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Abstract
We study an ecosystem of interacting species that are influenced by random environ-
mental fluctuations. At any point in time, we can either harvest or seed (repopulate)
species. Harvesting brings an economic gain while seeding incurs a cost. The problem
is to find the optimal harvesting-seeding strategy that maximizes the expected total
income fromharvestingminus the cost one has to pay for the seeding of various species.
In Hening et al. (JMath Biol 79(2):533–570, 2019b) we considered this problemwhen
one has absolute control of the population (infinite harvesting and seeding rates are
possible). In many cases, these approximations do not make biological sense and one
must consider what happens when one, or both, of the seeding and harvesting rates are
bounded. The focus of this paper is the analysis of these three novel settings: bounded
seeding and infinite harvesting, bounded seeding and bounded harvesting, and infinite
seeding and bounded harvesting. Even one dimensional harvesting problems can be
hard to tackle. Once one looks at an ecosystem with more than one species analytical
results usually become intractable. In order to gain information regarding the quali-
tative behavior of the system we develop rigorous numerical approximation methods.
This is done by approximating the continuous time dynamics by Markov chains and
then showing that the approximations converge to the correct optimal strategy as the
mesh size goes to zero. By implementing these numerical approximations, we are able
to gain qualitative information about how to best harvest and seed species in specific
key examples. We are able to show through numerical experiments that in the single
species setting the optimal seeding-harvesting strategy is always of threshold type.
This means there are thresholds 0 < L1 < L2 < ∞ such that: (1) if the population
size is ‘low’, so that it lies in (0, L1], there is seeding using the maximal seeding rate;
(2) if the population size ‘moderate’, so that it lies in (L1, L2), there is no harvesting
or seeding; (3) if the population size is ‘high’, so that it lies in the interval [L2,∞),
there is harvesting using the maximal harvesting rate. Once we have a system with
at least two species, numerical experiments show that constant threshold strategies
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are not optimal anymore. Suppose there are two competing species and we are only
allowed to harvest or seed species 1. The optimal strategy of seeding and harvesting
will involve lower and upper thresholds L1(x2) < L2(x2)which depend on the density
x2 of species 2.

Keywords Harvesting · Stochastic environment · Density-dependent price ·
Controlled diffusion · Species seeding
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1 Introduction

On one hand, species usually interact in complex ways within their ecosystems. On
the other hand, environmental fluctuations have been shown to strongly influence the
population dynamics of species (Albon et al. 1987). There are examples where the
environmental fluctuations can drive a species extinct as well as examples where the
environmental fluctuations create a rescue effect that saves species from extinction.
In order to get a realistic idea of to the long term fate of species it is of fundamental
importance to consider the combined effects of biotic interactions and environmen-
tal fluctuations. Starting with the illuminating work of Peter Chesson (Chesson and
Warner 1981; Chesson 1982, 1994; Chesson and Huntly 1997), and building on deter-
ministic persistence theory (Hofbauer 1981; Hutson 1984; Hofbauer and So 1989;
Hofbauer and Sigmund 1998; Smith and Thieme 2011), there is now a powerful theory
of stochastic persistence (Schreiber et al. 2011; Benaim 2018; Benaïm and Schreiber
2019; Hening and Nguyen 2018; Chesson et al. 2019).

Many species are not only influenced by their interactions and the environment—
they are also harvested by humans. Excessive harvesting and hunting can lead species
to become locally or globally extinct (Lande et al. 1995, 2003). If one looks at the
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harvesting problem strictly from a conservation point of view, it makes sense to harvest
less in order to minimize the extinction risk. This can lead to a significant economic
loss due to underharvesting.

As explained by Hening et al. (2019b) in specific situations one can repopulate (or
seed) a species which is at risk of extinction. This happens for example in fisheries or
other restricted conservation habitats where one can increase the population size of a
certain species by bringing in individuals from a different location. From an economic
point of view, there is a cost whenever one seeds and a gain when one harvests.

Taking into account all these factors one is faced with the following fundamental
problem. Suppose we have an ecosystem of d species that interact, possibly non-
linearly, due to competition for resources, predation, cooperation, mutualism etc, are
influenced by random environmental fluctuations, and can be controlled through seed-
ing and harvesting. How should we harvest/seed in order to maximize revenue (gain
from harvesting minus loss from seeding) while ensuring species do not go extinct?
The various factors (biotic interactions, random environmental fluctuations, economic
gain, extinction risk) have to be carefully taken into account if onewants to find a viable
exploitation strategy.

We model the populations in continuous time under the assumption that there is
environmental stochasticity and no demographic stochasticity. Mathematically this
means we look at systems of stochastic differential equations (SDE). There is evidence
that SDE are often good approximations of discrete time biological systems (Lande
et al. 1995; Turelli 1977). Intuitively, in our setting one can imagine that the random
fluctuations in the small time dt look like XtdWt where (Wt ) is a Brownian motion.
This type of noise has the property that, if there is no harvesting, extinction can only
occur asymptotically as time goes to infinity. In contrast, demographic stochasticity is
usually modelled by fluctuations of the form

√
XtdWt in a small time dt and implies

finite time extinctions. Even though it is biologically clear that extinction is always
inevitable, there are settings, where extinction happens after long periods of time and
neglecting demographic stochasticity is a good first approximation.

Our analysis builds on the significant results that are available in the stochastic har-
vesting literature. If there is only one species, the state of the art for continuous-time
harvesting is contained in results byAlvarez and Shepp (1998), Alvarez (2000), Lungu
and Øksendal (1997), Song et al. (2011), Hening et al. (2019a), Alvarez and Hening
(2019). Significantly fewer results are available if one is interested in multiple inter-
acting species (Lungu and Øksendal 2001; Tran and Yin 2017; Hening et al. 2019b).

We initiated a rigorous analysis of the multispecies harvesting-seeding problem in
a previous paper (Hening et al. 2019b). As a result we were able to get analytical
and numerical results when one assumes that the seeding and harvesting rates are
unbounded. Inmany interesting scenarios this assumption is not realistic. For example,
one will usually not be able to seed a population at extremely high rates—it would
therefore be more natural to assume that the seeding rate has an upper threshold which
cannot be exceeded. Similarly, in other settings it might make sense to assume that
the harvesting rate is bounded above. We study the following three novel scenarios:

• Bounded seeding and unbounded harvesting rates.
• Bounded seeding and bounded harvesting rates.
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• Unbounded seeding and bounded harvesting rates.

In order to study this stochastic singular control problem, the standard approach is to
look at the associated Hamilton-Jacobi-Bellman (HJB) partial differential equations.
We were able to do this when we assumed that the seeding and harvesting rates
are unbounded (Hening et al. 2019b). We prove a similar result in the setting of
bounded seeding and harvesting rates. If one rate is bounded and the other one is
unbounded, due to significant additional technical difficulties, we were not able to
show theHJBequation holds. In order to gain somequalitative information,wedevelop
numerical algorithms to approximate the value function (maximal discounted revenue)
and the optimal harvesting-seeding strategy. This is accomplished bymaking use of the
Markov chain approximation methodology developed by Kushner and Dupuis (1992).

The main contributions of our work are the following:

(1) We analyze the harvesting-seeding problem for a system of interacting species
living in a stochastic environment, when the seeding and/or harvesting rates are
bounded.

(2) We prove analytical results and develop rigorous approximation schemes.
We show that these approximation schemes converge to the correct optimal
harvesting-seeding strategy (and value function) as the mesh size goes to zero.

(3) We apply the approximation schemes to illuminating examples with one or two
species in order to see what qualitatively new phenomena emerge due to the
interspecies and intraspecies interaction terms, the environmental fluctuations
and the boundedness of the seeding/harvesting strategies. In particular we show
that the well-known threshold harvesting strategies are not optimal anymore when
one can harvest multiple species.

Harvesting species that are part of complex food webs has led to overexploitation
and in some cases to extinctions (Beddington and May 1980). This happens, in part,
because when one picks harvesting strategies the complex interactions of the species
and the environmental fluctuations are not taken into account. In some instances,
one harvests one specific species from the ecosystem, and ignores the rest. This can
disrupt the ecosytem and lead to conservation problems. The fundamental work by
May et al. (1979) has shown that harvesting at a constant rate andmaximizing theMSY
(maximumsustainable yield) for specific species in an ecosystemwithmultiple species
is insufficient for conservation purposes. Harvesting at a constant rate has been shown
to have many shortcoming even if the harvested stock can be regarded as an isolated
population (May et al. 1978, 1979; Lande et al. 1995). In order to solve this issue,
threshold harvesting, where one harvests only the fraction of the population above a
fixed threshold has been shown to mitigate the risk of extinction (Lande et al. 1997).
Multiple studies have proved rigorously that threshold harvesting of a single isolated
species living in a stochastic environment is also optimal from an economic point of
view (Alvarez and Shepp 1998; Lande et al. 1995; Alvarez and Hening 2019; Hening
et al. 2019a). Nevertheless, it is not clear how well threshold harvesting works for
multispecies systems. By looking at ecosystems with two species we show that, if one
is allowed to harvest both species, threshold harvesting for each species is not optimal
anymore. Instead, there exists a complicated surface S(x1, x2) such that whenever the
population sizes (x1, x2) are above the surface we harvest at the maximal rate, while
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if we are below the surface we never harvest. The interaction of the species make
constant threshold strategies suboptimal. Even if we are only allowed to harvest and
seed species 1, due to the interaction of the two species, the optimal seeding-harvesting
strategy for species 1 will depend on the density of species 2.

The rest of ourwork is organized as follows. In Sect. 2wedescribe ourmodel and the
main results. Particular examples are explored using the newly developed numerical
schemes in Sect. 3. Finally, all the technical proofs appear in the appendices.

2 Model and results

Assume we have a probability space (�,F , P) and a filtration (Ft )t≥0 satisfying the
usual conditions. The filtration can be intuitively understood as having the information
that is available up to a certain time—(Ft )t≥0 is an increasing family of σ -algebras and
Ft tells us what information is known up to time t . We consider d species interacting
nonlinearly in a stochastic environment. We model the dynamics as follows. Let ξi (t)
be the population abundance of the i th species at time t ≥ 0, and denote by ξ(t) =
(ξ1(t), . . . , ξd(t))′ ∈ R

d (where z′ denotes the transpose of z) the column vector
recording all the population abundances.

Based on the assumption that the environment mainly affects the growth/death rates
of the populations and the approach by Turelli (1977), Braumann (2002), Gard (1988),
Evans et al. (2013), Schreiber et al. (2011), Gard (1984), we consider the dynamics
given by

dξ(t) = b(ξ(t))dt + σ(ξ(t))dw(t), (2.1)

where w(·) = (w1(·), ..., wd(·))′ is a d-dimensional standard Brownian motion
adapted to (Ft )t≥0 and b, σ : [0,∞)d → R

d are locally Lipschitz continuous func-
tions. Let S = (0,∞)d and S = [0,∞)d . We assume that b(0) = σ(0) = 0 so that
0 is an equilibrium point of (2.1). This makes sense because if our populations go
extinct, they should not be able to get resurrected without external intervention (like
a repopulation/seeding event). If ξi (t0) = 0 for some t0 ≥ 0, then ξi (t) = 0 for any
t ≥ t0. Thus, ξ(t) ∈ S for any t ≥ 0.

Let Yi (t) denote the amount of species i that has been harvested up to time t and
set Y (t) = (Y1(t), . . . ,Yd(t))′ ∈ R

d . Let Zi (t) denote the amount of species i seeded
into the system up to time t . If we add the harvesting and seeding effects to (2.1) we
note that the dynamics of the d species becomes

X(t) = x +
t∫

0

b(X(s))ds +
t∫

0

σ(X(s))dw(s) − Y (t) + Z(t), (2.2)

where X(t) = (X1(t), . . . , Xd(t))′ ∈ R
d are the species populations at time t ≥ 0.

