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Abstract—This paper copes with the state estimation and topol-
ogy identification problems in direct current (DC) networks. This
problem is challenging due to binary decisions and nonlinear rela-
tions between sensor measurements and state variables. We intro-
duce a non-convex nuclear norm estimator whose non-convexity is
addressed by incorporating two inertia terms. In the presence of
noise, penalty terms are integrated into the objective function to
estimate unknown noise values. Numerical results for the modified
IEEE 9-bus, 14-bus, and 30-bus systems corroborate the merits
of the proposed technique. Furthermore, this technique is experi-
mentally validated for a converter-augmented 14-bus system in a
real-time hardware-in-the-loop platform.

Index Terms—Convex optimization, DC network, state
estimation, topology identification.

I. INTRODUCTION

D
IRECT current (DC) networks are gaining prominence

with the increasing penetration of DC loads, storages,

and sources, since they offer improved efficiency in conver-

sion/distribution over alternating current (AC) networks. For

static distribution topologies, estimation techniques can extract

the system state to be used in network analysis, control, opti-

mization, or diagnostic under normal, emergency, or restorative

operations [1]. The most recent topology information is needed

to meaningfully carry out the state estimation process; any error

or misconfiguration in the assumed topology could result in

inappropriate control decisions [2], [3]. Incorporating statuses of

the lines, that collectively describe the overall network topology,

into the state estimation process is challenging as they introduce

binary variables [4], [5]. Moreover, converter-populated DC

networks might employ fewer sensors due to cost, security, or

privacy concerns, leading to low-observability conditions.

The state estimation process is conventionally expressed as a

nonlinear least-squares problem [6]. The weighted least-squares

(WLS) estimation criterion has been employed in practice to

filter out Gaussian measurement noise with certain statistical

properties [7], [8]. As WLS is susceptible to gross measurement

errors, other gross error detection and identification methods
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have been proposed to perform accurate state estimation [8]–

[12]. Given their non-convex problem formulation, the Gauss-

Newton algorithm is sensitive to the initial points, and might

converge to local minima [13]. Convex relaxation methods can

either directly solve the estimation problem [14] or provide

an initial guess for the Newton’s method [15]. Convergence

guarantees for the estimation process using convex relaxation

techniques are given in [16]. With measurement redundancy,

incorporating penalty terms in the formulation of the objective

function can help cleansing noise and bad data [17]–[19]. These

techniques, however, assume a fixed network topology.

Topology identification is either a prerequisite to the es-

timation process, or should be considered concurrently. The

combined problem can be handled using a Gauss-Newton, e.g.,

generalized state estimation (GSE) [4], or convex relaxation

methods [5]. Inverse power flow formulation can describe the

network topology through a nodal admittance matrix [20].

These studies usually assume imperfect but highly-redundant

measurement. Low-observability condition refers to the sparse

sensor that results in an under-determined system. With proper

placement, fewer sensors might be needed to observe the net-

work [21], [22]. [23] finds the required minimal set of mea-

surement so that an unobservable network can become observ-

able. Alternative non-iterative numerical solutions are proposed

in [24], [25]. However, even an observable network may tem-

porarily become unobservable due to topological changes or

failure in the communication. The sensor placement procedures,

considering topology changes or communication failures, are

developed in [26]–[28]. Additional sensors placement [29] or

pseudo measurements from existing sensors data [30] come

with an additional cost, computational burden, or estimation

errors [31].

The matrix completion method, that offers a solution to

an under-determined system, has been applied to distribution

networks with poor sensors installation [32], [33]. While the

joint state estimation and topology identification problem has

been studied for AC networks [5], its solution has not yet been

elaborated under low-observability conditions [31], [34]–[37].

Moreover, state estimation and topology identification of DC

networks are rare in the literature [38]–[40], and have not even

considered the observability conditions.

We leverage the physical properties of DC networks to de-

velop a joint estimation and topology identification algorithm

using a limited number of measurement. We formulate this

as a non-convex mixed-binary problem, develop a non-convex

nuclear norm estimator, and address this non-convexity by using

two inertia terms. The presence of zero injection buses (i.e.,
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a bus with no load or converter) is used to strengthen the

convex relaxation and decrease the number of required sensors.

The resulting formulation does not rely on prior knowledge of

unmonitored line-statuses, current, or power flow measurements

that could infer topology information. The devised convex op-

timization framework is robustified against noise by upgrading

to a penalized convex program. This formulation is in a generic

form, and can be solved with various numerical solvers.

The rest of this paper has the following organization: Sec-

tion II discusses the preliminaries. Section III presents the joint

state estimation and topology identification problem for noise-

less measurements. This non-convex problem is transformed

into convex surrogate using two inertia terms and, then, ex-

tended to accommodate noisy measurements. In Section IV, the

resulting state estimation and topology identification solution

is verified through numerical and experimental benchmarks.

Section V finalizes the paper.

