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Abstract. Many systems involve the coupled nonlinear evolution of slow and fast
components, where, for example, the fast waves might be acoustic (sound) waves with
a small Mach number or inertio-gravity waves with small Froude and Rossby numbers.
In the past, for some such systems, an interesting property has been shown: the
slow component actually evolves independently of the fast waves, in a singular limit
of fast wave oscillations. Here, a fast-wave averaging framework is developed for a
moist Boussinesq system with additional complexity beyond past cases, now including
phase changes between water vapor and liquid water. The main question is: Do phase
changes induce coupling between the slow component and fast waves? Or does the
slow component evolve independently, according to moist quasi-geostrophic equations?
Compared to the dry dynamics, a substantial challenge is that the method needs to
be adapted to a piecewise operator with variable coefficients, due to phase changes. A
formal asymptotic analysis is presented here.

For purely saturated flow without phase changes, it is shown that precipitation
does not induce coupling, and the slow modes evolve independently. With phase
changes present, the limiting equations show that phase boundaries could possibly
induce coupling between the slow modes and fast waves.

Keywords: singular limits, unbalanced initial conditions, ill prepared initial data, phase
changes, resonances, moist atmospheric dynamics, water vapor, clouds, precipitating
quasi-geostrophic equations
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1. Introduction

The dry Boussinesq equations describe an idealization of atmospheric and oceanic fluid
systems, in which the dynamics include the effects of the earth’s rotation together with
density and/or temperature stratification. The effects of rotation and stratification
are mathematically represented by skew-symmetric linear operators, leading to the
presence of neutrally stable wave oscillations. These waves act to modify the
fluid evolution characterized by the bi-linear operator. Furthermore, the linearized
equations also admit non-propagating solutions, often referred to as ‘slow modes’ or
‘vortical modes,” based on their structure. There is a long history of study aimed
at mathematical and physical understanding of wave and vortical interactions in the
context of the dry Boussineq and related equations to describe geophysical flows, e.g.
1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16].

In the limit of asymptotically large rotation and stable stratification, rigorous proofs
show, remarkably, that the nonlinear dynamics associated with the slow modes decouple
from waves altogether [5, 8, 9, 14]. In a sense, then, in considering the evolution of the
slow component, the effects of the fast waves are averaged out; hence the name fast-wave
averaging refers to the proofs. In earlier work, a similar type of fast-wave averaging
property was also shown for compressible fluid dynamics, in the limit of small Mach
number, where the fast waves correspond to acoustic (sound) waves [17, 18, 19]. These
examples fall under the category of fast singular limits of hyperbolic partial differential
equations (PDEs), with unbalanced initial conditions, which have been the topic of
numerous other studies as well [20, 21, 22, 23, 24].

The quasi-geostrophic (QG) equations describe the evolution of the slow, vortical
mode in the limit of small Rossby and Froude numbers (large rotation and stratification,
respectively). Two cases should be distinguished, according to the initial conditions
[17, 18, 19, 14]. On the one hand, if the initial conditions contain no waves (or if the
waves are sufficiently small in amplitude or norm), it is said that the initial data are
balanced or well-prepared. In this case, the solutions of the Boussinesq equations will
converge to solutions of the QG equations. On the other hand, if the initial conditions are
general and can contain wave contributions, it is said that the initial data are unbalanced
or ill-prepared. This latter case is where fast-wave averaging is relevant. Remarkably,
even for unbalanced initial conditions, the QG equations describe the limiting dynamics
of the slow modes, and the fast waves are also present in the limit but do not influence
the QG evolution.

For dry dynamics without moisture, much is known about evolution from both
balanced and unbalanced initial conditions. For moist dynamics with phase changes, on
the other hand, much less is known. In the case of balanced initial conditions, a formal
asymptotic derivation of precipitating QG (PQG) equations has been presented [25], and
some properties of the PQG equations have been investigated [26, 27, 28, 29], but no
rigorous proofs have been shown. The other case, with unbalanced initial conditions, is
the topic of the present paper. Some main questions are: Do the PQG equations describe



Fast-wave averaging with phase changes 3

the evolution of the slow modes, in the limit of small Froude and Rossby numbers, even
if the initial conditions are unbalanced? Is the slow-mode evolution influenced by waves,
or not?

Moving beyond the dry Boussinesq equations, we investigate moist Boussinesq
equations with changes of water between different phases (vapor, liquid, etc.). The real
atmosphere involves these additional effects in the form of clouds, rainfall, etc., and by
including them into the equations of motion, more realistic settings can be investigated.
The topic of moist dynamics has received increasing attention in recent years, including
both rigorous results [30, 31, 32, 33, 34, 35, 36, 37, 38] and asymptotic analysis
[39, 40, 41, 42, 43, 25, 44, 45]. The present paper provides a bridge between previous
asymptotic analysis and rigorous results, by consideration of fast-wave averaging with
moisture and phase changes.

From the point of view of fast-wave averaging, the main question is: Does the
slow component still evolve essentially independently of the fast wave component?
Or do phase changes enhance the coupling between the slow and fast components?
If moisture and/or phase changes are included, several new challenges arise, and we
propose techniques for overcoming them. Three examples are as follows. First, to
include moisture, additional variables must be added to the system, and they give
rise to additional eigenmodes. Are the new, moist eigenmodes to be considered slow
eigenmodes or fast eigenmodes? The new moist eigenmodes have been shown to be
slow, unless precipitation is rapid enough to render them as fast [46]. Second, and more
significant, a key aspect of fast-wave averaging is the identification of the fast and slow
components of the system, based on an eigenvalue/eigenvector problem. In the past,
for dry dynamics without moisture, Fourier-based methods have allowed identification
of the different eigenmodes and their frequencies, e.g. [14]. If phase changes are present,
then Fourier methods cannot be used, since the constant-coefficient linear operator of
the dry case becomes a variable-coefficient and nonlinear operator in the case with phase
changes. To overcome this challenge, a type of potential vorticity (PV) inversion can
be used, although it must be a new type of inversion called PV-and-M inversion to
account for the phase changes and the slow, moist variable M [25]. Third, and perhaps
most significant, the operator is actually nonlinear in the case with phase changes, as
mentioned above. As a result, it is not clear a priori whether a system with phase
changes can even be decomposed in a meaningful way into a superposition of slow and
fast components. Here, we propose a treatment of the nonlinear operator as a linear
operator, for the purposes of mode decomposition, and to use a linear version of PV-and-
M inversion for the mode decomposition [47, 48], while still retaining the fully nonlinear
behavior of the dynamics. With these techniques, a theoretical framework is proposed
here for performing fast-wave averaging with phase changes.

In the present paper, a formal asymptotic analysis is presented, and it lays
the foundation for possible rigorous analysis in the future. After carrying out the
asymptotic procedure, the analysis of the possible resonances and/or time averaging
is not brought to closure, due to remaining questions about the behavior of waves in
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the presence of phase changes. Nevertheless, while closure is not obtained completely,
many terms can be eliminated from consideration based on available information about
the eigenmodes (e.g., the zero-frequency eigenmodes have no vertical velocity, etc.), so
partial simplification can be obtained. Also, the final result here provides a framework
for further investigation by numerical simulation, which will be presented elsewhere in
the near future.

The remainder of the paper is organized as follows. In Section 2, we describe several
important aspects of the fast-wave-averaging setup that are proposed for handling phase
changes, along with a description of the main application of interest: the moist version of
the Boussinesq equations. Section 3 reviews fast-wave averaging for the dry equations,
followed by results for the case of phase changes in Section 4. In Section 5, we discuss
reductions of the equations derived in Section 4, by considering a single-phase, purely
saturated environment, and the PQG equations with phase changes, but with waves
filtered out. A notable feature of Section 5 is the addition of rainfall, which is excluded
from Section 4 for simplicity. Conclusions and further questions are given in Section 6.

2. Model setup

In this section, the model equations are described from two perspectives: first, from
an abstract perspective involving generic linear operator . and (nonlinear) bilinear
operator %, and second, in terms of the specific physical variables of interest for
atmospheric dynamics (velocity, temperature, etc.).

Also, two of the challenges that arise from phase changes are discussed. First,
Heaviside functions arise from phase changes, and their treatment in fast-wave averaging
is discussed. Second, a decomposition into slow vs. fast variables is needed, and it
is complicated by phase changes, which introduce (spatially and temporally) variable
coefficients in the linear operator, in contrast to the constant-coefficient linear operators
that typically appear in one-phase dynamics. A decomposition method is described
based on a new type of potential vorticity inversion, called PV-and-M inversion, and it
is valid even with the variable-coefficient linear operator due to phase changes.

2.1. Abstract Formulation

For fast-wave averaging, many systems can be written in abstract form as

ov
a—i—f{ﬁ)—l—%’(ﬁ,ﬁ) =0, (2.1)
where U is the state vector and the operators £, % are respectively linear and bi-linear
[14].

Fast waves arise when the linear operator . has a large component that is O(e™1),
where ¢ is a small parameter. In this case, the linear operator .2 may be decomposed

as & = e %, + %, so that (2.1) may be re-written as

% + e 1 Z(9) + L(T) + B(v,7) = 0, (2.2)
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where the dominant terms are identified by the prefactor O(s7!). Concrete expressions
for v, £, and # will be provided later in this section. This abstract formulation is
helpful because it indicates the basic structure of the system, and it allows the principles
of fast-wave averaging to be described transparently (see Sections 3 and 4).

2.2. Moist atmospheric dynamics

Atmospheric dynamics are modeled here by the moist Boussinesq equations with phase

changes:
D—’
e T R e (2.3)
Dt
V-u=0 (2.4)
Dé,
Dr +etw =0 (2.5)
DQt —1 8Q7‘
_ = 2.
Dt 2 Ve 0z 0 (26)

where D/Dt = 0,4+ -V is the material derivative, @ = (i, w) is the three-dimensional
velocity with horizontal components 4, = (u,v) and vertical component w, and 2 is
a unit vector in the vertical direction. The Z X 4 term is (—v,u,0)T, and it arises in
the Coriolis term. The anomalous thermodynamical variables are pressure ¢, equivalent
potential temperature 6, = 6 + g, potential temperature ¢, buoyancy b, and the mixing
ratios ¢, (water vapor), ¢, (rain water) and ¢, = ¢, + ¢, (total water). The model in
(2.3)-(2.6) has been non-dimensionalized based on characteristic mid-latitude synoptic
scales, as described in the Appendix A (A.12 - A.16).