We assume the initial population abundances, before any seeding or harvesting, are

X(0−) = x ∈ S. (2.3)
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Notation For x, y ∈ R
d , with x = (x1, . . . , xd)′ and y = (y1, . . . , yd)′, we define

the scalar product x · y = ∑d
i=1 xi yi and the norm |x | = √

x · x . Let ei ∈ R
d denote

the unit vector in the i th direction for i = 1, . . . , d. If x = (x1, . . . , xd)′ ∈ R
d and

y = (y1, . . . , yd)′ ∈ R
d and xi ≤ yi for each i , we write x ≤ y and we define

[x, y] = {ξ = (ξ1, . . . , ξd)
′ : xi ≤ ξi ≤ yi , i = 1, . . . , d}. For a real number r let

r+ := max{r , 0} and r− := max{−r , 0}. Let L be the infinitesimal generator of the
process ξ(t) from (2.1). This linear operator acts as

L�(x) = b(x)∇�(x) + 1

2
tr
(
σ(x)σ ′(x)∇2�(x)

)
, (2.4)

on twice continuously differentiable functions �(·) : R
d → R. We write ∇�(·) and

∇2�(·) for the gradient and the Hessian matrix of �(·).
We suppose that the instantaneous marginal yield accrued from exerting the har-

vesting strategy Yi for the species i is fi : S → (0,∞). This is also known as the
price of species i . Let gi : S 
→ (0,∞) represent the marginal cost we need to pay
for the seeding of species i under the strategy Zi . We will set f = ( f1, . . . , fd)′ and
g = (g1, . . . , gd)′. For a harvesting-seeding strategy (Y ,C) we define the perfor-
mance function as

J (x,Y ,C) := Ex

⎡
⎣

∞∫

0

e−δs f (X(s−)) · dY (s) −
∞∫

0

e−δsg (X(s−)) · dZ(s)

⎤
⎦ ,

(2.5)

where δ > 0 is the discounting factor, Ex is the expectation with respect to the
probability lawwhen the initial populations are X(0−) = x , and f (X(s−))·dY (s) :=∑n

i=1 fi (X(s−))dYi (s). Since the function s 
→ Yi (s) is right-continuous for each
ω ∈ �, we can associate with Yi (s) themeasure dYi (s) given by

∫ t2
t+1

dYi (s) = Yi (t2)−
Yi (t1) and

∫ t2
t1
dYi (s) = Yi (t2) − Yi (t

−
1 ) for t2 ≥ t1 ≥ 0. Then

∫ ∞
0 e−δs fi (s)dYi (s)

will be interpreted as the integral of the function e−δs fi (s)with respect to the measure
dYi (s) on [0,∞). One can see that the performance function looks at the expected
current value of the total gain from harvesting minus the current value of the total cost
paid to seed species into the system.
Control strategy Let Ax denote the collection of all admissible controls with initial
condition X(0−) = x ∈ S. A harvesting-seeding strategy (Y , Z) is inAx if it satisfies
the following conditions:

(a) TheprocessesY (t) and Z(t) are right continuous, nonnegative, andnondecreasing
with respect to t ,

(b) The processes Y (t) and Z(t) are adapted to the filtration (F(t))t≥0,
(c) The system given by (2.2) and (2.3) has a unique solution with X(t) ≥ 0 for all

t ≥ 0,
(d) For any x ∈ S one has 0 ≤ J (x,Y , Z) < ∞.
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The optimal harvesting-seeding problem The problem we will be interested in is to
maximize the performance function and find an optimal harvesting-seeding strategy
(Y ∗, Z∗) ∈ Ax such that

J (x,Y ∗, Z∗) = V (x) := sup
(Y ,Z)∈Ax

J (x,Y , Z). (2.6)

The function V (·) is called the value function.

Assumption 2.1 We will make the following standing assumptions throughout the
paper.

(a) The functions b(·) and σ(·) are locally Lipschitz continuous. Moreover, for any
initial condition x ∈ S, the uncontrolled system (2.1) has a unique global solution
in S.

(b) For any i = 1, . . . , d, x, y ∈ R
d , fi (x) < gi (x); fi (·), gi (·) are continuous and

non-increasing functions.

Remark 2.2 Note that Assumption 2.1 (a) is very general and includes most common
ecological models, for example Lotka-Volterra competition and predator-prey models
as well as general Kolmogorov systems (Du et al. 2016; Li and Mao 2009; Mao and
Yuan 2006; Hening and Nguyen 2018). Assumption 2.1 (b) is natural: it just means
that the gain from harvesting should always be strictly less than the cost of seeding.
In Hening et al. (2019b), we analyzed the general case when both Y (·) and Z(·)
are singular controls, i.e., they are not absolutely continuous with respect to time. In
this paper, we focus on the case when at least one of these two controls is absolutely
continuous and has a bounded rate.We refer to Hening et al. (2019b) for further details
regarding Assumption 2.1, the optimal harvesting-seeding problem, and properties of
the value function.

We analyze the following three scenarios.

• Bounded seeding and unbounded harvesting rates: there is λ = (λ1, . . . , λd)
′ ∈

[0,∞)d such that dZ(t) = C(t)dt for an adapted process (C(t))t≥0 such that
0 ≤ C(t) ≤ λ. We call λ the maximum seeding rate. For convenience, we also
denote by μ = (μ1, . . . , μd)

′ the maximum harvesting rate and in this scenario
we have μ = ∞; that is, μi = ∞ for any i = 1, . . . d.

• Bounded seeding and bounded harvesting rates: we have dY (t) = R(t)dt for an
adapted process (R(t))t≥0 such that 0 ≤ R(t) ≤ μ, t ≥ 0 and dZ(t) = C(t)dt
for an adapted process (C(t))t≥0 with 0 ≤ C(t) ≤ λ, t ≥ 0.

• Unbounded seeding and bounded harvesting rates: we have dY (t) = R(t)dt for
an adapted process (R(t))t≥0 such that 0 ≤ R(t) ≤ μ, t ≥ 0.

In each of these three settings we will prove that there is a numerical approximation
scheme that converges to the correct value function as the step size goes to zero. In
addition, if both the seeding and harvesting rates are bounded, we show that the value
function solves the Hamilton–Jacbi–Bellman equation in a weak sense.
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2.1 Bounded seeding and unbounded harvesting rates

Since the seeding is bounded we have

dZ(t) = C(t)dt

where

0 ≤ C(t) ≤ λ, t ≥ 0.

Without loss of generality, we identify the process (Y , Z) with (Y ,C). The following
standing assumption is made within this subsection.

Assumption 2.3 The price functions are constant so that fi (x) = fi , x ∈ S.

The dynamics of the populations affected by harvesting and seeding will be

X(t) = x +
t∫

0

[
b(X(s)) + C(s)

]
ds +

t∫

0

σ(X(s))dw(s) − Y (t), (2.7)

while the performance function takes the form

J (x,Y ,C) := Ex

⎡
⎣

∞∫

0

e−δs f · dY (s) −
∞∫

0

e−δsg (X(s)) · C(t)ds

⎤
⎦ . (2.8)

Pick a large numberU > 0 and define the classAU
x ⊂ Ax that consists of strategies

(Y ,C) ∈ Ax such that the resulting process X stays in [0,U ]d for all times. The class
AU

x can be constructed using Skorokhod stochastic differential equations (Bass 1998;
Freidlin 2016; Lions and Sznitman 1984; Kushner and Dupuis 1992) which force the
process to stay in [0,U ]d for all t > 0.

We let VU (x) be the value function when we restrict the problem to the class
AU

x ⊂ Ax . In other words

VU (x) := sup
(Y ,C)∈AU

x

J (x,Y ,C). (2.9)

In earlier work (Hening et al. 2019b) we conjectured that, generically, the optimal
strategy will live inAU

x forU large enough. In the current formulation, we can restate
the conjecture as follows: there exists U > 0 such that for all x ∈ [0,U ]d we have

V (x) := sup
(Y ,C)∈Ax

J (x,Y ,C) = VU (x) := sup
(Y ,C)∈AU

x

J (x,Y ,C).

We are able to prove this conjecture under a natural assumption.
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Proposition 2.4 Suppose that there exists a number U > 0 such that

d∑
i=1

[
bi (x) − δ(xi −U )

]
fi < 0 for |x | > U . (2.10)

Then there exists x∗ ∈ [0,U ]d such that

V (x) = V (x∗) + f · (x − x∗) for x ∈ S \ [0,U ]d .

Moreover,

V (x) = VU (x) for x ∈ [0,U ]d .

It should be noted that the inequality (2.10) is easily verified and holds in most
ecological systems. In dimension d = 1, (2.10) becomes

[
b(x) − δ(x −U )

]
f < 0 for x > U .

If b(x) ≤ 0 for sufficiently large x we can therefore find the required U . Similarly, if
the dimension is at least d ≥ 2 and

d∑
i=1

[
bi (x) + δ|x |] fi < 0

for sufficiently large |x | then (2.10) holds.

Remark 2.5 If the value function V is continuous, one can apply the dynamic pro-
graming principle to show that the value function is a viscosity solution of the
quasi-variational inequalities

max
x∈S

{
(L − δ)φ(x) + max

ξ∈[0,λ]
[
ξ · (∇φ − g) (x)

]
, f − ∇φ(x)

}
= 0. (2.11)

However, in this setting it is hard to establish the continuity of the value function.
Alternatively, one can try to prove a singular control version of the weak dynamic
programing principle developed by Bouchard and Touzi (2011) and then characterize
the value function as a discontinuous viscosity solution of (2.11). Because of the
technical nature of these problems, we leave them as open questions.

In order to gain important qualitative information about the optimal harvesting-
seeding strategies and the value function we develop a numerical approximation
scheme. We construct a controlled Markov chain that approximates the controlled
diffusion X(·) from (2.7). Assume without loss of generality that U is an integer
multiple of h and define

Sh := {x = (k1h, . . . , kdh)′ ∈ R
d : ki ∈ Z≥0} ∩ [0,U ]d .
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74 A. Hening, K. Q. Tran

The set Sh is a lattice where the components are positive integer multiples of h. We
will approximate X by {Xh

n : n ∈ Z≥0}—a discrete-time controlled Markov chain
with state space Sh .

At any time step n, the control is first specified by the choice of an action: harvesting
or seeding. We use πh

n to denote the action at step n:

• πh
n = i if there is harvesting of species i

• πh
n = 0 if there is seeding.

In the case of a seeding, the magnitude of the seeding component must be specified.
We denote this by Ch

n . The space of possible controls is therefore U = {0, 1, . . . , d}×
[0, λ]. Let uh = {uhn}n with uhn = (πh

n ,Ch
n ), n ∈ Z≥0 be a sequence of controls.

We denote by ph (x, y|u = (π, c)) the transition probability from state x to another
state y under the control u = (π, c). We will choose ph (x, y|u = (π, c)) together
with interpolation intervals �th(x, u) so that the piecewise constant interpolation of
{Xh

n } approximates X(·) well for small h. A control sequence uh is called admissible
if under this control sequence, {Xh

n } is a Markov chain with state space Sh . The class
of all admissible control sequences uh with initial state x will be denoted by Ah

x .
For x ∈ Sh and uh ∈ Ah

x , the performance function for the controlledMarkov chain
is defined as

Jh(x, uh) = E

[ ∞∑
m=1

e−δthm f · �Y h
m −

∞∑
m=1

e−δthm g(Xh
m) · Ch

m�th(Xh
m, uhm)

]
,

(2.12)

where �Y h
m is the harvesting amount at step m. The value function of the controlled

Markov chain is
V h(x) = sup

uh∈Ah
x

J h(x, uh). (2.13)

The similarity between (2.12) and (2.8) suggests that the optimal values V h(x) and
VU (x) will be close for small h, and this will turn out to be the case. The following
theorem tells us that the value function of theMarkov chain approximations converges
to the correct value function as h goes to zero.

Theorem 2.6 Suppose Assumptions 2.1, B.1, and (2.10) hold. Then for any x ∈
[0,U ]d , V h(x) → V (x) as h → 0. As a result, for sufficiently small h, a near-optimal
harvesting-seeding strategy of the controlled Markov chain Xh

n is also a near-optimal
harvesting-seeding policy of the continuous-time system X given by (2.7).

2.2 Bounded harvesting and seeding rates

In most practical situations it is impossible to have an infinite harvesting rate (Alvarez
and Shepp 1998). In this subsection we look at the case when both the harvesting and
seeding rates are bounded. This means for all t ≥ 0

dY (t) = R(t)dt,

dZ(t) = C(t)dt
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with
0 ≤ R(t) ≤ μ,

0 ≤ C(t) ≤ λ

where λ is the maximum seeding rate and μ is the maximum harvesting rate. We will
identify (Y , Z) with (R,C). The dynamics of the population system with harvesting
and seeding is given by

X(t) = x +
t∫

0

[
b(X(s)) + C(s) − R(s)

]
ds +

t∫

0

σ(X(s))dw(s), (2.14)

and the performance function is

J (x, R,C) := Ex

[ ∞∫

0

e−δs f (X(s)) · R(s)ds −
∞∫

0

e−δsg (X(s)) · C(s)ds

]
. (2.15)

It would be never optimal if both R(t) and C(t) were positive for all t on a set of
positive measure. We can therefore suppose that R(t) = 0 whenever C(t) > 0 and
C(t) = 0 whenever R(t) > 0. Equation (2.14) becomes

X(t) = x +
t∫

0

[
b(X(s)) + Q(s)

]
ds +

t∫

0

σ(X(s))dw(s), (2.16)

where Q(s) = C(s) − R(s) = (Q1(s), . . . , Qd(s))′. Note that −μ ≤ Q(s) ≤ λ. The
performance function (2.15) becomes

J (x, Q) := Ex

∞∫

0

e−δs
[
Q−(s) · f (X(s)) − Q+(s) · g (X(s))

]
ds. (2.17)

In this setting we can characterize the value function as a viscosity solution of the
associated quasi-variational inequalities

(L − δ)φ(x) + max
ξ∈[−μ,λ]

[
ξ− · (

f − ∇φ) (x) − ξ+ · (g − ∇φ) (x)
]

= 0, x ∈ S.