II. NOTATIONS AND TERMINOLOGIES

A. Notations

Throughout this paper, bold uppercase (A) and lowercase

letters (a) refer to the matrices and vectors, respectively. The

symbols 1n and 0n represent n× 1 vectors of ones and zeros,

respectively. 0n×m refers to a zero matrix of size n×m. In×n

indicates an identity matrix of size n× n. The symbol R defines

the sets of real numbers. The entries of a matrix are presented

by indices (i, j). (·)⊤ indicates the transpose of a matrix. | · |
refers the cardinality of a set or the absolute value of a vec-

tor/scalar. Tr(·) shows to the trace of a matrix. ‖ · ‖2 stands

for the euclidean norm of its argument vector. ‖ · ‖∗ represents

the nuclear norm of its argument matrix. A vector composed

from diagonal entries of a matrix is shown by diag{·}. X � 0
indicates a positive semi-definite matrix.

B. Terminologies

On a DC network, distribution lines are resistive and DC-

DC power electronics converters interface energy resources to

the distribution network as demonstrated in Fig. 1. DC network

can be articulated using a directed graph, H = (N ,L) with N
and L sets, respectively, representing buses and lines. Every bus

can accommodate a DC-DC converter, a resistive load, and/or a

constant power load.

Define the pair �L, �L ∈ {0, 1}|L|×|N |, respectively, as the from

and to line incidence matrices. �Ll,i = 1 if the line l starts

at bus i. �Ll,i = 1 implies that the line l ends at bus i. The

conductance of a line l ∈ L is gl, with g ∈ R
|L| as the line

conductance vector. G ∈ R
|N |×|N | is the bus conductance ma-

trix. �G and �G ∈ R
|L|×|N | are, respectively, the from and to line

conductance matrices.

Let n define the number of buses, i.e., n = |N |. v =
[v1, v2, . . ., vn]

⊤ is the vector of voltages with vk ∈ R as the

voltage at bus k ∈ N . Let ik ∈ R refer to the current-injection

at busk ∈ N , while i =[i1, i2, . . ., in]
⊤is the corresponding vec-

tor. Given a line l ∈ L, there are two current signals,�ıl ∈ R and

�ıl ∈ R, entering the line via its from and to ends, respectively.

Fig. 1. Three bus DC distribution network is equipped with sensors at buses 1
and 2 and the line between buses 1-3 to collect data (v̂1, x̂2, ı̂1, ı̂2). Optimizer
jointly performs state estimation and topology identification using these limited
measurements, and infers unknown voltage, v2, v3, and statuses of the lines,
x1, x3.

�ı =[�ı1,�ı2, . . .,�ı|L|]
⊤ and �ı =[ �ı1, �ı2, . . ., �ı|L|]

⊤ are the vectors of

corresponding composites. We assume there is no interlinking

converter in the network; hence�ı = − �ı. v̂k, ı̂k, and x̂l denote the

measured voltage as well as the current-injection at bus k ∈ N ,

and the status of line l ∈ L, respectively. vk and xl refer to the

estimated voltage at bus k ∈ N , and the identified status of the

line l ∈ L, respectively.

III. JOINT STATE ESTIMATION AND TOPOLOGY IDENTIFICATION

A. Problem Formulation

We will exploit the power flow equations of a DC network to

express this problem as a constrained minimization program.

The available measurements are: (i) voltage values at some

of the randomly-chosen buses, (ii) current-injection values at

some of the randomly-chosen buses, and (iii) some of the line

statuses. The Ohm’s law dictates that the current flow from both

sides of each line, and the current-injection at each bus, can be

respectively represented as

�ı = diag{�Gvx⊤}, �ı = −�ı, (1)

i = �L
⊤
�ı+ �L

⊤
�ı. (2)

Note that (1) and (2) hold true unless there is an interlinking

converter on the line.

The state estimation and topology identification algorithm

simultaneously finds the voltage vector, v, and the line-status

vector, x, while satisfying all the measurement equations

find v ∈ R
|N |,x ∈ R

|L| (3a)

subject to vk = v̂k ∀k∈Sv (3b)

e⊤k diag{Gvx⊤} = ı̂k ∀k∈Si (3c)

xlb ≤ x ≤ xub (3d)

x ∈ {0, 1}|L| (3e)
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where {e1, . . ., eN} are the basis vectors in R
n. Here, measure-

ment equations refer to the nonlinear relations between sensor

outputs and state variables as in (3c). For xlb and xub, the

conditional expressions can be given as

xl
lb=xl

ub=1, if line l∈L is known to be connected,

xl
lb=xl

ub=0, if line l∈L is known to be disconnected,

xl
lb=0, xl

ub=1, if the status of line l is undetermined.

Here, xl
lb and xl

ub refer to the lower and upper bound of line

statuses.

Equation (3b) enforces the voltage value to be equal to the

sensor measurement if the corresponding bus is equipped with a

voltage sensor (i.e., a monitored bus). vk and v̂k denote voltage

values to be estimated and to be measured for every bus k ∈
Sv , respectively. Sv denotes the set of voltage measurements.

Equality constraint (3c) aims to find the voltage value and line

status that fit the corresponding input value, ı̂k, from a set of

current-injection measurements, Si. Problem (3) is non-convex

because of vector multiplication in vx⊤ and the binary variables

accounting for the statuses of the lines. Next, we offer a convex

reformulation alternative.

