
Fast-wave averaging with phase changes:

Asymptotics and application to moist atmospheric

dynamics

Yeyu Zhang1 (Corresponding author), Leslie M. Smith1,2 and

Samuel N. Stechmann1,3

1 Department of Mathematics, University of Wisconsin–Madison, Madison,

Wisconsin 53706, USA
2 Department of Engineering Physics, University of Wisconsin–Madison, Madison,

Wisconsin 53706, USA
3 Department of Atmospheric and Oceanic Sciences, University of

Wisconsin–Madison, Madison, Wisconsin 53706, USA

E-mail: yzhang676@wisc.edu

Submitted: June 17, 2020

Revised: January 11 2021

Abstract. Many systems involve the coupled nonlinear evolution of slow and fast

components, where, for example, the fast waves might be acoustic (sound) waves with

a small Mach number or inertio-gravity waves with small Froude and Rossby numbers.

In the past, for some such systems, an interesting property has been shown: the

slow component actually evolves independently of the fast waves, in a singular limit

of fast wave oscillations. Here, a fast-wave averaging framework is developed for a

moist Boussinesq system with additional complexity beyond past cases, now including

phase changes between water vapor and liquid water. The main question is: Do phase

changes induce coupling between the slow component and fast waves? Or does the

slow component evolve independently, according to moist quasi-geostrophic equations?

Compared to the dry dynamics, a substantial challenge is that the method needs to

be adapted to a piecewise operator with variable coefficients, due to phase changes. A

formal asymptotic analysis is presented here.

For purely saturated flow without phase changes, it is shown that precipitation

does not induce coupling, and the slow modes evolve independently. With phase

changes present, the limiting equations show that phase boundaries could possibly

induce coupling between the slow modes and fast waves.

Keywords : singular limits, unbalanced initial conditions, ill prepared initial data, phase

changes, resonances, moist atmospheric dynamics, water vapor, clouds, precipitating

quasi-geostrophic equations
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1. Introduction

The dry Boussinesq equations describe an idealization of atmospheric and oceanic fluid

systems, in which the dynamics include the effects of the earth’s rotation together with

density and/or temperature stratification. The effects of rotation and stratification

are mathematically represented by skew-symmetric linear operators, leading to the

presence of neutrally stable wave oscillations. These waves act to modify the

fluid evolution characterized by the bi-linear operator. Furthermore, the linearized

equations also admit non-propagating solutions, often referred to as ‘slow modes’ or

‘vortical modes,’ based on their structure. There is a long history of study aimed

at mathematical and physical understanding of wave and vortical interactions in the

context of the dry Boussineq and related equations to describe geophysical flows, e.g.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

In the limit of asymptotically large rotation and stable stratification, rigorous proofs

show, remarkably, that the nonlinear dynamics associated with the slow modes decouple

from waves altogether [5, 8, 9, 14]. In a sense, then, in considering the evolution of the

slow component, the effects of the fast waves are averaged out; hence the name fast-wave

averaging refers to the proofs. In earlier work, a similar type of fast-wave averaging

property was also shown for compressible fluid dynamics, in the limit of small Mach

number, where the fast waves correspond to acoustic (sound) waves [17, 18, 19]. These

examples fall under the category of fast singular limits of hyperbolic partial differential

equations (PDEs), with unbalanced initial conditions, which have been the topic of

numerous other studies as well [20, 21, 22, 23, 24].

The quasi-geostrophic (QG) equations describe the evolution of the slow, vortical

mode in the limit of small Rossby and Froude numbers (large rotation and stratification,

respectively). Two cases should be distinguished, according to the initial conditions

[17, 18, 19, 14]. On the one hand, if the initial conditions contain no waves (or if the

waves are sufficiently small in amplitude or norm), it is said that the initial data are

balanced or well-prepared. In this case, the solutions of the Boussinesq equations will

converge to solutions of the QG equations. On the other hand, if the initial conditions are

general and can contain wave contributions, it is said that the initial data are unbalanced

or ill-prepared. This latter case is where fast-wave averaging is relevant. Remarkably,

even for unbalanced initial conditions, the QG equations describe the limiting dynamics

of the slow modes, and the fast waves are also present in the limit but do not influence

the QG evolution.

For dry dynamics without moisture, much is known about evolution from both

balanced and unbalanced initial conditions. For moist dynamics with phase changes, on

the other hand, much less is known. In the case of balanced initial conditions, a formal

asymptotic derivation of precipitating QG (PQG) equations has been presented [25], and

some properties of the PQG equations have been investigated [26, 27, 28, 29], but no

rigorous proofs have been shown. The other case, with unbalanced initial conditions, is

the topic of the present paper. Some main questions are: Do the PQG equations describe
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the evolution of the slow modes, in the limit of small Froude and Rossby numbers, even

if the initial conditions are unbalanced? Is the slow-mode evolution influenced by waves,

or not?

Moving beyond the dry Boussinesq equations, we investigate moist Boussinesq

equations with changes of water between different phases (vapor, liquid, etc.). The real

atmosphere involves these additional effects in the form of clouds, rainfall, etc., and by

including them into the equations of motion, more realistic settings can be investigated.

The topic of moist dynamics has received increasing attention in recent years, including

both rigorous results [30, 31, 32, 33, 34, 35, 36, 37, 38] and asymptotic analysis

[39, 40, 41, 42, 43, 25, 44, 45]. The present paper provides a bridge between previous

asymptotic analysis and rigorous results, by consideration of fast-wave averaging with

moisture and phase changes.

From the point of view of fast-wave averaging, the main question is: Does the

slow component still evolve essentially independently of the fast wave component?

Or do phase changes enhance the coupling between the slow and fast components?

If moisture and/or phase changes are included, several new challenges arise, and we

propose techniques for overcoming them. Three examples are as follows. First, to

include moisture, additional variables must be added to the system, and they give

rise to additional eigenmodes. Are the new, moist eigenmodes to be considered slow

eigenmodes or fast eigenmodes? The new moist eigenmodes have been shown to be

slow, unless precipitation is rapid enough to render them as fast [46]. Second, and more

significant, a key aspect of fast-wave averaging is the identification of the fast and slow

components of the system, based on an eigenvalue/eigenvector problem. In the past,

for dry dynamics without moisture, Fourier-based methods have allowed identification

of the different eigenmodes and their frequencies, e.g. [14]. If phase changes are present,

then Fourier methods cannot be used, since the constant-coefficient linear operator of

the dry case becomes a variable-coefficient and nonlinear operator in the case with phase

changes. To overcome this challenge, a type of potential vorticity (PV) inversion can

be used, although it must be a new type of inversion called PV-and-M inversion to

account for the phase changes and the slow, moist variable M [25]. Third, and perhaps

most significant, the operator is actually nonlinear in the case with phase changes, as

mentioned above. As a result, it is not clear a priori whether a system with phase

changes can even be decomposed in a meaningful way into a superposition of slow and

fast components. Here, we propose a treatment of the nonlinear operator as a linear

operator, for the purposes of mode decomposition, and to use a linear version of PV-and-

M inversion for the mode decomposition [47, 48], while still retaining the fully nonlinear

behavior of the dynamics. With these techniques, a theoretical framework is proposed

here for performing fast-wave averaging with phase changes.

In the present paper, a formal asymptotic analysis is presented, and it lays

the foundation for possible rigorous analysis in the future. After carrying out the

asymptotic procedure, the analysis of the possible resonances and/or time averaging

is not brought to closure, due to remaining questions about the behavior of waves in
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the presence of phase changes. Nevertheless, while closure is not obtained completely,

many terms can be eliminated from consideration based on available information about

the eigenmodes (e.g., the zero-frequency eigenmodes have no vertical velocity, etc.), so

partial simplification can be obtained. Also, the final result here provides a framework

for further investigation by numerical simulation, which will be presented elsewhere in

the near future.

The remainder of the paper is organized as follows. In Section 2, we describe several

important aspects of the fast-wave-averaging setup that are proposed for handling phase

changes, along with a description of the main application of interest: the moist version of

the Boussinesq equations. Section 3 reviews fast-wave averaging for the dry equations,

followed by results for the case of phase changes in Section 4. In Section 5, we discuss

reductions of the equations derived in Section 4, by considering a single-phase, purely

saturated environment, and the PQG equations with phase changes, but with waves

filtered out. A notable feature of Section 5 is the addition of rainfall, which is excluded

from Section 4 for simplicity. Conclusions and further questions are given in Section 6.

2. Model setup

In this section, the model equations are described from two perspectives: first, from

an abstract perspective involving generic linear operator L and (nonlinear) bilinear

operator B, and second, in terms of the specific physical variables of interest for

atmospheric dynamics (velocity, temperature, etc.).

Also, two of the challenges that arise from phase changes are discussed. First,

Heaviside functions arise from phase changes, and their treatment in fast-wave averaging

is discussed. Second, a decomposition into slow vs. fast variables is needed, and it

is complicated by phase changes, which introduce (spatially and temporally) variable

coefficients in the linear operator, in contrast to the constant-coefficient linear operators

that typically appear in one-phase dynamics. A decomposition method is described

based on a new type of potential vorticity inversion, called PV-and-M inversion, and it

is valid even with the variable-coefficient linear operator due to phase changes.

2.1. Abstract Formulation

For fast-wave averaging, many systems can be written in abstract form as

∂~v

∂t
+ L (~v) + B(~v,~v) = 0, (2.1)

where ~v is the state vector and the operators L , B are respectively linear and bi-linear

[14].

Fast waves arise when the linear operator L has a large component that is O(ε−1),

where ε is a small parameter. In this case, the linear operator L may be decomposed

as L = ε−1L∗ + L0, so that (2.1) may be re-written as

∂~v

∂t
+ ε−1L∗(~v) + L0(~v) + B(~v,~v) = 0, (2.2)
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where the dominant terms are identified by the prefactor O(ε−1). Concrete expressions

for ~v, L , and B will be provided later in this section. This abstract formulation is

helpful because it indicates the basic structure of the system, and it allows the principles

of fast-wave averaging to be described transparently (see Sections 3 and 4).

2.2. Moist atmospheric dynamics

Atmospheric dynamics are modeled here by the moist Boussinesq equations with phase

changes:
D~u

Dt
+ ε−1ẑ × ~u+ ε−1∇φ = ε−11 b ẑ (2.3)

∇ · ~u = 0 (2.4)

Dθe
Dt

+ ε−11 w = 0 (2.5)

Dqt
Dt
− ε−12 w − Vr

∂qr
∂z

= 0 (2.6)

where D/Dt = ∂t +~u ·∇ is the material derivative, ~u = (~uh, w) is the three-dimensional

velocity with horizontal components ~uh = (u, v) and vertical component w, and ẑ is

a unit vector in the vertical direction. The ẑ × ~u term is (−v, u, 0)ᵀ, and it arises in

the Coriolis term. The anomalous thermodynamical variables are pressure φ, equivalent

potential temperature θe = θ+ qv, potential temperature θ, buoyancy b, and the mixing

ratios qv (water vapor), qr (rain water) and qt = qv + qr (total water). The model in

(2.3)-(2.6) has been non-dimensionalized based on characteristic mid-latitude synoptic

scales, as described in the Appendix A (A.12 - A.16).

The parameter Vr represents the (nondimensional) terminal velocity of rain drops.

The terminal velocity Vr in nature will depend on the rain drop radius, but it is common

for models to not explicitly represent the radii of droplets, so Vr is often parameterized

as a function of the mixing ratio qr [49]; here, a further simplification is made, and Vr
is assumed to be a constant [50, 46]. The constant Vr will be used to include, or not

include, the effects of precipitation in a simple way. At one extreme, setting Vr = 0

removes the effects of rainfall; it would then be appropriate for the rain water qr to be

relabeled as cloud water qc, and the equations describe non-precipitating cloud dynamics

[51, 52, 53]. Instead, with Vr > 0, the model in (2.3)-(2.6) represents a simplified version

of precipitating cloud microphysics called fast autoconversion and rain evaporation

(FARE) microphysics [50, 46]. While FARE microphysics lacks some of the detailed

processes of clouds and precipitation in nature [49, 39], it has several advantageous

features. For instance, FARE microphysics includes the essential aspect of precipitation

(Vr); it provides the foundation upon which more complex microphysics schemes can be

built [25, 54]; and it provides a setup that is simple enough for mathematical analysis

(e.g., see also the energy principles in section 4 of [54] and section 2.6 of [50]).

With the exception of buoyancy b(~x, t), each thermodynamical variable f total(~x, t)

has been decomposed into a (given, linear) background function of altitude z and an
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anomaly, such that f total(~x, t) = f̃(z) + f(~x, t). Vertical derivatives of the background

functions θ̃e, and q̃t are absorbed into the parameters ε1 and ε2 [25]. Although not

fundamental to our approach, we make the choices q̃r = 0, q̃t = q̃v = qvs(z). In our

setup, the linear function qvs(z) = Bvsz (with constant Bvs) is a crude approximation to

the saturation water vapor profile qvs(φ, θ) [55, 50]. Our choices for q̃t, q̃v and q̃r imply

that the background environment is at saturation, such that phase changes will occur for

initial conditions with regions that are close to saturation. As an added benefit, simpler

algebraic manipulations result from the background state q̃r = 0, q̃t = q̃v = qvs(z).

Phase changes enter the model through the buoyancy. The buoyancy b is by

definition an anomalous quantity, with multiple equivalent expressions depending on

the choice of thermodynamical variables—for example, b = b(θ, qv, qr), or equivalently

b = b(θe, qt). No matter the choice, the most important feature is that the buoyancy

changes its functional form across phase boundaries, adding a new nonlinearity to the

system, due to phase changes. The phase boundaries are defined as locations where

the anomalous total water qt is zero. In the simplified dynamics under consideration

here, the total water is solely water vapor in unsaturated regions such that qt = qv; in

saturated regions, excess water above the saturation level is entirely liquid water such

that qt = qr. Hence, we may conveniently use Heaviside functions Hu, Hs to write

b = Hubu +Hsbs, (2.7)

where Hu, Hs are defined as

Hu =


1 for qt < 0

and Hs = 1−Hu,

0 for qt ≥ 0

(2.8)

and where expressions for the unsaturated buoyancy bu and the saturated buoyancy bs
are given by

bu = [θe + (ε− 1)qt], bs = [θe − εqt]. (2.9)

The different water constituents can be described as

qv = qt, qr = 0 if qt < 0, and qv = 0, qr = qt if qt > 0, (2.10)

which define the anomalous vapor qv and the anomalous rain qr from anomalous total

water qt. See [50, 54] for additional description of the thermodynamic variables and

their co-relationships.