The parameter V, represents the (nondimensional) terminal velocity of rain drops.
The terminal velocity V, in nature will depend on the rain drop radius, but it is common
for models to not explicitly represent the radii of droplets, so V, is often parameterized
as a function of the mixing ratio g, [49]; here, a further simplification is made, and V,
is assumed to be a constant [50, 46]. The constant V, will be used to include, or not
include, the effects of precipitation in a simple way. At one extreme, setting V,, = 0
removes the effects of rainfall; it would then be appropriate for the rain water g, to be
relabeled as cloud water g., and the equations describe non-precipitating cloud dynamics
[51, 52, 53]. Instead, with V,. > 0, the model in (2.3)-(2.6) represents a simplified version
of precipitating cloud microphysics called fast autoconversion and rain evaporation
(FARE) microphysics [50, 46]. While FARE microphysics lacks some of the detailed
processes of clouds and precipitation in nature [49, 39], it has several advantageous
features. For instance, FARE microphysics includes the essential aspect of precipitation
(V,.); it provides the foundation upon which more complex microphysics schemes can be
built [25, 54]; and it provides a setup that is simple enough for mathematical analysis
(e.g., see also the energy principles in section 4 of [54] and section 2.6 of [50]).

With the exception of buoyancy b(Z,t), each thermodynamical variable f'!! (7, t)
has been decomposed into a (given, linear) background function of altitude z and an
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anomaly, such that f!(Zt) = f(z) 4+ f(#,t). Vertical derivatives of the background
functions 6,, and g, are absorbed into the parameters e; and e, [25].  Although not
fundamental to our approach, we make the choices ¢. = 0, ¢ = ¢, = qs(2). In our
setup, the linear function ¢,s(2) = Bysz (with constant B,;) is a crude approximation to
the saturation water vapor profile q,s(¢,6) [55, 50]. Our choices for ¢, ¢, and ¢, imply
that the background environment is at saturation, such that phase changes will occur for
initial conditions with regions that are close to saturation. As an added benefit, simpler
algebraic manipulations result from the background state ¢. = 0, G; = Gy = Gus(2).

Phase changes enter the model through the buoyancy. The buoyancy b is by
definition an anomalous quantity, with multiple equivalent expressions depending on
the choice of thermodynamical variables—for example, b = b(0, q,, q,), or equivalently
b = b(0e,q:). No matter the choice, the most important feature is that the buoyancy
changes its functional form across phase boundaries, adding a new nonlinearity to the
system, due to phase changes. The phase boundaries are defined as locations where
the anomalous total water ¢; is zero. In the simplified dynamics under consideration
here, the total water is solely water vapor in unsaturated regions such that ¢, = ¢,; in
saturated regions, excess water above the saturation level is entirely liquid water such
that ¢; = ¢,.. Hence, we may conveniently use Heaviside functions H,, Hy to write

b= H,b, + Hb,, (2.7)
where H,, H, are defined as
1 for ¢ <0
H, = and H, =1— H,, (2.8)
0 for ¢ >0

and where expressions for the unsaturated buoyancy b, and the saturated buoyancy b,
are given by
by = [0 + (¢ — 1)qy], bs = [0 — eq]. (2.9)

The different water constituents can be described as
Gw=q, ¢ =0 if ¢<0, and ¢,=0, ¢ =¢ if ¢ >0, (2.10)

which define the anomalous vapor ¢, and the anomalous rain ¢, from anomalous total
water ¢;. See [50, 54] for additional description of the thermodynamic variables and
their co-relationships.

The three parameters €,e1,e9 incorporate the important physical constraints of
rapid rotation and strong stable stratification, typical of the mid-latitude atmosphere
at synoptic scales. These parameters are the Rossby Ro and Froude F'r numbers:

U U U

R0:f—L:5 Fﬁ:NlH:gl FT2:N2H:

£, (2.11)
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where U is a characteristic wind speed (=~ 10 m/s), H (L) is a characteristic height
(length) in the vertical (horizontal) directions, and we assume that height-to-length
ratio H/L = O(1) for simplicity. The (dimensional) frequencies N; and N; are given by

db, g d - L,. g L,
Ne=STe 9%, gy - Y (B+ 2B,
0, dz Hodz( * CPQ) 00( i Cp >

2B (2.12)

where g &~ 10 m/s? is the acceleration of gravity, 6y ~ 300 K is a reference temperature,
¢, = 10® Jkg™! K™ is the specific heat and L, = 2.5x10° J kg~ is the latent heat factor.
For stable stratification, Ny, Ny, B = dé/dz are positive and B, = dg;/dz is negative.
Note that the notation F'ry and N, is used in analogy to Froude number and buoyancy
frequency, respectively, although Fry and N, are defined in terms of total water instead
of buoyancy. The buoyancy frequencies that are associated with unsaturated regions
(N,) and saturated regions (IV,) are given by the following expressions:

gdd g s g do, g L,
N2=2—2=2B N2=2L = 2 | B+ —B,s, 2.13
Bodz b o d= 6\~ ¢ (2.13)
with the relationships
N2 = N2 + No? N, = Ni. (2.14)

Therefore the unsaturated and saturated Froude numbers are, respectively

U U

Fr,= Fr,=
(N12+N22)1/2H NlH

(2.15)

and we have the identities Fr;%2 = Fri? + Fry? and Fry! = Frit.

For ease of calculations, we consider the special (but physically reasonable) case
—L,B,s/c, = B/2 such that Ny = Ny and Fry = Fry (so €; = €2). Furthermore, in the
asymptotic relation € ~ e, we set the O(1) constant equal to unity such that there is
one distinguished parameter ¢ appearing in (2.3) — (2.6), as described in Appendix A
(A.17-A.21).

2.3. Treatment of the Heaviside functions

Special consideration is required for the Heaviside functions, H, and H,. To see their
role, recall the abstract formulation from (2.1), and notice that now, due to phase
changes, it must be rewritten as

8—»

a_: + H o (8).20(T) + H,(3)2,(7) + B(7,7) = 0. (2.16)
This is the abstract form of the model in (2.3)—(2.6), where the linear term Z(v) has
been replaced by H,(0).Z, (V) 4+ Hs(0).Z:s(V) to account for the effect of phase changes on
the buoyancy, as described in (2.7)—(2.9). Each of the linear operators, .%, and .Z;, is
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by itself a constant-coefficient operator. However, in the dynamical equations of motion
in (2.16), each of the linear operators, %, and %, is accompanied by a prefactor, H,(?)
and H,(¥), respectively, so that H,(0).Z, (V) + H(V)-Zs(V) is a nonlinear operator.

How can fast-wave averaging be carried out if the linear operator . has been
replaced by a nonlinear operator, H,(v).Z, (V) + H,(V)Zs(V), due to phase changes?
This nonlinearity introduces complications. For instance, fast-wave averaging involves
a decomposition and superposition of the fast and slow components of the system,
traditionally based on the linear operator . (e.g., see [14] or section 3 below). In the
case of the nonlinear operator, H,(0).Z,(0) + H,(0).Z;(7), it is unclear how to formulate
a superposition of fast and slow components, since linear superposition ideas are likely
incompatible with this nonlinear operator.

Here, we propose that the Heaviside functions, H, and H,, be treated as given
functions, at the stages of the fast-wave-averaging analysis. The perspective and setup
are then as follows. The solution (%, t) is assumed to be known for each value of €. It is
the solution for the moist atmospheric dynamics with phase changes in (2.3)—(2.6), or the
abstract form of a system with phase changes in (2.16). The goal of fast-wave averaging
is then to discover whether the solution v'¢(Z,t) can be decomposed into fast and slow
components, and to discover how the fast and slow components evolve in time. From this
perspective, the solution ¥¢(Z,t) is already known, and so the Heavisides H,(7'¢) and
Hy(v¢) are also already known. The known Heavisides could then be written as given
functions, H,(Z,t) and Hy(Z,t), for the purposes of the fast-wave-averaging analysis,
and the abstract formulation of the system could be regarded as

ov .
ot
Here, a posteriori, the abstract formulation has been restored to its traditional form of

(2.1), in terms of a linear operator . = H, (7, 1)L, + Hs(Z,t)-Zs. As a result of the
linearity of .Z’, many of the techniques from prior fast-wave-averaging studies can be

H,(T,1).2,(7) + Hy(T,1).2,(5) + B(7,7) = 0. (2.17)

applied here to the case with phase changes; and this is one of the main advantages
of treating H, and H as given functions during the fast-wave averaging analysis. The
treatment of Heaviside functions will be re-visited in the discussion and conclusion
Section 6.

Note, to be clear, that the solution U'¢(#,t) is generated from the fully nonlinear
dynamics in (2.3)—(2.6) or (2.16), where the Heavisides H,(¢) and H,(?) are functions
of the state variable vector ¢. It is only a posteriori, during the fast-wave-averaging
analysis, that the Heavisides are known and therefore written as given functions, H,(Z, t)
and H,(Z,t), for the purposes of the fast-wave-averaging analysis.

2.4. Slow and fast variables

An important part of fast-wave averaging is the definition of the slow and fast
components of the system. In past studies, the slow and fast components have typically
been defined based on the eigenvalues and eigenvectors of the linear operator .Z’; if .Z
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is a constant-coefficient operator, then Fourier-based methods can be used to find the
eigenvectors and eigenvalues, e.g. [5, 4, 13, 14]. Here, however, .Z is a variable-coefficient
operator, due to phase changes and associated Heaviside functions, as described in
(2.17). Consequently, Fourier-based methods are ineffective for finding the eigenvectors
and eigenvalues of .Z with phase changes, and it is unclear a priori how to decompose
the system into its slow and fast components.