B. Convexification of the Problem Formulation

We introduce the following convex optimization problem

using the auxiliary variable A accounting for vx⊤

minimize
A∈R|N |× |L|

v ∈R|N |

x∈R|L|

‖M
1
2(A−vx⊤)N

1
2 ‖∗+‖v−v0‖

2
M+‖x−x0‖

2
N

(4a)

subject to vk = v̂k ∀k∈Sv (4b)

e⊤k diag{GA} = ı̂k ∀k∈Si (4c)

e⊤kA = v̂kx
⊤ ∀k∈Sv (4d)

Ad⊤
l = vx̂l ∀l∈Sx (4e)

xlb ≤ x ≤ xub (4f)

v(xlb)⊤ ≤ A ≤ v(xub)⊤ (4g)

where M ≻ 0 and N ≻ 0 are arbitrary basis matrices to be

designed later. {d1, . . .,dL} are the standard basis vectors in

R
|L|. v0 and x0 are the initial guesses for the elements of

the voltage and the line-status vectors. They are chosen as

the nominal voltage value, 1 per-unit and 1n, respectively, to

satisfy flat start operating conditions and imply a fully-connected

network.

Notice that the bi-linear term vx⊤ in (3c) is replaced by A

in (4c) and, therefore, we are dealing with a linear constraint.

The nuclear norm term, ‖A−vx⊤‖∗, implicitly imposes the non-

convex equality A � vx⊤ by penalizing the difference.

Proposition 1: Let v∗ andx∗ be the solution to (3), and define

A∗ � v∗x∗⊤. The constraints in (4d), (4e), and (4g) are valid

for A, v, and x⊤.

Proof: Consider arbitrary voltage and line-status vectors v

and x, respectively. Let v∗ and x∗ be the solutions to (3), when

voltage and current-injection measurements are chosen from the

sets Sv and Si, respectively. Constraint (4d) becomes

e⊤kA
∗ = e⊤kv

∗x⊤ = vkx
⊤ ∀k∈Sv. (5)

This implies that the constraint (4d) holds for any given k ∈ N .

For every l ∈ L, (4e) leads to the following equality

A∗d⊤
l = v∗x⊤d⊤

l = vxl ∀l∈Sx, (6)

where it shows that vxl becomes equivalent to (4e). Similarly,

for every k ∈ N and l ∈ L, (4g) becomes

xl
lb ≤ xl

∗ ≤ xl
ub, (7a)

⇒ vk
∗xl

lb ≤ vk
∗xl

∗ ≤ vk
∗xl

ub, (7b)

⇒ vk
∗xl

lb ≤ Akl
∗ ≤ vk

∗xl
ub. (7c)

Note that (4g), (7b), and (7c) are equivalent. Equations (5), (6),

and (7) complete the proof for the valid inequalities in (4). �

Remark 1: Observe that the nuclear norm term in (4a), ‖A−
vx⊤‖∗ is non-convex. The inertia terms ‖v−v0‖

2
M

and ‖x−
x0‖

2
N

are added to convexify the overall objective function.

This is formally stated by the following theorem.

Remark 2: The presence of matrices M and N indicates that

the choice of basis can be arbitrary. We will demonstrate howM

andN can boost the convergence rate of the proposed approach.

A penalty term induced by a physical quantity, such as loss, can

help address the non-convexity.

Theorem 1: The function f : R
n×l × R

n × R
l → R, defined

as

f(A,v,x)�‖M
1
2 (A−vx⊤)N

1
2 ‖∗

+ ‖v − v0‖
2
M + ‖x− x0‖

2
N , (8)

is convex.

Proof: Define new variables B � M
1
2AN

1
2 , s � M

1
2 v,

and r � N
1
2x. It suffices to show that the following function is

convex:

g(B, s, r) � ‖B − sr⊤‖∗ + ‖s‖22 + ‖r‖22. (9)

According to triangle inequality we have:

g(Λ,ν, ξ)− θg(B1, s1, r1)− (1− θ)g(B2, s2, r2) ≤ 0,
(10)

where Λ, ν, and ξ are

Λ = θB1 + (1− θ)B2, (11a)

ν = θs1 + (1− θ)s2, (11b)

ξ = θr1 + (1− θ)r2. (11c)

The inequality in (10) can be expanded as
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‖Λ−[ν][ξ]⊤‖∗−θ‖B1−s1r
⊤
1‖∗−(1− θ)‖B2 − s2r

⊤
2‖∗

≤ ‖θs1r
⊤
1 + (1− θ)s2r

⊤
2 − [ν][ξ]⊤‖∗

= θ(1− θ)‖s1 − s2‖2‖r1 − r2‖2. (12)

Further simplification of (12) leads to

‖ν‖22+‖ξ‖22 − θ(‖s1‖
2
2+‖r1‖

2
2)−(1−θ)(‖s2‖

2
2 + ‖r2‖

2
2)

= − θ(1− θ)[‖s1 − s2‖
2
2 + ‖r1 − r2‖

2
2], (13)

which completes the proof of Theorem 1. �

C. The Choice of Basis Matrices

The original problem in (3) has been expressed as a convex

optimization problem (4) with basis matrices M and N . These

basis matrices should be chosen properly such that the solution

to (4) satisfies the problem in (3). Inspired by [19], matrix M is

chosen to represent the network’s total power loss.