The three parameters ε, ε1, ε2 incorporate the important physical constraints of

rapid rotation and strong stable stratification, typical of the mid-latitude atmosphere

at synoptic scales. These parameters are the Rossby Ro and Froude Fr numbers:

Ro =
U

fL
= ε Fr1 =

U

N1H
= ε1 Fr2 =

U

N2H
= ε2, (2.11)
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where U is a characteristic wind speed (≈ 10 m/s), H (L) is a characteristic height

(length) in the vertical (horizontal) directions, and we assume that height-to-length

ratio H/L = O(1) for simplicity. The (dimensional) frequencies N1 and N2 are given by

N1
2 =

g

θ0

dθ̃e
dz

=
g

θ0

d

dz
(θ̃ +

Lv
cp
q̃v) =

g

θ0

(
B +

Lv
cp
Bvs

)
N2

2 = − g

θ0

Lv
cp

dq̃t
dz

= − g

θ0
(
Lv
cp
Bvs) (2.12)

where g ≈ 10 m/s2 is the acceleration of gravity, θ0 ≈ 300 K is a reference temperature,

cp = 103 J kg−1 K−1 is the specific heat and Lv = 2.5×106 J kg−1 is the latent heat factor.

For stable stratification, N1, N2, B = dθ̃/dz are positive and Bvs = dq̃t/dz is negative.

Note that the notation Fr2 and N2 is used in analogy to Froude number and buoyancy

frequency, respectively, although Fr2 and N2 are defined in terms of total water instead

of buoyancy. The buoyancy frequencies that are associated with unsaturated regions

(Nu) and saturated regions (Ns) are given by the following expressions:

Nu
2 =

g

θ0

dθ̃

dz
=

g

θ0
B, Ns

2 =
g

θ0

dθ̃e
dz

=
g

θ0

(
B +

Lv
cp
Bvs,

)
(2.13)

with the relationships

Nu
2 = N1

2 +N2
2 Ns = N1. (2.14)

Therefore the unsaturated and saturated Froude numbers are, respectively

Fru =
U

(N1
2 +N2

2)1/2H
Frs =

U

N1H
(2.15)

and we have the identities Fr−2u = Fr−21 + Fr−22 and Fr−1s = Fr−11 .

For ease of calculations, we consider the special (but physically reasonable) case

−LvBvs/cp = B/2 such that N1 = N2 and Fr1 = Fr2 (so ε1 = ε2). Furthermore, in the

asymptotic relation ε ∼ ε1, we set the O(1) constant equal to unity such that there is

one distinguished parameter ε appearing in (2.3) – (2.6), as described in Appendix A

(A.17-A.21).

2.3. Treatment of the Heaviside functions

Special consideration is required for the Heaviside functions, Hu and Hs. To see their

role, recall the abstract formulation from (2.1), and notice that now, due to phase

changes, it must be rewritten as

∂~v

∂t
+Hu(~v)Lu(~v) +Hs(~v)Ls(~v) + B(~v,~v) = 0. (2.16)

This is the abstract form of the model in (2.3)–(2.6), where the linear term L (~v) has

been replaced by Hu(~v)Lu(~v)+Hs(~v)Ls(~v) to account for the effect of phase changes on

the buoyancy, as described in (2.7)–(2.9). Each of the linear operators, Lu and Ls, is
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by itself a constant-coefficient operator. However, in the dynamical equations of motion

in (2.16), each of the linear operators, Lu and Ls, is accompanied by a prefactor, Hu(~v)

and Hs(~v), respectively, so that Hu(~v)Lu(~v) +Hs(~v)Ls(~v) is a nonlinear operator.

How can fast-wave averaging be carried out if the linear operator L has been

replaced by a nonlinear operator, Hu(~v)Lu(~v) + Hs(~v)Ls(~v), due to phase changes?

This nonlinearity introduces complications. For instance, fast-wave averaging involves

a decomposition and superposition of the fast and slow components of the system,

traditionally based on the linear operator L (e.g., see [14] or section 3 below). In the

case of the nonlinear operator, Hu(~v)Lu(~v)+Hs(~v)Ls(~v), it is unclear how to formulate

a superposition of fast and slow components, since linear superposition ideas are likely

incompatible with this nonlinear operator.

Here, we propose that the Heaviside functions, Hu and Hs, be treated as given

functions, at the stages of the fast-wave-averaging analysis. The perspective and setup

are then as follows. The solution ~v ε(~x, t) is assumed to be known for each value of ε. It is

the solution for the moist atmospheric dynamics with phase changes in (2.3)–(2.6), or the

abstract form of a system with phase changes in (2.16). The goal of fast-wave averaging

is then to discover whether the solution ~v ε(~x, t) can be decomposed into fast and slow

components, and to discover how the fast and slow components evolve in time. From this

perspective, the solution ~v ε(~x, t) is already known, and so the Heavisides Hu(~v
ε) and

Hs(~v
ε) are also already known. The known Heavisides could then be written as given

functions, Hu(~x, t) and Hs(~x, t), for the purposes of the fast-wave-averaging analysis,

and the abstract formulation of the system could be regarded as

∂~v

∂t
+Hu(~x, t)Lu(~v) +Hs(~x, t)Ls(~v) + B(~v,~v) = 0. (2.17)

Here, a posteriori, the abstract formulation has been restored to its traditional form of

(2.1), in terms of a linear operator L = Hu(~x, t)Lu + Hs(~x, t)Ls. As a result of the

linearity of L , many of the techniques from prior fast-wave-averaging studies can be

applied here to the case with phase changes; and this is one of the main advantages

of treating Hu and Hs as given functions during the fast-wave averaging analysis. The

treatment of Heaviside functions will be re-visited in the discussion and conclusion

Section 6.

Note, to be clear, that the solution ~v ε(~x, t) is generated from the fully nonlinear

dynamics in (2.3)–(2.6) or (2.16), where the Heavisides Hu(~v) and Hs(~v) are functions

of the state variable vector ~v. It is only a posteriori, during the fast-wave-averaging

analysis, that the Heavisides are known and therefore written as given functions, Hu(~x, t)

and Hs(~x, t), for the purposes of the fast-wave-averaging analysis.

2.4. Slow and fast variables

An important part of fast-wave averaging is the definition of the slow and fast

components of the system. In past studies, the slow and fast components have typically

been defined based on the eigenvalues and eigenvectors of the linear operator L ; if L
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is a constant-coefficient operator, then Fourier-based methods can be used to find the

eigenvectors and eigenvalues, e.g. [5, 4, 13, 14]. Here, however, L is a variable-coefficient

operator, due to phase changes and associated Heaviside functions, as described in

(2.17). Consequently, Fourier-based methods are ineffective for finding the eigenvectors

and eigenvalues of L with phase changes, and it is unclear a priori how to decompose

the system into its slow and fast components.

One past example of a variable-coefficient case of fast-wave averaging is equatorial

waves [22, 23, 24]. In that case, the variable-coefficient terms are the Coriolis terms,

which, near the equator, are of the form yu and yv, where ~uh = (u, v) is the

horizontal velocity and y is the spatial coordinate in the north–south direction (similar to

latitude). Because of the special structure of the variable-coefficient Coriolis terms, the

eigenvectors and eigenvalues can be found analytically, using Hermite polynomials and

analogy with the quantum harmonic oscillator [14]. Consequently, while the variable-

coefficient Coriolis terms present other substantial challenges [22, 23, 24], they maintain

the desirable property of analytical formulas for eigenvectors and eigenvalues. In

comparison, in the present case, analytical formulas for all eigenvectors and eigenvalues

will not be possible, due to phase changes.

The difficulties of a variable–coefficient operator L (~x, t) can be overcome by the

following observation: In order to achieve a slow–fast decomposition, it suffices to

identify the null space of L (~x, t). In other words, it is not necessary to find all

eigenvectors ~v and eigenvalues λ that satisfy

L ~v = [Hu(~x, t)Lu +Hs(~x, t)Ls]~v = λ~v, (2.18)

the eigenvalue–eigenvector equation for the variable-coefficient operator L (~x, t).

Instead, it suffices to find the vectors ~v that are in the null space and satisfy

L ~v = [Hu(~x, t)Lu +Hs(~x, t)Ls]~v = 0. (2.19)

The nullspace provides sufficient information for accomplishing the slow–fast

decomposition; this is because the decomposition takes the form [5, 8, 9, 14]

~v ε(~x, t) = ~v 0(~x, t, τ)|τ=t/ε + o(1)

= e−
t
ε
L v̄(~x, t) + o(1)

= e−
t
ε
L [v̄slow(~x, t) + v̄fast(~x, t)] + o(1)

= v̄slow(~x, t) + e−
t
ε
L v̄fast(~x, t) + o(1) for ε→ 0, (2.20)

where the slow component v̄slow(t, ~x) has no oscillations, and v̄fast contains rapidly

oscillating waves. The operation e−
t
ε
L v̄slow(t, ~x) = Iv̄slow(t, ~x) for v̄slow in the nullspace

of L , where I is the identity matrix. (Note that we describe in (2.20) the decomposition

for the case of a constant-coefficient operator L , for simplicity, for the purposes of the

present paragraph; the decomposition takes a slightly modified form in the case of a

variable-coefficient operator, as described in subsequent sections). The key aspect is
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that, in order to write (2.20), detailed information of each eigenvalue λ is actually not

needed. If the nullspace of L can be identified, then it defines the slow component v̄slow,

and the fast component can be defined as the residual v̄fast = v̄ − v̄slow. The precise

values of all non-zero eigenvalues λ are not needed to write a slow–fast decomposition

as in (2.20).

To identify components of the nullspace of L (~x, t), we rely on insights from past

literature about the zero-frequency eigenmodes. First, it is well-known that a zero-

frequency eigenmode is the vortical mode, which can be described by a variable called

potential vorticity (PV) [14, 56]. Physically, this eigenmode is related to the familiar

balance conditions of geostrophic and hydrostatic balance. Second, for a moist system,

another zero-frequency eigenmode arises, and it can be described by a variable called

M [25, 47, 48].

For simplicity of the algebraic manipulations when phase changes are included, we

focus on the case of zero rainfall speed Vr = 0 (the remainder of Section 2 and Section

4). The results for Vr = 0 are qualitatively the same for Vr = O(1), as presented for a

purely saturated environment in Section 5.1. In Section 5.2, we also briefly describe the

case Vr = O(ε−1) in a purely saturated domain, but this case corresponds to a different

asymptotical regime, since then M is not a slow variable.

To find components of the nullspace of L (~x, t), we make a change of variables to

utilize the two quantities PVe and M that characterize two zero-frequency eigenmodes.

To define the PVe and M as slow variables, the basic idea is that vertical velocity w is

related to fast waves, and we therefore wish to define quantities that are not influenced

by w in the linear operator [25]. By inspection of (2.5) and (2.6), it is straightforward

to eliminate the terms ε−1i w from the θe and qt equations using the linear combination

M = qt +Gmθe, Gm =
ε2
ε1
, (2.21)

resulting in the dynamical equation (for Vr = 0)

DM

Dt
= 0. (2.22)

Perhaps less obvious, we next demonstrate that an appropriate slow, potential vorticity

variable is defined as

PVe = ξ + F
∂θe
∂z

, F =
ε

ε1
, (2.23)

where ξ is the vertical component of the total vorticity ∇× ~u. To find the equation for

PVe, take the curl of the horizontal momentum equation from (2.3), and then connect

the result with the θe-equation (2.5), to arrive at

∂PVe
∂t

+ F
∂ (~u · ∇θe)

∂z
+NLξ = 0, (2.24)

NLξ = ∇h ×
(
~uh · ∇h~uh + w

∂~uh
∂z

)
= ~u · ∇ξ + ξ(ux + vy) + (wxvz − wyuz).
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Then the material derivative of PVe is given by

DPVe
Dt

= −F (~uz · ∇θe)− ξ(ux + vy)− (wxvz − wyuz). (2.25)

Notice that, upon linearizing (2.22) and (2.24) about a resting base state, one can

see that M and PVe do not change with time—i.e., they represent zero-frequency

eigenmodes. Thus, after the complete change of variables described below, both M and

PVe will be in the nullspace of the operator L∗ introduced in the abstract formulation

(2.2). In fact, note that the M and PVe quantities will be in the nullspace of not only

the linear operator Hu(~x, t)Lu(~v)+Hs(~x, t)Ls(~v) but also the piecewise linear operator,

Hu(~v)Lu(~v) +Hs(~v)Ls(~v), without needing to assume that the Heaviside functions are

given functions of ~x and t; while the nonlinear Heaviside functions Hu(~v) and Hs(~v)

could thus still be used at this stage, it is useful to assume the Heaviside functions are

given functions of ~x and t at later stages, such as the PV-and-M inversion.

While PVe and M represent slow components of the system, additional variables

are needed to represent the fast components of the system, and thereby to completely

specify the entire system. Indeed, by adding the qt-equation (2.6) to the dry Boussinesq

system, one can see that the phase space of divergence-free solutions has an extra degree

of freedom as compared to the dry case [56, 46]. In past dry studies, a Fourier-based

approach has been used to decompose systems into their fast eigenmodes and slow

eigenmodes (see, e.g. [3, 4, 5, 13, 14, 15]). Here, however, a Fourier-based approach

cannot be used for the Boussinesq system (2.3)-(2.6) with phase changes of water

because of the potential for discontinuities introduced by the Heaviside operators in

the expression for the buoyancy (2.7). On the other hand, we may formally divide the

phase space into the (PVe,M) variables and wave variables.

Formally speaking, we define wave variables W1 and W2 by

W1 = ∇2w, W2 = ξz − F∇2
h (Hubu +Hsbs) , (2.26)

motivated by their relation to dry inertia-gravity waves, which involve vertical velocity w

(used for the definition of W1) and geostrophic/hydrostatic imbalance (W2) [15, 57, 58,

56]. From these definitions, one finds their evolution equations to be (see the Appendix

B for details)

∂W1

∂t
+ ε−1W2 +∇2

h (~u · ∇w)− ∂z∇h ·
(
~uh · ∇h~uh + w

∂~uh
∂z

)
= 0 (2.27)

∂W2

∂t
− ε−1∂2z

(
∇−2W1

)
− F∇2

h

(
C(H)∇−2W1

)
+ ∂z (NLξ)

− F∇2
h (Hu~u · ∇bu +Hs~u · ∇bs) = 0, (2.28)

where the operator

C(H) = Hu(ε
−1
1 + ε−12 −

ε

ε2
) +Hs(ε

−1
1 +

ε

ε2
)

= ε−1
(
Hu(

ε

ε1
+

ε

ε2
− ε2

ε2
) +Hs(

ε

ε1
+
ε2

ε2
)

)
. (2.29)
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Notice that the equations (2.27) and (2.28) have the structure

∂W1

∂t
+ ε−1W2 + (nonlinear terms) = 0

∂W2

∂t
− ε−1∂2z

(
∇−2W1

)
− ε−1(linear terms with C(H)) + (nonlinear terms) = 0,

both with large linear terms. They are independent quantities with rapid variations

in time, since W1 depends on the vertical velocity w, while W2 contains information

about the fast component of all other primary variables: the horizontal velocities u,

v (through vertical vorticity ξ, the equivalent potential temperatures θe and the total

water qt (through the buoyancy bu, bs), as well as phase interfaces through the Heaviside

functions Hu, Hs.