One past example of a variable-coefficient case of fast-wave averaging is equatorial
waves [22, 23, 24]. In that case, the variable-coefficient terms are the Coriolis terms,
which, near the equator, are of the form yu and yv, where 4@, = (u,v) is the
horizontal velocity and y is the spatial coordinate in the north—south direction (similar to
latitude). Because of the special structure of the variable-coefficient Coriolis terms, the
eigenvectors and eigenvalues can be found analytically, using Hermite polynomials and
analogy with the quantum harmonic oscillator [14]. Consequently, while the variable-
coefficient Coriolis terms present other substantial challenges [22, 23, 24|, they maintain
the desirable property of analytical formulas for eigenvectors and eigenvalues. In
comparison, in the present case, analytical formulas for all eigenvectors and eigenvalues
will not be possible, due to phase changes.

The difficulties of a variable—coefficient operator .Z(Z,t) can be overcome by the
following observation: In order to achieve a slow—fast decomposition, it suffices to
identify the null space of Z(Z,t). In other words, it is not necessary to find all
eigenvectors v and eigenvalues \ that satisfy

L0 = [Hy(T,1).L, + Hy(Z,1) L0 = \7, (2.18)

the eigenvalue—eigenvector equation for the variable-coefficient operator Z(Z,t).
Instead, it suffices to find the vectors ¢ that are in the null space and satisfy

LT = [H,(Z,t).%, + Hy(T,1).2,)7 = 0. (2.19)

The nullspace provides sufficient information for accomplishing the slow—fast
decomposition; this is because the decomposition takes the form [5, 8, 9, 14]

<y
)
—
\.&l
~
S~—
I

T, 7) | =t/ + 0(1)

e = ZB(Z,t) + o(1)

™= [Batou(Z, 1) + Dpast(Z, )] + 0(1)

= Vgtow (T 1) + € % Vpant (T, 1) + 0(1) for & — 0, (2.20)

where the slow component ¥y, (t,Z) has no oscillations, and vf,s contains rapidly
oscillating waves. The operation e~ Ustow (t, &) = [Ug00(t, T) for Vg, in the nullspace
of £, where I is the identity matrix. (Note that we describe in (2.20) the decomposition
for the case of a constant-coefficient operator .Z, for simplicity, for the purposes of the
present paragraph; the decomposition takes a slightly modified form in the case of a
variable-coefficient operator, as described in subsequent sections). The key aspect is
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that, in order to write (2.20), detailed information of each eigenvalue A is actually not
needed. If the nullspace of .Z can be identified, then it defines the slow component v,
and the fast component can be defined as the residual vs,r = U — Usion. The precise
values of all non-zero eigenvalues A are not needed to write a slow—fast decomposition
as in (2.20).

To identify components of the nullspace of Z(Z,t), we rely on insights from past
literature about the zero-frequency eigenmodes. First, it is well-known that a zero-
frequency eigenmode is the vortical mode, which can be described by a variable called
potential vorticity (PV) [14, 56]. Physically, this eigenmode is related to the familiar
balance conditions of geostrophic and hydrostatic balance. Second, for a moist system,
another zero-frequency eigenmode arises, and it can be described by a variable called
M [25, 47, 48].

For simplicity of the algebraic manipulations when phase changes are included, we
focus on the case of zero rainfall speed V;, = 0 (the remainder of Section 2 and Section
4). The results for V,. = 0 are qualitatively the same for V,, = O(1), as presented for a
purely saturated environment in Section 5.1. In Section 5.2, we also briefly describe the
case V,, = O(¢™') in a purely saturated domain, but this case corresponds to a different
asymptotical regime, since then M is not a slow variable.

To find components of the nullspace of Z(Z,t), we make a change of variables to
utilize the two quantities PV, and M that characterize two zero-frequency eigenmodes.
To define the PV, and M as slow variables, the basic idea is that vertical velocity w is
related to fast waves, and we therefore wish to define quantities that are not influenced
by w in the linear operator [25]. By inspection of (2.5) and (2.6), it is straightforward
to eliminate the terms &; 'w from the 6, and ¢; equations using the linear combination

M = g, + Gb.., Gm:?, (2.21)
1

resulting in the dynamical equation (for V, = 0)

ZMJ—O (2.22)
Dt '

Perhaps less obvious, we next demonstrate that an appropriate slow, potential vorticity

variable is defined as 90
PV.=E+F5° F=" (2.23)

) Y
z €1

where ¢ is the vertical component of the total vorticity V x @. To find the equation for
PV, take the curl of the horizontal momentum equation from (2.3), and then connect
the result with the f.-equation (2.5), to arrive at

0PV, 0 (u-Vo.)
ot 0z

+ NLe =0, (2.24)

NLg =V % <ﬁh -V, + w%) = U - VE+E(uy +vy) + (wev, — wyu,).
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Then the material derivative of PV, is given by

DPV, .
D = —F(u, - VO.) — E(uy + vy) — (wev, — wyu,). (2.25)

Notice that, upon linearizing (2.22) and (2.24) about a resting base state, one can

see that M and PV, do not change with time—i.e., they represent zero-frequency
eigenmodes. Thus, after the complete change of variables described below, both M and
PV, will be in the nullspace of the operator %, introduced in the abstract formulation
(2.2). In fact, note that the M and PV, quantities will be in the nullspace of not only
the linear operator H,(Z,t).Z, (V) 4+ Hy(Z, t).Z(U) but also the piecewise linear operator,
H,(V)Z,(0) + H,(0).Z,(V), without needing to assume that the Heaviside functions are
given functions of ¥ and t; while the nonlinear Heaviside functions H,(¢) and H(?)
could thus still be used at this stage, it is useful to assume the Heaviside functions are
given functions of # and ¢ at later stages, such as the PV-and-M inversion.

While PV, and M represent slow components of the system, additional variables
are needed to represent the fast components of the system, and thereby to completely
specify the entire system. Indeed, by adding the g-equation (2.6) to the dry Boussinesq
system, one can see that the phase space of divergence-free solutions has an extra degree
of freedom as compared to the dry case [56, 46]. In past dry studies, a Fourier-based
approach has been used to decompose systems into their fast eigenmodes and slow
eigenmodes (see, e.g. [3, 4, 5, 13, 14, 15]). Here, however, a Fourier-based approach
cannot be used for the Boussinesq system (2.3)-(2.6) with phase changes of water
because of the potential for discontinuities introduced by the Heaviside operators in
the expression for the buoyancy (2.7). On the other hand, we may formally divide the
phase space into the (PV,, M) variables and wave variables.

Formally speaking, we define wave variables W, and W5 by

Wy, = V2w, Wy=¢ — FVi (Hyb, + Hb,), (2.26)

motivated by their relation to dry inertia-gravity waves, which involve vertical velocity w
(used for the definition of W) and geostrophic/hydrostatic imbalance (WWs) [15, 57, 58,
56]. From these definitions, one finds their evolution equations to be (see the Appendix
B for details)

oW ou,
5 He Wet Vi (i V) = 0.V, (ﬁh Vil + w%) =0 (2.27)
8W2 192 —2 . 2 —2
o — ¢ 0 (V72Wh) — FV;, (CanV2Wh) + 0. (N Le)
— PV} (H,@ - Vb, + Hgii - Vb,) = 0, (2.28)
where the operator

3 3
_ = Hy(e7!+ =
52) + Hy(ey + 62)

g2 e g2

—e Y H (S S Sy S+ D). 2.29
A+ D emE D) (229)

Cury = Hu(ey! +25"
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Notice that the equations (2.27) and (2.28) have the structure

oW
atl + &7 'Ws + (nonlinear terms) = 0
oW, 192 -2 =1 : . _
5 ¢ 92 (V7W;) — e ' (linear terms with C(y)) + (nonlinear terms) = 0,

both with large linear terms. They are independent quantities with rapid variations
in time, since W; depends on the vertical velocity w, while W5 contains information
about the fast component of all other primary variables: the horizontal velocities u,
v (through vertical vorticity &, the equivalent potential temperatures . and the total
water ¢; (through the buoyancy b,, bs), as well as phase interfaces through the Heaviside
functions H,, Hy.

For a complete description, it is necessary to also include inertial waves with

1

frequency 7', which are not represented by Wj, W5 and their equations (2.27) and

(2.28). The inertial waves correspond to the evolution of mean velocities u,, and v,

given by
0ugt(z) — e M (2) + 0. (uw) = 0, (2.30)
a”gt(z) 4 e lup(2) + 8. (ow) = 0, (2.31)

where the overline denotes the horizontal average. Together, equations (2.27), (2.28),
(2.30) and (2.31) describe the evolution of the wave components (W, W5, 00 ).

The six-dimensional vector 07 = (M, PV, Wi, Wa, uy,, v,,) spans divergence-free
solutions of (2.3)-(2.6), and the operators in the abstract equation (2.2) — %, % and
A — are 6 x 6 matrices. For compactness in what follows, we will use the notation

g*g(M,PV;) =0, 77(}-\/[’]3\/6) = <M7 PV, 0,0,0, 0)7 (232)

ZLaw) # 0, Uavy = (0,0, Wy, Wa, i, U), (2.33)

where ¥(ys py,) denotes the slow component of the state vector, and ¥y is the fast
component. For analysis of the slow variables, it is not necessary to specify the fast
variables (1¥), but we found it helpful to do so, in order to be more explicit with regard
to the calculations and results that follow in Section 4. Notice that W; and W, and their
evolution equations involve many derivatives of Heaviside functions, which complicate
their use and interpretations. Nevertheless, W and W, serve the purpose of facilitating
a concrete, though formal, presentation.