(2.18)

We will make use of standard viscosity solution approach (Hening et al. 2019b).

Theorem 2.7 Suppose Assumption 2.1 is satisfies. Then the following properties hold.

(a) The value function V is finite and continuous on S.
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(b) The value function V is a viscosity subsolution of (2.19); that is, for any x0 ∈ S
and any function φ ∈ C2(S) satisfying

(V − φ)(x) ≥ (V − φ)(x0) = 0,

for all x in a neighborhood of x0, we have

(L−δ)φ(x0)+ max
ξ∈[−λ,μ]

[
ξ− ·( f −∇φ)

(
x0

)
−ξ+ ·(g−∇φ)

(
x0

) ]
≤ 0. (2.19)

(c) The value function V is a viscosity supersolution of (2.19); that is, for any x0 ∈ S
and any function ϕ ∈ C2(S) satisfying

(V − ϕ)(x) ≤ (V − ϕ)(x0) = 0, (2.20)

for all x in a neighborhood of x0, we have

(L − δ)ϕ(x0) + max
ξ∈[−λ,μ]

[
ξ− · (

f − ∇ϕ)
(
x0

)
− ξ+ · (g − ∇ϕ)

(
x0

) ]
≥ 0.

(2.21)

(d) The value function V is a viscosity solution of (2.19).

We develop numerical approximation methods for computing the value function in
this setting. We will need to approximate the control problem by an analogous control
problem with a bounded state space [0,U ]d . This is done by replacing the original
dynamical system with one which evolves exactly as before in the interior of some
compact domain but is instantaneously reflected back when the controlled process is
about to exit the domain. The modified constrained dynamics of the d species (2.14)
now becomes

X(t) = x +
t∫

0

[
b(X(s)) + Q(s)

]
ds +

t∫

0

σ(X(s))dw(s) − dN (t), (2.22)

where N (t) = (
N1(t), . . . , Nd(t)

)′ is the reflection component, which is a compo-
nentwise nondecreasing, right continuous, {F(t)}-adapted process satisfying

∫ ∞

0
I{Xi (t)<U }dNi (t) = 0, i = 1, 2, . . . , d.

We refer to Bass (1998), Freidlin (2016), Lions and Sznitman (1984), Kushner and
Dupuis (1992) for reflected diffusions and Skorokhod stochastic differential equations.
The corresponding value function is denoted by VU .

Let h > 0 be a discretization parameter. We proceed to construct a controlled
Markov chain in discrete time to approximate the controlled diffusion X(·). Assume

123



Harvesting and seeding of stochastic populations: analysis… 77

without loss of generality thatU is an integer multiple of h. Due to the reflection terms
in the dynamics of the controlled process we consider a slightly enlarged state space

Sh+ = {x = (k1h, . . . , kdh)′ ∈ R
d : ki ∈ Z≥0} ∩ [0,U + h]d .

Let {Xh
n : n ∈ Z≥0} be a discrete-time controlled Markov chain with state space

Sh+. At any time step n, the control is first specified by the choice of an action:
controlled diffusion or reflection. We use πh

n to denote the action at step n

• πh
n = 0 if the nth step is a controlled diffusion step

• πh
0 = i if the nth step is a reflection step on species i .

In the case of a controlled diffusion step, the magnitude of the harvesting-seeding
component, which is Qh

n , must also be specified. The space of controls in this setting
is given by U = {0, 1, . . . , d} × [−μ, λ]. Let uh = {uhn}n defined by uhn = (πh

n , Qh
n)

for n ∈ Z≥0 be a sequence of controls.
We denote by ph (x, y|u = (π, q)) the transition probability from state x to another

state y under the control u = (π, q). We will choose ph (x, y|u = (π, q)) together
with interpolation intervals �th(x, u) so that the piecewise constant interpolation of
{Xh

n } approximates X(·)well for small h. A control sequence uh is admissible if under
this policy, {Xh

n } is a Markov chain with state space Sh+.
For x ∈ Sh+ and uh = (πh, Qh) ∈ Ah

x , the performance function for the controlled
Markov chain is defined as

Jh(x, uh) = E

∞∑
m=1

e−δthm
[
(Qh

m)+ · f (Xh
m) − (Qh

m)− · g(Xh
m)

]
�th(Xh

m, uhm). (2.23)

The value function of the controlled Markov chain is

V h(x) = sup
uh∈Ah

x

J h(x, uh). (2.24)

The convergence theorem for this scenario is given below.

Theorem 2.8 Suppose Assumptions 2.1 and B.1 hold. Then for any x ∈ [0,U ]d ,
V h(x) → VU (x) as h → 0. For sufficiently small h, a near-optimal harvesting-
seeding strategy of the controlled Markov chain is also a near-optimal harvesting-
seeding policy of the continuous-time system (2.22).

2.3 Unbounded seeding and bounded harvesting rates

If we assume the seeding can be unbounded and the harvesting is bounded we have

dY (t) = R(t)dt

with 0 ≤ R(t) ≤ μ, t ≥ 0. We identify (Y , Z) with (R, Z).
The following standing assumption is made within this subsection.
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Assumption 2.9 The seeding functions are constant so that gi (x) = gi , x ∈ S.

The dynamics of the ecosystem is given by

X(t) = x +
t∫

0

[
b(X(s)) − R(s)

]
ds +

t∫

0

σ(X(s))dw(s) + Z(t), (2.25)

and the performance function is

J (x, R, Z) := Ex

[ ∞∫

0

e−δs f (X(s)) · R(s)ds −
∞∫

0

e−δsg · dZ(s)

]
. (2.26)

Similar to the preceding case, in order to develop numerical methods for computing
the value function, we will need to approximate the problem by a related control
problem with a bounded state space [0,U ]d . The modified constrained dynamics of
the d species (2.27) becomes

dX(t) = [
b(X(t)) − R(t)

]
dt + σ(X(t))dw(t) + dZ(t) − dN (t), X(0−) = x,

(2.27)
where N (t) = (

N1(t), . . . , Nd(t)
)′ is the reflection component, which is a compo-

nentwise nondecreasing, right continuous, {F(t)}-adapted process satisfying
∫ ∞

0
I{Xi (t)<U }dNi (t) = 0, i = 1, 2, . . . , d.

As usual, the corresponding value function is denoted by VU .
Let h > 0 be a discretization parameter. We proceed to construct a controlled

Markov chain in discrete time to approximate the controlled diffusions. Assume with-
out loss of generality that U is an integer multiple of h. We look at the enlarged state
space

Sh+ = {x = (k1h, . . . , kdh)′ ∈ R
d : ki ∈ Z≥0} ∩ [0,U + h]d .

Let {Xh
n : n ∈ Z≥0} be a discrete-time controlled Markov chain with state space Sh+.

At any time step n, the control is first specified by the choice of an action: controlled
diffusion, seeding, or reflection. We use πh

n to denote the action at step n

• πh
n = 0 if the nth step is a controlled diffusion step

• πh
n = −i if the nth step is a seeding step on species i

• πh
0 = i if the nth step is a reflection step on species i .

In the case of a controlled diffusion step, the magnitude of the harvesting, which is
Rh
n , must also be specified. The space of controls will be U = {0,±1,±2, . . . ,±d}×

[0, μ].
We denote by ph (x, y|u = (π, r)) the transition probability from state x to another

state y under the control u = (π, r).Wewill choose ph (x, y|u = (π, r)) togetherwith
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interpolation intervals �th(x, u) so that the piecewise constant interpolation of {Xh
n }

approximates X(·) well for small h. Formally, a control sequence uh is admissible if
under this policy, {Xh

n } is a Markov chain with state space Sh+.
For x ∈ Sh+ and uh = (πh, Rh) ∈ Ah

x , the performance function for the controlled
Markov chain is defined as

Jh(x, uh) = E

[ ∞∑
m=1

e−δthm f (Xh
m) · Rh

m�th(Xh
m, uhm) −

∞∑
m=1

e−δthm g · �Zh
m

]
,

(2.28)

where �Zh
m is the seeding amount at step m. The value function of the controlled

Markov chain is
V h(x) = sup

uh∈Ah
x

J h(x, uh). (2.29)

We get the following convergence result.

Theorem 2.10 Suppose Assumptions 2.1 and B.1 hold. Then for any x ∈ [0,U ]d ,
V h(x) → VU (x) as h → 0. For sufficiently small h, a near-optimal harvesting-
seeding strategy of the controlled Markov chain is also a near-optimal harvesting-
seeding policy of the continuous-time system (2.27).

3 Numerical examples

In this sectionwe explore various relevant scenarios and see howour numerical approx-
imation scheme can provide fundamental insights into the optimal harvesting and
seeding of populations.

3.1 Single species system

We first look at a system which has one single species that is driven by a logistic
stochastic differential equation (Alvarez and Shepp 1998; Evans et al. 2015; Hening
et al. 2019a). The dynamics that includes harvesting and seeding will be given by

dX(t) = X(t)
(
b1 − b2X(t)

)
dt + σ X(t)dw(t) − dY (t) + dZ(t). (3.1)

Here b1 is the per-capita growth rate, b2 is the per-capita competition rate and σ 2 > 0
is the per-capita variance of the environmental fluctuations.

Let λ and μ be the maximum seeding and harvesting rates, so that 0 ≤ λ ≤ ∞ and
0 ≤ μ ≤ ∞.

We first look at the case λ < ∞ and μ = ∞. For an admissible strategy (Y ,C) we
have

J (x,Y ,C) = E

[∫ ∞

0
e−δs f dY (s) −

∫ ∞

0
e−δsgC(s)ds

]
. (3.2)
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Based on the algorithm constructed above and in “Appendix B”, we carry out the
computation by using the methods in (Kushner and Dupuis 1992, Chapter 6). At each
level x = h, 2h, . . . ,U and nth iteration, denote by u(x, n) = (

π(x, n), c(x, n)
)
the

control one chooses, where π(x, n) = 1 if there is harvesting, π(x, n) = 0 if there
is seeding. We initially let π(x, 0) = 1 and c(x, 0) = 0 for all x and we try to find
better harvesting-seeding strategies. The initial harvesting-seeding policy is (Y0,C0),
the policy which drives the system to extinction immediately and has no seeding. Note
that

J (x,Y0,C0) = f x

for all x and

V h
0 (x) = f x, x = 0, h, 2h, . . . ,U .

We find an improved value V h
n+1(x) and record the updating optimal control by

u(x, n + 1) = argmax
{
(i, c) : V h,i,c

n+1 (x)
}

, V h
n+1(x) = V h,u(x,n+1)

n+1 (x),

where

V h,1,c
n+1 (x) = V h

n (x − h) + f h,

V h,0,c
n+1 (x) = e−δ�th(x,0,c)

[
V h
n (x + h)ph

(
x, x + h|(0, c))

+V h
n (x − h)ph

(
x, x − h|(0, c))

+V h
n (x)ph

(
x, x |(0, c))] − gc�th(x, 0, c).

The numerical algorithm alternates between policy iterations and value iterations until
the increment V h

n+1(·) − V h
n (·) reaches some tolerance level. The error tolerance is

chosen to be 10−7. We pick the parameters

b1 = 3, b2 = 2, σ = 2, δ = 0.05, f (x) ≡ 0.5, g(x) ≡ 2.5, U = 4.

Note that b1 − σ 2

2 > 0, so that the species survives in the absence of harvesting and
seeding.

For the first numerical experiment, take λ = 0.5 and μ = ∞. Figure 1 shows
the value function V (x) as a function of the population size x , gives the optimal
harvesting-seeding policies, and also provides the optimal seeding rates. It can be
seen from Fig. 1 that the optimal policy is a barrier strategy. There are thresholds L1
and L2, where L1 = 0.04 and L2 = 1.25 such that [0, L1] is the seeding region (the
seeding rate is positive and maximal), (L1, L2) is the no-control region (no seeding
and no harvesting), and [L2,U ] is the harvesting region.

Next, let λ = 0.5 andμ = 3 and keep the other parameters as above. The numerical
results are shown in Fig. 2. Similar to the preceding scenario, the optimal policy is
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Fig. 1 Value function (left), optimal policy (middle, 1: harvesting, 0: seeding), and optimal seeding rate
(right) when λ = 0.5, μ = ∞
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Fig. 2 Value function (left), optimal harvesting rate (middle), and optimal seeding rate (right) when λ =
0.5, μ = 3

Fig. 3 Value function (left) and
optimal policy (right, 1:
harvesting, 0: no control, −1:
seeding) when λ = ∞, μ = ∞
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a barrier strategy. In particular, we have L1 = 0.03 for the seeding threshold and
L2 = 0.54 for the harvesting threshold. Note that this implies that one needs to
harvest sooner if the harvest rate is bounded. Moreover, it turns out that it is always
optimal to harvest and seed with the maximal possible rates.