For a complete description, it is necessary to also include inertial waves with

frequency ε−1, which are not represented by W1, W2 and their equations (2.27) and

(2.28). The inertial waves correspond to the evolution of mean velocities um and vm,

given by

∂um(z)

∂t
− ε−1vm(z) + ∂z(uw) = 0, (2.30)

∂vm(z)

∂t
+ ε−1um(z) + ∂z(vw) = 0, (2.31)

where the overline denotes the horizontal average. Together, equations (2.27), (2.28),

(2.30) and (2.31) describe the evolution of the wave components (W1,W2,um,vm).

The six-dimensional vector ~v ᵀ = (M,PVe,W1,W2, um, vm) spans divergence-free

solutions of (2.3)-(2.6), and the operators in the abstract equation (2.2) – L∗, L0 and

B – are 6× 6 matrices. For compactness in what follows, we will use the notation

L∗~v(M,PVe) = 0, ~v ᵀ
(M,PVe)

= (M,PVe, 0, 0, 0, 0), (2.32)

L∗~v(W ) 6= 0, ~v ᵀ
(W ) = (0, 0,W1,W2, um, vm), (2.33)

where ~v(M,PVe) denotes the slow component of the state vector, and ~v(W ) is the fast

component. For analysis of the slow variables, it is not necessary to specify the fast

variables (W ), but we found it helpful to do so, in order to be more explicit with regard

to the calculations and results that follow in Section 4. Notice that W1 and W2 and their

evolution equations involve many derivatives of Heaviside functions, which complicate

their use and interpretations. Nevertheless, W1 and W2 serve the purpose of facilitating

a concrete, though formal, presentation.

2.5. Connection between moist atmospheric dynamics and abstract formulation

With ~v ᵀ = (M,PVe,W1,W2, um, vm) and equations (2.22), (2.24), (2.27), (2.28), (2.30),

(2.31), we can now define the operators appearing in the abstract equation (2.2). The
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fast-linear L∗ and slow-linear L0 operators have the form

L∗ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −c 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0


L0 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −d 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.34)

where the operators c and d are given by

c =

(
∂2z + F∇2

h((
ε

ε1
+

ε

ε2
)Hu +

ε

ε1
Hs)

)(
∇−2

)
(2.35)

d = F∇2
h(
ε

ε2
(Hs −Hu))

(
∇−2

)
(2.36)

and ε−1c + d = ε−1∂2z∇−2 + F∇2
h(C(H)∇−2), where C(H) is in (2.29). Thus c and d

separately represent the O(ε−1) and O(1) contributions, respectively, inside the operator

C(H) (see the Appendix B for more details.) The operator L∗ plays an important role in

the fast-wave averaging procedure, and because only the first and second rows contain

all zero entries, we note that L∗~v(M,PVe) = 0 while L∗~v(W ) 6= 0 (see section 4.2).

The bi-linear operator B is given by

B =



~u · ∇M

~u · ∇PVe + F
∂~u

∂z
· ∇θe + ξ(ux + vy) + (wxvz − wyuz)

∇2
h (~u · ∇w)− ∂z∇h ·

(
~uh · ∇h~uh + w

∂~uh
∂z

)
−F∇2

h (Hu~u · ∇bu +Hs~u · ∇bs) + ∂z (NLξ)

∂z(uw)

∂z(vw)


(2.37)

such that

B(~v a, ~v b) =



~u a · ∇M b

~u a · ∇PV b
e + F

∂~u a

∂z
· ∇θbe + ξa(ubx + vby) + (waxv

b
z − wayubz)

∇2
h

(
~u a · ∇wb

)
− ∂z∇h ·

(
~u a
h · ∇h~u

b
h + wa

∂~u b
h

∂z

)
−F∇2

h

(
Hu~u

a · ∇bbu +Hs~u
a · ∇bbs

)
+ ∂z (NLξ)

∂z(uawb)

∂z(vawb)


, (2.38)

where F = ε/ε1, and the products in NLξ are analogously decomposed in terms of

()a · ()b; see (2.24) for the definition of NLξ. The velocity ~u and equivalent potential

temperature θe are found from the inverse transformation in Appendix C.

During the process of inverting the 6-dimensional state vector ~v ᵀ =

(M,PVe,W1,W2, um, vm) to 5-dimensional state vector ~v ᵀ = (u, v, w, θe, qt), we use the
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definitions of M,PVe,W1,W2, um, vm displayed by (2.21), (2.23), (2.26), (2.30), (2.31).

One of the key inversion relations gives the streamfunction ψ as

∇2
hψ +

∂

∂z

{1

2
Hu[∂zψ −∇−2h W2 +M ] +Hs[∂zψ −∇−2h W2]

}
= PVe. (2.39)

This elliptic PDE is a type of PV inversion, although it differs from conventional PV

inversion in its inclusion of M (as in [47, 48]) and also wave variable W2. After solving

for ψ = F (M,PVe,W1,W2) and defining ξ = ∇2
hψ, one may find the equivalent potential

temperature θe from (2.23). The velocity field ~u is found using (2.26), the definition

ξ = vx − uy and the incompressibility condition (see Appendix C: C.12, C.18, C.19).

3. Fast-wave averaging for the dry dynamics

Before considering the more complicated case with phase changes (see section 4), here

we describe the dry version of fast-wave averaging [14]. To simplify the presentation,

from now on we set all O(1) non-dimensional quantities equal to unity, for example

F = 1 and Gm = 1. We start by reviewing the main steps in the procedure, and then

discuss the decoupling between fast and slow dynamics, with details given in Appendix

D and Appendix E.

The multiple scales method is the main tool, and accordingly the solution ~v ε(~x, t, τ)

is expanded as

~v ε(~x, t, τ) = ~v 0(~x, t, τ)|τ=t/ε + ε~v 1(~x, t, τ)|τ=t/ε + ... (3.1)

using two different time scales: t (slow) and τ = t
ε

(fast). Note that τ = O(1) when

t = O(ε), and hence the nomenclature ‘fast’ when referring to the time scale τ . When

(3.1) is inserted in to (2.2), the O(ε−1) balance yields

∂~v 0

∂τ
+ L∗(~v

0) = 0 ⇒ ~v 0(~x, t, τ) = e−τL∗ v̄(~x, t), (3.2)

where t and τ have been treated as independent variables, and v̄(~x, t) is the initial field

with respect to the fast τ evolution. Then collecting O(ε0) terms gives

∂~v 1

∂τ
+ L∗(~v

1) = −
(
∂~v 0

∂t
+ L0(~v

0) + B(~v 0, ~v 0)

)
(3.3)

with ~v 0 given by (3.2). Next we may multiply both sides of (3.3) by the integrating

factor eτL∗ and use Duhamel’s formula to arrive at

~v 1 = e−τL∗~v 1(~x, t, τ)|τ=0 − τ
(
e−τL∗

∂v̄

∂t
(~x, t) + e−τL∗R(~x, t)

)
, (3.4)

where R is the averaging integral given by

R(~x, t) =
1

τ

∫ τ

0

esL∗
(
L0(e

−sL∗ v̄) + B(e−sL∗ v̄, e−sL∗ v̄)
)
ds. (3.5)
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The last step is to enforce the sub-linear growth condition to guarantee that ~v 1 grows

sub-linearly as a function of τ . If the sub-linear growth condition is not satisfied, then

~v 1 could grow, say, linearly as a function of τ , and the ε~v 1 term in (3.1) could become

as large as the ~v 0 term (on the long time scale as t = O(1) and τ = O(ε−1)), thereby

violating the assumed orders of magnitude in (3.1). Applying the sub-linear growth

condition, we multiply (3.4) by τ−1 (and by eτL∗) and take the limit as τ → ∞; the

result is

∂v̄(~x, t)

∂t
= − lim

τ→∞

1

τ

∫ τ

0

esL∗
(
L0(e

−sL∗ v̄) + B(e−sL∗ v̄, e−sL∗ v̄)
)
ds, (3.6)

which is the fast-wave averaging equation.

For the dry dynamics with buoyancy b = θ and qt = 0, the Fourier transform

of (3.6) has been analyzed by several authors, and in particular for scrutinizing the

resonant triad interactions arising from the bi-linear term, e.g. [1, 3, 4, 8, 9, 15]. They

showed that resonant interactions involving fast waves and slow modes cannot transfer

energy into the slow modes, which result implies the decoupling between fast and slow

modes in the limit ε→ 0. Then an inverse transform of the Fourier-space equation for

the slow modes leads to conservation of potential vorticity given by

D

Dt
PV = (

∂

∂t
+ ~u(PV ) · ∇)PV = 0, (3.7)

where the potential vorticity PV is the dry counterpart of PVe given by (2.23), namely

PV = ξ +
∂θ

∂z
. (3.8)

We remind the reader that ξ is the vertical component of the vorticity vector, and

we have taken F = 1, Gm = 1, etc. In (3.7), notice that PV is advected by a slow

component of the velocity denoted ~u(PV ). In the limit as ε→ 0, ~u(PV ) may be found by

inverting a linear elliptic equation for the velocity streamfunction ψ:

∇2ψ = PV, (3.9)

which is obtained from (3.8) using geostrophic and hydrostatic balance [14], such that

ξ = ∇2
hψ, θ =

∂ψ

∂z
, ~u(PV ) =

(
−∂ψ
∂y
,
∂ψ

∂x
, 0

)
. (3.10)

Thus the limiting dynamics for slow PV are completely decoupled from fast oscillations.

Moreover, Embid and Majda [8] rigorously proved the asymptotic solution

v̄(t, ~x) = v̄slow(t, ~x) + e−
t
ε
L∗ v̄fast(t, ~x) + o(1), ε→ 0, (3.11)

for the state vector v̄(t, ~x), where the slow component v̄slow(t, ~x) has no oscillations and

v̄fast contains only rapidly oscillating waves. For analogy with the calculations that

will follow, we note that the operation e−
t
ε
L∗ v̄slow(t, ~x) = Iv̄slow(t, ~x) for v̄slow in the

nullspace of L∗, where I is the identity matrix.
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4. Fast-wave averaging with phase changes

4.1. Abstract framework

Compared with previous dry analysis in Section 3, here we investigate fast-wave

averaging for moist atmospheric dynamics with phase changes. When water is converted

from vapor to liquid and vice versa, the buoyancy changes its functional form at phase

boundaries, represented mathematically by the Heaviside operators Hu(~x, t), Hs(~x, t)

in (2.7) and (2.16). As discussed, we will treat Hu(~x, t), Hs(~x, t) as known functions

of (~x, t) for the fast-wave averaging analysis and proceed to analyse (2.17). Since the

phase boundaries Hu(~x, t), Hs(~x, t) are determined by the complete (thermo)dynamics,

they have a fast component, and therefore, a main new element of the formulation is

the τ -dependence in the linear operator L∗(t, τ). For clarity, we repeat the steps of the

multi-scale asymptotic analysis, arriving at a condition to eliminate sub-linear growth

in the O(1) equations, thus defining the fast-wave-averaging equations. Differences from

(3.6) will arise from the τ -dependence in the linear operator L∗(t, τ).

In this section, we set the rainfall parameter Vr = 0 for simplicity of the presentation

and calculations. Later in Section 5, we include the effects of rainfall in the context

of reduced systems (purely saturated without phase changes, and balanced initial

conditions absent waves altogether). In those simpler systems, it is shown that Vr 6= 0

produces an extra term in the slow M -equation, but otherwise does not fundamentally

alter conclusions regarding limiting slow dynamics.

Starting again from the beginning, the expansion

~v ε(~x, t, τ) = ~v 0(~x, t, τ)|τ=t/ε + ε~v 1(~x, t, τ)|τ=t/ε + · · · (4.1)

is inserted into the system

∂~v

∂t
+ ε−1L∗(t, τ)(~v) + L0(t, τ)(~v) + B(~v,~v) = 0. (4.2)

Collecting O(ε−1) terms leads to the balance

∂~v 0

∂τ
+ L∗(t, τ)(~v 0) = 0, (4.3)

with solutions

~v 0(~x, t, τ) = e−
∫ τ
0 L∗(t,τ ′)dτ ′ v̄(~x, t), (4.4)

and the initial condition v̄(~x, t) depends only on (~x, t). Notice that the operator e−τL∗

in (3.2) has been replaced by e−
∫ τ
0 L∗(t,τ ′)dτ ′ . The next order O(ε0) balance yields

∂~v 1

∂τ
+ L∗(t, τ)(~v 1) = −

(
∂~v 0

∂t
+ L0(t, τ)(~v 0) + B(~v 0, ~v 0)

)
, (4.5)

and one may integrate with respect to τ keeping t as ε → 0. The calculus is

straightforward, though slightly more complicated than for the dry case, and for
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illustration we provide details for the ∂~v 0/∂t term on the right hand side of (4.5).

The standard integrating factor method gives

~v 1 = −e−
∫ τ
0 L∗(t,τ ′)dτ ′

∫ τ

0

e
∫ s
0 L∗(t,s′)ds′

∂(e−
∫ s
0 L∗(t,s′)ds′ v̄)

∂t
ds+ · · ·

= −e−
∫ τ
0 L∗(t,τ ′)dτ ′

∫ τ

0

e
∫ s
0 L∗(t,s′)ds′ [

∂(e−
∫ s
0 L∗(t,s′)ds′)

∂t
v̄ +

∂v̄

∂t
e−

∫ s
0 L∗(t,s′)ds′ ]ds+ · · ·

= −e−
∫ τ
0 L∗(t,τ ′)dτ ′τ

∂v̄

∂t
− e−

∫ τ
0 L∗(t,τ ′)dτ ′

∫ τ

0

(−
∫ s

0

∂L∗(t, s′)

∂t
ds′)v̄ds+ · · · (4.6)

where ~v 1 = ~v 1(~x, t, τ) and v̄ = v̄(~x, t). Note that the operator (−
∫ s
0
∂L∗(t,s′)

∂t
ds′) applied

to a vector with structure (a, b, 0, 0, 0, 0)ᵀ yields zero because the first two columns of

L∗ are zero (see (2.34)) and the same idea for the operator L0(t, s) (see (2.34)). It

also follows that e−
∫ s
0
∂L∗(t,s′)

∂t
ds′(a, b, 0, 0, 0, 0)ᵀ = I, where I is the identity matrix and

L0(t, s)(a, b, 0, 0, 0, 0)ᵀ = ~0. The property of previous two linear operators will be widely

used during the next sections where we derive the evolution equation for M and PVe.

The full equation for v̄ 1 is given by

~v 1 = e−
∫ τ
0 L∗(t,τ ′)dτ ′~v 1|τ=0 − e−

∫ τ
0 L∗(t,τ ′)dτ ′

{
τ
∂v̄

∂t
−
∫ τ

0

(

∫ s

0

∂L∗(t, s′)

∂t
ds′)v̄ds

+

∫ τ

0

e
∫ s
0 L∗(t,s′)ds′ [L0(t, s)(e

−
∫ s
0 L∗(t,s′)ds′ v̄) + B(e−

∫ s
0 L∗(t,s′)ds′ v̄, e−

∫ s
0 L∗(t,s′)ds′ v̄)]ds

}
.