2.5. Connection between moist atmospheric dynamics and abstract formulation

With o7 = (M, PV, Wy, Wy, um, vy) and equations (2.22), (2.24), (2.27), (2.28), (2.30),
(2.31), we can now define the operators appearing in the abstract equation (2.2). The
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fast-linear ., and slow-linear .%, operators have the form

00 0 0O0 O 00 0 0O0O0

00 0 0O0 O 00 0 0O0O0

00 0 10 0 00 0 0O00O0
) — = 2.34
< 00 —c 00 0 Z 00 —d 000 (234)

00 0 00 —1 00 0 0O0O0

00 0 01 0 00 0 O0O00O0

where the operators ¢ and d are given by
2 2,0 ¢ £ -2
c=(02+FV;(—+—)H,+—H,) | (V?) (2.35)
&1 £9 &1

d=FVi(=(H, - H,))(V?) (2.36)

€9

and e7te +d = e 192V + FV;(CunV™?), where C(p) is in (2.29). Thus ¢ and d
separately represent the O(e71) and O(1) contributions, respectively, inside the operator
C(m) (see the Appendix B for more details.) The operator .Z, plays an important role in
the fast-wave averaging procedure, and because only the first and second rows contain
all zero entries, we note that Z.v(s; py,) = 0 while Z, 0wy # 0 (see section 4.2).

The bi-linear operator 4 is given by

u- VM
it
@ VPV, + Fa—z V0, + E(uy + v,) + (Wev, — wyus)
_ . . ot
B = V3 (@ - Vw) — 0.V, - (uh -Vptp, + wa—;) (2.37)
—FV2 (Hyii - Vb, + Hyit - Vby) + 0, (N L)
0. (uw)
0, (vw)
such that
we - VM
@ VPV + Faai VO + o (ub + UZ) + (wb — wgu’;)
z
. . . ot?
%(6a,ﬁb) — v}% (Ua : Vwb) - anh : (’U/}g : thlf + wag—;) , (238)
—FV} (H,a"- Vbl + Ha® - V%) + 0, (N Le)
0. (uswt)
0. (viw?)

where F' = ¢/e;, and the products in N L, are analogously decomposed in terms of
()% - ()% see (2.24) for the definition of NL¢. The velocity @ and equivalent potential
temperature 6, are found from the inverse transformation in Appendix C.

During the process of inverting the 6-dimensional state vector o7 =
(M, PV, W1, Ws, U, Uy,) to 5-dimensional state vector 77 = (u, v, w, 0., q;), we use the
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definitions of M, PV,, Wy, Wy, u,, v, displayed by (2.21), (2.23), (2.26), (2.30), (2.31).
One of the key inversion relations gives the streamfunction ¢ as

0 1
Vit + A Hul0: = Vi Wa + M) + H,[0.4) = V2 Wal} = PV (2.39)

This elliptic PDE is a type of PV inversion, although it differs from conventional PV
inversion in its inclusion of M (as in [47, 48]) and also wave variable W5. After solving
for ¢p = F(M, PV,, Wi, W,) and defining £ = V1, one may find the equivalent potential
temperature 0. from (2.23). The velocity field @ is found using (2.26), the definition
¢ = v, — u, and the incompressibility condition (see Appendix C: C.12, C.18, C.19).

3. Fast-wave averaging for the dry dynamics

Before considering the more complicated case with phase changes (see section 4), here
we describe the dry version of fast-wave averaging [14]. To simplify the presentation,
from now on we set all O(1) non-dimensional quantities equal to unity, for example
F =1 and G,, = 1. We start by reviewing the main steps in the procedure, and then
discuss the decoupling between fast and slow dynamics, with details given in Appendix
D and Appendix E.

The multiple scales method is the main tool, and accordingly the solution ¥'¢(Z, t, )
is expanded as

TE(T,t,7) = TO& b7 ptje + €0 (T, 1, 7)o + - (3.1)

using two different time scales: ¢ (slow) and 7 = £ (fast). Note that 7 = O(1) when
t = O(e), and hence the nomenclature ‘fast’” when referring to the time scale 7. When
(3.1) is inserted in to (2.2), the O(e™!) balance yields

—~0
aai+$*(z70):o = TNt T) = e TLH(T ), (3.2)
.

where ¢ and 7 have been treated as independent variables, and (7, t) is the initial field
with respect to the fast 7 evolution. Then collecting O(£°) terms gives

_(% + Z (1) = — _811 + L0 + Bw°, v (3.3)
or ot

with o0 given by (3.2). Next we may multiply both sides of (3.3) by the integrating
factor e™?* and use Duhamel’s formula to arrive at

-
7= e G @t T) sy — T (wﬂ—”(f, t) + e % R(, t)) , (3.4)

where R is the averaging integral given by

Rz =1 / L (Lo(e % v) + Ble~ %5, e~ %)) ds. (3.5)
0

T
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The last step is to enforce the sub-linear growth condition to guarantee that v'! grows
sub-linearly as a function of 7. If the sub-linear growth condition is not satisfied, then
7! could grow, say, linearly as a function of 7, and the 7! term in (3.1) could become
as large as the v/° term (on the long time scale as t = O(1) and 7 = O(e7')), thereby
violating the assumed orders of magnitude in (3.1). Applying the sub-linear growth
condition, we multiply (3.4) by 77! (and by e™%*) and take the limit as 7 — oo; the
result is
0v(Z,t) 1 /7

o~ lm s | e (G ) - BT e ) ds (36)

which is the fast-wave averaging equation.

For the dry dynamics with buoyancy b = 6 and ¢; = 0, the Fourier transform
of (3.6) has been analyzed by several authors, and in particular for scrutinizing the
resonant triad interactions arising from the bi-linear term, e.g. [1, 3, 4, 8, 9, 15]. They
showed that resonant interactions involving fast waves and slow modes cannot transfer
energy into the slow modes, which result implies the decoupling between fast and slow
modes in the limit ¢ — 0. Then an inverse transform of the Fourier-space equation for
the slow modes leads to conservation of potential vorticity given by

D J
where the potential vorticity PV is the dry counterpart of PV, given by (2.23), namely
00
PV = —. 3.8
§+ 3, (3:8)

We remind the reader that £ is the vertical component of the vorticity vector, and
we have taken F' = 1,G,, = 1, etc. In (3.7), notice that PV is advected by a slow
component of the velocity denoted @ pyy). In the limit as e — 0, @(py) may be found by
inverting a linear elliptic equation for the velocity streamfunction :

V2 = PV, (3.9)

which is obtained from (3.8) using geostrophic and hydrostatic balance [14], such that
s oY Oy
=V, 0=—, dpvy=|-—,-,0). 3.10
Thus the limiting dynamics for slow PV are completely decoupled from fast oscillations.
Moreover, Embid and Majda [8] rigorously proved the asymptotic solution

5(t, T) = Vsiow(t, T) + € <L Upau(t, T) + (1), & — 0, (3.11)

for the state vector o(t, ¥), where the slow component Uy, (¢, Z) has no oscillations and
Upqst contains only rapidly oscillating waves. For analogy with the calculations that
will follow, we note that the operation e‘éf*@slow(t,f) = [Ug0u(t,Z) for Ug4, in the
nullspace of .Z,, where [ is the identity matrix.
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4. Fast-wave averaging with phase changes

4.1. Abstract framework

Compared with previous dry analysis in Section 3, here we investigate fast-wave
averaging for moist atmospheric dynamics with phase changes. When water is converted
from vapor to liquid and vice versa, the buoyancy changes its functional form at phase
boundaries, represented mathematically by the Heaviside operators H,(Z,t), Hy(Z,t)
n (2.7) and (2.16). As discussed, we will treat H,(Z,t), Hs(Z,t) as known functions
of (Z,t) for the fast-wave averaging analysis and proceed to analyse (2.17). Since the
phase boundaries H,(Z,t), Hs(Z,t) are determined by the complete (thermo)dynamics,
they have a fast component, and therefore, a main new element of the formulation is
the T-dependence in the linear operator %, (t, 7). For clarity, we repeat the steps of the
multi-scale asymptotic analysis, arriving at a condition to eliminate sub-linear growth
in the O(1) equations, thus defining the fast-wave-averaging equations. Differences from
(3.6) will arise from the 7-dependence in the linear operator Z,(t, 7).

In this section, we set the rainfall parameter V,. = 0 for simplicity of the presentation
and calculations. Later in Section 5, we include the effects of rainfall in the context
of reduced systems (purely saturated without phase changes, and balanced initial
conditions absent waves altogether). In those simpler systems, it is shown that V. # 0
produces an extra term in the slow M-equation, but otherwise does not fundamentally
alter conclusions regarding limiting slow dynamics.

Starting again from the beginning, the expansion

—

TET 4, 7) = 00T 7 rtje + €0 (F )ty + - (4.1)

is inserted into the system

%3m{$@mm+%@ﬂ@+%mmzu (42)

Collecting O(e71) terms leads to the balance

ov°
Wff(t 7)(7°%) =0, (4.3)
with solutions
7Oz t, ) = e do T2 1), (4.4)
—7%

and the initial condition v(Z,t) depends only on (#,t). Notice that the operator e
in (3.2) has been replaced by e~ Jo %7147 The next order O(e”) balance yields

ov ov 0 -
E—i—g(t T)(V )__(W—i_’%(t ) (T°) + B(v°, 0 )) (4.5)
and one may integrate with respect to 7 keeping ¢t as ¢ — 0. The calculus is

straightforward, though slightly more complicated than for the dry case, and for
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illustration we provide details for the dv°/0t term on the right hand side of (4.5).
The standard integrating factor method gives

—J5 % (t,s’)ds’q—)>
ot

—~1 — [q L (t,r)dr’ ! Jo Lt s’)ds’a(e
v = —¢ 0 *\ly eJo <\ d8+
0

T — [2 Zi(t,s")ds’ ~
— Jo Le(t,7)dr’ / ef(f f*(t,s’)ds’[a(e Jo (0.5 )— dv - f*(t,s’)ds’]ds 4.