Figure 3 shows the numerical experiment when both harvesting and seeding rates
are infinite, i.e., λ = ∞ and μ = ∞. For the policies in Fig. 3, 1 denotes harvesting,
−1 denotes seeding, and 0 denotes no action. In this scenario, L1 = 0.03, L2 = 1.23.
Figure 4 looks at unbounded seeding λ = ∞ and bounded harvesting μ = 3. In Fig.
4, since the harvesting rate is bounded, we see that it is optimal to start harvesting
at the lower threshold L2 = 0.54 (compared to L2 = 1.23) with the maximal rate.
Moreover, L1 = 0.03.
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Fig. 4 Value function (left), optimal policy (middle, −1: seeding, 0: harvesting), and optimal harvesting
rate (right) when λ = ∞, μ = 3

Fig. 5 The thresholds L1 (left)
and L2 (right) for λ = ∞ and
μ ∈ [0, 3]
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Biological interpretation In general if there is just one species, the optimal seeding-
harvesting strategy will be of threshold type. There is a lower threshold L1 > 0 and an
upper threshold L2 > L1. If the population size is below L1 we seed at the maximal
rate λ ≤ ∞. In particular, if the seeding rate is infinite this means that the population
gets to a level above L1 immediately at t = 0 and then never goes below L1—the
seeding happens infinitely fast at L1 so that the process reflects from L1 into (L1, L2).
When the population size is between L1 and L2 we do not seed nor do we harvest.
Once we are above the threshold L2 we harvest at the maximal rate μ. If the harvest
rate is infinite, the population gets to a level below L2 immediately at t = 0 and then
never goes above it again—the harvesting happens infinitely fast at L2 so that the
process reflects from L2 into (L1, L2). If both harvesting and seeding rates are infinite
the process immediately enters (L1, L2) at t = 0 and stays there forever. If one rate is
finite, the corresponding point (L1 if finite seeding and L2 is finite harvesting) wont
be reflecting and the population can pass that threshold at a time t > 0. The thresholds
L1, L2 depend on the seeding and harvesting rates as well as on the variance of the
environmental fluctuations. Figure 5 provides the graph of the thresholds L1 and L2
as functions of the harvesting rate μ ∈ [0, 3] when λ = ∞. Both L1 and L2 increase
with μ—as the harvesting rate increases we can wait longer until we start seeding
or harvesting. Figure 6 provides the graph of the thresholds L1 and L2 as functions
of λ ∈ [0, 1.5] when μ = ∞—the seeding threshold L1 first increases linearly after
which it decreases and then becomes constant. When the seeding rate is very close to
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Fig. 6 The thresholds L1 (left)
and L2 (right) for λ ∈ [0, 1.5]
and μ = ∞
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Fig. 7 The thresholds L1 (left)
and L2 (right) for λ = 0.5 and
μ = 3 and σ ∈ [1, 20]
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zero, it is hard to keep the species away from extinction and the seeding has to happen
for a longer time (higher L1). As the seeding rate increases, extinction becomes less
likely and the threshold L1 decreases. The harvesting threshold L2 decreases with
the seeding rate—a higher seeding rate makes extinction less likely and one can start
harvesting at lower population levels. Figure 7 provides the graph of the thresholds L1
and L2 as functions of σ ∈ [0, 20] when λ = 0.5 and μ = 3. The thresholds L1 and
L2 are non-increasing functions of σ . It can be seen that when the noise intensity σ is
large, and the species goes extinct fast, it becomes optimal to harvest at the maximal
possible rate at any population level and it is never optimal to seed anymore. This
observation fits with the results by Alvarez and Shepp (1998), Tran and Yin (2017)
for harvesting problems without seeding.

3.2 Two-species ecosystems

Example 3.1 Consider two species competing according to the following stochastic
Lotka-Volterra system

dX1(t) = X1(t)
(
b1 − a11X1(t) − a12X2(t)

)
dt + σ1X1(t)dw1(t) − dY1(t) + dZ1(t)

dX2(t) = X2(t)
(
b2 − a21X1(t) − a22X2(t)

)
dt + σ2X2(t)dw2(t) − dY2(t) + dZ2(t),

(3.3)
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Here b1, b2 are the per-capita growth rates, a12, a21 the per-capita interspecific
competition rates, a11, a22 the per-capita intraspecific competition rates and σ 2

1 , σ 2
2 >

0 the per-capita variances of the environmental fluctuations. If there is no seeding or
harvesting the dynamics of the above ecosystem has been studied extensively in the
literature (Turelli and Gillespie 1980; Kesten and Ogura 1981; Schreiber et al. 2011;
Evans et al. 2015; Hening and Nguyen 2018). Let λ = (λ1, λ2)

′, μ = (μ1, μ2)
′ be the

maximum seeding rates and the maximum harvesting rates for the two species. We set

δ = 0.05, f1(x) ≡ 1, f2(x) ≡ 1.5, g1(x) ≡ 4, g2(x) ≡ 3,

b1 = 3, a11 = 2, a12 = 1.5, σ1 = 3, b2 = 2, a21 = 2, a22 = 2, σ2 = 4,U = 4.
(3.4)

Since the stochastic growth rates of the species are negative, b1−σ 2
1 /2, b2−σ 2

2 /2 < 0
both species go extinct in the absence of seeding.

For the first experiment we take

λ1 = λ2 = 0.5, μ1 = μ2 = ∞.

In Fig. 8 one can see the value function and the optimal harvesting-seeding policy as
functions of the population sizes (x1, x2). Here “1” denotes the harvesting of species 1,
“2” the harvesting of species 2, and “0” the seeding (including seeding zero). Figure 9
provides the optimal seeding rates of the two species.

Biological interpretation We note that it is never optimal to seed species 2—the
optimal seeding rate of species 2 is identically zero. There is a nonlinear curve 


(see Figs. 8 and 9) such that it is optimal to harvest whenever the population sizes
(X1(t), X2(t)) lie above 
. Seeding takes place only when (X1(t), X2(t)) is in the
green domain, which is close to 0. In particular, only species 1 should be seeded
and we should seed with the maximal rate. This observation is well connected with
the chosen system parameters. Note that a11

b1
= 2

3 < 2
2 = a21

b2
and a12

b1
= 1.5

3 <
2
2 = a22

b2
. The intraspecific competition within species 1, given by a11

b1
, is smaller than

the interspecific competition effect of species 1 on species 2, given by a21
b2

, and the
interspecific competition effect of species 2 on species 1, given by a12

b1
, is smaller that

the intraspecific competition within species 2, given by a22
b2

. Moreover, the stochastic

growth rate of species 1 is larger than the stochastic growth rate of species 2: b1− σ 2
1
2 >

b2 − σ 2
2
2 . The environment is more favorable to species 1 than to species 2.

For the second example, we take

λ1 = 0.5, λ2 = 0, μ1 = 4, μ2 = 0.

We are not allowed to seed or harvest species 2. However, because of the interactions
between the two species, the optimal harvesting-seeding policy for the system will
depend on the population sizes of both species. In Fig. 10 one can see the value
function, the optimal seeding rate, and the optimal harvesting rate of species 1.
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Fig. 8 The value function and the optimal policy (1: harvesting of species 1, 2: harvesting of species 2, 0:
seeding)
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Fig. 11 The value function, optimal seeding, and harvesting rates of species 2

Biological interpretation There exist lower and upper thresholds 0 ≤ L1(x2) ≤
L2(x2) which depend on the population size of species 2. Whenever the size of popu-
lation 1 is under L1(x2) we seed species 1 at the maximal rate. If the population size
of species 1 is above L2(x2) we harvest this species at the maximal rate. Even in this
case when we are only allowed to seed or harvest species 1, the optimal harvesting-
seeding strategy is not a simple threshold strategy. Due to the interaction of the two
species, the optimal policy will depend on the population sizes of both species. One
interesting observation (see Fig. 10) is that for a fixed population size x1 of species 1,
the value function is a decreasing function of x2. When the size of x2 increases, due
to competition and the fact that we cannot harvest species 2, the value function will
decrease.

For the last experiment, we take

λ1 = 0, λ2 = 0.5, μ1 = 0, μ2 = 4, σ2 = 2.5.

We are not allowed to seed or harvest species 1. Figure 11 provides the value func-
tion, the optimal seeding rate, and the optimal harvesting rate of species 2. Similarly to
the preceding case (Fig. 10), there are levels L∗

1(x1) and L∗
2(x1) depending on x1 such

that if the abundance of species 2 is larger than L∗
2(x1), one should harvest species 2

at the maximal rate. If the abundance of species 2 is below L∗
1(x1), one should seed

species 2 using the maximal seeding rate.
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Example 3.2 Consider a predator-prey model where the predator has a Holling type 2
response and the prey satisfies a logistic equation. The dynamics is given by

dX1(t) = X1(t)

(
b1 − a11X1(t) − a12X1(t)

b3 + X1(t)

)
dt + σ1X1(t)dw1(t)

− dY1(t) + dZ1(t),

dX2(t) = X2(t)

(
−b2 + a21X1(t)

b3 + X1(t)
− a22X2(t)

)
dt + σ2X2(t)dw2(t)

− dY2(t) + dZ2(t), (3.5)

where X1(t) and X2(t) denote the population sizes of the prey and that of the predator.
Let λ = (λ1, λ2)

′ andμ = (μ1, μ2)
′ be the maximum seeding rates and the maximum

harvesting rates of the prey and predator. We pick the coefficients to be

δ = 0.05, f1(x) ≡ 0.5, f2(x) ≡ 0.75, g1(x) ≡ 3, g2(x) ≡ 4,U = 4,

and

b1 = 2, a11 = 1.2, a12 = 1, σ1 = 1.6, b2 = 1, b3 = 1, a21 = 4, a22 = 2, σ2 = 1.8.

For the first numerical experiment, we take

λ1 = λ2 = 0.5, μ1 = μ2 = ∞.

Figure 12 shows the value function and the optimal policy as a function of the
population abundances (x1, x2). Here “1” denotes harvesting of species 1, “−1” the
seeding of species 1, “2” the harvesting of species 2, and “0” the seeding of species 2
(the seeding rates are given in Fig. 13).

Biological interpretation The optimal seeding rate of the predator is identically
zero—it is never optimal to seed the predator. Moreover, one starts harvesting the
predator at a low density—it is optimal to keep the predator size low. This makes
sense as the driving force of the dynamics is given by the prey species. The predator
will always go extinct on its own. If one keeps the predator population low, the prey
species can grow and one can then harvest this population as well. There is a curve 


(Fig. 12) such that (X1(t), X2(t)) is above this curve, it is optimal to harvest. There is
seeding of the prey species when the (X1(t), X2(t)) is in the green domain, which is
close to 0. We only seed the prey species when it is close to extinction (or is initially
extinct).

For the second numerical experiment, we take

λ1 = 0, λ2 = 0.5, μ1 = 0, μ2 = 5,

so that only the predator can be seeded or harvested. Figure 14 provides the value
function, the optimal seeding rate, and the optimal harvesting rate of the predator.
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Fig. 12 The value function and the optimal policy (1: harvesting of the prey, 2: harvesting of the predator,
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Fig. 14 The value function, optimal seeding, and harvesting rates of species 2

Biological interpretation Just as in the first numerical experiment, it turns out that
it is never optimal to seed the predator. Even if both species are extinct, and we are
not allowed to seed the prey species, it is not optimal to seed the predator. Since
the predator goes extinct without the prey, the optimal strategy is to harvest all of it
immediately if there is no prey to sustain the dynamics. There is a level L(x1) which
depends on the size of the prey population such that if the predator population is above
L(x1) it is optimal to harvest it at the maximal rate.
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Appendix A: Properties of the value function

Proposition A.1 Assume we are in the setting of bounded seeding and unbounded
harvesting rates. Suppose that there exists number U > 0 such that

d∑
i=1

[
bi (x) − δ(xi −U )

]
fi < 0 for |x | > U .

Then there exists x∗ ∈ [0,U ]d such that

V (x) = V (x∗) + f · (x − x∗) for x ∈ S \ [0,U ]d .

Moreover,

V (x) = VU (x) for x ∈ [0,U ]d .