(4.7)

To control sublinear growth in (4.7), as before, we require ~v 1 = o(τ). In the limit ε→ 0,

τ = t/ε→∞ with t = O(1), the fast-wave-averaging equation is thus given by

∂v̄(~x, t)

∂t
= lim

τ→∞

1

τ

∫ τ

0

{
(

∫ s

0

∂L∗(t, s′)

∂t
ds′)v̄ − e

∫ s
0 L∗(t,s′)ds′ [L0(t, s)(e

−
∫ s
0 L∗(t,s′)ds′ v̄)+

+ B(e−
∫ s
0 L∗(t,s′)ds′ v̄, e−

∫ s
0 L∗(t,s′)ds′ v̄)]

}
ds, (4.8)

where the operators L∗, L0 and B are defined in section (2.5).

The remaining sections are aimed at understanding the fast-wave-averaging system

(4.8), and in particular, the evolution equations for the slow modes M and PVe.

Emphasis will be given to analysis of the bi-linear operator B corresponding to the

nonlinear term, which has the potential to generate non-vanishing, resonant interactions

between wave motions.

4.2. Slow modes and fast waves: decomposition and interactions

To focus on the evolution the slow variables M and PVe, and possible decoupling of their

evolution from fast oscillations, we may project (4.8) onto the first two components of
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v̄ = (M,PVe,W1,W2, um, vm)|τ=0 as defined in section 2.4. To this end, let us separate

slow and fast components using the definitions:

v̄(~x, t) = v̄(M,PVe)(~x, t) + v̄(W )(~x, t), (4.9)

where

v̄(M,PVe)(~x, t) =



M(~x, t)

PVe(~x, t)

0

0

0

0


, v̄(W )(~x, t) =



0

0

W1(~x, t, 0)

W2(~x, t, 0)

um(~x, t, 0)

vm(~x, t, 0)


. (4.10)

The nomenclature ‘slow’ and ‘fast’ follows naturally from L∗v̄(M,PVe) = 0 while L∗v̄(W ) 6=
0 (see section 2.4). It remains to be shown whether or not the time evolution of the slow

modes v̄(M,PVe) is influenced by interactions with the fast modes v̄(W ) via interactions

on the right hand side of the fast-wave-averaging equation (4.8).

Before presenting a detailed calculation of bi-linear terms in (4.8), we recall general

features of the operator B(~v a, ~v b) from (2.38). Multiplication by ~e ᵀ
1 = (1, 0, 0, 0, 0, 0)

and ~e ᵀ
2 = (0, 1, 0, 0, 0, 0) yields, respectively:

~e ᵀ
1 ·B(



Ma

PVe
a

W1
a

W2
a

uam
vam


,



M b

PVe
b

W1
b

W2
b

ubm
vbm


) = ~u a · ∇M b, (4.11)

and

~e ᵀ
2 ·B(



Ma

PVe
a

W1
a

W2
a

uam
vam


,



M b

PVe
b

W1
b

W2
b

ubm
vbm


) = ~u a·∇PV b

e +
∂~u a

∂z
·∇θbe+ξa(ubx+vby)+(waxv

b
z−wayubz). (4.12)

Also notice that, in terms of the initial field v̄(~x, t) = v̄(M,PVe)(~x, t) + v̄(W )(~x, t), the

bilinear interactions on the right-hand-side of (4.8) may be separated into ‘slow-slow’,

‘slow-fast’, ‘fast-slow’ and ‘fast-fast’ as follows:

B(A v̄,A v̄) = B(A v̄(M,PVe),A v̄(M,PVe))

+ B(A v̄(M,PVe),A v̄(W )) + B(A v̄(W ),A v̄(M,PVe)) + B(A v̄(W ),A v̄(W )), (4.13)
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where we have used A = e−
∫ s
0 L∗(t,s′)ds′ for compactness. Then using A (a, b, 0, 0, 0, 0)ᵀ =

I, (4.13) simplifies to become

B(A v̄,A v̄) = B(v̄(M,PVe), v̄(M,PVe))

+ B(v̄(M,PVe),A v̄(W )) + B(A v̄(W ), v̄(M,PVe)) + B(A v̄(W ),A v̄(W )). (4.14)

To isolate the evolution of the slow modes v̄(M,PVe), the strategy is to project (4.8)

onto its first two components using (4.11)-(4.12), and the decomposition of the bi-linear

term given by (4.14). Different from the dry case, the ‘slow-slow’ nonlinear interactions

depend on the fast time scale τ = t/ε through the Heaviside operators hidden inside of

the PV-and-M inversion. Thus the language ‘slow-slow’ may be slightly misleading in

this context, but is adopted nevertheless for analogy with the single-phase case. In fact,

in the presence of phase boundaries, it is plausible that fast oscillations feedback onto

the dynamics of M and PVe through all of the bilinear terms in (4.8). The likelihood of

such feedback will be demonstrated using concrete calculations in the next two sections.

4.3. Evolution of M

By projections of the fast-wave-averaging system (4.8), one may separately analyze the

evolution equations for M , PVe, W1, W2, um, vm, and study their coupling terms. It

is worth noting that the complexity of the equations is significantly different, with M

the simplest and W2 the most complex. Here we analyze the M and PVe equations

because they are the most relevant for atmospheric modeling of large-scale weather, and

fortunately the analysis is relatively simple. The equations for the fast components will

be considered elsewhere.

A projection of (4.8) onto the M -mode may be written as:

lim
τ→∞
−τ ∂M(~x, t)

∂t
~e1 = lim

τ→∞

∫ τ

0

[
~e ᵀ
1 ·B(v̄(M,PVe), v̄(M,PVe))

]
~e1ds+

+ lim
τ→∞

∫ τ

0

[~e ᵀ
1 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), v̄(M,PVe))]~e1ds+

+ lim
τ→∞

∫ τ

0

[~e ᵀ
1 ·B(v̄(M,PVe), e

−
∫ s
0 L∗(t,s′)ds′ v̄(W ))]~e1ds+

+ lim
τ→∞

∫ τ

0

[~e ᵀ
1 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), e

−
∫ s
0 L∗(t,s′)ds′ v̄(W ))]~e1ds, (4.15)

where ~e ᵀ
1 = (1, 0, 0, 0, 0, 0). The linear terms from (4.8) vanish using the operator

properties related with L∗(t, s)

(∫ s

0

∂L∗(t, s′)

∂t
ds′
)


a

b

c

d

e

f


=



0

0

c̃

d̃

ẽ

f̃


and e

∫ s
0 L∗(t,s′)ds′



a

b

c

d

e

f


=



a

b

c′

d′

e′

f ′


, (4.16)
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for arbitrary ~v = (a, b, c, d, e, f) ᵀ and the operator property for L0(t, s) mentioned in

Section 4.1. Then, to analyze each of the four non-linear terms on the right-hand-side

of (4.15), we use the concrete form of the bi-linear operator given by (4.11).

The first term on the right hand side of equation (4.15) (the ‘slow-slow’ impact on

the evolution of M) becomes∫ τ

0

[
~e ᵀ
1 ·B(v̄(M,PVe), v̄(M,PVe))

]
~e1ds (4.17)

=

∫ τ

0

[~u(M,PVe)(~x, t, s) · ∇M(~x, t)]~e1ds, (4.18)

where the velocity ~u(M,PVe) can be found from an inversion formula (see Appendix C).

Even though M and PVe themselves do not depend on the fast time scale τ , the velocity

~u(M,PVe) derived from M and PVe inversion does have a fast component due to the

presence of Heaviside functions in the inversion formula. Applying the same ideas, the

second term on the right-hand-side of (4.15) (the ‘fast-slow’ impact on the evolution of

M) becomes, ∫ τ

0

[
~e ᵀ
1 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), v̄(M,PVe))

]
~e1ds (4.19)

=

∫ τ

0

[~u(W ′)(~x, t, s) · ∇M(~x, t)]~e1ds (4.20)

where ~u(W ′) is a fast velocity since W ′
1, W

′
2, u

′
m, and v′m are fast and depend on τ (see

(4.16)). The last two terms on the right-hand-side of (4.15) (‘slow-fast’ and ‘fast-fast’)

are zero:

B(



M

PVe
0

0

0

0


,



0

0

W ′
1

W ′
2

u′m
v′m


) = B(



0

0

W ′
1

W ′
2

u′m
v′m


,



0

0

W ′
1

W ′
2

u′m
v′m


) = 0, (4.21)

as can be seen directly from (4.11).

Finally, combining all the details together, the evolution equation for the slow

variable M may be written as

∂M(~x, t)

∂t
= − lim

τ→∞

(
1

τ

∫ τ

0

~u(M,PVe)(~x, t, s)ds+
1

τ

∫ τ

0

~u(W ′)(~x, t, s)ds

)
· ∇M(~x, t),

(4.22)
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where ∇M does not depend on τ , and thus may be taken outside of the integrals. To

aid in the interpretation of (4.22), we use the notation 〈f〉 to define the time average of

any function f(~x, t, τ), as follows:

〈f〉(~x, t) = lim
τ→∞

1

τ

∫ τ

0

f(~x, t, s)ds. (4.23)

Using the bracket 〈〉 notation, the M -evolution equation (4.22) becomes

∂M(~x, t)

∂t
= −〈~u(M,PVe)〉(~x, t) · ∇M(~x, t)− 〈~u(W ′)〉(~x, t) · ∇M(~x, t), (4.24)

in which there are two different contributions involving time-averaged velocity fields: one

may refer to the terms as ‘slow-slow’ and ‘fast-slow,’ respectively, but this is an abuse

of the dry language as explained. In contrast to the dry and single-phase saturated

cases, all velocity fields may have a fast component arising from Heaviside jumps at

phase boundaries. Even the velocity field ~u(M,PVe) obtained only from slow variables M

and PVe has variation on the fast time scale τ , and thus one must analyze the average

〈~u(M,PVe)〉 as τ →∞ in order to know the evolution of the slow variable M .

With Vr = 1 and purely saturated environment (see Section 5.1), L0 in (2.34)

is modified to include some extra entries in the first row of the matrix. These new

entries represent the rainfall term
∂qt
∂z

in the qt equation (2.6). As shown in Section 5.1,

additional slow and fast terms will arise in (4.24) through the linear impact from L0.

4.4. Evolution of PVe

A projection of (4.8) onto the PVe-component may be analyzed in a manner similar to

analysis of the M -equation in section 4.3. Isolating the second component of (4.8), one

finds:

lim
τ→∞
−τ ∂PVe(~x, t)

∂t
~e2 = lim

τ→∞

∫ τ

0

[
~e ᵀ
2 ·B(v̄(M,PVe), v̄(M,PVe))

]
~e2ds +

+ lim
τ→∞

∫ τ

0

[~e ᵀ
2 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), v̄(M,PVe))]~e2ds +

+ lim
τ→∞

∫ τ

0

[~e ᵀ
2 ·B(v̄(M,PVe), e

−
∫ s
0 L∗(t,s′)ds′ v̄(W ))]~e2ds +

+ lim
τ→∞

∫ τ

0

[~e ᵀ
2 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), e

−
∫ s
0 L∗(t,s′)ds′ v̄(W ))]~e2ds, (4.25)

where ~e ᵀ
2 = (0, 1, 0, 0, 0, 0). Now the calculation of the bi-linear term ~e ᵀ

2 ·B(~v a, ~v b) is

more complicated because it has four different groups:

~u a · ∇PV b
e +

∂~u a

∂z
· ∇θbe + ξa(−wbz) + (waxv

b
z − wayubz). (4.26)
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Using (4.26), the first term (‘slow-slow’) on the right hand side of (4.25) becomes∫ τ

0

[
~e ᵀ
2 ·B(v̄(M,PVe), v̄(M,PVe))

]
~e2ds

=

∫ τ

0

{
[~u(M,PVe)(~x, t, s) · ∇PVe(~x, t)] + [

∂~u(M,PVe)

∂z
(~x, t, s) · ∇θe(M,PVe)(~x, t, s)]

}
~e2ds

= τ

{
〈~u(M,PVe)〉(~x, t) · ∇PVe(~x, t) + 〈

∂~u(M,PVe)

∂z
· ∇θe(M,PVe)〉(~x, t)

}
~e2, (4.27)

and where we have used the bracket notation (4.23) to denote τ -averages. We have also

used the fact that ∇PVe does not depend on the fast time scale, and thus can be taken

outside of the integral. Compared with equation (4.26), only two of the terms survive

in (4.27) because W a
1 = W b

1 = 0 and the inversion formula for w is w = ∇−2W1 (see

Appendix C). The second ‘fast-slow’ term on the right hand side of (4.25) is given by∫ τ

0

[
~e ᵀ
2 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), v̄(M,PVe))

]
~e2ds (4.28)

=

∫ τ

0

{
[~u(W ′)(~x, t, s) · ∇PVe(~x, t)] + [

∂~u(W ′)
∂z

(~x, t, s) · ∇θe(M,PVe)(~x, t, s)]+

+[wx(W ′)vz(M,PVe) − wy(W ′)uz(M,PVe)](~x, t, s)

}
~e2ds

= τ

{
〈~u(W ′)〉(~x, t) · ∇PVe(~x, t) + 〈

∂~u(W ′)
∂z

· ∇θe(M,PVe)〉(~x, t)+

+〈wx(W ′)vz(M,PVe) − wy(W ′)uz(M,PVe)〉(~x, t)
}
~e2. (4.29)

In arriving at (4.29), we use the bi-linear form (4.26) and notice that the third group of

terms ξa(−wbz) = 0 since W b
1 = 0. Following analogous calculations, we find the third

and fourth terms of (4.25), respectively given by (4.30) and (4.31) below:

(‘slow-fast’)

∫ τ

0

[
~e ᵀ
2 ·B(v̄(M,PVe), e

−
∫ s
0 L∗(t,s′)ds′ v̄(W ))

]
~e2ds

=

∫ τ

0


~e ᵀ
2 ·B(



M

PVe
0

0

0

0


, e−

∫ s
0 L∗(t,s′)ds′



0

0

W1

W2

um
vm


)


~e2ds
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=

∫ τ

0

{
[
∂~u(M,PVe)

∂z
(~x, t, s) · ∇θe(W ′)(~x, t, s)] + [ξ(M,PVe)(~x, t, s)(−wz(W ′)(~x, t, s))]

}
~e2ds

= τ

{
〈
∂~u(M,PVe)

∂z
· ∇θe(W ′)〉(~x, t) + 〈ξ(M,PVe)(−wz(W ′))〉(~x, t)

}
~e2; (4.30)

(‘fast-fast’)

∫ τ

0

[
~e ᵀ
2 ·B(e−

∫ s
0 L∗(t,s′)ds′ v̄(W ), e

−
∫ s
0 L∗(t,s′)ds′ v̄(W ))