; ot v+ Ee

_ T S /
= —¢~ foT f*(t,Tl)dT/T@ — e~ fOT L (t,7)dr! / (_ / ag*(t’ S )dSI)'l_JdS 4. (46)
where 0! = ¢'1(Z,t,7) and v = 0(&, ). Note that the operator (— [ a’g’ﬂ"#ds ) applied

to a vector with structure (a,b,0,0,0,0)T yields zero because the first two columns of
Z, are zero (see (2.34)) and the same idea for the operator Z(t,s) (see (2.34)). It
e (a,b,0,0,0,0)T = I, where I is the identity matrix and
Z(t,s)(a, b,0,0,0,0)T = 0. The property of previous two linear operators will be widely
used during the next sections where we derive the evolution equation for M and PV,.

also follows that e~ Jo

The full equation for v ! is given by

T s /
171 — e Jo f*(t,r’)d7’771|7_:0 — e~ Jo Zu(t,r")dr! T@ _ / (/ 8$“<t7 S )dS,)T}dS
o )\, T o

N / efds _g*(t,s’)dsl [$0<t’ 8)<e* fds _gﬂ*(t,s/)ds’q—)) + %(67 f()s f*(t,s/)dslq—}7 e~ fos g*(t78/)d8l77)]ds
0

(4.7)
To control sublinear growth in (4.7), as before, we require 7! = o(7). In the limit ¢ — 0,
T =1t/e — oo with t = O(1), the fast-wave-averaging equation is thus given by

/= T S /
OU(I,t) — lim 1 {(/ 83*;9(;’ S )dsl)@ i 6fos.f*(t,s’)ds’ [fg(t, s)(e_ Io ,2”*(t,s’)ds/1—)>+
0 0

+ %( — Jo Zilt,s )ds U, € =[5 Zu(t,s)ds’ _)]}ds (48)

where the operators Z., %, and % are defined in section (2.5).

The remaining sections are aimed at understanding the fast-wave-averaging system
(4.8), and in particular, the evolution equations for the slow modes M and PV..
Emphasis will be given to analysis of the bi-linear operator % corresponding to the
nonlinear term, which has the potential to generate non-vanishing, resonant interactions
between wave motions.

4.2. Slow modes and fast waves: decomposition and interactions

To focus on the evolution the slow variables M and PV,, and possible decoupling of their
evolution from fast oscillations, we may project (4.8) onto the first two components of



Fast-wave averaging with phase changes 18

v = (M, PV, W1, Wo, U, V) |r=0 as defined in section 2.4. To this end, let us separate
slow and fast components using the definitions:

T)(f, t) = T)(M,PVE)(fy t) —f—T)(W)(f, t), (49)
where
M(#,1) 0
PV,(Z,1) 0
. 0 - Wi (7, £, 0)
t) = t) = 4.10
(M PVE)(‘T ) 0 y VW) (IL‘, ) Wg(f, t, 0) ( )
0 um(Z,t,0)
0 U (Z,1,0)

The nomenclature ‘slow’ and ‘fast’ follows naturally from 2,0y pv,) = 0 while Z, vy #
0 (see section 2.4). It remains to be shown whether or not the time evolution of the slow
modes U(yz,py,) is influenced by interactions with the fast modes ¥y via interactions
on the right hand side of the fast-wave-averaging equation (4.8).

Before presenting a detailed calculation of bi-linear terms in (4.8), we recall general
features of the operator (7%, 7°) from (2.38). Multiplication by & = (1,0,0,0,0,0)
and €y = (0,1,0,0,0,0) yields, respectively:

Me M®
pve| [PV
— Wla Wlb —q
ey - A( Wt || W )=a"- VM, (4.11)
a Ub
U U
and
Me M®
pv, | | PV
~ Wy Wy’ b, U b
éy - A , “VPV + VO +E (ul+0]) + (wivl—wiul). (4.12
TR e || = S VO (v} + (w ). (4.12)
a Ub
U U,

Also notice that, in terms of the initial field v(Z,t) = T pv,) (2, t) + Oy (2,t), the
bilinear interactions on the right-hand-side of (4.8) may be separated into ‘slow-slow’,
‘slow-fast’, ‘fast-slow’ and ‘fast-fast’ as follows:

B0, AV) = B(AVn,pv,y, ZV0upv.))

+ f%’(ﬂ@(MypVe), JZ%TJ(W)) + @(%TJ(W), M@(M,Pve)) + %(JZ{TJ(W), ,in_)(w)), (4.13)
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where we have used & = e~ Jo Z+(t:5))ds’
I, (4.13) simplifies to become
BV, dV) = B(001.pv.), V1.pV.))
+ B0 pv), FOw)) + B(S Owy, V,pvey) + BT V0w, S ow))- (4.14)

To isolate the evolution of the slow modes ¥(ar,pv,), the strategy is to project (4.8)

for compactness. Then using <7 (a, b,0,0,0,0)T =

onto its first two components using (4.11)-(4.12), and the decomposition of the bi-linear
term given by (4.14). Different from the dry case, the ‘slow-slow’ nonlinear interactions
depend on the fast time scale 7 = t/¢ through the Heaviside operators hidden inside of
the PV-and-M inversion. Thus the language ‘slow-slow’ may be slightly misleading in
this context, but is adopted nevertheless for analogy with the single-phase case. In fact,
in the presence of phase boundaries, it is plausible that fast oscillations feedback onto
the dynamics of M and PV, through all of the bilinear terms in (4.8). The likelihood of
such feedback will be demonstrated using concrete calculations in the next two sections.

4.3. Evolution of M

By projections of the fast-wave-averaging system (4.8), one may separately analyze the
evolution equations for M, PV,, Wi, W5, u,, v, and study their coupling terms. It
is worth noting that the complexity of the equations is significantly different, with M
the simplest and W5 the most complex. Here we analyze the M and PV, equations
because they are the most relevant for atmospheric modeling of large-scale weather, and
fortunately the analysis is relatively simple. The equations for the fast components will
be considered elsewhere.
A projection of (4.8) onto the M-mode may be written as:

i, _T%a = i OT &7 - B (0, pv.ys Varpv,y) | Erds+
. Tlggo Or[é,lr - Ble” Is % (t,sl)ds’ﬁ(w)’ Dorpvy)Erds+
+ lim 07[55 - B(Os.pviy, e o L G @ ds+
+T11_>I£10 Or[e_,lT - Ble” J _S,”*(t,s’)ds/@(w)7 e Jo f*(t,s/)ds’@(w)ﬂglds’ (4.15)

where €] = (1,0,0,0,0,0). The linear terms from (4.8) vanish using the operator
properties related with Z, (¢, s)

a 0 a a
b 0 b b
0L (t,8) )\ | ¢ ¢ [ 2utshds | € d
s T RO - 41
(/0 T ds) J i and e J e (4.16)
e e e e
f f f f
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for arbitrary v = (a,b,c,d, e, f)T and the operator property for %(¢, s) mentioned in
Section 4.1. Then, to analyze each of the four non-linear terms on the right-hand-side
of (4.15), we use the concrete form of the bi-linear operator given by (4.11).

The first term on the right hand side of equation (4.15) (the ‘slow-slow’ impact on
the evolution of M) becomes

/ (€] - B0y, Vaspvy)] €1ds (4.17)
0

= / [ﬁ(M,PVe) ({f, t, S) . VM(f, t)]é'lds, (418)
0

where the velocity (s py,) can be found from an inversion formula (see Appendix C).
Even though M and PV, themselves do not depend on the fast time scale 7, the velocity
U, py,) derived from M and PV, inversion does have a fast component due to the
presence of Heaviside functions in the inversion formula. Applying the same ideas, the
second term on the right-hand-side of (4.15) (the ‘fast-slow’ impact on the evolution of
M) becomes,

/ |:€1T'%(e_fosj*(t’y)ds,@(W)a@(J\/LPVe)) 5 ds (4.19)
0

- / i (7.1, 5) - VM(F,1)|é1ds (4.20)
0

where @y is a fast velocity since Wy, W, u,,, and v;, are fast and depend on 7 (see
(4.16)). The last two terms on the right-hand-side of (4.15) (‘slow-fast’” and ‘fast-fast’)

are zero:

M 0 0 0
PV, 0 0 0
0 W W w
B L) =% . =0 4.21
0 u, u, u,
0 vy vl vl

as can be seen directly from (4.11).
Finally, combining all the details together, the evolution equation for the slow

variable M may be written as

OM (Z,t I I
M = — lim (—/ ’J(M PVe)(fata S)dS + —/ ’J(W/)(f,t, S)dS) . VM(ZZ", t),
at T—>00 T 0 ’ T 0
(4.92)
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where VM does not depend on 7, and thus may be taken outside of the integrals. To
aid in the interpretation of (4.22), we use the notation (f) to define the time average of
any function f(Z,t,7), as follows:
1 T
(M@, t)=lim — [ f(Z,t,s)ds. (4.23)

=0 T J
Using the bracket () notation, the M-evolution equation (4.22) becomes

% = —(Uarpvo) (1) - VM(Z, 1) — () (7, 1) - VM(3, 1), (4.24)

in which there are two different contributions involving time-averaged velocity fields: one
may refer to the terms as ‘slow-slow’ and ‘fast-slow,” respectively, but this is an abuse
of the dry language as explained. In contrast to the dry and single-phase saturated
cases, all velocity fields may have a fast component arising from Heaviside jumps at
phase boundaries. Even the velocity field iy, py,) obtained only from slow variables M
and PV, has variation on the fast time scale 7, and thus one must analyze the average
(Ua,pv,y) as T — 0o in order to know the evolution of the slow variable M.

With V, = 1 and purely saturated environment (see Section 5.1), % in (2.34)
is modified to include some extra_entries in the first row of the matrix. These new
entries represent the rainfall term a—th in the ¢ equation (2.6). As shown in Section 5.1,

additional slow and fast terms will arise in (4.24) through the linear impact from %.