Proof Fix some x ∈ S \ [0,U ]d and (Y ,C) ∈ Ax , and let X denote the corresponding
harvested process. Let x∗

i = min{xi ,U } for i = 1, . . . , d and x∗ = (x∗
1 , . . . , x

∗
d )

′.
Let ε ∈ (0, 1) be a constant and define

�ε(y) = f · (y − x∗) + ε, y ∈ S \ [0,U ]d . (A.1)
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We can extend �ε(·) to the entire S so that �ε(·) is twice continuously differentiable,
�ε(y) ≥ 0 and f ≤ ∇�ε(y) for all y ∈ S. By assumption, we can check that

(L − δ)�ε(y) =
d∑

i=1

[
bi (y) − δ(yi − x∗)

]
fi − δε < 0 for y ∈ S \ [0,U ]d .

Choose N sufficiently large so that |x | < N . For

βN = inf{t ≥ 0 : |X(t)| ≥ N }, γ0 = inf{t ≥ 0 : X(t) ∈ [0, x∗]}, TN = N ∧ βN ∧ γ0,

we have TN → γ0 with probability one as N → ∞. By Dynkin’s formula,

Ex
[
e−δTN �ε (X(TN ))

] − �ε(x)

= Ex

∫ TN

0
e−δs(L − δ)�ε (X(s)) ds − Ex

∫ TN

0
e−δs∇�ε (X(s)) · dY c(s)

+ Ex

∫ TN

0
e−δs∇�ε (X(s)) · C(s)ds + Ex

∑
0≤s≤TN

e−δs
[
�ε (X(s)) − �ε (X(s−))

]
,

where Y c(·) is the continuous part of Y (·). Let �Y (s) = Y (s) − Y (s−). Since
∇�ε(X(s)) = f and �ε (X(s)) − �ε (X(s−)) = − f · �Y (s), we obtain

Ex
[
e−δTN �ε (X(TN ))

] − �ε(x) ≤ Ex

∫ TN

0
e−δs(L − δ)�ε(X(s))ds

−Ex

∫ TN

0
e−δs f · dY c(s) + Ex

∫ TN

0
e−δs f · C(s)ds − Ex

∑
0≤s≤TN

e−δs f · �Y (s).

(A.2)

Since �ε(y) ≥ 0 and f < g(y) for any y ∈ S, it follows from (A.2) that

Ex

∫ TN

0
e−δs f · dY (s) − Ex

∫ TN

0
e−δsg(X(s)) · C(s)ds

≤ �ε(x) + Ex

∫ TN

0
e−δs(L − δ)�ε(X(s))ds.

Letting N → ∞, by the bounded convergence theorem, we obtain

Ex

∫ γ0

0
e−δs f · dY (s) − Ex

∫ γ0

0
e−δsg(X(s)) · C(s)ds

≤ �ε(x) + Ex

∫ γ0

0
e−δs(L − δ)�ε(X(s))ds.
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As a result

J (x,Y ,C) ≤ Ex

[ ∫ γ0

0
e−δs f · dY (s) −

∫ γ0

0
e−δsg(X(s)) · C(s)ds + V (X(γ0))

]

≤ V (x∗) + �ε(x) + Ex

∫ γ0

0
e−δs(L − δ)�ε(X(s))ds.

The above implies

J (x,Y ,C) ≤ V (x∗) + f · (x − x∗) + ε + Ex

∫ γ0

0
e−δs(L − δ)�ε(X(s))ds.

(A.3)

Letting ε → 0 in (A.3)

J (x,Y ,C) ≤ V (x∗) + f · (x − x∗) − Ex

∫ γ0

0
e−δs(L − δ)�0(X(s))ds, (A.4)

where �0(·) is also defined by (A.1) at ε = 0. Note that if P(γ0 = 0) < 1, then (A.3)
is a strict inequality. On the other hand, it is obvious (by harvesting instantaneously
x − x∗ at time t = 0) that

V (x) ≥ V (x∗) + f · (x − x∗). (A.5)

In view of (A.4) and (A.5), if x ∈ S\[0,U ]d , V (x) = V (x∗)+ f ·(x−x∗). Moreover,
it is optimal to instantaneously harvest an amount of x − x∗ to drive the population
to the state x∗ on the boundary of [0,U ]d , and then apply an optimal or near-optimal
harvesting-seeding policy in Ax∗ . Therefore, if the initial population x ∈ [0,U ]d , it
is optimal to apply a harvesting-seeding policy so that the population process stays in
[0,U ]d forever. This completes the proof. ��
Proposition A.2 Suppose we are in the setting of bounded seeding and harvesting
rates, and that Assumption 2.1 is satisfied.

(a) The value function V is finite and continuous on S.
(b) The value function V is a viscosity subsolution of (2.19); that is, for any x0 ∈ S

and any function φ ∈ C2(S) satisfying

(V − φ)(x) ≥ (V − φ)(x0) = 0,

for all x in a neighborhood of x0, we have

(L − δ)φ(x0) + max
ξ∈[−λ,μ]

[
ξ− · (

f − ∇φ)
(
x0

)
− ξ+ · (g − ∇φ)

(
x0

) ]
≤ 0.

(A.6)
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(c) The value function V is a viscosity supersolution of (2.19); that is, for any x0 ∈ S
and any function ϕ ∈ C2(S) satisfying

(V − ϕ)(x) ≤ (V − ϕ)(x0) = 0, (A.7)

for all x in a neighborhood of x0, we have

(L−δ)ϕ(x0)+ max
ξ∈[−λ,μ]

[
ξ− ·( f −∇ϕ)

(
x0

)
−ξ+ ·(g−∇ϕ)

(
x0

) ]
≥ 0. (A.8)

(d) The value function V is a viscosity solution of (2.19).

In the proof, we use the following notation and definitions. For a point x0 ∈ S and
a strategy Q ∈ Ax0 , let X be the corresponding process with harvesting and seeding.
Let Bε(x0) = {x ∈ S : |x − x0| < ε}, where ε > 0 is sufficiently small so that
Bε(x0) ⊂ S. Let θ = inf{t ≥ 0 : X(t) /∈ Bε(x0)}. For a constant r > 0, we define
θr = θ ∧ r .

Proof (a) Since the functions f (·), g(·) and the ratesC(·), R(·) are bounded, the value
function is also bounded. The conclusion then follows by (Krylov 2008, Chapter 3,
Theorem 5).
(b) For x0 ∈ S, consider a C2 function φ(·) satisfying φ(x0) = V (x0) and φ(x) ≤
V (x) for all x in a neighborhood of x0. Let ε > 0 be sufficiently small so that Bε(x0) ⊂
S and φ(x) ≤ V (x) for all x ∈ Bε(x0), where Bε(x0) = {x ∈ S : |x − x0| ≤ ε} is the
closure of Bε(x0).

Let ξ ∈ [−μ, λ] and define Q ∈ Ax0 to satisfy Q(t) = ξ for all t ∈ [0, r ] for a
positive constant r . We denote by X the corresponding harvested process with initial
condition x0. Then X(t) ∈ Bε(x0) for all 0 ≤ t ≤ θ . By virtue of the dynamic
programming principle, we have

φ(x0) = V (x0) ≥ E

[ ∫ θr

0
e−δs

(
Q−(s) · f (X(s)) − Q+(s) · g (X(s))

)
ds

+e−δθr φ(X(θr ))

]
. (A.9)

By the Dynkin formula, we obtain

φ(x0) = Ee−δθr φ(X(θr )) − E

∫ θr

0
e−δs(L − δ)φ(X(s))ds

+ E

∫ θr

0
e−δs

(
Q−(s) · ∇φ (X(s)) − Q+(s) · ∇φ (X(s))

)
ds. (A.10)

A combination of (A.9) and (A.10) leads to
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0 ≥ E

∫ θr

0
e−δs

(
Q−(s) · f (X(s)) − Q+(s) · g (X(s))

)
ds

+ E

∫ θr

0
e−δs(L − δ)φ(X(s))ds

− E

∫ θr

0
e−δs

(
Q−(s) · ∇φ (X(s)) − Q+(s) · ∇φ (X(s))

)
ds, (A.11)

which in turn implies

E

∫ θr

0
e−δs

[
(L − δ)φ(X(s)) + Q−(s) · (

f − ∇φ) (X(s))

−Q+(s) · (g − ∇φ) (X(s))
]
ds ≤ 0.

By the continuity of X(·) and the definition of Q(·), we obtain

(L − δ)φ(x0) + ξ− · (
f − ∇φ)

(
x0

)
− ξ+ · (g − ∇φ)

(
x0

)
≤ 0.

This completes the proof of (b).
(c) Let x0 ∈ S and suppose ϕ(·) ∈ C2(S) satisfies (A.7) for all x in a neighborhood
of x0. We argue by contradiction. Suppose that (A.8) does not hold. Then there exists
a constant A > 0 such that

(L− δ)ϕ(x0) + max
ξ∈[−λ,μ]

[
ξ− · ( f − ∇ϕ)

(
x0

)
− ξ+ · (g − ∇ϕ)

(
x0

) ]
≤ −2A < 0.

(A.12)
Let ε > 0 be small enough so that Bε(x0) ⊂ S and for any x ∈ Bε(x0), ϕ(x) ≥ V (x)
and

(L−δ)ϕ(x)+ max
ξ∈[−λ,μ]

[
ξ− ·( f −∇ϕ) (x)−ξ− · (g−∇ϕ) (x)

]
≤ −A < 0. (A.13)

Let Q ∈ Ax0 and X(·) be the corresponding process. Recall that θ = inf{t ≥ 0 :
X(t) /∈ Bε(x0)} and θr = θ ∧ r for any r > 0. It follows from the Dynkin formula
that

Ee−δθr ϕ(X(θr ) − ϕ(x0))

= E

∫ θr

0
e−δs

[
(L − δ)ϕ(X(s)) − Q−(s) · ∇ϕ(X(s)) + Q+(s) · ∇ϕ(X(s))

]
ds

=
∫ θr

0
e−δs

[
(L − δ)ϕ(X(s)) + Q−(s) · ( f − ∇ϕ)(X(s))

− Q+(s) · (g − ∇ϕ)(X(s))
]
ds

−
∫ θr

0
e−δs

[
Q−(s) · f (X(s)) − Q+(s) · g(X(s))

]
ds. (A.14)
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Equations (A.13) and (A.14) show that

Ee−δθr ϕ(X(θr )) − ϕ(x0))

≤ E

∫ θr

0
e−δs(−A)ds −

∫ θr

0
e−δs

(
Q−(s) · f (X(s)) − Q+(s) · g(X(s))

)
ds.

(A.15)

Therefore

ϕ(x0) ≥ Ee−δθr ϕ(X(θr )) + AE

∫ θr

0
e−δsds

+
∫ θr

0
e−δs

(
Q−(s) · f (X(s)) − Q+(s) · g(X(s))

)
ds. (A.16)

Letting r → ∞, we have

V (x0) = ϕ(x0) ≥ Ee−δθϕ(X(θ)) + AE

∫ θ

0
e−δsds

+
∫ θ

0
e−δs

(
Q−(s) · f (X(s)) − Q+(s) · g(X(s))

)
ds. (A.17)

Set κ0 = AE
∫ θ

0 e−δsds > 0. Taking the supremum over Q ∈ Ax0 we arrive at

V (x0) ≥ κ0 + sup
Q∈Ax0

E

[
e−δθϕ(X(θ)) +

∫ θ

0
e−δs

(
Q−(s) · f (X(s))

− Q+(s) · g(X(s))
)
ds

]
. (A.18)

In view of the dynamic programming principle, the preceding inequality can be rewrit-
ten as V (x0) ≥ V (x0)+κ0 > V (x0), which is a contradiction. This implies that (A.8)
has to hold and the conclusion follows.
Part (d) follows from (b) and (c). ��

Appendix B: Numerical algorithm

We will present the detailed convergence analysis of Theorem 2.6, which is closely
based on the Markov chain approximation method developed by Kushner and Dupuis
(1992), Kushner and Martins (1991). Theorem 2.8 and Theorem 2.10 can be derived
using similar techniques and we therefore omit the details.
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B.1: Transition probabilities for bounded seeding and unbounded harvesting
rates

For simplicity, we make use of one more assumption below. This assumption will be
used to ensure that the transition probabilities ph(x, y|u) are well defined. Neverthe-
less, this is not an essential assumption. There are several alternatives to handle the
caseswhenAssumptionB.1 fails.We refer the reader to (Kushner 1990, page 1013) for
a detailed discussion. Define for any x ∈ S the covariance matrix a(x) = σ(x)σ ′(x).

Assumption B.1 For any i = 1, . . . , d and x ∈ S,

aii (x) −
∑
j : j �=i

∣∣ai j (x)∣∣ ≥ 0.

We define the difference �Xh
n = Xh

n+1 − Xh
n . Denote by �Y h

n the harvesting
amount for the chain at step n. If πh

n = i , we let �Y h
n = hei and then �Xh

n = −hei.
If πh

n = 0, we set �Y h
n = 0. Define

Y h
0 = 0, Y h

n =
n−1∑
m=0

�Y h
m .