Power flow on a line l ∈ L can be calculated for the two

neighboring buses (i, j) ∈ N as

�pl = vi(vi − vj)glxl, (14a)

�pl = vj(vj − vi)glxl, (14b)

where �pl and �pl denote the power flow from the starting and

ending sides of each line l ∈ L. Power loss on a line is

�pl + �pl = vi(vi − vj)glxl + vj(vj − vi)glxl (15a)

= (vi
2 − vivj + vj

2 − vivj)glxl (15b)

= (vi
2 + vj

2 − 2vivj)glxl (15c)

= (vi − vj)(glxl)(vi − vj)
⊤. (15d)

The total power loss is the sum of power flows entering the

lines through their starting and ending buses as

�p = diag{�Lv v⊤ �G
⊤
}, �p = diag{ �Lv v⊤ �G

⊤
} (16a)

∑

(�p+ �p) = Tr(v v⊤(�G
⊤ �L+ �G

⊤ �L)) (16b)

= v⊤ (�G
⊤ �L+ �G

⊤ �L)v. (16c)

Using (16c), we can choose M as

M = (�G
⊤ �L+ �G

⊤ �L). (17)

Notice that ifM is chosen as in (17), which is actually equal to

the conductance matrix G, loss minimization will be indirectly

embedded in the objective function (4a) with a proper choice of

N . N = I l×l implicitly penalizes the power loss over all the

lines as given in (15).

D. Strengthening the Convex Relaxation

Power networks usually have intermediate buses (or hidden

nodes [20]) that do not demand/supply power or current with

any external source or load, e.g., see bus 3 in Fig. 1. These

intermediate buses are referred to as zero injection buses [41].

We exploit their presence to define a number of valid inequality

and strengthen the convex relaxation in (4).

Definition 1: A bus k ∈ N is regarded as a zero injection bus

if both power and current injections at bus k are zero, i.e.,if no

load or source is located at the bus [19]. The set of zero injection

buses are presented by Z .

Define v∗ and x∗ be the solutions to the original problem (3).

Then,

e⊤k diag{Gv∗x∗⊤} = 0n (18)

holds for every k ∈ Z , where n = |Z|.
For zero injection buses, the sum of the currents absorbed from

the distribution network is equal to the sum of the currents they

supply to the distribution network. This feature can be expressed

as

e⊤k diag{Gv∗x∗⊤} =

|K|
∑

l=1

d⊤l (
�L diag{�Gv∗x∗⊤}+ �L diag{ �Gv∗x∗⊤}), (19)

where K is the set of neighbor buses of the zero injection bus k.

The following formulation can be inferred from (19)

|K|
∑

l=1

d⊤l (
�L diag{�Gv∗x∗⊤})

= −

|K|
∑

l=1

d⊤l (
�L diag{ �Gv∗x∗⊤}), (20)

concluding that (18) is valid for any k ∈ Z .

According to (20), the set of additional constraints

e⊤k diag{GA} = 0n (21)

can be added in (4) to strengthen its relaxation.

E. Joint Observation in the Presence of Noisy Measurements

The convex problem (4) can become infeasible, or result in a

poor approximate, if available measurements become noisy. In

this case, solving the state estimation problem requires tackling

two concerns: (i) how to address nonlinear relation between

sensor measurements and state variables, (ii) how to address cor-

rupted sensor measurements. We introduce auxiliary variables

vg, ig ∈ R
|N |, �ig, �ig ∈ R

|L| and vs, is ∈ R
|N |, �is, �is ∈ R

|L| to

handle measurement noise where they account for Gaussian and

sparse noise estimations, respectively. New variables u ∈ R
|N |

and S ∈ R
|N |×|L| account for the vg2

and vsx⊤, respectively.

Unknown measurement noise can be estimated by incorporating

these auxiliary variables as convex regularization terms into the

objective function (4a). The joint state estimation and topology
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identification problem, that is robust to noisy and entirely cor-

rupted measurements, can be formulated as

minimize
A ∈ R|N | × |L|

S ∈ R|N |×|L|

i
g,is ∈ R|N |

u,v,vg,vs ∈ R|N |

x,�ig,�is, �ig, �is ∈ R|L|

‖M
1
2(A−vx⊤)N

1
2 ‖∗+‖v−v0‖

2
M

+‖x−x0‖
2
N

+ µ1(1
⊤u) + µ2||i

g||22 + µ3||v
s||22

+ µ4||i
s||22 + µ5||S||∗ (22a)

+ µ6||�i
g||22 + µ7||�i

s||22

+ µ8|| �ig||22 + µ9|| �is||22

subject to vk = v̂k − vgk − vsk ∀k∈Sv (22b)

e⊤k diag{GA} = ı̂k − igk − isk ∀k∈Si (22c)

dldiag{�GA} = �̂ık −�igk −�isk ∀l∈S�ı (22d)

dldiag{ �GA} = �ˆık − �igk − �isk ∀l∈S �ı (22e)