4.4. Evolution of PV,

A projection of (4.8) onto the PV,-component may be analyzed in a manner similar to
analysis of the M-equation in section 4.3. Isolating the second component of (4.8), one
finds:

OPV,(T,1) r
lim _T—j_)Q = lim gT . @(73 M,PV, ,77 M,PV, ) deS +
T—00 ot =0 Jo [ 2 ( ) ) }
+ 11_>Hl [é;r . %(67 fos g*(t’s/)dsli_}(w), T_J(MJDVe))]é’QdS +
T [
+ 11_>H1 [ég . %(E(M,PVE)a e fos 'f*(t’sl)ds/ﬁ(w))]égds -+
T—o0 [
+ lim [ (&) - Ble” Jo Lt gy e o Lot G ] Gy ds, (4.25)
T—00 J

where & = (0,1,0,0,0,0). Now the calculation of the bi-linear term &, - Z(v'%,¥°) is
more complicated because it has four different groups:

8L . VGS + §a(—w2) + (wgvg — waug). (4.26)

—q b
i@ VPV o ‘
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Using (4.26), the first term (‘slow-slow’) on the right hand side of (4.25) becomes

/ [52T - B(V(m,pv,)s TJ(M,P\Q))] €rds
0

i — — — al_l" e — — —
= / {[U(M’pve)<l',t7 s) - VPV,(Z,t)] + [%(Lt, $) + Ve (ar,pv) (T, 8)]} €ads
0

ﬁ . - AU, pv. U
= T{<U(M7p%)><$,t) - VPV, (Z,t) + (% : vee(M,PVe)>(I7t)}e2; (4.27)

and where we have used the bracket notation (4.23) to denote T-averages. We have also
used the fact that VPV, does not depend on the fast time scale, and thus can be taken
outside of the integral. Compared with equation (4.26), only two of the terms survive
in (4.27) because W{* = W} = 0 and the inversion formula for w is w = V72W; (see
Appendix C). The second ‘fast-slow’” term on the right hand side of (4.25) is given by

/ |:ng . %(67 fos f*(t’s/)dsli_}(w), E(M,PVe)) ggdS (428)
0

0z

—

(f, t, S) . VHG(M,PVE) (.’E, t, S)]"‘

_ /0 T{[G(W/)(f,t, 5) - VPV,(@1)] +

+Hwe (W= ar,pv) — wy(W/)uz(MVPVe)](.i: t,s) }é’gds

. . . Oy .
= T{(U(W/)>(l’,t) -VPV(Z,t) + ( 5(z ) . V0e (a1, pv.)) (T, 1)+
+<wI(W’)UZ(M,PVe) — wy(W,)uz(M,pVeQ(f, t)}gz. (429)

In arriving at (4.29), we use the bi-linear form (4.26) and notice that the third group of
terms £%(—w?) = 0 since W} = 0. Following analogous calculations, we find the third
and fourth terms of (4.25), respectively given by (4.30) and (4.31) below:

(‘slow-fast’) /0 [5; - B(Vorpvy,e 0 g*(t’sl)dslﬁ(m)] Eads

M 0
PV, 0
T 0 s / / W
= [ |& - -» Jedo LN L) | Eyds
| @ W]
0 U,
i 0 U ) |
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T 81—[ — — — — —
— / {[%(m,t, 8) - Ve (7,1, 5)] + [{r.pv) (T, L, 8) (—w. wr) (T, 1, s))]}62d5
0

o, - S -
= T{<$ . VGe(W’)>(«r;t> -+ <§(M,P\/e)(_wz(W’))>($;t>}€2§ (430)

(‘fast—fast’) / [ég . %(6_ Io f*(t,s/)dsfﬁ(w)’ o I z*(t75,)d8/1_}(w))} &yds
0

0 0
0 0
T o _ s ¢ ’ ’ W1 _rs ’ ’ W1 =
— eT. Ble Jo Le(t,s")ds e Jo Zi(t,s")ds & ds
/0 2 ( Ws Wy )| &
Um, U,
L Um Um ]

T Oy, . . S
2/0 {[ (;ZV)(x,t,s)-VGE(W/)(:B,t,s)]+[S(W/)(x,t,s)(—wz(w/)(x,t,s))]+

+[wx(W')Uz(W') — wy(W,)uz(W,)] (.f", t, S) }€2ds

i
= 7 (B 8,00)(2.) + (w0 un )7 O+

+<wm(W/)UZ(W/) - wy(W,)uz(W/)>(f, t)}gg. (431)

Finally, combining (4.27)-(4.31), the evolution equation of the variable PV, has been
derived from the fast-wave-averaging equation (4.8), and may be written as

—ap‘g;if’) — %((4 27) + (4.20) + (4.30) + (4.31))
= (tar,pv)) (T, 1) - VPV(T, 1) + (twn) (T, 1) - VPV(T, 1)+
+ <% VOear,pv,)) (T, 1) + <8ué§2// “Veiar,pvy) (T, 1)+
(L) g ) (8.0 4 {7, 40 0 1)
+ <5(M pvo) (—w. ) (@, 1) + (S (—wwn) ) (T, 1)+
+ (W (W) V2 (M, PVe) — Wy Uz (aa,pv) ) (T )+
+ (W (wny V2w — Wy Uz wn ) (T, 1) (4.32)
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4.5. The effects of phase changes

The effects of phase changes on the limiting, slow dynamics may now be assessed by
comparison of the M-equation (4.24) and the PV,-equation (4.32) to the evolution of
dry PV described by (3.7)-(3.10). Of course, when water is present, a major difference
from the outset is the necessity of including of a second slow variable M, in addition to
a PV-variable, as has been described in Section 2.4.

When incorporating phase changes, a fundamental difference is the nature of
the velocity field (s py,) and the potential temperature field 6.7 pv,) obtained from
(M, PV, )-inversion. In contrast to their analogous dry counterparts, these fields are not
purely slow, because of the presence of Heaviside functions in the inversion relation (2.39)
(see also (C.8), (C.18), and (C.19) in Appendix C). The Heaviside functions representing
phase boundaries are determined by the full flow, including the fast component, and
thus (,pv,) and Ocar,py,) are functions of the fast time scale 7 = t/e. Now the fast
time average (ui(i,pv,)) appears as an advection velocity in the M, PV -equations in
place of (s, py,). Indeed, all terms on the right-hand-sides of (4.24) and (4.32) involve
fast-averages ().

Thus we see that closure of the (M, PV,)-equations in terms of slow variables only
cannot be achieved when describing phase interfaces as fixed Heaviside operators that
depend on total water. This is in contrast to the limiting dry dynamics, for which
the single conservation equation (3.7) for PV involves only the slow advection velocity
U(py), which is closed in terms of PV by (3.9)-(3.10). With phase changes present,
coupling to fast components arises through (u(as,pyv,)), and also through an additional,
time-averaged advection velocity (uy)). Moreover, the PV.-equation (4.32) contains
time averages of ‘fast-slow’, ‘slow-fast’ and ‘fast-fast’ products.

Finally, a time-averaged ‘slow-slow’ nonlinear term ((Qtur,pv,)/0%) - VOe(ar,pv,))
appears on the right-hand-side of the PV_-equation (4.32), whose analog is identically
zero in dry and purely saturated cases (see Sections 5.1 and 5.2 below for discusion of
purely saturated cases). This slow-slow nonlinearity has value zero in saturated regions,
and ‘turns on’ after crossing phase interfaces and entering into unsaturated regions. It
thus reflects slowly varying behavior of the large-scale, mid-latitude atmosphere that is
directly associated with phase changes of water.

5. Effects of rainfall, and reduced M and PV, limiting dynamics

The fast-wave averaging equations (4.24) for M and (4.32) for PV, were derived
assuming general initial conditions with waves present, where we set V,, = 0 for ease of
the computations. Here we add back rainfall V,. # 0, and ask: What is the influence
of rainfall? For instance, does rainfall/precipitation possibly induce coupling between
slow and fast components? We consider rainfall within two types of simplified settings.
First, one may confine the dynamics to a purely saturated environment, and second,
one may consider balanced initial conditions without waves. All of the cases considered
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in this section lead to closed systems for slow dynamics.

5.1. A purely saturated environment with V,, = 1

5.1.1. Ewvolution of M. 1In a purely saturated region, the operator %, in (2.34) will
reduce to the simpler form:

00 0 00 0
00 0 00 0
00 0 10 0
= : 1
Z 00 -100 0 (5:1)
00 0 00 —1
00 0 01 0

where we have set the Heaviside functions H, = 1 and H, = 0. The matrix .% is also
free of complications due to Heaviside functions. With V, = 1, % now has non-zero
0
entries in the first row to represent the rainfall term 6—% appearing in the ¢;-equation
z
(2.6) which will be finally inserted into the M equation after the change of variables
process, to yield

-0, 9*V—? 0 BV, 2 -0,V;2 0 0
0 0 0 0 00
0 0 0 0 00
Ly = 5.2
0 0 0 —Viv? 0 00 (5.2)
0 0 0 0 00
0 0 0 0 00

One can observe that the entries in the first row of (5.2) are directly related to the
inversion formula q; = M — 9,V ~=2(PV, + 8,V *Wa) + V, *W, with H, = 1, H, = 0 (for
details, see (C.8) and (C.20), which indicates 6. = 9.V~2(PV, + 0.V, *Wy) — V,;?W5)

and represent a—% in the M equation. Similarly, rainfall also has an impact on the Wo-
z

equation, but the new terms arise at O(e) and hence do not appear in % (see (B.33)
and (B.35)).

As described in Section 4.3 above, the fast-wave-averaging equation (4.8) may be
projected onto the M-mode to find its evolution in a purely saturated domain. The
evolution is structurally the same as (4.24) with extra linear, rainfall terms:

OM (%t . . ) ) ) .
a(f ) = —(Uur,pv,))(Z,t) - VM(Z,t) — (dwn) (@, t) - VM (Z, 1)+
aqt(M,PVe) = aqt(W/) N
()@ ) + (=5 (@), (5.3)

0 /
However, the terms on the right-hand-side involving fast variables () and <%)
z

are identically zero, as explained below. The remaining slow terms are independent
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of the fast time scale 7, and thus they are invariant under the averaging operator (-).
Hence (5.3) reduces to

OM (7, t)

0
P = i (& 8) - VM(#, 1) + S (1),

o (5.4)

0 /
It remains to demonstrate that the terms (@) - VM and (%} in (5.3)
2

arising from fast components (W}, W3, u! v/ ) will vanish under the averaging operation

qr(w)

(-). As a concrete example consider ( ), which can be obtained from the single-

2z

phase inversion formula F(-) for ¢, = F(M, PV,, W1, Wa, U, V) = M — 0,V 2(PV, +
ELV}_LQWQ) +V}:2W2. To isolate the fast components, one may filter the slow components
by setting M = PV, = 0, such that

qowry = F(0,0, W, W3, ul,,vl) = 0,V 2(9,V,*Wy) + V; > W, (5.5)
Then applying the fast-averaging-operator (-), we obtain
(awn) = (0:V (0. VW) + VW) = 0.V (0.V, 2 (Wy)) + V. 2(Wy). (5.6)

By the definition of (W7, W3, u. vl ) from (4.16), these are purely oscillatory variables
associated with the non-zero eigenvalues of .Z, in (5.1). Thus the conclusion (W]) = 0,
(W3) =0, (u,) =0, and (v;,) = 0 is straightforward, which implies (g (wn) = 0. A
similar argument shows that (@) - VM = 0.