]
~e2ds

=

∫ τ

0


~e ᵀ
2 ·B(e−

∫ s
0 L∗(t,s′)ds′



0

0

W1

W2

um
vm


, e−

∫ s
0 L∗(t,s′)ds′



0

0

W1

W2

um
vm


)


~e2ds

=

∫ τ

0

{
[
∂~u(W ′)
∂z

(~x, t, s) · ∇θe(W ′)(~x, t, s)] + [ξ(W ′)(~x, t, s)(−wz(W ′)(~x, t, s))]+

+[wx(W ′)vz(W ′) − wy(W ′)uz(W ′)](~x, t, s)
}
~e2ds

= τ

{
〈
∂~u(W ′)
∂z

· ∇θe(W ′)〉(~x, t) + 〈ξ(W ′)(−wz(W ′))〉(~x, t)+

+〈wx(W ′)vz(W ′) − wy(W ′)uz(W ′)〉(~x, t)
}
~e2. (4.31)

Finally, combining (4.27)-(4.31), the evolution equation of the variable PVe has been

derived from the fast-wave-averaging equation (4.8), and may be written as

−∂PVe(~x, t)
∂t

=
1

τ
((4.27) + (4.29) + (4.30) + (4.31))

= 〈~u(M,PVe)〉(~x, t) · ∇PVe(~x, t) + 〈~u(W ′)〉(~x, t) · ∇PVe(~x, t)+

+ 〈
∂~u(M,PVe)

∂z
· ∇θe(M,PVe)〉(~x, t) + 〈

∂~u(W ′)
∂z

· ∇θe(M,PVe)〉(~x, t)+

+ 〈
∂~u(M,PVe)

∂z
· ∇θe(W ′)〉(~x, t) + 〈

∂~u(W ′)
∂z

· ∇θe(W ′)〉(~x, t)+

+ 〈ξ(M,PVe)(−wz(W ′))〉(~x, t) + 〈ξ(W ′)(−wz(W ′))〉(~x, t)+
+ 〈wx(W ′)vz(M,PVe) − wy(W ′)uz(M,PVe)〉(~x, t)+

+ 〈wx(W ′)vz(W ′) − wy(W ′)uz(W ′)〉(~x, t). (4.32)
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4.5. The effects of phase changes

The effects of phase changes on the limiting, slow dynamics may now be assessed by

comparison of the M -equation (4.24) and the PVe-equation (4.32) to the evolution of

dry PV described by (3.7)-(3.10). Of course, when water is present, a major difference

from the outset is the necessity of including of a second slow variable M , in addition to

a PV -variable, as has been described in Section 2.4.

When incorporating phase changes, a fundamental difference is the nature of

the velocity field ~u(M,PVe) and the potential temperature field θe(M,PVe) obtained from

(M,PVe)-inversion. In contrast to their analogous dry counterparts, these fields are not

purely slow, because of the presence of Heaviside functions in the inversion relation (2.39)

(see also (C.8), (C.18), and (C.19) in Appendix C). The Heaviside functions representing

phase boundaries are determined by the full flow, including the fast component, and

thus ~u(M,PVe) and θe(M,PVe) are functions of the fast time scale τ = t/ε. Now the fast

time average 〈~u(M,PVe)〉 appears as an advection velocity in the M,PVe-equations in

place of ~u(M,PVe). Indeed, all terms on the right-hand-sides of (4.24) and (4.32) involve

fast-averages 〈·〉.
Thus we see that closure of the (M,PVe)-equations in terms of slow variables only

cannot be achieved when describing phase interfaces as fixed Heaviside operators that

depend on total water. This is in contrast to the limiting dry dynamics, for which

the single conservation equation (3.7) for PV involves only the slow advection velocity

~u(PV ), which is closed in terms of PV by (3.9)-(3.10). With phase changes present,

coupling to fast components arises through 〈~u(M,PVe)〉, and also through an additional,

time-averaged advection velocity 〈~u(W ′)〉. Moreover, the PVe-equation (4.32) contains

time averages of ‘fast-slow’, ‘slow-fast’ and ‘fast-fast’ products.

Finally, a time-averaged ‘slow-slow’ nonlinear term 〈(∂~u(M,PVe)/∂z) · ∇θe(M,PVe)〉
appears on the right-hand-side of the PVe-equation (4.32), whose analog is identically

zero in dry and purely saturated cases (see Sections 5.1 and 5.2 below for discusion of

purely saturated cases). This slow-slow nonlinearity has value zero in saturated regions,

and ‘turns on’ after crossing phase interfaces and entering into unsaturated regions. It

thus reflects slowly varying behavior of the large-scale, mid-latitude atmosphere that is

directly associated with phase changes of water.

5. Effects of rainfall, and reduced M and PVe limiting dynamics

The fast-wave averaging equations (4.24) for M and (4.32) for PVe were derived

assuming general initial conditions with waves present, where we set Vr = 0 for ease of

the computations. Here we add back rainfall Vr 6= 0, and ask: What is the influence

of rainfall? For instance, does rainfall/precipitation possibly induce coupling between

slow and fast components? We consider rainfall within two types of simplified settings.

First, one may confine the dynamics to a purely saturated environment, and second,

one may consider balanced initial conditions without waves. All of the cases considered
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in this section lead to closed systems for slow dynamics.

5.1. A purely saturated environment with Vr = 1

5.1.1. Evolution of M . In a purely saturated region, the operator L∗ in (2.34) will

reduce to the simpler form:

L∗ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0


, (5.1)

where we have set the Heaviside functions Hs = 1 and Hu = 0. The matrix L0 is also

free of complications due to Heaviside functions. With Vr = 1, L0 now has non-zero

entries in the first row to represent the rainfall term
∂qt
∂z

appearing in the qt-equation

(2.6) which will be finally inserted into the M equation after the change of variables

process, to yield

L0 =



−∂z ∂2z∇−2 0 ∂3z∇−2∇−2h − ∂z∇
−2
h 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −∇2
h∇−2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (5.2)

One can observe that the entries in the first row of (5.2) are directly related to the

inversion formula qt = M −∂z∇−2(PVe +∂z∇−2h W2) +∇−2h W2 with Hs = 1, Hu = 0 (for

details, see (C.8) and (C.20), which indicates θe = ∂z∇−2(PVe + ∂z∇−2h W2) −∇−2h W2)

and represent
∂qt
∂z

in the M equation. Similarly, rainfall also has an impact on the W2-

equation, but the new terms arise at O(ε) and hence do not appear in L0 (see (B.33)

and (B.35)).

As described in Section 4.3 above, the fast-wave-averaging equation (4.8) may be

projected onto the M -mode to find its evolution in a purely saturated domain. The

evolution is structurally the same as (4.24) with extra linear, rainfall terms:

∂M(~x, t)

∂t
= −〈~u(M,PVe)〉(~x, t) · ∇M(~x, t)− 〈~u(W ′)〉(~x, t) · ∇M(~x, t)+

+ 〈
∂qt(M,PVe)

∂z
〉(~x, t) + 〈

∂qt(W ′)
∂z

〉(~x, t). (5.3)

However, the terms on the right-hand-side involving fast variables 〈~u(W ′)〉 and 〈
∂qt(W ′)
∂z

〉
are identically zero, as explained below. The remaining slow terms are independent
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of the fast time scale τ , and thus they are invariant under the averaging operator 〈·〉.
Hence (5.3) reduces to

∂M(~x, t)

∂t
= −~u(M,PVe)(~x, t) · ∇M(~x, t) +

∂qt(M,PVe)

∂z
(~x, t). (5.4)

It remains to demonstrate that the terms 〈~u(W ′)〉 · ∇M and 〈
∂qt(W ′)
∂z

〉 in (5.3)

arising from fast components (W ′
1,W

′
2, u
′
m, v

′
m) will vanish under the averaging operation

〈·〉. As a concrete example consider 〈
∂qt(W ′)
∂z

〉, which can be obtained from the single-

phase inversion formula F (·) for qt = F (M,PVe,W1,W2, um, vm) = M − ∂z∇−2(PVe +

∂z∇−2h W2)+∇−2h W2. To isolate the fast components, one may filter the slow components

by setting M = PVe = 0, such that

qt(W ′) = F (0, 0,W ′
1,W

′
2, u
′
m, v

′
m) = ∂z∇−2(∂z∇−2h W ′

2) +∇−2h W ′
2. (5.5)

Then applying the fast-averaging-operator 〈·〉, we obtain

〈qt(W ′)〉 = 〈∂z∇−2(∂z∇−2h W ′
2) +∇−2h W ′

2〉 = ∂z∇−2(∂z∇−2h 〈W
′
2〉) +∇−2h 〈W

′
2〉. (5.6)

By the definition of (W ′
1,W

′
2, u
′
m, v

′
m) from (4.16), these are purely oscillatory variables

associated with the non-zero eigenvalues of L∗ in (5.1). Thus the conclusion 〈W ′
1〉 = 0,

〈W ′
2〉 = 0, 〈u′m〉 = 0, and 〈v′m〉 = 0 is straightforward, which implies 〈qt(W ′)〉 = 0. A

similar argument shows that 〈~u(W ′)〉 · ∇M = 0.

5.1.2. Evolution of PVe. Using the single-phase operators L∗ and L0 given by (5.1)

and (5.2), we now project (4.8) onto the PVe mode. Apart from the first row of L0,

all other entries in both L∗ and L0 are the same as for the more general case with

phase changes, except with the simplification Hs = 1 and Hu = 0 for a purely saturated

domain. Although L0 has entries in its first row to account for rainfall with Vr = 1, only

its second row impacts the projection of (4.8) onto the PVe mode. Hence, we conclude

that PVe evolution in the saturated domain has exactly the same structural form as

(4.32), even for Vr = 1.

As explained in Section 5.1.1 for the single-phase M -equation, slow variables are

invariant under the fast-averaging operation 〈·〉, while fast variables average to zero.

Implementation of these results in (4.32) leads to a reduced PVe-equation without any

slow-fast or fast-slow interaction terms:

−∂PVe(~x, t)
∂t

= ~u(M,PVe)(~x, t) · ∇PVe(~x, t) +
∂~u(M,PVe)

∂z
(~x, t) · ∇θe(M,PVe)(~x, t)

+ 〈
∂~u(W ′)
∂z

· ∇θe(W ′)〉(~x, t) + 〈ξ(W ′)(−wz(W ′))〉(~x, t)

+ 〈wx(W ′)vz(W ′) − wy(W ′)uz(W ′)〉(~x, t). (5.7)

Rigorous analysis of the fast-fast nonlinear interactions has been performed by

transforming the physical variables to Fourier space (see Appendix D and Appendix
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E). The Fourier analysis reveals that the sum of the 4 terms is identically zero, which

is not obvious to see in physical space. Finally, the slow-slow term
∂~u(M,PVe)

∂z
· ∇θe(M,PVe)

also vanishes identically, as can be shown by Fourier analysis or vector algebra using

the relations ~u(M,PVe) = (−∂ψ/∂y, ∂ψ/∂x, 0) and θe(M,PVe) = ∂ψ/∂z, where ψ is a

streamfunction given by

∇2ψ = PVe. (5.8)

The inversion equation (5.8) is the special case of the general inversion formula (2.39)

with W2 = 0 and vorticity-streamfunction relation ξ = ∇2
hψ. (see (C.20)–(C.24))

5.1.3. Summary of the slow dynamics in a saturated domain with Vr = 1. Gathering

together the M -equation , PVe-equation, and inversion relations for the saturated phase,

one arrives at the closed system:

∂PVe(~x, t)

∂t
+ ~u(M,PVe)(~x, t) · ∇PVe(~x, t) = 0, (5.9)

∂M(~x, t)

∂t
+ ~u(M,PVe)(~x, t) · ∇M(~x, t) =

∂qt(M,PVe)

∂z
(~x, t), (5.10)

∇2ψ = PVe (5.11)

~u(M,PVe) = (−∂ψ
∂y
,
∂ψ

∂x
, 0), θe(M,PVe) =

∂ψ

∂z
, qt(M,PVe) = M − ∂ψ

∂z
. (5.12)

Notice that ~u(M,PVe) and θe(M,PVe) are actually determined from PVe alone. Furthermore,

one sees that qt and M do not feed back on the dynamics of PVe, although PVe can

influence the evolution of qt and M [28, 29].

This case illustrates that the slow modes evolve independently from the fast wave

modes, even in the presence of rainfall/precipitation (by itself, without phase changes).

5.2. A purely saturated environment with Vr = O(ε−1)

The case of Vr = ε−1 corresponds to a large but still realistic value of the dimensional

rainfall speed VT = 1 m/s (Vr = VT/w, where w is a reference vertical velocity scale;

thus Vr = ε−1 corresponds to VT = 1 m/s and w = 0.1 m/s). Now Vr appears in L∗
and hence M is no longer a purely slow variable, but nevertheless, one can proceed to

analyze the dynamics of the slow mode PVe.

With rainfall included in the ε−1 balance of terms, the operators L∗, L0 are given

by

L∗ =



−∂z ∂2z∇−2 0 ∂3z∇−2∇−2h − ∂z∇
−2
h 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0


(5.13)
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L0 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−∇2
h∂z ∇2

h∂
2
z∇−2 −∇2

h∇−2 ∂3z∇−2 − ∂z 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (5.14)

where the influence of Vr appears in the first row of L∗ and forth row of L0 (compare

to (5.1) and (5.2)). Similar to Section 5.1, these extra entries are used to represent the

term
∂qt
∂z

, which appears in the qt-equation, and thus to determine both M and W2 (see

more details in (B.36), (B.37)).

A projection of (4.8) onto the PVe mode involves only the second rows of (5.13) and

(5.14). Following from the projection, the resulting closed system for PVe is structurally

the same as (3.7) and (5.9):

D

Dt
PVe = (

∂

∂t
+ ~u(PVe) · ∇)PVe = 0 (5.15)

∇2ψ = PVe, ~u(PVe) =

(
−∂ψ
∂y
,
∂ψ

∂x
, 0

)
, θe(PVe) =

∂ψ

∂z
. (5.16)

5.3. The PQG equations with phase changes for balanced initial conditions

As a moist model for evolution from balanced initial conditions, the precipitating

quasi-geostrophic equations [25] retain phase changes, but filter wave motions from

the outset. Consequently, all ‘slow-fast,’ ‘fast-slow,’ and ‘fast-fast’ nonlinearities are

absent from the associated version of the PVe-equation (4.32). Furthermore, the

Heaviside functions representing phase boundaries can only be a function of the

balanced dynamics. Thus (M,PVe)-inversion recovers a purely slow streamfunction,

such that the advection velocity ~u(M,PVe) appearing in the (M,PVe)-equation is slow

and invariant under the fast-averaging operation 〈·〉. The signature ‘slow-slow’ nonlinear

term (∂~u(M,PVe)/∂z) · ∇θe(M,PVe) in (4.32) is also invariant under fast-averaging, and it

becomes nonzero in unsaturated regions of the environment, representing the change

in functional form of the buoyancy at phase interfaces. In the notation of the current

paper, the PQG model is reproduced here as:

∂PVe(~x, t)

∂t
+ ~u(M,PVe)(~x, t) · ∇PVe(~x, t) =

∂~u(M,PVe)

∂z
(~x, t) · ∇θe(M,PVe)(~x, t), (5.17)

∂M(~x, t)

∂t
+ ~u(M,PVe)(~x, t) · ∇M(~x, t) =

∂qt(M,PVe)

∂z
(~x, t), (5.18)

∇2
hψ +

∂

∂z

[
1

2
Hu

(
∂ψ

∂z
+M

)]
+

∂

∂z

[
Hs

∂ψ

∂z

]
= PVe (5.19)

~u(M,PVe) = (−∂ψ
∂y
,
∂ψ

∂x
, 0), θe(M,PVe) =

1

2
Hu

(
∂ψ

∂z
+M

)
+Hs

(
∂ψ

∂z

)
, qt(M,PVe) = M−θe(M,PVe).