A d⊤
l = v x̂l ∀l∈Sx (22f)

S d⊤
l = vs x̂l ∀l∈Sx (22g)

xlb ≤ x ≤ xub (22h)

v(xlb)⊤ ≤ A ≤ v(xub)⊤ (22i)

vs(xlb)⊤ ≤ S ≤ vs(xub)⊤ (22j)

vgk
2 ≤ uk ∀k∈Sv (22k)

[

xl v̂kxl −Akl − Skl

v̂kxl −Akl − Skl uk

]

� 0

∀k∈Sv, ∀l∈L (22l)

where µn ≥ 0 are pre-selected coefficients for every

n = {1, 2, . . .9} that balance the data fitting cost

µ1(1
⊤u) + µ2||i

g||22 + µ3||v
s||22 + µ4||i

s||22 + µ5||S||∗ + µ6

||�ig||22 + µ7||�i
s||22 + µ8|| �ig||22 + µ9|| �is||22 with the remaining

elements of the objective function in (22a). S�ı and S �ı denote

the set of current flow measurements from both sides of each

line. The objective function (4a) aims to handle the nonlinearity

of the measurement equation, while the convex regularization

term added in (22a) deals with the noisy and corrupted

measurements.

Proposition 2: Let v∗, x∗, vg∗
, ig

∗

, �ig
∗
, �ig

∗
, vs∗ , is

∗

, �is
∗
,

�is
∗
, and u∗ be the ground-truth values for the original problem

(3). Let u∗ � vg∗2
, S∗ � vsx⊤, and A∗ � v∗x∗⊤. Then, the

constraint (22l) is satisfied.

Proof: Since v∗k and x∗
l are positive, one can write

A∗
kl = v∗kx

∗
l ⇔ A∗

kl = (v̂k − vg
∗

k − vs
∗

k )x∗
l (23a)

⇒ v̂kx
∗
l −A∗

kl = (vg
∗

k + vs
∗

k )x∗
l

⇒ v̂kx
∗
l −A∗

kl − S∗
kl = vg

∗

k x∗
l

⇔ (v̂kx
∗
l −A∗

kl − S∗
kl)

2 = (vg
∗

k )
2
xl

∗2 (23b)

⇒ (v̂kx
∗
l −A∗

kl − S∗
kl)

2 = u∗
kx

∗
l or 0

⇔ (v̂kx
∗
l −A∗

kl − S∗
kl)

2 ≤ u∗
kx

∗
l or 0 (23c)

As seen, (23) is equivalent to (22l) under the proposition 2.

This completes the proof. �

If pre-selected coefficients are chosen asµn = 0, the objective

function (22a) is reduced to the objective function (4a), which

can only contrive the non-convexity of the measurement equa-

tions in noiseless scenarios. If µn = +∞, then the objective

function (22a) prioritizes estimating the unknown noise values

while ignoring the remaining elements.

Remark 3: If the relaxation is exact, then we have A∗ =
v∗x∗⊤, in which case the solver only minimizes the error val-

ues, µ1(1
⊤u) + µ2||i

g||22 + µ3||v
s||22 + µ4||i

s||22 + µ5||S||∗ +

µ6||�i
g||22 + µ7||�i

s||22 + µ8|| �ig||22 + µ9|| �is||22, within the space

of zero residual points (i.e., the set of all points that satisfy

A = vx⊤). Observe that A = vx⊤ cannot be imposed as a

constraint due to its non-convexity. This is the motivation behind

incorporating its surrogate into the objective. However, this

surrogate will ultimately serve as a hard constraint.

The goal of (22) is to determine an approximate solution

for the state estimation problem in the presence of noisy mea-

surements without increasing the number of available sensor,

or for the joint state estimation and topology identification

problem despite noisy and entirely corrupted measurements

with the help of additional set of measurements. It should

be noted that corrupted measurements can make the network

unobservable, and the number of available sensors should be

relatively high (i.e., Θ ≥ 4Υ-4, where Θ and Υ denote the

total number of available sensors and the state variables to be

found, respectively) for a robust estimation [7]. If one considers

a joint state estimation and topology identification problem in

the presence of noise and severely corrupted measurements, the

number of unknown parameters could grow beyond the number

of possible measurements. This makes the problem unsolvable

due to information-theoretic limitations [7].

IV. CASE STUDIES

In the following, standard IEEE AC benchmarks are trans-

formed into DC benchmarks by substituting AC generators

with DC sources coupled with buck converters, and having
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distribution lines purely resistive. While the standardization of

future DC networks is under development, IEEE [42], European

standard ETSI [43], EMerge Alliance [44], and IEC SG4 [45]

have suggested 380 V DC as a suitable rated voltage level for

distribution systems. Herein, the DC distribution line parameters

are adjusted according to the rated voltage level [46], [47]. All

lines are equipped with switches to control the network topology.