5.1.2. Ewvolution of PV,. Using the single-phase operators .Z, and % given by (5.1)
and (5.2), we now project (4.8) onto the PV, mode. Apart from the first row of %,
all other entries in both .Z, and %, are the same as for the more general case with
phase changes, except with the simplification H; = 1 and H, = 0 for a purely saturated
domain. Although %} has entries in its first row to account for rainfall with V. = 1, only
its second row impacts the projection of (4.8) onto the PV, mode. Hence, we conclude
that PV, evolution in the saturated domain has exactly the same structural form as
(4.32), even for V, = 1.

As explained in Section 5.1.1 for the single-phase M-equation, slow variables are
invariant under the fast-averaging operation (-), while fast variables average to zero.
Implementation of these results in (4.32) leads to a reduced PV,-equation without any
slow-fast or fast-slow interaction terms:

OPV,(Z,t . . . OUnpv.y , .
_# = iiar.pv (1) - VPV(E 1) + — 5@, ) - Veqar,pv, (1)
iy . "
( 8(,2 ) Vo) (%, 1) + (Ewn (—wewn)) (T, 1)
+ <w$(W/)vZ(W/) — wy(W,)uz(W/)>(f, t) (57)

Rigorous analysis of the fast-fast nonlinear interactions has been performed by
transforming the physical variables to Fourier space (see Appendix D and Appendix
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E). The Fourier analysis reveals that the sum of the 4 terms is identically zero, which
is not obvious to see in physical space. Finally, the slow-slow term % Ve, pv,)
also vanishes identically, as can be shown by Fourier analysis or vector algebra using
the relations u,pv,) = (—0¢/0y,0¢/0x,0) and Oy pv,) = 0Y/0z, where 1 is a

streamfunction given by

V) = PV,. (5.8)

The inversion equation (5.8) is the special case of the general inversion formula (2.39)
with Wy = 0 and vorticity-streamfunction relation £ = V2. (see (C.20)—(C.24))

5.1.3. Summary of the slow dynamics in a saturated domain with V, = 1. Gathering
together the M-equation , PV_-equation, and inversion relations for the saturated phase,
one arrives at the closed system:

8P‘/€ _)’t — — —
# + d(r,py,) (T, t) - VPV(Z,t) = 0, (5.9)
M(z s,
OM@E) 4 g oy (,8) - VM, 1) = DHOLVD (2 ) (5.10)
ot 0z

V) = PV, (5.11)

. oY 0 0 0
U(M,PVe) = (_8_15’ %70), Oc(r1,pv,) = a—f, GQum,pv.y = M — a—f (5.12)

Notice that (s, pv,) and 8.(as,py,) are actually determined from PV, alone. Furthermore,
one sees that ¢; and M do not feed back on the dynamics of PV,, although PV, can
influence the evolution of ¢, and M [28, 29].

This case illustrates that the slow modes evolve independently from the fast wave
modes, even in the presence of rainfall /precipitation (by itself, without phase changes).

5.2. A purely saturated environment with V, = O(g™1)

The case of V,, = e~! corresponds to a large but still realistic value of the dimensional
rainfall speed Vpr = 1 m/s (V,, = Vp/w, where w is a reference vertical velocity scale;
thus V;, = e! corresponds to Vo = 1 m/s and w = 0.1 m/s). Now V, appears in .Z,
and hence M is no longer a purely slow variable, but nevertheless, one can proceed to
analyze the dynamics of the slow mode PV..

With rainfall included in the e~! balance of terms, the operators .%,, % are given
by

-0, 0°V=2 0 9V IV,2-0.V;7 0 0
0 0 0 0 0 0
0 0 0 1 0 0
 _ 1
= 0 0 -1 0 0 0 (5.13)
0 0 0 0 0 -1
0 0 0 0 1 0
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0 0 0 0 00
0 0 0 0 00
0 0 0 0 00
R 5.14
7| =v20, V202V2 —V2V2 93V2-9, 0 0]’ (5.14)
0 0 0 0 0 0
0 0 0 0 00

where the influence of V. appears in the first row of .%Z, and forth row of % (compare
o (5. 1) and (5.2)). Similar to Section 5.1, these extra entries are used to represent the

term ——, which appears in the g;-equation, and thus to determine both M and W, (see

z’
more details in (B.36), (B.37)).
A projection of (4.8) onto the PV, mode involves only the second rows of (5.13) and

(5.14). Following from the projection, the resulting closed system for PV, is structurally
the same as (3.7) and (5.9):

D 0
=iV = (o + ey - V)PV, = 0 (5.15)
. oY 0 0
V3 =PV,, dpy,) = (_8_15’ %’0) Oepv.) = alﬁ (5.16)

5.83. The PQG equations with phase changes for balanced initial conditions

As a moist model for evolution from balanced initial conditions, the precipitating
quasi-geostrophic equations [25] retain phase changes, but filter wave motions from
the outset. Consequently, all ‘slow-fast,” ‘fast-slow,” and ‘fast-fast’ nonlinearities are
absent from the associated version of the PV.-equation (4.32). Furthermore, the
Heaviside functions representing phase boundaries can only be a function of the
balanced dynamics. Thus (M, PV,)-inversion recovers a purely slow streamfunction,
such that the advection velocity (s, py,) appearing in the (M, PV,)-equation is slow
and invariant under the fast-averaging operation (-). The signature ‘slow-slow’ nonlinear
term (U, pv,)/0%) - VOe(ar,py,) in (4.32) is also invariant under fast-averaging, and it
becomes nonzero in unsaturated regions of the environment, representing the change
in functional form of the buoyancy at phase interfaces. In the notation of the current
paper, the PQG model is reproduced here as:

E)Pvg—if’t) + U, pv,)(Z,t) - VPV(Z, 1) = %(@ £ Vorpv(@ 1),  (5.17)
% Py (T, 1) - VM(Z, 1) = Ot MPVE APV (7 1), (5.18)
Vi + %Bm(?p )] ; { R } (5.19)

U,pv,) = (_%’ g—f,O) Oc(r,pv.) = ( ) ( ) v PV = M—Bor vy,



Fast-wave averaging with phase changes 29

6. Conclusions and Discussion

In the context of moist atmospheric dynamics, we have adapted fast-wave averaging
to include moisture, rainfall and phase changes between water vapor and liquid water.
The ultimate goal is to better understand the limiting dynamics for small Rossby and
Froude numbers, and the nature of possible coupling between slow and fast components
of the system. The analysis assumes a distinguished limit in which all small parameters
(Rossby, Froude, etc.) are related to one parameter ¢ — 0. Including an additional
equation for total water leads to an additional slow mode M, which is absent in the dry
dynamics. Thus the main objective was to obtain limiting dynamics for (M, PV,) as
e — 0.

Phase interfaces between unsaturated and saturated regions of the environment
lead mathematically to the presence of Heaviside functions in the governing Boussinesq
equations. These Heaviside functions delineate phase boundaries where the buoyancy
changes its functional form, and they depend on both fast and slow variables.
Consequently, the linear operator of the dry system becomes a nonlinear operator in
the moist system with phase changes.

Here we have presented a formulation of fast-wave averaging, in which the Heaviside
functions are treated as known, determined from the Boussinesq family of solutions at
fixed value of €. Then the nonlinear phase-change operator becomes a piece-wise linear
operator, and much progress can be achieved. Notably, a linear version of (M, PV,)-
inversion may be used to evaluate linear and nonlinear interaction terms in the fast-
wave averaging equations. Although closure of the (M, PV,)-equations is not obtained,
important insight is gained regarding the nature of the slow dynamics and possible
coupling to the fast variables (Wy, Wa, ty,, v ).

As derived in Section 4, condensation and evaporation at phase interfaces lead
to a ‘slow-slow’ non-linearity ((9u(as,pv,)/0%) - VOeiar,pv,)) in the PVe-equation that
is nonzero in unsaturated regions of the flow. Such a term is present in the PQG
reduced dynamics without waves, but obviously absent in purely saturated dynamics
formulations. As also identified in Section 4 and discussed in Section 5, the phase-
change analysis reveals several potential sources of feedback from fast oscillations onto
the evolution of the slow modes (M, PV,). The feedback may originate directly from the
fast components (Wy, Wy, t,,, vy,), or indirectly at phase interfaces through (M, PV,)-
inversion. Feedback onto (M, PV,) is manifested through time averages over fast time
scales.

By including phase changes between vapor and liquid, a simple representation of
clouds was used here. To include additional aspects of clouds, which would be interesting
for future work, a more comprehensive version of cloud microphysics would be needed.
The present model provides the foundation upon which more comprehensive models of
cloud microphysics can be built. For instance, the Kessler model of warm rain cloud
microphysics could start from the present model as its basis, but would furthermore
distinguish between three types of water—water vapor, cloud water, and rain water—
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and would include an additional evolution equation for the rain water (see, e.g., section
9 of [25]). Also included in the Kessler model are interactive source terms for, e.g.,
the conversion of cloud water to rain water via autoconversion and collection (e.g.,
25, 39]). The source terms would possibly have an impact on the fast-wave averaging.
In particular, the source terms include additional nonlinearities (see, e.g., [39]), some
of which do not fit the bilinear structure of nonlinearity that is typically assumed for
fast-wave averaging in %(v,7) from (2.1). As a result of these additional and more
complex nonlinearities, one might suspect that the introduction of more comprehensive
cloud microphysics may introduce further opportunities for coupling between the slow
(M, PV,) modes and the wave components.