For definiteness, if Xh
n,i is the i th component of the vector Xh

n and { j : Xh
n, j = U } is

non-empty, then step n is a harvesting step on species min{ j : Xh
n, j = U }. Recall that

uhn = (πh
n ,Ch

n ) for n ∈ Z≥0 and uh = {uhn}n ≡ {Y h
n ,Ch

n }n is a sequence of controls. It
should be noted that πh

n = 0 includes the case when we seed nothing; that is, Ch
n = 0.

Denote by Fh
n = σ {Xh

m, uhm,m ≤ n} the σ -algebra containing the information from
the processes Xh

m and uhm between the times 0 and n.
The sequence uh = (πh,Ch) ≡ {Y h

n ,Ch
n }n is said to be admissible if it satisfies

the following conditions:

(a) uhn is σ {Xh
0 , . . . , X

h
n , u

h
0, . . . , u

h
n−1} − adapted,

(b) For any x ∈ Sh , we have

P{Xh
n+1 = x |Fh

n } = P{Xh
n+1 = x |Xh

n , u
h
n} = ph(Xh

n , x |uhn),

(c) Denote by Xh
n,i the i th component of the vector Xh

n . Then

P
(
πh
n = min{ j : Xh

n, j = U }|Xh
n, j = U for some j ∈ {1, . . . , d},Fh

n

) = 1.

(d) Xh
n ∈ Sh for all n ∈ Z≥0.

The class of all admissible control sequences uh having the initial state x will be
denoted by Ah

x .
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For each (x, u) ∈ Sh × U , we define a family of interpolation intervals �th(x, u).
The values of �th(x, u) will be specified later. Then we define

th0 = 0, �thm = �th(Xh
m, uhm), thn =

n−1∑
m=0

�thm . (B.1)

Let E
h,u
x,n , C��

h,u
x,n denote the conditional expectation and covariance given by

{Xh
m, uhm,m ≤ n, Xh

n = x, uhn = u},

respectively. Our objective is to define transition probabilities ph(x, y|u) so that the
controlled Markov chain {Xh

n } is locally consistent with respect to the controlled
diffusion (2.7) in the sense that the following conditions hold at seeding steps, i.e., for
u = (0, c)

E
h,u
x,n�Xh

n = (
b(x) + c

)
�th(x, u) + o(�th(x, u)),

Covh,u
x,n�Xh

n = a(x)�th(x, u) + o(�th(x, u)),

sup
n, ω

|�Xh
n | → 0 as h → 0. (B.2)

Using the procedure used by Kushner (1990), for (x, u) ∈ Sh × U with u = (0, c),
define

Qh(x, u) =
d∑

i=1

aii (x) −
∑

i, j :i �= j

1

2
|ai j (x)| + h

d∑
i=1

|bi (x) + ci | + h,

ph (x, x + hei|u) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + (

bi (x) + ci
)+

h

Qh(x, u)
,

ph (x, x − hei|u) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + (

bi (x) + ci )−h

Qh(x, u)
,

ph
(
x, x + hei + hej|u

) = ph
(
x, x − hei − hej|u

) = a+
i j (x)

2Qh(x, u)
,

ph
(
x, x + hei − hej|u

) = ph
(
x, x − hei + hej|u

) = a−
i j (x)

2Qh(x, u)
,

ph (x, x |u) = h

Qh(x, u)
, �th(x, u) = h2

Qh(x, u)
. (B.3)

Set ph (x, y|u = (0, c)) = 0 for all unlisted values of y ∈ Sh . Assumption B.1
guarantees that the transition probabilities in (B.3) are well-defined. At the harvesting
steps, we define
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ph (x, x − hei|u=(i, c)) = 1, �th(x, u = (i, c)) = 0, i =1, 2, . . . , d. (B.4)

Thus, ph (x, y|u = (i, c)) = 0 for all unlisted values of y ∈ Sh . Using the above
transition probabilities, we can check that the locally consistent conditions of {Xh

n } in
(B.2) are satisfied.

B.2: Continuous–time interpolation and time rescaling

The convergence result is based on a continuous-time interpolation of the chain, which
will be constructed to be piecewise constant on the time interval [thn , thn+1), n ≥ 0.
We define nh(t) = max{n : thn ≤ t}, t ≥ 0. We first define discrete time processes
associated with the controlled Markov chain as follows. Let Bh

0 = Mh
0 = 0 and define

for n ≥ 1,

Bh
n =

n−1∑
m=0

I{πh
m=0}Eh

m�ξ hm, Mh
n =

n−1∑
m=0

(�ξ hm − E
h
m�Xm)I{πh

m=0}. (B.5)

The piecewise constant interpolation processes, denoted by (Xh(·),Y h(·), Bh(·),
Mh(·),Ch(·)) are naturally defined as

Xh(t) = Xh
nh(t), Ch(t) = Ch

nh(t),

Y h(t) = Y h
nh(t), Bh(t) = Bh

nh(t), Mh(t) = Mh
nh(t), t ≥ 0. (B.6)

Define Fh(t) = σ {Xh(s),Y h(s),Ch(s) : s ≤ t}. At each step n, we can write

�Xh
n = �Xh

n I{harvesting step at n} + �Xh
n I{seeding step at n}. (B.7)

Thus, we obtain

Xh
n = x +

n−1∑
m=0

�Xh
m I{πh

m≥1} +
n−1∑
m=0

�Xh
m I{πh

m=0}. (B.8)

This implies
Xh(t) = x + Bh(t) + Mh(t) − Y h(t). (B.9)

Recall that �thm = h2/Qh(Xh
m, uhm) if πh

m = 0 and �thm = 0 if πh
m ≥ 1. It follows that

Bh(t) =
nh(t)−1∑
m=0

[
b(Xh

m) + Ch
m

]
�thm

=
∫ t

0

[
b(Xh(s)) + Ch(s)

]
ds −

∫ t

th
nh (t)

[
b(Xh(s)) + Ch(s)

]
ds
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=
∫ t

0

[
b(Xh(s)) + Ch(s)

]
ds + εh1 (t), (B.10)

with {εh1 (·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh1 (t)| = 0 for any 0 < T0 < ∞.

We now attempt to represent Mh(·) in a form similar to the diffusion term in (2.7).
Factor

a(x) = σ(x)σ ′(x) = P(x)D2(x)P ′(x),

where P(·) is an orthogonal matrix, D(·) = diag{r1(·), ..., rd(·)}. Without loss of
generality, we suppose that inf

x
ri (x) > 0 for all i = 1, . . . , d. Define D0(·) =

diag{1/r1(·), ..., 1/rd(·)}.
Remark B.2 In the argument above, for simplicity, we assume that the diffusion matrix
a(x) is nondegenerate. If this is not the case, we can use the trick from (Kushner and
Dupuis 1992, p.288-289) to establish equation (B.12).

Define Wh(·) by

Wh(t) =
∫ t

0
D0(X

h(s))P ′(Xh(s))dMh(s)

=
nh(t)−1∑
m=0

D0(X
h
m)P ′(Xh

m)(�ξ hm − E
h
m�ξ hm)I{πh

m=0}. (B.11)

Then we can write

Mh(t) =
∫ t

0
σ(Xh(s))dWh(s) + εh2 (t), (B.12)

with {εh2 (·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh2 (t)| = 0 for any 0 < T0 < ∞.

Using (B.10) and (B.12), we can write (B.9) as

Xh(t) = x +
∫ t

0

[
b(Xh(s)) + Ch(s)]ds +

∫ t

0
σ(Xh(s))dWh(s) − Y h(t) + εh(t),

(B.13)
where εh(·) is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh(t)| = 0 for any 0 < T0 < ∞.
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The objective function from (2.12) can be rewritten as

Jh(x,Y h,Ch) = E

[∫ ∞

0
e−δs f · dY h(s) −

∫ ∞

0
e−δsg(Xh(s)) · Ch(s)d(s)

]
.

(B.14)

Time rescaling Next we will introduce “stretched-out” time scale. This is similar to
the approach previously used by Kushner and Martins (1991) and Budhiraja and Ross
(2007) for singular control problems. Using the new time scale, we can overcome the
possible non-tightness of the family of processes {Y h(·)}.

Define the rescaled time increments {�̂thn : n ∈ Z≥0} by

�̂thn = �thn I{πh
n =0} + hI{πh

n ≥1}, t̂0 = 0, t̂n =
n−1∑
k=0

�̂thk , n ≥ 1. (B.15)

Definition B.3 The rescaled timeprocess T̂ h(·) is the unique continuous nondecreasing
process satisfying the following:

(a) T̂ h(0) = 0;
(b) the derivative of T̂ h(·) is 1 on (̂thn , t̂ hn+1) if πh

n = 0, i.e., n is a seeding step;
(c) the derivative of T̂ h(·) is 0 on (̂thn , t̂ hn+1) if πh

n ≥ 1, i.e., n is a harvesting step.

Define the rescaled and interpolated process X̂ h(t) = Xh(T̂ h(t)) and likewise define
Ŷ h(·), Ĉh(·), B̂h(·), M̂h(·), and the filtration F̂h(·) similarly. It follows from (B.9)
that

X̂ h(t) = x + B̂h(t) + M̂h(t) − Ŷ h(t). (B.16)

Using the same argument we used for (B.13) we obtain

X̂ h(t) = x+
∫ t

0

[
b(X̂ h(s))+Ĉh(s)

]
dT̂ h(s)+

∫ t

0
σ(X̂ h(s))dŴ h(s)− Ŷ h(t)+ ε̂h(t),

(B.17)
with ε̂h(·) is an F̂h(·)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|̂εh(t)| = 0 for any 0 < T0 < ∞. (B.18)

Define

Ah(t) =
∫ t

0
Ch(s)ds, Âh(t) =

∫ t

0
Ĉh(s)T̂ h(s), t ≥ 0, h > 0. (B.19)

Convergence

Using weak convergence methods, we can obtain the convergence of the algorithms.
Let D[0,∞) denote the space of functions that are right continuous and have left-hand
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limits endowed with the Skorokhod topology. All the weak analysis will be on this
space or its k-fold products Dk[0,∞) for appropriate k.

Theorem B.4 Suppose Assumptions 2.1 and B.1 hold. Let the chain {Xh
n } be con-

structed with transition probabilities defined in (B.3)–(B.4), Xh(·), Wh(·), Y h(·), and
Ah(·) be the continuous-time interpolation defined in (B.5)–(B.6), (B.11), and (B.19).
Let X̂h(·), Ŵ h(·), Ŷ h(·), Âh(·) be the corresponding rescaled processes, T̂ h(·) be the
process from Definition B.3, and denote

Ĥh(·) =
(
X̂ h(·), Ŵ h(·), Ŷ h(·), Âh(·), T̂ h(·)

)
.

Then the family of processes (Ĥ h)h>0 is tight. As a result, (Ĥ h)h>0 has a weakly
convergent subsequence with limit

Ĥ(·) =
(
X̂(·), Ŵ (·), Ŷ (·), Â(·), T̂ (·)

)
.

Proof We use the tightness criteria used by (Kushner 1984, p. 47). Specifically, a suf-
ficient condition for tightness of a sequence of processes ζ h(·)with paths in Dk[0,∞)

is that for any constants T0, ρ ∈ (0,∞),

E
h
t

∣∣ζ h(t + s) − ζ h(t)
∣∣2 ≤ E

h
t γ (h, ρ) for all s ∈ [0, ρ], t ≤ T0,

lim
ρ→0

lim sup
h→0

Eγ (h, ρ) = 0.

The proof for the tightness of Ŵ h(·) is standard; see for example Kushner andMartins
(1991), Jin et al. (2013). We show the tightness of Ŷ h(·) to demonstrate the role of
time rescaling. Following the definition of “stretched out” timescale, for any constants
T0, ρ ∈ (0,∞), s ∈ [0, ρ] and t ≤ T0,

E
h
t |Ŷ h(t + s) − Ŷ h(t)|2 ≤ dh2Eh

t (number of harvesting steps in
interpolated interval [t, t + s))2

≤ dh2 max{1, ρ2/h2}
≤ d(h2 + ρ2).

(B.20)

Thus {Ŷ h(·)} is tight. The tightness of {T̂ h(·)} follows from the fact that

0 ≤ T̂ h(t + s) − T̂ h(t) ≤ ρ.

Since | Âh(t + s) − Âh(t)| ≤ |T̂ h(t + s) − T̂ h(t)| ∑d
i=1 λi , it follows that

{ Âh(·)} is tight. The tightness of {X̂ h(·)} follows from (B.16), (B.20). Hence
{X̂ h(·), Ŵ h(·), Ŷ h(·), Âh(·), T̂ h(·)} is tight. By virtue of Prohorov’s Theorem, Ĥ h(·)
has a weakly convergent subsequence with the limit Ĥ(·). This completes the proof.