If monitored, a bus is equipped with a sensor to measure voltage

and/or a sensor to measure current injection. Monitored lines

refer to the lines with a sensor. The optimization problem is

run using the conic interior-point solver, MOSEK [48], in the

CVX [49] optimization package.

A. Numerical Studies

The joint state estimation and topology identification problem

is examined for the modified IEEE 9-bus [50], 14-bus [51], and

30-bus systems [52] when measurements are assumed noiseless.

We compare our method in (4), using proper basis M and N

values in (17) and the set of additional constraints in (21), with

the conventional GSE method [4]. Herein, the total number of

sensors is initially determined such that the jacobian matrix

of estimation equations [4] is surely not full rank while initial

configuration of sensors is randomly chosen. Then, the number

of sensors is gradually increasing to observe the performances of

both proposed method and the method in [4] for varying numbers

and locations of sensors.

For a specified number of sensors, the sensors are randomly

deployed. This configuration is simulated for a time horizon

with 100 steps while random changes in voltage levels and an

arbitrary line removal happen at every time-step and every fifth

time-step, respectively. Afterward, the sensor configuration is

randomly rearranged without increasing the number of sensors,

and then the simulation is run again. To provide more reliable

statistical results, for a given number of sensors, this process is

repeated 250 times. Each approach has a flat start with 10−6 as

the mismatch threshold to conclude a successful run. The success

rate percentage is computed as νi = 1
c

∑c
1

hi
c−fi

c

hi
c

× 100, where

hi
c, and f i

c , are the number of steps in a horizon, and the number

of steps failed to satisfy the mismatch threshold in a horizon,

respectively. c, and i denote the number of random attempts for

sensor reconfiguration, and the total number of sensors, respec-

tively. In this study, hi
c = 100 for every c ∈ {1, 2, . . .250}.

It should be noted that the network observability is determined

by both the number and the location of sensors. The success of

the GSE method hinges on a full observability condition that

would require highly-redundant sensor allocation. As seen in

Fig. 2(a)–(c), the proposed method significantly outperforms

the GSE approach.

B. Experimental Studies

In the modified 14-bus system, the input voltage of DC-DC

buck converters is 500 V, while the distribution network is rated

for 380 V. The ratings of the power converters located at buses 1,

2, 3, 6, and 8 are 150 kW, 50 kW, 100 kW, 100 kW, and 50 kW,

respectively. Sample consumption trajectories for the six out

of eleven loads are given in Fig. 4. The consumption profiles

Fig. 2. Comparative convergence rates of proposed and generalized state
estimation methods for the IEEE (a) 9-bus, (b) 14-bus, and (c) 30 bus systems.

Fig. 3. The modified IEEE 14-bus system populated with 5 DC-DC buck
converters (illustrated by ), and equipped with sensors to monitor voltages

(illustrated by ), line statuses (illustrated by ), and injected current at bus
k ∈ N \ {Z}.

intentionally mimic a 24-hour load pattern, and are generated

using poisson distribution. This distribution assumes that the

sudden load changes occur randomly with the probability mass

function, P (k) = e−λ
λ
k

k! . Here, k and λ denote the type and

average number of load changes. The voltage sensors are placed

on the buses with a power converter. The current injection values

are measured for buses (N \ Z) that are not zero-injection buses.
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Fig. 4. Load power trajectories at selected buses 1, 3, 4, 5, 6, and 9.

Fig. 5. DC network joint observation testbed on a HIL system embodying of
controller implementation (dSPACE), real-time hardware emulation (Typhoon
HIL), and TCP/IP communication link for data transfer.

It should be observed that bus 7 and bus 14 of the IEEE-14 bus

system are zero injection buses. The statuses of ten lines are

monitored as illustrated in Fig. 3. The internal droop mechanism

of power converters regulate their output voltage in response to

output power variations due to the changes in the load profile

or network topology. HIL platform with a dSPACE DS1202

MicroLabBox to perform droop controllers for each converters,

and a Typhoon HIL604 unit to emulate power converters and

the distribution network is used to emulate this network. The

proposed optimization algorithm runs on a PC with 16-core,

Xeon processor and 256 GB RAM.

1) Noiseless Measurements: We consider a time horizon,

where the statuses of unmonitored lines change randomly and

load profiles are dynamic. The proposed formulation in (4),

with M = G, N = I l×l, and the set of additional constraints

in (21), finds states and topology configurations every five

seconds. Fig. 6 shows the recovered (v) and the ground-truth

Fig. 6. Estimated (vk), and ground-truth (ṽk) voltage values for unmonitored
buses.
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Fig. 7. Estimated (xl), and ground-truth (x̃l) values for the statuses of the
lines in response to the removal of one line.xa−b denotes the line status for a
line which starts from node a and ends in b.

(ṽ) voltage values for the unmonitored buses. Fig. 7 presents the

recovered (x) and the ground-truth (x̃) values for the statuses of

unmonitored lines in response to the removal of an arbitrary line.

It is observed that the maximum errors in terms of percentage

for recovered voltage values and statuses of lines are always less

than 10−6. Consequently, the proposed method yields a very

good pursuit of ground-truth values for voltages and statuses of

the lines when measurements are assumed noiseless. So far, we

haven’t used any penalty term or tuning parameter in the convex

program (4). The average time for finding states and topology

configurations is 2.208 s.

