* 4(4), 286-290.
- 1816 Wang, S., Meng, X., Zhou, H., Liu, Y., Secundo, F., Liu, Y., 2016a. Enzyme stability and
1817 activity in non-aqueous reaction systems: A mini review. *Catalysts* 6(2), 32.
- 1818 Wang, Y.-L., Sarman, S., Glavatskikh, S., Antzutkin, O.N., Rutland, M.W., Laaksonen, A., 2015.
1819 Atomistic insight into tetraalkylphosphonium-bis(oxalato)borate ionic liquid/water mixtures. I.
1820 Local microscopic structure. *J. Phys. Chem. B* 119, 5251-5264.
- 1821 Wang, Y.-L., Shimpi, M.R., Sarman, S., Antzutkin, O.N., Glavatskikh, S., Kloo, L., Laaksonen,
1822 A., 2016b. Atomistic insight into tetraalkylphosphonium bis(oxalato)borate ionic liquid/water
1823 mixtures. 2. Volumetric and dynamic properties. *J. Phys. Chem. B* 120, 7446-7455.
- 1824 Wangikar, P.P., Michels, P.C., Clark, D.S., Dordick, J.S., 1997. Structure and function of
1825 subtilisin BPN' solubilized in organic solvents. *J. Am. Chem. Soc.* 119(1), 70-76.
- 1826 Watanabe, Y., Makino, Y., Omichi, K., 2006. Activation of 4- α -glucanotransferase activity of
1827 porcine liver glycogen debranching enzyme with cyclodextrins. *J. Biochem.* 140, 135-140.
- 1828 Wijaya, E.C., Separovic, F., Drummond, C.J., Greaves, T.L., 2016. Activity and conformation of
1829 lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems. *Phys. Chem.*
1830 *Chem. Phys.* 18, 25926-25936.
- 1831 Wong, C.-H., Chen, S.-T., Hennen, W.J., Bibbs, J.A., Wang, Y.F., Liu, J.L.C., Pantoliano, M.W.,
1832 Whitlow, M., Bryan, P.N., 1990. Enzymes in organic synthesis: Use of subtilisin and a highly
1833 stable mutant derived from multiple site-specific mutations. *J. Am. Chem. Soc.* 112(3), 945-953.
- 1834 Woodward, C.A., Kaufman, E.N., 1996. Enzymatic catalysis in organic solvents: Polyethylene
1835 glycol modified hydrogenase retains sulphhydrogenase activity in toluene. *Biotechnol. Bioeng.*
1836 52(3), 423-428.
- 1837 Xiang, X., Suo, H., Xu, C., Hu, Y., 2018. Covalent immobilization of lipase onto chitosan-
1838 mesoporous silicahybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling
1839 agent. *Colloids Surf. B* 165, 262-269.
- 1840 Xu, J., Wang, X., Liu, X., Xia, J., Zhang, T., Xiong, P., 2016. Enzymatic *in situ* saccharification
1841 of lignocellulosic biomass in ionic liquids using an ionic liquid-tolerant cellulases. *Biomass*
1842 *Bioenergy* 93 180-186.

- 1843 Xu, K., Griebenow, K., Klibanov, A.M., 1997. Correlation between catalytic activity and
1844 secondary structure of subtilisin dissolved in organic solvents. Biotechnol. Bioeng. 56(5), 485-
1845 491.
- 1846 Xu, P., Zheng, G., Zong, M., Li, N., Lou, W., 2017. Recent progress on deep eutectic solvents in
1847 biocatalysis. Bioresour. Bioprocess. 4, 34.
- 1848 Yan, F., Xia, S., Wang, Q., Ma, P., 2012. Predicting toxicity of ionic liquids in
1849 acetylcholinesterase enzyme by the quantitative structure-activity relationship method using
1850 topological indexes. J. Chem. Eng. Data 57, 2252-2257.
- 1851 Yan, W., Li, F., Wang, L., Zhu, Y., Dong, Z., Bai, L., 2017. Discovery and characterizaton of a
1852 novel lipase with transesterification activity from hot spring metagenomic library. Biotechnology
1853 Reports 14, 27-33.
- 1854 Yang, L., Dordick, J.S., Garde, S., 2004. Hydration of enzyme in nonaqueous media is consistent
1855 with solvent dependence of its activity. Biophys. J. 87, 812-821.
- 1856 Yang, Y., Shi, Y., Feng, L., Tian, S., 2020. Coupling of bioreaction and separation via novel
1857 thermosensitive ionic liquids applied in the baker's yeast-catalyzed reduction of ethyl 2-oxo-4-
1858 phenylbutyrate. Molecules 25, 2056.
- 1859 Yang, Z., Zacherl, D., Russell, A.J., 1993. pH Dependence of subtilisin dispersed in organic
1860 solvents. J. Am. Chem. Soc. 115, 12251-12257.
- 1861 Yilmaz, D.E., Sayar, N.A., 2015. Organic solvent stable lipase from *Cryptococcus diffluens* D44
1862 isolatedfrom petroleum sludge. J. Mol. Catal. B: Enzym. 122, 72-79.
- 1863 Zaks, A., Klibanov, A.M., 1984. Enzymatic catalysis in organic media at 100 °C. Science 224,
1864 1249-1251.
- 1865 Zaks, A., Klibanov, A.M., 1985. Enzyme-catalyzed processes in organic solvents. Proc. Natl.
1866 Acad. Sci. USA 82, 3192-3196.
- 1867 Zaks, A., Klibanov, A.M., 1988a. The effect of water on enzyme action in organic media. J. Biol.
1868 Chem. 263, 8017-8021.
- 1869 Zaks, A., Klibanov, A.M., 1988b. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem.
1870 263, 3194-3201.
- 1871 Zhang, K.-P., Lai, J.-Q., Huang, Z.-L., Yang, Z., 2011. *Penicillium expansum* lipase-catalyzed
1872 production of biodiesel in ionic liquids. Bioresour. Technol. 102(3), 2767-2772.
- 1873 Zhang, Y., Zhang, S., Lu, X., Zhou, Q., Fan, W., Zhang, X., 2009. Dual amino-functionalised
1874 phosphonium ionic liquids for CO₂ capture. Chem. Eur. J. 15, 3003-3011.