(5.20)
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6. Conclusions and Discussion

In the context of moist atmospheric dynamics, we have adapted fast-wave averaging

to include moisture, rainfall and phase changes between water vapor and liquid water.

The ultimate goal is to better understand the limiting dynamics for small Rossby and

Froude numbers, and the nature of possible coupling between slow and fast components

of the system. The analysis assumes a distinguished limit in which all small parameters

(Rossby, Froude, etc.) are related to one parameter ε → 0. Including an additional

equation for total water leads to an additional slow mode M , which is absent in the dry

dynamics. Thus the main objective was to obtain limiting dynamics for (M,PVe) as

ε→ 0.

Phase interfaces between unsaturated and saturated regions of the environment

lead mathematically to the presence of Heaviside functions in the governing Boussinesq

equations. These Heaviside functions delineate phase boundaries where the buoyancy

changes its functional form, and they depend on both fast and slow variables.

Consequently, the linear operator of the dry system becomes a nonlinear operator in

the moist system with phase changes.

Here we have presented a formulation of fast-wave averaging, in which the Heaviside

functions are treated as known, determined from the Boussinesq family of solutions at

fixed value of ε. Then the nonlinear phase-change operator becomes a piece-wise linear

operator, and much progress can be achieved. Notably, a linear version of (M,PVe)-

inversion may be used to evaluate linear and nonlinear interaction terms in the fast-

wave averaging equations. Although closure of the (M,PVe)-equations is not obtained,

important insight is gained regarding the nature of the slow dynamics and possible

coupling to the fast variables (W1,W2, um, vm).

As derived in Section 4, condensation and evaporation at phase interfaces lead

to a ‘slow-slow’ non-linearity 〈(∂~u(M,PVe)/∂z) · ∇θe(M,PVe)〉 in the PVe-equation that

is nonzero in unsaturated regions of the flow. Such a term is present in the PQG

reduced dynamics without waves, but obviously absent in purely saturated dynamics

formulations. As also identified in Section 4 and discussed in Section 5, the phase-

change analysis reveals several potential sources of feedback from fast oscillations onto

the evolution of the slow modes (M,PVe). The feedback may originate directly from the

fast components (W1,W2, um, vm), or indirectly at phase interfaces through (M,PVe)-

inversion. Feedback onto (M,PVe) is manifested through time averages over fast time

scales.

By including phase changes between vapor and liquid, a simple representation of

clouds was used here. To include additional aspects of clouds, which would be interesting

for future work, a more comprehensive version of cloud microphysics would be needed.

The present model provides the foundation upon which more comprehensive models of

cloud microphysics can be built. For instance, the Kessler model of warm rain cloud

microphysics could start from the present model as its basis, but would furthermore

distinguish between three types of water—water vapor, cloud water, and rain water—
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and would include an additional evolution equation for the rain water (see, e.g., section

9 of [25]). Also included in the Kessler model are interactive source terms for, e.g.,

the conversion of cloud water to rain water via autoconversion and collection (e.g.,

[25, 39]). The source terms would possibly have an impact on the fast-wave averaging.

In particular, the source terms include additional nonlinearities (see, e.g., [39]), some

of which do not fit the bilinear structure of nonlinearity that is typically assumed for

fast-wave averaging in B(~v,~v) from (2.1). As a result of these additional and more

complex nonlinearities, one might suspect that the introduction of more comprehensive

cloud microphysics may introduce further opportunities for coupling between the slow

(M,PVe) modes and the wave components.

Finally, we note that numerical simulations of the moist Boussinesq system can be

used to provide further insight in the future. For instance, simulations could be used to

probe the slow-fast, fast-slow and fast-fast terms appearing in the (M,PVe)-equations.

By applying time averages to the simulation data, one can infer whether or not the

time-averaged terms are tending to zero, and therefore infer whether or not there is

coupling between fast and slow modes. Such information from simulations could also

complement the present formal asymptotic analysis and together aid the formulation of

rigorous proofs. The simulation results will be presented elsewhere, along with ideas for

physical interpretation for the new terms that arise due to phase changes.
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Appendix A. Non-dimensional equations and distinguished limit

For the moist Boussinesq equations with phase changes, the dimensional form is shown

in (1a)-(1d) of [25], and a non-dimensional version is described in the appendix of [25] in

terms of buoyancy variables bu and bs. Here, a different, but equivalent, non-dimensional

version is described, using θe and qt as the moist thermodynamic variables:

Dh~uh
Dt

+ w
∂uh
∂z

+R−10 u⊥h + Eu∇hφ = 0 (A.1)

A2

(
Dhw

Dt
+ w

∂w

∂z

)
+ Eu

∂φ

∂z
− ΓA2b = 0 (A.2)

∇h · uh +
∂w

∂z
= 0 (A.3)

Dhθe
Dt

+ w
∂θe
∂z

+ Fr1
−2(ΓA2)−1w = 0 (A.4)

Dhqt
Dt

+ w
∂qt
∂z
− Fr2−2(ΓA2)−1w − VrCcl

∂qr
∂z

= 0 (A.5)

along with the relationships

b = buHu + bsHs, bu = θe + (
cpθ0
Lv
− 1)qt, bs = θe −

cpθ0
Lv

qt, (A.6)

where (Ro,Eu,A,Γ, Vr) are the Rossby number, Euler number, aspect ratio, buoyancy

parameter, and rain fall speed, respectively. Note that there are two moist

thermodynamic variables (θe and qt) and two phases, as opposed to the dry case with

one Froude number, one thermodynamic variable (θ), and one phase. The two “Froude”

numbers used here are

Fr1 = U(N1H)−1 Ld1 =
N1H

f
, (A.7)

Fr2 = U(N2H)−1 Ld2 =
N2H

f
, (A.8)

N1
2 =

g

θ0

dθ̃e
dz

=
g

θ0

d

dz
(θ̃ +

Lv
cp
q̃v) =

g

θ0

(
B +

Lv
cp
Bvs

)
, (A.9)

N2
2 = − g

θ0

Lv
cp

dq̃t
dz

= − g

θ0
(
Lv
cp
Bvs), (A.10)

where Ld1 and Ld2 are Rossby radii of deformation, and N1 and N2 are buoyancy

frequencies. Note that the notation Fr2, Ld2, N2 is used in analogy to Froude number,

Rossby radius of deformation, and buoyancy frequency, respectively, although Fr2, Ld2,

and N2 are defined in terms of not buoyancy but total water. More detail information

of reference scales and the non-dimensional quantities can be found in [25] (Table A1,

Table A2).
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To define the distinguished limit, we consider the asymptotic scalings of (A.1 – A.5)

with respect to small Froude and small Rossby number (a rapid rotating and strongly

stably stratified flow), which gives

Ro = Eu−1 = ε, Fr1 = Ro
L

Ld1
= O(ε), F r2 = Ro

L

Ld2
= O(ε), ΓA2 = Fr1

−1.

(A.11)

Also, from [25] (equation (A7)), we have
cpθ0
Lv

= CclRo. For simplicity, setting Ccl = 1,

we have
cpθ0
Lv

= ε.

With aforementioned asymptotic scaling and distinguished limit relationship, the

non-dimensional model is displayed as:

Dh~uh
Dt

+ w
∂~uh
∂z

+ ε−1~u⊥h + ε−1∇hφ = 0 (A.12)

A2

(
Dhw

Dt
+ w

∂w

∂z

)
+ ε−1

∂φ

∂z
= ε−1

Ld1
L
b (A.13)

∇h~uh +
∂w

∂z
= 0 (A.14)

Dhθe
Dt

+ w
∂θe
∂z

+ ε−1
Ld1
L
w = 0 (A.15)

Dhqt
Dt

+ w
∂qt
∂z
− ε−1Ld2

L
w − Vr

∂qr
∂z

= 0 (A.16)

Apart from the key non-dimensional parameter ε−1 shown above, ε−11 = ε−1
Ld1
L
, ε−12 =

ε−1
Ld2
L

will be defined, which are related to two Froude numbers. Furthermore, picking

L = Ld1 = Ld2 (implying ε = ε1 = ε2) and A = 1 allows simple notation and gives:

Dh~uh
Dt

+ w
∂~uh
∂z

+ ε−1~u⊥h + ε−1∇hφ = 0 (A.17)

Dhw

Dt
+ w

∂w

∂z
+ ε−1

∂φ

∂z
= ε−1b (A.18)

∇h~uh +
∂w

∂z
= 0 (A.19)

Dhθe
Dt

+ w
∂θe
∂z

+ ε−1w = 0 (A.20)

Dhqt
Dt

+ w
∂qt
∂z
− ε−1w − Vr

∂qr
∂z

= 0 (A.21)

Note that Vr = 0, Vr = 1 or Vr = ε−1 is remained to be specified, since we consider

different scenarios for rainfall (no rainfall, or normal speed VT = 0.1 m/s or large speed

VT = 1 m/s). With the special choices above, where all O(1) constants were set equal to

unity, we arrive at the advantageous situation where only one distinguished parameter

ε appears, to help simplify the notation.



Fast-wave averaging with phase changes 33

Appendix B. Change of Variables in Different Environments

In this appendix, we will demonstrate a change of variables to a 4-dimensional state

vector ~v ᵀ = (M,PVe,W1,W2), which separates the zero-frequency variables M,PVe
from the wave variables W1,W2, starting from the 5-d state vector ~v ᵀ = (u, v, w, θe, qt)

(which is actually 4-dimensional due to the additional constraint of incompressibility,

ux + vy + wz = 0 and the special horizontal mean flow case um, vm has been discussed

in (2.30),(2.31)). Two cases will be considered: Vr = 0 and Vr 6= 0.

Vr = 0 with phase changes

The starting point is the moist Boussinesq system with phase changes, which has a 5-d

state vector ~v ᵀ = (u, v, w, θe, qt) with evolution equations

Dh~uh
Dt

+ w
∂~uh
∂z

+ ε−1~u⊥h + ε−1∇hφ = 0 (B.1)

Dhw

Dt
+ w

∂w

∂z
+ ε−1

∂φ

∂z
= ε−11 (buHu + bsHs) (B.2)

∇h · ~uh +
∂w

∂z
= 0 (B.3)

Dhθe
Dt

+ w
∂θe
∂z

+ ε−11 w = 0 (B.4)

Dhqt
Dt

+ w
∂qt
∂z
− ε−12 w = 0 (B.5)

where bu = [θe + εqt − qt], bs = [θe − εqt]. (B.6)

Applying the curl operator (∇h×) on equation (B.1) leads to

∂ξ

∂t
+∇h ×

(
~uh · ∇h~uh + w

∂~uh
∂z

)
+ ε−1δ = 0, (B.7)

and applying the divergence operator (∇h·) on equation (B.1) leads to

⇒ ∂δ

∂t
+∇h ·

(
~uh · ∇h~uh + w

∂~uh
∂z

)
− ε−1ξ + ε−1∇2

hφ = 0, (B.8)

where δ = ∇h × ~u⊥h = ux + vy, ξ = ∇h × ~uh = vx − uy, (B.9)

u⊥h =

(
−v
u

)
, ∇h · u⊥h = −vx + uy = −ξ. (B.10)

For simplicity, the usage of notation NLξ denotes the nonlinear term in equation (B.7).

Meanwhile, with the incompressibility condition given by equation (B.3), one may

replace δ by −wz, and thus (B.7) becomes

∂ξ

∂t
+NLξ − ε−1wz = 0. (B.11)
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By introducing a new variable M ,

M = qt +Gmθe, Gm =
ε2
ε1
, (B.12)

and adding (B.4) and (B.5) together, one finds

∂M

∂t
+ ~u · ∇M = 0, or

DM

Dt
= 0. (B.13)

By introducing a new variable PVe,

PVe = ξ + F
∂θe
∂z

, F =
ε

ε1
, (B.14)

and applying the operator (∂z) on equation (B.4), one finds

∂ (∂zθe)

∂t
+ ∂z (~u · ∇θe) + ε−11 wz = 0. (B.15)

Adding (B.11) and (B.15) together leads to

∂PVe
∂t

+ ∂z (~u · ∇θe) +NLξ = 0. (B.16)

This completes the derivation of the M,PVe equations.

The next step is to present variables W1 and W2. Similarly one could substitute

−wz for δ in equation (B.8) to arrive at

∂wz
∂t
−∇h ·

(
~uh · ∇h~uh + w

∂~uh
∂z

)
+ ε−1ξ = ε−1∇2

hφ,

⇒ ∂wzz
∂t
− ∂z∇h ·

(
~uh · ∇h~uh + w

∂~uh
∂z

)
+ ε−1ξz = ε−1∂z∇2

hφ. (B.17)

By applying the operator (∇2
h) on equation (B.2), one finds

∂∇2
hw

∂t
+∇2

h (~u · ∇w) + ε−1∇2
h

∂φ

∂z
− ε−11 ∇2

h (buHu + bsHs)︸ ︷︷ ︸
b

= 0. (B.18)

Combining (B.17) and (B.18) together will then cancel the pressure terms and yield:

∂∇2w

∂t
+ ε−1ξz − ε−11 ∇2

hb+∇2
h (~u · ∇w)− ∂z∇h ·

(
~uh · ∇h~uh + w

∂~uh
∂z

)
= 0. (B.19)

Based on the linear part of equation (B.19), we naturally generate two variables:

W1 = ∇2w, (B.20)

W2 = ξz − F∇2
hb, F =

ε

ε1
. (B.21)
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When W1,W2 are inserted into the linear part of (B.19); the result is

∂W1

∂t
+ ε−1W2 +∇2

h (~u · ∇w)− ∂z∇h ·
(
~uh · ∇h~uh + w

∂~uh
∂z

)
= 0. (B.22)

In order to close the system, taking the time derivative of W2 will lead to its evolution

equation. Since the W2 term contains b, we first focus attention on
∂b

∂t
(note b =

Hubu + Hsbs). Recall the non-dimensional forms of bu, bs in (B.6), which are just

combinations of θe, qt. Hence
∂bu
∂t

,
∂bs
∂t

easily yield following two equations for bu and

bs:
∂bu
∂t

+ ~u · ∇bu + ε−1u · w = 0, (B.23)

∂bs
∂t

+ ~u · ∇bs + ε−1s · w = 0, (B.24)

where ε−1u , ε−1s are non-dimensional forms of the buoyancy frequencies and the

corresponding dimensional forms are N2
u , N2

s mentioned in (2.13). Thereby, together

with (B.4) and (B.5), we can relate ε−1u , ε−1s with ε−11 , ε−12 as follows:

ε−1u = ε−11 + ε−12 −
ε

ε2
, ε−1s = ε−11 +

ε

ε2
. (B.25)

Next, write down the time derivative for buoyancy,

∂b

∂t
=
∂ (buHu + bsHs)

∂t
=
∂bu
∂t

Hu +
∂bs
∂t
Hs + (bu − bs) ∂tHu. (B.26)

Note that (bu − bs) ∂tHu becomes zero because ∂tHu is a Dirac delta function at the

phase interface, and bu = bs at the phase interface. As a result, and using (B.23) and

(B.24) described above, we find

∂b

∂t
= −Huε

−1
u w −Hsε

−1
s w −Hu~u · ∇bu −Hs~u · ∇bs,

or
∂b

∂t
+ C(H)w +Hu~u · ∇bu +Hs~u · ∇bs = 0, (B.27)

where C(H) = Huε
−1
u +Hsε

−1
s = Hu(ε

−1
1 + ε−12 −

ε

ε2
) +Hs(ε

−1
1 +

ε

ε2
).