2) Noisy Measurements: In this section, we verify that pro-

posed algorithm is capable of finding an approximate solution

in the presence of noisy measurements. All the voltage and

current measurements are assumed corrupted by zero-mean

Gaussian noises with 1% standard deviation of the correspond-

ing noiseless value. The proposed formulation in (22), with

M = G and N = I l×l, finds system states every five sec-

onds. Root-mean-square error (RMSE) is considered to assess

the estimated voltages v under the zero-mean Gaussian noise

that has 1% standard deviation for all the measurements. The

RMSE of the v is formalized as ψ(v) := ‖v − ṽ‖2/‖ṽ‖22. The

pre-selected coefficients in (22), that balance the data fitting

cost, are set toµ1 = µ2 = 102 andµ3 = µ4 = µ5 = µ6 = µ7 =
µ8 = µ9 = 1. It should be observed that the coefficients for the

current flow measurements, µ6, µ7, µ8, and µ9, are redundant

since S�ı = S �ı = ∅.

Fig. 8. The performance of (22) to estimate the vector of voltages in the case
where the goal is to solve the state estimation problem in the presence of noisy
measurements without increasing the number of available sensors.

a) State estimation: Herein, we demonstrate an approxi-

mate solution for the state estimation problem in the presence of

noisy measurements without increasing the number of available

sensors. The network topology is assumed to be either static or

completely monitored due to existing noisy measurements that

do not allow both state estimation and topology identification si-

multaneously with the same number and configuration of sensors

as they are in Section IV-B1. We consider a time horizon with

a dynamic load profile and a fully-monitored network topology.

The RMSE of the estimated voltages for the buses with sensors,

i.e., ψ(vk) := ‖vk − ṽk‖2/‖ṽk‖
2
2 for every k ∈ Sv , shown in

Fig. 8 demonstrates that an approximate solution is recoverable

with 99.95% accuracy. It is observed that the maximum RMSE

values for buses with and without sensors are 0.024% and

0.001%, respectively. Moreover, the maximum voltage errors,

in terms of percentage for buses with and without sensors, are

0.011% and 0.0002%, respectively. Fig. 9 shows the corrupted

(v̂), recovered (v), and the ground-truth (ṽ) voltage values where

bus measurements are corrupted by 1%. The proposed method

yields a very close pursuit of ground-truth voltage values when

all the voltage and current measurements are subject to noise.

Determination of states in the presence of noisy measurements

takes 2.648 s on average.

b) State estimation and topology identification: We aim

to show an approximate solution for the joint state estimation

and topology identification problem with the help of additional

voltage measurements. We assume that voltage measurements

are available from all the buses while rest of the measure-

ments and their configurations remain the same as they are

in Section IV-B1. The experiment time horizon is considered

with a random change in the statuses of unmonitored lines and

dynamic load profiles. The RMSE of the estimated voltages

shown in Fig. 10 demonstrates that an approximate solution

is recoverable with more than 99.4% accuracy. It is observed

that the maximum RMSE value for the estimated voltages is

0.543%. The maximum percentage errors for recovered voltage

values and statuses of lines are less than 0.098% and 10−6,

respectively. Fig. 11 shows the corrupted (v̂), recovered (v),

and the ground-truth (ṽ) voltage values for some of the selected

buses. The proposed method also yields a very good pursuit of

ground-truth values for line statuses same as the results shown in

Fig. 7 or 14. The average time needed to find states and topology

configurations in the presence of noisy measurements is 3.617 s.
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Fig. 9. Estimated voltage values obtained by (22) for the monitored sensor
measurements corrupted by %1 additive noise.

Fig. 10. The performance of (22) to estimate the vector of voltages when
solving the state estimation and topology identification problem, in the presence
of noisy measurements, with the help of additional voltage measurements.

3) Severely Corrupted Measurements: Herein, we aim to

show that the proposed method, with the help of additional

set of measurements, i.e., S�ı, S �ı, can handle the case where

each measurement is corrupted either by zero-mean Gaussian

noises with 1% standard deviation or 100% of the corresponding

Fig. 11. Estimated voltage values obtained by (22) at selected sensor mea-
surements. Each measurement is corrupted by %1 additive noise.

Fig. 12. The performance of (22) to estimate the vector of voltages for the
modified IEEE 14-bus system where each measurement is either corrupted
by zero-mean Gaussian noises with 1% standard deviation or 100% of the
corresponding original value.

original value. We consider a time horizon with a random change

in the statuses of unmonitored lines and dynamic load profiles.

The proposed formulation in (22), with M = G and N = I l×l,

finds system states every five seconds. Randomly-chosen two

of the sensor measurements are severely corrupted, while the
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Fig. 13. Estimated voltage values obtained by (22) at selected sensor mea-
surements. Each measurement is either corrupted by zero-mean Gaussian noises
with 1% standard deviation or 100% of the corresponding original value. The
voltage measurement at bus 5, v̂5, is out of range in Figure as it is entirely
corrupted.