��
We proceed to characterize the limit process.
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Theorem B.5 Under conditions of Theorem B.4, let F̂(t) be the σ -algebra generated
by

{X̂(s), Ŵ (s), Ŷ (s), Â(s), T̂ (s) : s ≤ t}.

Then the following assertions hold.

(a) X̂(·), Ŵ (·), Ŷ (·), Â(·), and T̂ (·) have continuous paths with probabilty one,
Ŷ (·) and T̂ (·) are nondecreasing and nonnegative. Moreover, T̂ (·) is Lipschitz
continuous with Lipschitz coefficient 1.

(b) There exists an {F̂(·)}-adapted process Ĉ(·) with Ĉ(t) ∈ [0, λ] for any t ≥ 0,
such that Â(t) = ∫ t

0 Ĉ(s)dT̂ (s) for any t ≥ 0.
(c) Ŵ (t) is an F̂(t)-martingale with quadratic variation process T̂ (t)Id , where Id

is the d × d identity matrix.
(d) The limit processes satisfy

X̂(t) = x +
∫ t

0

[
b(X̂(s)) + Ĉ(s)

]
dT̂ (s) +

∫ t

0
σ(X̂(s))dŴ (s) − Ŷ (t). (B.21)

Proof (a) Since the sizes of the jumps of X̂ h(·), Ŵ h(·), Ŷ h(·), Âh(·), T̂ h(·) go to 0
as h → 0, the limits of these processes have continuous paths with probability one
(see (Kushner 1990, p. 1007)). Moreover, Ŷ h(·) (resp. T̂ h(·)) converges uniformly
to Ŷ (·), (resp. T̂ (·)) on bounded time intervals. This, together with the monotonicity
and non-negativity of Ŷ h(·) and T̂ h(·) implies that the processes Ŷ (·) and T̂ (·) are
nondecreasing and nonnegative.

(b) Since | Âh
i (t + s) − Âh

i (t)| ≤ λi |T̂ h(t + s) − T̂ h(t)| for any t ≥ 0, s ≥
0, h > 0, i = 1, 2, . . . , d and by virtue of Skorohod representation, | Âi (t + s) −
Âi (t)| ≤ λi |T̂ (t + s) − T̂ (t)| for any t ≥ 0, s ≥ 0, i = 1, 2, . . . , d; that is, each
Âi is absolutely continuous with respect to T̂ . Therefore, there exists a [0, λi ]-valued
{F̂(t)}-adapted process Ĉi (·) such that Âi (t) = ∫ t

0 Ĉi (s)dT̂ (s) for any t ≥ 0. Then
C(·) = (C1(·), . . . ,Cd(·))′ is the desired process.

(c) Let Ê
h
t denote the expectation conditioned on F̂h(t) = Fh(T̂ h(t)). Recall that

Wh(·) is an Fh(·)- martingale and by the definition of Ŵ h(·), for any ρ > 0,

Ê
h
t

(
Ŵ h(t + ρ) − Ŵ h(t)

) = 0,

Ê
h
t

(
Ŵ h(t + ρ)Ŵ h(t + ρ)′ − Ŵ h(t)Ŵ h(t)′

) = (
T̂ h(t + ρ) − T̂ h(t)

)
Id + ε̂h(ρ),

(B.22)

where E|̂εh(ρ)| → 0 as h → 0. To characterize Ŵ (·), let q be an arbitrary integer,
t > 0, ρ > 0 and {tk : k ≤ q} be such that tk ≤ t < t + ρ for each k. Let �(·) be
a real-valued and continuous function with compact support. Then in view of (B.22),
we have

E�(Ĥ h(tk), k ≤ q)
[
Ŵ h(t + ρ) − Ŵ h(t)

]
= 0, (B.23)
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and

E�(Ĥ h(tk), k ≤ q)
[(
Ŵ h(t + ρ)Ŵ h(t + ρ)′ − Ŵ h(t)Ŵ h(t)′

−(
T̂ h(t + ρ) − T̂ h(t)

)
Id − ε̂h(ρ)

]
= 0. (B.24)

By the Skorokhod representation and the dominated convergence theorems, letting
h → 0 in (B.23), we obtain

E�(Ĥ(tk), k ≤ q)
[
Ŵ (t + ρ) − Ŵ (t)

]
= 0. (B.25)

Since Ŵ (·) has continuous paths with probability one, (B.25) implies that Ŵ (·) is a
continuous F̂(·)-martingale. Moreover, (B.24) gives us that

E�(Ĥ(tk), k ≤ q)
[
Ŵ (t + ρ)Ŵ (t + ρ)′ − Ŵ (t)Ŵ (t)′ − (

T̂ (t + ρ) − T̂ (t)
)
Id

]
= 0.

(B.26)

This implies part (c).
(d)Theproof of this part ismotivated by that of (Kushner andDupuis 1992,Theorem

10.4.1). By virtue of Skorohod representation,

∫ t

0

[
b(X̂ h(s)) + Ĉh(s)

]
dT̂ h(s) →

∫ t

0

[
b(X̂(s)) + Ĉ(s)

]
dT̂ (s), (B.27)

as h → 0 uniformly in t on any bounded time interval with probability one.
For each positive constant ρ and a process ν̂(·), define the piecewise constant

process ν̂ρ(·) by ν̂ρ(t) = ν̂(kρ) for t ∈ [kρ, kρ +ρ), k ∈ Z≥0. Then, by the tightness
of (X̂ h(·)), (B.17) can be rewritten as

X̂ h(t)= x0+
∫ t

0

[
b(X̂ h(s))+Ĉh(s)

]
dT̂ h(s)+

∫ t

0
σ(X̂ h,ρ(s))dŴ h(s)−Ŷ h(t)+̂εh,ρ(t),

(B.28)
where lim

ρ→0
lim sup
h→0

E|̂εh,ρ(t)| = 0. Owing to the fact that X̂ h,ρ takes constant values

on the intervals [kρ, kρ + ρ), we have

∫ t

0
σ(X̂ h,ρ(s))dŴ h(s) →

∫ t

0
σ(X̂ρ(s))dŴ (s) as h → 0, (B.29)

which are well defined with probability one since they can be written as finite sums.
Combining (B.27)–(B.29), we have

X̂(t) = x0 +
∫ t

0

[
b(X̂(s)) + Ĉ(s)

]
dT̂ (s) +

∫ t

0
σ(X̂ρ(s))dŴ (s) − Ŷ (t) + ε̂ρ(t),

(B.30)
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where lim
ρ→0

E |̂ερ(t)| = 0. Taking the limit ρ → 0 in the above equation yields the

result. ��
For t < ∞, define the inverse T (t) = inf{s : T̂ (s) > t}. For any process ν̂(·),

define the time-rescaled process (ν(·)) by ν(t) = ν̂(T (t)) for t ≥ 0. Let F(t) be
the σ -algebra generated by {X(s),W (s),Y (s),C(s), T (s) : s ≤ t}. Let V h(x) and
VU (x) be value the functions defined in (2.13) and (2.9), respectively.

Theorem B.6 Under conditions of Theorem B.4, the following assertions are true.

(a) T is right continuous, nondecreasing, and T (t) → ∞ as t → ∞with probability
one.

(b) The processes Y (t) and C(t) are F(t)-adapted. Moreover, Y (t) is right-
continuous, nondecreasing, nonnegative; C(t) ∈ [0, λ] for any t ≥ 0.

(c) W (·) is an F(t)-adapted standard Brownian motion, and

X(t) = x +
∫ t

0

[
b(X(s)) + C(s)

]
ds +

∫ t

0
σ(X(s))dW (s) − Y (t), t ≥ 0.

(B.31)

Proof (a) We will argue via contradiction that T̂ (t) → ∞ as t → ∞ with probability
one. Suppose P[supt≥0 T̂ (t) < ∞] > 0. Then there exist positive constants ε and T0
such that

P[sup
t≥0

T̂ (t) < T0 − 1] > ε. (B.32)

We first observe that

t + d|Y h(t)| ≥
nh(t)−1∑
k=0

(
�thn I{πh

k =0} + hI{πh
k ≥1}

)
.

Since T̂ h(·) is nondecreasing and T̂ h (̂thn ) = thn ,

T̂ h(t + d|Y h(t)|) ≥ T̂ h
( nh(t)−1∑

k=0

(
�thk I{πh=0} + hI{πh

k ≥1}
))

= T̂ h (̂thnh(t)) = thnh(t) ≥ t − 1. (B.33)

The last inequality above is a consequence of the inequalities th
nh(t)

≤ t < th
nh(t)+1

=
th
nh(t)

+ �thn+1 < th
nh(t)

+ 1.

It follows from (B.9) that for each fixed t ≥ 0, sup
h

E
(|Y h(t)|) < ∞. Thus, for a

sufficiently large K ,

P{d|Y h(T0)| ≥ 2K } ≤ dE
∣∣Y h(T0)

∣∣
2K

<
ε

2
. (B.34)

In views of (B.33) and (B.34), we obtain
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P
[
T̂ h(T0 + 2K ) < T0 − 1

] ≤ P
[
T̂ h(T0 + d|Y h(T0)

)
< T0 − 1, d|Y h(T0)| < 2K

]
+ P

[
d|Y h(T0)| ≥ 2K

]
<

ε

2
for small h. (B.35)

Since T̂ h converges weakly to T̂ , it follows from (B.35) that lim inf
h→0

P
[
T̂ h(T0+2K ) <

T0−1
] ≤ ε/2. This contradicts (B.32) (see (Billingsley 1968, Theorem 1.2.1)). Hence

T̂ (t) → ∞ as t → ∞ with probability one. Thus T (t) < ∞ for all t and T (t) → ∞
as t → ∞. Since T̂ (·) is nondecreasing and continuous, T (·) is nondecreasing and
right-continuous.

(b) The properties of Y (·) follow from the fact that Ŷ (·) is continuous, nondecreas-
ing, nonnegative, and T (·) is right-continuous. The properties of C(·) follow from
those of Ĉ(·).

(c) Note that although T (·) might fail to be continuous, W (·) = Ŵ (T (·))
has continuous paths with probability one. Indeed, consider the tight sequence(
Wh(·), Ŵ h(·), T̂ h(·)) with the weak limit

(
W̃ (·), Ŵ (·), T̂ (·)). Since Ŵ h(·) =

Wh(T̂ h(·)), we must have that Ŵ (·) = W̃ (T̂ (·)). It follows from the definition of
T (·) that for each t ≥ 0, we have T̂ (T (t)) = t . Hence W (t) = Ŵ (T (t)) =
W̃

(
T̂ (T (t))

) = W̃ (t). Since the sizes of the jumps of Wh(·) go to 0 as h → 0,
W̃ (·) also has continuous paths with probability 1. This shows that W (·) = Ŵ (T (·))
has continuous paths with probability 1. Before characterizing W (·), we note that
for t ≥ 0, {T (s) ≤ t} = {T̂ (t) ≥ s} ∈ F̂(t) since T̂ (t) is F̂(t)-measurable. Thus
T (s) is an F̂(t)-stopping time for each s ≥ 0. Since Ŵ (t) is an F̂(t)-martingale with
quadratic variation process T̂ (t)Id ,

E
[
Ŵ (T (t) ∧ n)|F̂(=T (s))

] = Ŵ (T (s) ∧ n), n = 1, 2, . . . ,

EŴ (T (t) ∧ n)Ŵ (T (t) ∧ n)′ = ET̂ (T (t) ∧ n)Id , (B.36)

and T̂ (T (t) ∧ n) ≤ T̂ (T (t)) = t . Hence for each fixed t ≥ 0, the family {Ŵ (T (t) ∧
n), n ≥ 1} is uniformly integrable. By that uniform integrability, we obtain from
(B.36) that E

[
Ŵ (T (t))|F̂(T (s))

] = Ŵ (T (s)), that is E
[
W (t)|F(s)

] = W (s). This
proves that W (·) is a continuous F(·) -martingale. We next consider its quadratic
variation. By the Burkholder–Davis–Gundy inequality, there exists a positive constant
K independent of n = 1, 2, . . . such that

E|Ŵ (T (t) ∧ n)|2 ≤ KE

[(
sup

0≤s≤T (t)

|Ŵ (T (s) ∧ n)|2
)]

≤ KE|T̂ (T (t) ∧ n)| ≤ Kt .