- 1875 Zhang, Z., Muschiol, J., Huang, Y., Sigurdardóttir, S.B., von Solms, N., Daugaard, A.E., Wei, J.,
1876 Luo, J., Xu, B., Zhang, S., Pinelo, M., 2018. Efficient ionic liquid-based platform for multi-
1877 enzymatic conversion of carbon dioxide to methanol. *Green Chem.* 20, 4339-4348.
- 1878 Zhao, H., 2005. Effect of ions and other compatible solutes on enzyme activity, and its
1879 implication for biocatalysis using ionic liquids. *J. Mol. Catal. B: Enzym.* 37, 16-25.
- 1880 Zhao, H., 2016. Protein stabilization and enzyme activation in ionic liquids: specific ion effects.
1881 *J. Chem. Technol. Biotechnol.* 91, 25-50.
- 1882 Zhao, H., Afriyie, L.O., Larm, N.E., Baker, G.A., 2018. Glycol-functionalized ionic liquids for
1883 hight-emperature enzymatic ring-opening polymerization. *RSC Adv.* 8, 36025-36033.
- 1884 Zhao, H., Baker, G.A., 2013. Ionic liquids and deep eutectic solvents for biodiesel synthesis: A
1885 review. *J. Chem. Tech. Biotechnol.* 88(1), 3-12.
- 1886 Zhao, H., Baker, G.A., Cowins, J.V., 2010a. Fast enzymatic saccharification of switchgrass after
1887 pretreatment with ionic liquids. *Biotechnol. Prog.* 26(1), 127-133.
- 1888 Zhao, H., Baker, G.A., Holmes, S., 2011. New eutectic ionic liquids for lipase activation and
1889 enzymatic preparation of biodiesel. *Org. Biomol. Chem.* 9(6), 1908-1916.
- 1890 Zhao, H., Baker, G.A., Song, Z., Olubajo, O., Crittle, T., Peters, D., 2008. Designing enzyme-
1891 compatible ionic liquids that can dissolve carbohydrates. *Green Chem.* 10(6), 696-705.
- 1892 Zhao, H., Baker, G.A., Song, Z., Olubajo, O., Zanders, L., Campbell, S.M., 2009a. Effect of
1893 ionic liquid properties on lipase stabilization under microwave irradiation. *J. Mol. Catal. B:
1894 Enzym.* 57, 149-157.
- 1895 Zhao, H., Harter, G.A., Martin, C.J., 2019a. "Water-like" dual-functionalized ionic liquids for
1896 enzyme activation. *ACS Omega* 4(12), 15234-15239.
- 1897 Zhao, H., Jones, C.L., Baker, G.A., Xia, S., Song, Z., Olubajo, O., Person, V.N., 2009b.
1898 Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. *J. Biotechnol.*
1899 139(1), 47-54.
- 1900 Zhao, H., Jones, C.L., Cowins, J.V., 2009c. Lipase dissolution and stabilization in ether-
1901 functionalized ionic liquids. *Green Chem.* 11(8), 1128-1138.
- 1902 Zhao, H., Kanpadee, N., Jindarat, C., 2019b. Ether-functionalized ionic liquids for nonaqueous
1903 biocatalysis: Effect of different cation cores. *Process Biochem.* 81, 104-112.
- 1904 Zhao, H., Song, Z., 2010. Migration of reactive trace compounds from Novozym® 435 into
1905 organic solvents and ionic liquids. *Biochem. Eng. J.* 49(1), 113-118.
- 1906 Zhao, H., Song, Z., Olubajo, O., 2010b. High transesterification activities of immobilized
1907 proteases in new ether-functionalized ionic liquids. *Biotechnol. Lett.* 32(8), 1109-1116.

- 1908 Zhao, H., Song, Z., Olubajo, O., Cowins, J.V., 2010c. New ether-functionalized ionic liquids for
1909 lipase-catalyzed synthesis of biodiesel. *Appl. Biochem. Biotechnol.* 162(1), 13-23.
- 1910 Zhao, H., Toe, C., 2020. "Water-like" ammonium-based ionic liquids for lipase activation and
1911 enzymatic polymerization. *Process Biochem.* 98, 59-64.
- 1912 Zhou, H., Chen, J., Ye, L., Lin, H., Yuan, Y., 2011. Enhanced performance of lipase-catalyzed
1913 kinetic resolution of secondary alcohols in monoether-functionalized ionic liquids. *Biores.*
1914 *Technol.* 102(10), 5562-5566.
- 1915 Zhou, J., Sui, H., Jia, Z., Yang, Z., He, L., Li, X., 2018. Recovery and purification of ionic
1916 liquids from solutions: a review. *RSC Adv.* 8, 32832-32864.
- 1917 Zou, B., Song, C., Xu, X., Xia, J., Huo, S., Cui, F., 2014. Enhancing stabilities of lipase by
1918 enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials. *Appl.*
1919 *Surf. Sci.* 311, 62-67.
- 1920
- 1921