Note that C(H) as the coefficient of the linear part in (B.27) contains not only O(ε−1)

terms but also O(1) terms. Pulling out the ε−1 part, one arrives at the following version

of (B.27):

∂b

∂t
+ ε−1[Hu(

ε

ε1
+

ε

ε2
− ε2

ε2
) +Hs(

ε

ε1
+
ε2

ε2
)]w +Hu~u · ∇bu +Hs~u · ∇bs = 0. (B.28)

Apply operator (∇2
h) on equation (B.27) leads to

∂∇2
hb

∂t
+∇2

h

(
C(H)w

)
+∇2

h (Hu~u · ∇bu +Hs~u · ∇bs) = 0. (B.29)
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With this information in hand, we can now return to W2 itself. Taking the time

derivative of variable W2 = ξz − F∇2
hb and combining the information from equation

(B.11) and (B.29), we find

∂ (ξz − F∇2
hb)

∂t
= ε−1∂2z (w) + F∇2

h

(
C(H)w

)
− ∂z (NLξ) + F∇2

h (Hu~u · ∇bu +Hs~u · ∇bs) . (B.30)

With the replacement of W1 = ∇2w, W2 = ξz − F∇2
hb in linear part, one could update

the previous equation as

∂W2

∂t
= ε−1∂2z

(
∇−2W1

)
+ F∇2

h

(
C(H)∇−2W1

)
− ∂z (NLξ) + F∇2

h (Hu~u · ∇bu +Hs~u · ∇bs) . (B.31)

This concludes the derivation for the case of Vr = 0 with phase changes.

Vr = 1 within purely saturated region

In now considering Vr 6= 0, in the following discussion, attention will be confined to

purely saturated region, so that Hu = 0 and Hs = 1, without phase changes, but with

the presence of rainfall in consideration. Consequently, the qt equation in (B.5) will

have an extra
∂qt
∂z

term, as shown in

Dhqt
Dt

+ w
∂qt
∂z
− ε−12 w =

∂qt
∂z

. (B.32)

The above modification of the qt equation will go through in the derivations of the M

equation and W2 equation, which are constructed based on the variable qt. By the

definition in (B.12), one may rewrite (B.13) as

∂M

∂t
+ ~u · ∇M =

∂qt
∂z

, or
DM

Dt
=
∂qt
∂z

. (B.33)

Since in a purely saturated region we have bs = θe − εqt, we observe that the impact

of rainfall on the W2 equation will emerge through (B.28). After inserting the rainfall

term into the original (B.28), and restricting attention to the saturated, single-phase

scenario, we find
∂bs
∂t

+ ε−1(
ε

ε1
+
ε2

ε2
)w + ~u · ∇bs = −ε∂qt

∂z
. (B.34)

Then we find the form of the W2 equation in a purely saturated region, with rainfall

impact:

∂W2

∂t
= ε−1∂2z

(
∇−2W1

)
+ ε−1F∇2

h

(
(
ε

ε1
+
ε2

ε2
)∇−2W1

)
+ εF∇2

h(
∂qt
∂z

)

− ∂z (NLξ) + F∇2
h (~u · ∇bs) . (B.35)
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Though the
∂qt
∂z

term has been introduced into this equation, it arises at order O(ε),

which will not explicitly show up in the leading orders of behavior of W2 related to L∗,

L0. Nevertheless, the rainfall term still impacts the M evolution at leading order, as

shown in (B.33).

Vr = O(ε−1) within purely saturated region

A similar argument can be implemented here with Vr = O(ε−1). The corresponding

adjusted M , W2 equations are given by

∂M

∂t
+ ~u · ∇M = ε−1

∂qt
∂z

, (B.36)

∂W2

∂t
= ε−1∂2z

(
∇−2W1

)
+ ε−1F∇2

h

(
(
ε

ε1
+
ε2

ε2
)∇−2W1

)
+ F∇2

h(
∂qt
∂z

)

− ∂z (NLξ) + F∇2
h (~u · ∇bs) . (B.37)

Appendix C. Inverse change of variables to recover (u, v, w, θe, qt)

In this appendix, we show how to recover the variables (u, v, w, θe, qt), given the variables

(PVe,M,W1,W2, um, vm). In a sense, this is a type of PV inversion, although also

including M and waves W1,W2, um, vm.

The definition of bu, and W2 give

bu = (θe + εqt − qt) , bs = (θe − εqt) , (C.1)

W2 = ξz − F∇2
h (Hubu +Hsbs) , (C.2)

and when bu, bs are inserted into (C.2), the W2 equation in terms of θe, qt yields

W2 = ξz − F∇2
h (Hu (θe + εqt − qt) +Hs (θe − εqt)) , (C.3)

or

ξz −W2 = F∇2
h (θe −Huqt + εqt) . (C.4)

Through neglecting εq, we only put O(1) balanced terms into consideration, implying

leading order inversion formula in the end. Replacing qt by M − Gmθe (for simplicity

setting Gm = 1, F = 1) shows

ξz −W2 = ∇2
h (θe −Hu (M − θe)) , (C.5)

∇−2h (ξz −W2) = (1 +Hu) θe −HuM, (C.6)

∇−2h (ξz −W2) +HuM = (1 +Hu) θe, (C.7)

θe =
1

2
Hu[∇−2h (ξz −W2) +M ] +Hs[∇−2h (ξz −W2)]. (C.8)
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The aforementioned straightforward work only depends on definitions of buoyancy bu,

bs, W2, and M , which simply express θe in terms of M, ξ,W2. The next goal is to write

down the inversion of ξ with respect to M , PVe and W2.

To find the inversion PDE, we first apply operator (∂z) to (C.8), and we see that

∂z(θe) equals

∂

∂z

{1

2
Hu[∇−2h (ξz −W2) +M ] +Hs[∇−2h (ξz −W2)]

}
. (C.9)

Now recall the definition of PVe = ξ + F
∂θe
∂z

(for simplicity setting F = 1), and notice

that
∂θe
∂z

could be replaced by (C.9) to yield

ξ +
∂

∂z

{1

2
Hu[∇−2h (ξz −W2) +M ] +Hs[∇−2h (ξz −W2)]

}
= PVe. (C.10)

If a streamfunction ψ = (∇−2h )ξ is introduced, which also implies ξ = (∇2
h)ψ,

(∇−2h )ξz = ψz, one can rewrite (C.10) as

∇2
hψ +

∂

∂z

{1

2
Hu[∂zψ −∇−2h W2 +M ] +Hs[∂zψ −∇−2h W2]

}
= PVe. (C.11)

This is an elliptic PDE for the streamfunction ψ, given PVe, M , and W2. It is an

extension of PV-and-M inversion [47, 48] and now includes the influence of waves via

W2.

An important point is that the PDE (C.11) illustrates how ψ is influenced by fast

waves in two ways. First, as mentioned above, the presence of W2 is one clear influence of

waves. Second, recall that the Heaviside functions Hu, Hs also introduce t, τ dependence.

In fact, even if one considers the recovery of ψ(M,PVe) (by considering a case of recovery

from given M,PVe with setting W1 = 0,W2 = 0), the τ -dependence of Hu, Hs will

introduce a fast τ -dependence to ψ(M,PVe), even though M and PVe themselves have no

τ -dependence. It shows how waves can influence ψ(M,PVe) via phase changes.

Solving the elliptic PDE in (C.11) provides ψ in terms of (M,PVe,W2). Accordingly,

knowledge of ψ helps us to derive the inversion formulas for the velocity field

~u ᵀ = (u, v, w), which could be determined from ψ, W1 and finally be expressed as

(M,PVe,W1,W2, um, vm) only.

Similarly, the definition of W1 = ∇2w demonstrates

w = ∇−2W1. (C.12)

With the incompressibility condition

ux + vy = −wz = −(∂z∇−2)W1, (C.13)

and the definition of ξ = vx − uy, we arrive at

vxx + vyy = ξx −
(
∂y∂z∇−2

)
W1, (C.14)
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uxx + uyy = −ξy −
(
∂x∂z∇−2

)
W1. (C.15)

The results of u, v are expressed as

v =
(
∇−2h

)
(ξx −

(
∂y∂z∇−2

)
W1), (C.16)

u =
(
∇−2h

)
(−ξy −

(
∂x∂z∇−2

)
W1). (C.17)

As a more physically revealing form, one can rewrite (C.16)–(C.17) as

v − vm = ∂xψ − ∂y∂z
(
∇−2h ∇

−2W1

)
, (C.18)

u− um = −∂yψ − ∂x∂z
(
∇−2h ∇

−2W1

)
, (C.19)

where um, vm are mean velocities and subscript m denotes the horizontal average.

(C.18)-(C.19) displays the contributions from the streamfunction ψ, mean velocities

and from the velocity potential −∇−2h ∇−2W1 that is due to waves. Since ψ could

be found from (C.11) and written in terms of (M,PVe,W2), we see that the

velocity field ~u ᵀ = (u, v, w) could be obtained through inverting state vector ~v ᵀ =

(M,PVe,W1,W2, um, vm).

The following contents offer a special inversion formula for the single phase case

(purely saturated region with Hu = 0, Hs = 1), under no presence of wave (W1 =

0,W2 = 0, um = 0, vm = 0), which supports conclusions demonstrated on Section 5. In

a purely saturated region (Hs = 1, Hu = 0), (C.10) becomes

ξ + ∂z
(
∇−2h

)
(ξz −W2) = PVe. (C.20)

The remaining work is to introduce the streamfunction ψ = (∇−2h )ξ, which implies

ξ = (∇2
h)ψ, (∇−2h )ξzz = ψzz in (C.20). Without considering the impact of waves, setting

W2 = 0 in (C.20) leads to

∇2ψ = PVe. (C.21)

Then ~u(M,PVe), as the slow part velocity field, coming from (C.12, C.18, C.19) with

W1 = 0, um = vm = 0, and ξ = (∇2
h)ψ, is given by

u(M,PVe) = −ψy, v(M,PVe) = ψx, w(M,PVe) = 0. (C.22)

The slow thermaldynamic variable θe(M,PVe), with contributions from M,PVe slow

components only, is derived through (C.8), with Hu = 0, Hs = 1,W2 = 0, ξ = (∇2
h)ψ:

θe(M,PVe) = ψz. (C.23)

Finally, the definition of M = θe + qt directly expresses slow variable qt(M,PVe) as

qt(M,PVe) = M − ψz. (C.24)
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Appendix D. Fourier decomposition of L∗

Two different scenarios will be presented corresponding to the purely saturated region

with two different rainfall speeds Vr = 1 and Vr = ε−1 (these two cases may be

generalized to Vr = O(1) and Vr = O(ε−1), respectively). The Fourier analysis in

following Appendix D, Appendix E will answer the main question: Will the slow

component v̄slow(t, ~x) evolve independently from the fast component, as in (3.7)-(3.8),

even in the presence of precipitation Vr? Or will precipitation Vr introduce an influence

of the fast waves on the evolution of the slow component? Eventually, exactly analogous

equations for suitably-defined potential vorticity variables displayed in Appendix E

clarifies that independence between slow and fast components. In other words, there is

no impact from rainfall on slow modes evolution.

Working through the Fourier decomposition of L∗, we use dimensional variables in

order to make explicit the appearance of the dimensional frequencies N1, N2 described

in (2.12), Coriolis parameter f and dimensional rainfall speed VT , helping to elucidate

the dominant physics and to make contact with previous literature, e.g. [1, 3, 4, 8, 9, 15].

Based on the dimensional system (1a)–(1d) of [25] (see also 17(b) in [25] with qvs(z) = 0),

it is convenient to use rescaled variables

θ′e =
g

θ0

θe
N1

, and q′t =
gLv
θ0cp

qt
N2

. (D.1)

Then the modified dynamic system in dimensional form will be given:

D~u

Dt
+ f ẑ × ~u = −∇ φ

ρ0
+ ẑ(N1θ

′
e −

θ0cp
Lv

N2q
′
t) (D.2)

∇ · ~u = 0 (D.3)

Dθ′e
Dt

+N1w = 0 (D.4)

Dq′t
Dt
−N2w − VT

∂q′t
∂z

= 0 (D.5)

With the assumption of periodic boundary conditions in the spatial domain, we try

to seek dispersion relation, writing special eigenfunction wave solution as

~v = e(i
~k·~x−iσ(~k)t)~φ, (D.6)

where ~k is the wave number, σ(~k) is the eigenfrequencies, ~φ is the eigenvector, and ~v

should satisfy the incompressibility condition. Similarly, as described in Section 2.1,

after non-dimensional process, one could fill the system (D.2 – D.5) in the abstract

formulation (2.2) to construct concrete L∗ and L0 as follows. (Note that the pressure

term is rewritten using the expression ∆φ = −ε∇ · (~u · ∇~u) + ∂θe/∂z − ε∂qt/∂z + ξ.)
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Vr = 1:

L∗(~v) =


−∂x∆−1∂y −1 + ∂x∆−1∂x 0 ∂x∆

−1∂z 0

1− ∂y∆−1∂y ∂y∆
−1∂x 0 ∂y∆

−1∂z 0

−∂z∆−1∂y ∂z∆
−1∂x 0 ∂z∆

−1∂z − 1 0

0 0 1 0 0

0 0 −1 0 0




u

v

w

θe
qt

 (D.7)

L0(~v) =


0 0 0 0 −∂x∆−1∂z
0 0 0 0 −∂y∆−1∂z
0 0 0 0 1− ∂z∆−1∂z
0 0 0 0 0

0 0 0 0 −∂z




u

v

w

θe
qt

 (D.8)

Vr = ε−1:

L∗(~u) =


−∂x∆−1∂y −1 + ∂x∆−1∂x 0 ∂x∆−1∂z 0

1− ∂y∆−1∂y ∂y∆−1∂x 0 ∂y∆−1∂z 0

−∂z∆−1∂y ∂z∆−1∂x 0 ∂z∆−1∂z − 1 0

0 0 1 0 0

0 0 −1 0 −∂z




u

v

w

θe
qt

 (D.9)

L0(~u) =


0 0 0 0 −∂x∆−1∂z

0 0 0 0 −∂y∆−1∂z

0 0 0 0 1− ∂z∆−1∂z

0 0 0 0 0

0 0 0 0 0




u

v

w

θe
qt

 (D.10)

The implementation of Fourier transform F : (x, y, z, t)→ (k, l,m, σ) on the ε−1 balance

part of abstract equation (2.2), which is
∂~v

∂t
+ ε−1L∗(~v) = 0, will directly give the

following matrix equation

− iσ~φ = −Ã∗~φ. (D.11)

The associated matrix Ã∗, Ã0 with respect to the dimensional form of ε−1L∗, L0 are

displayed below. (Note that A∗ = −| ~k |
2
Ã∗, A0 = −| ~k |

2
Ã0.)