Thus the families {Ŵ (T (t) ∧ n), n ≥ 1} and {T̂ (T (t) ∧ n), n ≥ 1} are uniformly
integrable for each fixed t ≥ 0. Combining this with the fact that Ŵ (·), T̂ (·) have
continuous paths, for nonnegative constants s ≤ t , we have
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Ŵ (T (s) ∧ n)Ŵ (T (s) ∧ n)′ − T̂ (T (s) ∧ n)Id

= E
[
Ŵ (T (t) ∧ n)Ŵ (T (t) ∧ n)′ − T̂ (T (t) ∧ n)Id |F̂(T (s))

]
→ E

[
Ŵ (T (t))Ŵ (T (t))′ − T̂ (T (s))Id |F̂(T (s))

]
= E

[
W (t)W (t)′ − t Id |F(s)

]
. (B.37)

Note that the first equation in (B.37) follows from the martingale property of
Ŵ (·)Ŵ (·)′ − T̂ (·)Id with respect to F̂(t). Letting n → ∞ in (B.37), we arrive at

E
[
W (t)W (t)′ − t Id |F(s)

] = W (s)W (s)′ − s Id .

Therefore,W (·) is anF(t)—adapted standardBrownianmotion. A rescaling of (B.21)
yields

X(t) = x +
∫ t

0

[
b(X(s)) + C(s)

]
ds +

∫ t

0
σ(X(s))dW (s) − Y (t).

The proof is complete. ��
Theorem B.7 Under conditions of Theorem B.4, let V h(x) and VU (x) be value func-
tions defined in (2.13) and (2.9), respectively. Then V h(x) → VU (x), x ∈ [0,U ]d as
h → 0. If (2.10) holds, then V h(x) → V (x), x ∈ [0,U ]d as h → 0.

Proof We first show that as h → 0,

Jh(x, uh) → J (x, Y (·),C(·)), (B.38)

where uh = (πh,Ch). Indeed, for an admissible strategy uh = (πh
n ,Ch

n ), we have

Jh(x, uh) = E

[ ∞∑
m=1

e−δthm f · �Y h
m −

∞∑
m=1

e−δthm g(Xh
m) · Ch

m�thm

]
.

= E

[ ∫ ∞

0
e−δT̂ h(t) f · dŶ h(t) −

∫ ∞

0
e−δT̂ h(t)g(X̂ h(t)) · Ĉh(t)dT̂ h(t)

]
.

(B.39)

By a small modification of the proof in Theorem B.6 (a), we have T̂ h(t) → ∞ as
t → ∞ with probability 1. It also follows from the representation (B.9) and estimates
on Bh(·) and Mh(·) that {Y h(n + 1)−Y h(n) : n, h} is uniformly integrable. Thus, by
the definition of T̂ h(·),

E

∫ ∞

T0
e−δT̂ h(t) f · dŶ h(t) ≤ E

∫ ∞

min{t :T̂ h(t)≥T0}
Ke−δs · dY h(s)

≤ E

∫ ∞

T0
Ke−δs · dY h(s) → 0,
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uniformly in h as T0 → ∞. In the above argument, we have used that T̂ h(T0) ≤ T0.
Then by theweak convergence, the Skohorod representation, and uniform integrability
we have for any T0 > 0 that

E

∫ T0

0
e−δT̂ h(t) f · dŶ h(t) → E

∫ T0

0
e−δT̂ (t) f · dŶ (t).

Therefore, we obtain

E

∫ ∞

0
e−δT̂ h(t) f · dŶ h(t) → E

∫ ∞

0
e−δT̂ (t) f · dŶ (t).

Similarly,

E

∫ ∞

0
e−δT̂ h(t)g(X̂ h(t)) · Ĉh(t)dT̂ h(t) → E

∫ ∞

0
e−δT̂ (t)g(X̂(t)) · Ĉ(t)dT̂ (t).

On inversion of the timescale, we have

Jh(x, uh) → E

[ ∫ ∞

0
e−δt f · dY (t) −

∫ ∞

0
e−δt g(X(t)) · dC(t)dt

]
.

Thus, Jh(x, uh) → J (x, Y (·),C(·)) as h → 0.
Next, we prove that

lim sup
h

V h(x) ≤ VU (x). (B.40)

For any small positive constant ε, let {̃uh} be an ε-optimal harvesting strategy for the
chain {Xh

n }; that is,

V h(x) = sup
uh

J h(x, uh) ≤ Jh(x, ũh) + ε.

Choose a subsequence {̃h} of {h} such that

lim sup
h→0

V h(x) = lim
h̃→0

V h̃(x) ≤ lim sup
h̃→0

J h̃(x, ũh̃) + ε. (B.41)

Without loss of generality (passing to an additional subsequence if needed), we may
assume that

Ĥ h̃(·) =
(
X̂ h̃(·), Ŵ h̃(·), Ŷ h̃(·), Âh̃(·), T̂ h̃(·)

)

converges weakly to

Ĥ(·) =
(
X̂(·), Ŵ (·), Ŷ (·), Â(·), T̂ (·)

)
,
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and Y (·) = Ŷ (T (·)), A(·) = Â(T (·)), C(·) = Ĉ(T (·)). It follows from our claim in
the beginning of the proof that

lim
h̃→0

J h̃(x, ũh̃) = J (x, Y (·),C(·)) ≤ VU (x), (B.42)

where J (x,Y (·),C(·)) ≤ VU (x) since VU (x) is the maximizing performance func-
tion. Since ε is arbitrarily small, (B.40) follows from (B.41) and (B.42).

To prove the reverse inequality lim inf
h

V h(x) ≥ VU (x), for any small positive

constant ε, we choose a particular ε-optimal harvesting strategy for (2.7) such that the
approximation can be applied to the chain {Xh

n } and the associated reward compared
with V h(x). By an adaptation of the method used by Kushner and Martins (1991) for
singular control problems, for given ε > 0, there is a ε-optimal harvesting strategy
(Y (·),C(·)) for (2.7) inAU

x with the following properties: There are Tε < ∞, ρ > 0,
and λ > 0 such that (Y (·),C(·)) are constants on the intervals [nλ, nλ + λ); only one
of the components of Y (·) can jump at a time and the jumps take values in the discrete
set {kρ : k = 1, 2, ...}; Y (·) is bounded and is constant on [Tε,∞); and C(·) takes
only finitely many values.

We adapt this strategy to the chain {Xh
n } by a sequence of controls uh ≡ (Y h,Ch)

using the same method as in (Kushner and Martins 1991, p. 1459). Suppose that we
wish to apply a harvesting action of “impulsive” magnitude �yi (that is, for species i)
to the chain at some interpolated time t0. Define nh = min{k : thk ≥ t0}, with thk was
defined in (B.1). Then starting at step nh , apply [�yi/h] successive harvesting steps
on species i . Let Y h(·) denote the piecewise interpolation of the harvesting strategy
just defined. With the observation above, let (Y h,Ch) denote the interpolated form
of the adaption. By the weak convergence argument analogous to that of preceding
theorems, we obtain the weak convergence

(
Xh(·),Wh(·),Y h(·), Ah(·)) → (

X(·),W (·),Y (·), A(·)),

where A(t) = ∫ t
0 C(s)ds, and the limit solves (2.7). It follows that

J (x,Y (·),C(·)) ≥ VU (x) − ε.

By the optimality of V h(x) and the above weak convergence,

V h(x) ≥ Jh(x, uh) → J (x,Y (·),C(·)).

It follows that lim inf
h→0

V h(x) ≥ VU (x)−ε. Since ε is arbitrarily small, lim inf
h→0

V h(x) ≥
VU (x). Therefore, V h(x) → VU (x) as h → 0. If (2.10) holds, by Proposition 2.4
we have VU (x) = V (x) which finishes the proof. ��

123



108 A. Hening, K. Q. Tran

Transition probabilities for bounded harvesting and seeding rates

In this case, recall that uhn = (πh
n , Qh

n) for each n and uh = {uhn}n be a sequence of
controls. It should be noted that πh

n = 0 includes the case that we harvest nothing and
also seed nothing; that is, Qh

n = 0. Note also that Fh
n = σ {Xh

m, uhm,m ≤ n}.
The sequence uh = (πh, Qh) is said to be admissible if it satisfies the following

conditions:

(a) uhn is σ {Xh
0 , X

h
1 , . . . , X

h
n , u

h
0, u

h
1, . . . , u

h
n−1} − adapted,

(b) For any x ∈ Sh+, we have

P{Xh
n+1 = x |Fh

n } = P{Xh
n+1 = x |Xh

n , u
h
n} = ph(Xh

n , x |uhn),

(c) Let Xh
n, j be the j th component of the vector Xh

n for j = 1, 2, . . . , d. Then

P
(
πh
n =min{ j : Xh

n, j = U + h}|Xh
n, j =U + h for some j ∈ {1, . . . , d},Fh

n

) = 1.

(d) Xh
n ∈ Sh+ for all n ∈ Z≥0.

Now we proceed to define transition probabilities ph(x, y|u) so that the controlled
Markov chain {Xh

n } is locally consistent with respect to the controlled diffusion X(·).
For (x, u) ∈ Sh+ × U with u = (0, q), we define

Qh(x, u) =
d∑

i=1

aii (x) −
∑

i, j :i �= j

1

2
|ai j (x)| + h

d∑
i=1

|bi (x) + qi | + h,

ph (x, x + hei|u) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + (

bi (x) + qi
)+

h

Qh(x, u)
,

ph (x, x − hei|u) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + (

bi (x) + qi )−h

Qh(x, u)
,

ph
(
x, x + hei + hej)|u

) = ph
(
x, x − hei − hej|u

) = a+
i j (x)

2Qh(x, u)
,

ph
(
x, x + hei − hej|u

) = ph
(
x, x − hei + hej|u

) = a−
i j (x)

2Qh(x, u)
,

ph (x, x |u) = h

Qh(x, u)
, �th(x, u) = h2

Qh(x, u)
. (B.43)

Set ph (x, y|u = (0, q)) = 0 for all unlisted values of y ∈ Sh+. Assumption B.1
guarantees that the transition probabilities in (B.43) are well-defined. At the reflection
steps, we define
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ph (x, x − hei|u = (i, q)) = 1 and �th(x, u = (i, q)) = 0, i = 1, 2, . . . , d.

(B.44)
Thus, ph (x, y|u = (i, q)) = 0 for all unlisted values of y ∈ Sh+.

Transition probabilities for unbounded seeding and bounded harvesting rates

In this case, recall that uhn = (πh
n , Rh

n ) for each n and uh = {uhn}n be a sequence of
controls. It should be noted that πh

n = 0 includes the case that we harvest nothing;
that is, Rh

n = 0. Note also that Fh
n = σ {Xh

m, uhm,m ≤ n}.
The sequence uh = (πh, Rh) is said to be admissible if it satisfies the following

conditions:

(a) uh is σ {Xh
0 , X

h
1 , . . . , X

h
n , u

h
0, u

h
1, . . . , u

h
n−1} − adapted,

(b) For any x ∈ Sh+, we have

P{Xh
n+1 = x |Fh

n } = P{Xh
n+1 = x |Xh

n , u
h
n} = ph(Xh

n , x |uhn),

(c) Let Xh
n, j be the j th component of the vector Xh

n for j = 1, 2, . . . , d. Then

P
(
πh
n =min{ j : Xh

n, j = U + h}|Xh
n, j =U + h for some j ∈ {1, . . . , d},Fh

n

) = 1.

(d) Xh
n ∈ Sh+ for all n ∈ Z≥0.

Now we proceed to define transition probabilities ph(x, y|u) so that the controlled
Markov chain {Xh

n } is locally consistent with respect to the controlled diffusion X(·).
We use the notations as in the preceding case. For (x, u) ∈ Sh+ × U with u = (0, r),
we define

Qh(x, u) =
d∑

i=1

aii (x) −
∑

i, j :i �= j

1

2
|ai j (x)| + h

d∑
i=1

|bi (x) − ri | + h,

ph (x, x + hei|u) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + (

bi (x) − ri
)+

h

Qh(x, u)
,

ph (x, x − hei|u) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + (

bi (x) − ri )−h

Qh(x, u)
,

ph
(
x, x + hei + hej)|u

) = ph
(
x, x − hei − hej|u

) = a+
i j (x)

2Qh(x, u)
,

ph
(
x, x + hei − hej|u

) = ph
(
x, x − hei + hej|u

) = a−
i j (x)

2Qh(x, u)
,

ph (x, x |u) = h

Qh(x, u)
, �th(x, u) = h2

Qh(x, u)
. (B.45)
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Set ph (x, y|u = (0, r)) = 0 for all unlisted values of y ∈ Sh+. Assumption B.1
guarantees that the transition probabilities in (B.45) are well-defined. At the reflection
steps, we define

ph (x, x − hei|u = (i, r)) = 1 and �th(x, u = (i, r)) = 0, i = 1, 2, . . . , d.

(B.46)
As a result, ph (x, y|u = (i, r)) = 0 for all unlisted values of y ∈ Sh+. At the seeding
steps, we define

ph (x, x + hei|u = (−i, r)) = 1 and �th(x, u = (−i, r)) = 0, i = 1, 2, . . . , d.

Thus, ph (x, y|u = (−i, r)) = 0 for all unlisted values of y ∈ Sh+.
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