Fig. 14. Estimated (xl), and ground-truth values, for the line statuses in
response to the removal of one line.xa−b denotes the status of a line starting
from node a and ending in b.

Fig. 15. Changes on the levels of ground-truth voltage values at bus 4 due to
changes in topology and load power trajectories.

rest of them are under 1% Gaussian noise. These two entirely-

corrupted sensors measure the voltage at bus 5 and the current

injection at bus 1. Herein, the pre-selected coefficients are

set to µ1 = µ2 = 102 and µ3 = µ4 = µ5 = µ6 = µ7 = µ8 =
µ9 = 1. Fig. 12 demonstrates that an approximate solution is

recoverable with more than 99.3% accuracy. It is observed

that the maximum RMSE and the voltage error values for the

estimated voltages are 0.660% and 0.288%, respectively. Fig. 13

shows the corrupted (v̂), recovered (v), and the ground-truth (ṽ)

voltage values for selected buses. Maximum percentage error

for estimated statuses of lines is less than 10−6, leading to a

very good pursuit of ground-truth values as shown in Fig. 14.

It should be observed here that, in the case of a line removal,

xl = 0 for every l = (a, b) ∈ L, the direct voltage correlation

between busesa and bdisappears. The internal droop mechanism

of power converters regulates their output voltage such that phys-

ical laws, presented in (1)-(2) and (14a)-(14b), are conserved

independent of the line status. Fig. 15 highlights the variations

on ground-truth voltage levels at bus 4, which has the highest

connectivity with neighboring buses, due to changes in topology

and load power trajectories. The determination of the states and

topology configurations in the presence of measurement gross

errors takes 4.645 s on average.

V. CONCLUSION

This paper offers a convex optimization framework to solve

the state estimation and topology identification problems using

only a limited number of measurement for converter-augmented

DC networks. This problem is formulated as a constrained

minimization problem, where a proper choice of objective func-

tion obviates any tuning coefficient in the absence of measure-

ment noise. The problem formulation is then extended for the

noisy measurements by adding auxiliary variables to account

for convex regularization terms in the objective function. The

proposed method is studied where the set of measurements are:

(i) voltage values at some of the randomly-chosen buses, (ii)

current-injection values at some of the randomly-chosen buses,

and (iii) some of the line statuses. The convex formulation in the

absence of measurement noise is validated through numerical

tests using IEEE 9-bus, 14-bus, and 30-bus benchmarks, and

HIL experimentation using modified IEEE 14-bus system. Fur-

thermore, the solution in the presence of 1% measurement noise

is verified through HIL experimentation on the IEEE 14-bus
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system. With the help of an additional set of measurements,

this solution can handle scenarios where each measurement is

corrupted either by zero-mean Gaussian noises with 1% standard

deviation or 100% of the corresponding original values.

APPENDIX

This section presents model matrices and vectors from net-

work characteristics using the example of 3-bus network in

Fig. 1. The bus conductance matrix of 3-bus network is cal-

culated as

G =

⎡

⎢

⎣

g12 + g13 −g12 −g13

−g21 g21 + g23 −g23

−g31 −g32 g31 + g32

⎤

⎥

⎦
. (A.1)

The line conductance matrices, from and to, can be formed as

�G =

⎡

⎢

⎣

g12 −g12 0

g13 0 −g13

0 g23 −g23

⎤

⎥

⎦
, �G =

⎡

⎢

⎣

−g12 g12 0

−g13 0 g13

0 −g23 g23

⎤

⎥

⎦
.

(A.2)

The network from and to bus-line incidence matrices for 3-bus

network are

�L =

⎡

⎢

⎣

1 0 0

1 0 0

0 1 0

⎤

⎥

⎦
, �L =

⎡

⎢

⎣

0 1 0

0 0 1

0 0 1

⎤

⎥

⎦
. (A.3)

It can be observed thatG can be derived from (�G
⊤ �L+ �G

⊤ �L)
that is also chosen as the basis matrix M . The basis matrix

N , that is designed to penalize power loss over all the lines, is

formed as

N =

⎡

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎦
. (A.4)

The vectors of voltages, currents, and statuses of lines can be

formed based on the sensors positioning shown in Fig. 1

v =

⎡

⎢

⎣

v̂1

v2

v3

⎤

⎥

⎦
, x =

⎡

⎢

⎣

x1

x̂2

x3

⎤

⎥

⎦
, i =

⎡

⎢

⎣

ı̂1

ı̂2

i3

⎤

⎥

⎦
. (A.5)

Herein, measured values are utilized to infer unknown voltages

v2, v3, and statuses of the unmonitored lines, x1, x3. It should be

noted that the bus 3 is a zero-injection bus, and it can facilitate the

performance of (4) by using i3 = 0 as an additional constraint.

Finally, the auxiliary variable matrix A, accounting for vx⊤,

takes the following form

A =

⎡

⎢

⎣

v̂1x1 v̂1x̂2 v̂1x3

v2x1 v2x̂2 v2x3

v3x1 v3x̂2 v3x3

⎤

⎥

⎦
. (A.6)
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