Vr = 1:

A∗ =


klf (| ~k |

2
− k2)f 0 −kmN1 0

(−| ~k |
2

+ l2)f −klf 0 −lmN1 0

lmf −kmf 0 kh
2N1 0

0 0 −| ~k |
2
N1 0 0

0 0 | ~k |
2
N2 0 0

 (D.12)
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A0 =


0 0 0 0 km θ0cp

Lv
N2

0 0 0 0 lm θ0cp
Lv
N2

0 0 0 0 −k2h
θ0cp
Lv
N2

0 0 0 0 0

0 0 0 0 im| ~k |
2
VT

 (D.13)

Vr = ε−1:

A∗ =


klf (| ~k |

2
− k2)f 0 −kmN1 0

(−| ~k |
2

+ l2)f −klf 0 −lmN1 0

lmf −kmf 0 kh
2N1 0

0 0 −| ~k |
2
N1 0 0

0 0 | ~k |
2
N2 0 im| ~k |

2
VT

 (D.14)

A0 =


0 0 0 0 km θ0cp

Lv
N2

0 0 0 0 lm θ0cp
Lv
N2

0 0 0 0 −k2h
θ0cp
Lv
N2

0 0 0 0 0

0 0 0 0 0

 (D.15)

By the incompressibility condition, notice that

kû+ lv̂ +mŵ = 0,⇒ klû+ l2v̂ + lmŵ = 0, k2û+ klv̂ + kmŵ = 0, (D.16)

and simple algebra presents

− | k |2N1ŵ = −m2N1ŵ − k2hN1ŵ = kmN1û+ lmN1v̂ − k2hN1ŵ. (D.17)

Similarly, | k |2N2ŵ could be expressed as

| k |2N2ŵ = −kmN2û− lmN2v̂ + kh
2N2ŵ. (D.18)

Complete the symmetrization for the 4×4 sub-matrix of A∗, giving analogous structure

(see (D.19)) with previous literature [8, 9, 15], so as the corresponding eigen-vectors.

Since the last column entries of A∗ are different from dry case, which breaks the

symmetrizing process for full matrix. In an abuse of notation, we use φ to replace
~φ in following content, if there is no misunderstanding and contradiction.

For Vr = 1 case, new matrix As∗ and associated eigenvalues, eigenvectors are given

as:

As∗ =


0 m2f −lmf −kmN1 0

−m2f 0 kmf −lmN1 0

lmf −kmf 0 k2hN1 0

kmN1 lmN1 −k2hN1 0 0

0 0 N2|~k|2 0 0

 (D.19)
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σ = 0 (triple) σ2 =
N2

1k
2
h + f 2m2

|k|2
(σ = |σ±|) (D.20)

φ0 =
1√

N2
1k

2
h + f 2m2


−N1l

N1k

0

mf

0

 φq =


0

0

0

0

1

 φ± =


m
kh

(σk ± ilf)
m
kh

(σl ∓ ikf)

−σkh
±iN1kh
∓iN2kh

 (D.21)

A special case must be considered, which is kh = 0 :

σ = 0 (triple) σ2 = f 2 (σ = |σ±|) (D.22)

φ0 =


0

0

0

1

0

 φq =


0

0

0

0

1

 φ± =


1+i
2

1−i
2

0

0

0

 (D.23)

The first two eigenvectors have 0 eigenfrequencies, called slow modes, while fast modes

represent the rest of two vectors with nonzero frequencies. Meanwhile, one eigenvector

corresponding to 0 eigenvalue has been abandoned, since it violates the incompressibility

condition. Orthogonality of the associated eigenvectors is not guaranteed. Nevertheless,

one may process to analyse one of the slow modes (φ0 mode also known as PVe mode)

by projecting (3.6) into φ0 mode in Fourier space, since φ0 is perpendicular to the rest

of three modes φq, φ+, φ−.

For Vr = ε−1 case, with similar argument we simply demonstrate the results of

matrix A∗, eigenvalues and eigenvectors as follows:

A∗ =


klf (| ~k |

2
− k2)f 0 −kmN1 0

(−| ~k |
2

+ l2)f −klf 0 −lmN1 0

lmf −kmf 0 kh
2N1 0

0 0 −| ~k |
2
N1 0 0

0 0 | ~k |
2
N2 0 im| ~k |

2
VT

 (D.24)

σ0 = 0 (double) σq = −mVT σ2 =
N2

1k
2
h + f 2m2

|~k|
2 (σ = |σ±|) (D.25)

φ0 =
1√

N2
1k

2
h + f 2m2


−N1l

N1k

0

mf

0

 φq =


0

0

0

0

1

 φ± =


m
kh

(σk ± ilf)
m
kh

(σl ∓ ikf)

−σkh
±iN1kh
− iN2khσ
mVT±σ

 (D.26)
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And the special case kh = 0 yields

σ = 0 (double) σq = −mVT σ2 = f 2 (σ = |σ±|) (D.27)

φ0 =


0

0

0

1

0

 φq =


0

0

0

0

1

 φ± =


1+i
2

1−i
2

0

0

0

 . (D.28)

It’s worth to remind reader here, under Vr = ε−1 and m 6= 0 circumstance, there is only

one slow mode φ0 since φq is no longer to be slow due to the nonzero eigenvalue σq.

Appendix E. Analysis of Resonant Interaction for Slow Dynamics

Based on the well constructed eigenvectors described above, we start to build the

concrete form of the average equation (3.6) in Fourier space. In the end, through

the analysis of resonant triad interactions arising from bi-linear operator (B) one could

verify whether the decoupling property between slow and fast modes is still valid in the

limit ε→ 0 under the presence water (qt) and rainfall (VT ).

Initial condition v̄(~x, t) in (3.2) is written in terms of the aforementioned

eigenvectors φ
(α)

(~k)
(D.21) or (D.26) together with amplitude function a

(α)

(~k)
(t),

v̄(~x, t) =
∑
~k∈Z3

∑
α∈A

ei
~k·~xa

(α)

(~k)
(t)φ

(α)

(~k)
, A = {0, q,+,−}. (E.1)

Plugging (E.1) into B, thus the bi-linear term could be represented explicitly

B(e−sL∗ v̄, e−sL∗ v̄) = (E.2)

=
∑
~k∈Z3

∑
α∈A

 ∑
(~k′+~k′′=~k)

∑
(α′,α′′∈A )

e
i(~k·~x−s(σ(α′)

(~k′)
+σ

(α′′)
(~k′′)

))
B

(α′,α′′,α)

(~k′,~k′′,~k)
a
(α′)

(~k′)
(t)a

(α′′)

(~k′′)
(t)

φ
(α)

(~k)
,

where the coefficient B arrives to be

B
(α′,α′′,α)

(~k′,~k′′,~k)
=
i

2

[
(~u

(α′)

(~k′)
· ~k′′)(~φ(α′′)

(~k′′)
· ~φ(α)

(~k)
) + (~u

(α′′)

(~k′′)
· ~k′)(~φ(α′)

(~k′)
· ~φ(α)

(~k)
)
]
. (E.3)

Hence the quadratic contribution due to bi-linear operator B in the abstract averaging

equation (3.6) is given as

lim
τ→∞

1

τ

∫ τ

0

esL∗
(
B(e−sL∗ v̄, e−sLF v̄)

)
ds =

= lim
τ→∞

1

τ

∫ τ

0

∑
~k∈Z3

∑
α∈A

 ∑
~k′+ ~k′′=~k

∑
α′,α′′∈A

e
i(~k·~x−s(σ(α′)

(~k′)
+σ

(α′′)
( ~k′′)
−σ(α)

(~k)
))
×

×B(α′,α′′,α)

(~k′, ~k′′,~k)
a
(α′)

(~k′)
(t)a

(α′′)

( ~k′′)
(t)
}
φ
(α)

(~k)
. (E.4)
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Only three wave resonances can survive inside the fast averaging equation, and we define

the set Sα,~k as survival index set:

Sα,~k =
{

(~k′, ~k′′, α′, α′′)|~k′ + ~k′′ = ~k, σ
(α′)

(~k′)
+ σ

(α′′)

( ~k′′)
= σ

(α)

(~k)

}
. (E.5)

Directly projecting (3.6) onto the slow mode φ0 will focus our attention on the

analysis of slow component dynamics and its evolution equation. Verification on

resonant triad interactions under the index set S0,~k will be operated as follows (for

both Vr = 1 and Vr = ε−1), which will illuminate the decoupling relationship between

slow and fast components.

For Vr = 1 case, we turn to eigenvectors set (D.21), where φ(0), φ(q) are known

as slow modes while φ(+), φ(−) are fast since previous two are associated with zero

frequencies and later two own non-zero frequencies. When we confine that the resonant

triad interactions involve at least one slow mode φ(0) (slow − (∗) − (∗) impact), all

possible resonant interactions coefficient B under the survival index set S0,~k are

B
(+,−,0)
(~k′, ~k′′,~k)

= B
(−,+,0)
(~k′, ~k′′,~k)

= B
(q,q,0)

(~k′, ~k′′,~k)
= B

(q,0,0)

(~k′, ~k′′,~k)
= B

(0,q,0)

(~k′, ~k′′,~k)
= 0. (E.6)

Similar concrete form can be formulated for the linear operator L0 and simply yields

lim
τ→∞

1

τ

∫ τ

0

esL∗L0(e
−sL∗ v̄(~x, t))ds =

∑
~k∈Z3

∑
σ
(α′)
(~k)

=σ
(α)

(~k)

L
(α′,α)

(~k)
a
(α′)

(~k)
(t)ei

~k~xφ
(α)

(~k)
, (E.7)

where L
(α′,α)

(~k)
=
〈
A0(~k)φ

(α′)

(~k)
, φ

(α)

(~k)

〉
is the coefficient for linear operator L0 and A0(~k) is

(D.13). Direct calculation gives following two inner product for α = 0 (Note that we

only need to check two cases α′ = q and α′ = 0 when α = 0 since only σ
(0)
~(k)
− σ(0)

~(k)
= 0

and σ
(0)
~(k)
− σ(q)

~(k)
= 0.)〈

A0(~k)φ
(0)

(~k)
, φ

(0)

(~k)

〉
=
〈
A0(~k)φ

(q)

(~k)
, φ

(0)

(~k)

〉
= 0⇒ L

(q,0)

(~k)
= L

(0,0)

(~k)
= 0. (E.8)

Finally for φ0 mode, the explicit limiting dynamic evolution equation (derived from

projecting (3.6) into φ0 mode) expressed as an ODE of its amplitude a0~k are given as

follows (by setting α = 0 in (E.4, E.7)),

da
(0)

(~k)

dt
+

∑
k′ + ~k′′ = ~k

σ
(α′)

(~k′)
+ σ

(α′′)

( ~k′′)
= σ

(0)

(~k)

B
(α′,α′′,0)

(~k′, ~k′′,~k)
a
(α′)

(~k′)
a
(α′′)

( ~k′′)
+

∑
σ
(α′)
(~k)

=σ
(0)

(~k)

L
(α′,0)

(~k)
a
(0)

(~k)
= 0. (E.9)

We remind the reader that orthogonality is not guaranteed in previous eigenvectors

(D.21), however, the reason one could still process the ODE analysis of a0~k by successfully

projecting (3.6) on φ0 mode is because that φ0 is perpendicular to the rest of three
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modes φq, φ+, φ−. Together with the resonant coefficient calculation showed above in

(E.6) and linear term coefficient (E.8), one may observe that the slow mode (φ0) is free

of interactions with the fast modes. In other words, the amplitudes a0~k is well determined

only by itself in the limiting fast wave averaging equation (3.6):

da
(0)

(~k)

dt
+

∑
k′ + ~k′′ = ~k

σ
(0)

(~k′)
+ σ

(0)

( ~k′′)
= σ

(0)

(~k)

B
(0,0,0)

(~k′, ~k′′,~k)
a
(0)

(~k′)
a
(0)

( ~k′′)
= 0. (E.10)

An inversion transformation of the Fourier-space equation for slow mode φ0 leads to

the conservation of equivalent potential voriticity. Technically speaking, the fast-wave-

averaging equation for PVe in purely saturated region with Vr = 1 is given by

D

Dt
PVe = (

∂

∂t
+ ~u(PVe) · ∇)PVe = 0, (E.11)

implying that slow mode (PVe or φ0) evolves independently from fast mode (waves

or φ±) under the presence of water and rainfall. The subscript (PVe) indicates that

a variable has been computed by inverting from (M,PVe,W1,W2, um, vm) to (~u, θe, qt)

using (PVe) only. From the perspective of Fourier space, one may treat ~u(PVe) as the

contribution only from the entries in slow mode φ0.

For Vr = ε−1 case, eigenvectors set (D.26) will be used to process analysis. In

contrast with Vr = 1 case, only one mode φ0 with zero eigenvalue remains to be slow.

Similar algebra states the following resonant interactions coefficient B under the survival

index set S0,~k and linear term coefficient L as follows

B
(+,−,0)
(~k′, ~k′′,~k)

= B
(−,+,0)
(~k′, ~k′′,~k)

= B
(+,q,0)

(~k′, ~k′′,~k)
= B

(q,+,0)

(~k′, ~k′′,~k)
= 0, (E.12)〈

A0(~k)φ
(0)

(~k)
, φ

(0)

(~k)

〉
= 0⇒ L

(0,0)

(~k)
= 0. (E.13)

Hence, in the remarkable resonant triad interactions only slow-slow-slow impact survives.

The possibility of slow-fast-fast has been eliminated by (E.12), meanwhile, slow-fast-

slow, slow-slow-fast aren’t counted since no resonant interaction is generated from them

((~k′, ~k′′, slow, fast) 6∈ S0,~k). In conclusion, Vr = ε−1 gives the same result as (E.10) and

(E.11).
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