Finally, we note that numerical simulations of the moist Boussinesq system can be
used to provide further insight in the future. For instance, simulations could be used to
probe the slow-fast, fast-slow and fast-fast terms appearing in the (M, PV, )-equations.
By applying time averages to the simulation data, one can infer whether or not the
time-averaged terms are tending to zero, and therefore infer whether or not there is
coupling between fast and slow modes. Such information from simulations could also
complement the present formal asymptotic analysis and together aid the formulation of
rigorous proofs. The simulation results will be presented elsewhere, along with ideas for
physical interpretation for the new terms that arise due to phase changes.
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Appendix A. Non-dimensional equations and distinguished limit

For the moist Boussinesq equations with phase changes, the dimensional form is shown
in (1a)-(1d) of [25], and a non-dimensional version is described in the appendix of [25] in
terms of buoyancy variables b, and b,. Here, a different, but equivalent, non-dimensional
version is described, using 6, and ¢; as the moist thermodynamic variables:

Dhﬁh auh

o twa Tt Ry'uy + B,V ¢ =0 (A1)
th ow 8¢
A? — E,—~ —TA% = A2
( Dt T 0z > * 0z 0 (A-2)
ow
. — =0 A.3
Vi - up + B ( )
Dhee 896 -2 2\ —1 o

o TV, + Fri *(F'A*) " w =0 (A.4)

Drge | Og —om 42\ -1 g
Dr + waz Fry *(TA%) " w — V,.Cy 5, 0 (A.5)

along with the relationships
Cpeo cp(%

b= buHu + bsHsa bu = 96 + ( I - 1)%, bs = 96 - L_qt7 (A6)

where (Ro, Eu, A,T", V) are the Rossby number, Euler number, aspect ratio, buoyancy
parameter, and rain fall speed, respectively.  Note that there are two moist
thermodynamic variables (6, and ¢;) and two phases, as opposed to the dry case with
one Froude number, one thermodynamic variable (), and one phase. The two “Froude”
numbers used here are

N, H
Fri=U(N,H)™ Ly, = } , (A7)
N, H

Fry =U(N,H) ™! La, = ; : (A.8)

dd, g d - L. g L,
N2=IDe 9 Vg, ay_I (gyep A9
0, dz Godz( +CPQ) 60( +cp >’ (8.9)

Lv dgt g Lv

N2 e — Bys A.10
? 6o ¢, dz 90<cp ) (A.10)

where Lg; and Lg are Rossby radii of deformation, and N; and Ny are buoyancy
frequencies. Note that the notation F'ry, L4, No is used in analogy to Froude number,
Rossby radius of deformation, and buoyancy frequency, respectively, although F'ro, Lgs,
and N, are defined in terms of not buoyancy but total water. More detail information
of reference scales and the non-dimensional quantities can be found in [25] (Table Al,

Table A2).
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To define the distinguished limit, we consider the asymptotic scalings of (A.1 — A.5)
with respect to small Froude and small Rossby number (a rapid rotating and strongly
stably stratified flow), which gives

L L
Ro=FEu'=¢ Fri=Ro— =0(), Fry=Ro

=0(), TA*=Fr "
Ld1 d2

(A.11)
0
Also, from [25] (equation (A7)), we have CZ ® — C,Ro. For simplicity, setting Cyy = 1,

v

C 00
we have £ — = ¢

With aforementioned asymptotic scaling and distinguished limit relationship, the
non-dimensional model is displayed as:

Dhuh 8uh 1l

Di + U)E + € Uy, + E_Ithb =0 <A12>
Dyw ow 4,00 1 Lg
A2 G 4 e1f2 _ rzay, A3
(Dt +w82>+6 0z c L ( )
0
Vil + a—f ~0 (A.14)
D0, 00, L
l; twg e 1—£1w:0 (A.15)
Dpge | Oq¢ i La 9y
— — —w—-V,— =0 A.16
Dt v 0z c L v 0z ( )
L
Apart from the key non-dimensional parameter e~ shown above, e]* = ¢! zl .

L
8_1% will be defined, which are related to two Froude numbers. Furthermore, picking

L =Ly = Ly, (implying ¢ = £; = &5) and A = 1 allows simple notation and gives:

Dy, oy,

o Two TE U+ e Vg =0 (A.17)
DDh;u N wg_z; g Z_f _ (A.18)
Vi 4 38_1;1 _ 0 (A.19)

Dl;fe N w%ie by — (A.20)
Dl,;;]t N w% iy Vr% _ 0 (A.21)

Note that V, = 0, V, = 1 or V,, = 7! is remained to be specified, since we consider
different scenarios for rainfall (no rainfall, or normal speed Vi = 0.1 m/s or large speed
Vr = 1 m/s). With the special choices above, where all O(1) constants were set equal to
unity, we arrive at the advantageous situation where only one distinguished parameter
¢ appears, to help simplify the notation.
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Appendix B. Change of Variables in Different Environments

In this appendix, we will demonstrate a change of variables to a 4-dimensional state
vector 7T = (M, PV,,W;,Ws), which separates the zero-frequency variables M, PV,
from the wave variables Wi, W, starting from the 5-d state vector 77 = (u, v, w, 0., q;)
(which is actually 4-dimensional due to the additional constraint of incompressibility,
Uy + vy +w, = 0 and the special horizontal mean flow case uy,, v,, has been discussed
in (2.30),(2.31)). Two cases will be considered: V;, =0 and V,. # 0.

V. = 0 with phase changes

The starting point is the moist Boussinesq system with phase changes, which has a 5-d
state vector U7 = (u, v, w, 0, q;) with evolution equations

Dgf’l + w% el e Vg =0 (B.1)

Dl;”: + wg—f + 51% = e7! (byH, + boH,) (B.2)
Vh-ﬁthaa—Z:O (B.3)

Dl;fe wa;; +ellw=0 (B.4)

DDhgt + w% —e'w=0 (B.5)

where b, = [0. + eq: — @), bs = [0. — eqql. (B.6)

Applying the curl operator (V;,x) on equation (B.1) leads to

0 . . ot _
8_§ + Vh X (Uh . thh + wa—;) + e 15 = 0, (B?)

and applying the divergence operator (Vj,+) on equation (B.1) leads to

00 . . Oy, _ _
:>§+Vh' (uh-thhjLwE)—s 15—1—8 1V%¢:0, (B.8)
where § = V), X U = u, + Uy, =V XU = vy — Uy, (B.9)
ui‘ = ( _uv ) R Vh : U}JL_ = Uy +uy = _5 (BlO)

For simplicity, the usage of notation N L¢ denotes the nonlinear term in equation (B.7).
Meanwhile, with the incompressibility condition given by equation (B.3), one may
replace 6 by —w,, and thus (B.7) becomes

23

5t VL - e lw, =0. (B.11)
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By introducing a new variable M,

M = q + G0, G = é’:‘_’ <B12>
1
and adding (B.4) and (B.5) together, one finds
oM DM
- M = — =0. B.1
5 +u-V 0, or Dt 0 (B.13)
By introducing a new variable PV,
Py, — e+ 2 F== (B.14)
0z €1

and applying the operator (0,) on equation (B.4), one finds

9(2.6,)
ot

Adding (B.11) and (B.15) together leads to

+ 0, (- V0,) + ey 'w, = 0, (B.15)

P
0 atVe +0, (i V0,) + NLe = 0. (B.16)

This completes the derivation of the M, PV, equations.
The next step is to present variables W; and W5. Similarly one could substitute
—w, for ¢ in equation (B.8) to arrive at

ow, oy, _
ot —Vh-(uh thh—kwg)—l—e 1§—€1V¢
82};2 — 0,V - (uh Vi, + w%—) + e, =710,V L. (B.17)
By applying the operator (V%) on equation (B.2), one finds
ov? 0
a—’;w + Vi (@ - Vw) + slvia—f —&;'Vi (b,H, + b H,) = 0. (B.18)

b
Combining (B.17) and (B.18) together will then cancel the pressure terms and yield:

V2w
ot

9
+ele, — 'V + V2 (@ - Vw) — 0.V}, - <ah.vhah+w aUh) =0. (B.19)

Based on the linear part of equation (B.19), we naturally generate two variables:
W, = VZu, (B.20)

=&, — FV3D, F=—. (B.21)
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When Wy, W, are inserted into the linear part of (B.19); the result is

oW,
ot

e Wy + V2 (@ V) — 0.V, - (ﬁh - Vhily + wag’"‘) = 0. (B.22)

In order to close the system, taking the time derivative of W5 will lead to its evolution

0b
equation. Since the Wy term contains b, we first focus attention on — (note b =

H,b, + Hgbs). Recall the non-dimensional forms of b,,bs in (B.6), which are just

ob, 0Ob; . : :
combinations of 6., q;. Hence ETRETS easily yield following two equations for b, and
by: 5
by _
obs _
at+u-Vbs+€sl-w:O, (B.24)

! are non-dimensional forms of the buoyancy frequencies and the

where ;! &7
corresponding dimensional forms are N2, N? mentioned in (2.13). Thereby, together
with (B.4) and (B.5), we can relate ¢!, ;! with e7', ;' as follows:
€ €
elt=ceil 4t — —, et=e7t 4+ —. (B.25)
€92 €9

Next, write down the time derivative for buoyancy,

ob  0(b,H,+bsHs) 0b, 0bs

— = =—H,+—H;+ (b, — bs) O, H,,. B.26
ot ot gt Tu+ g He + )% (B:26)
Note that (b, — bs) 0,H, becomes zero because d;H, is a Dirac delta function at the
phase interface, and b, = by at the phase interface. As a result, and using (B.23) and

(B.24) described above, we find

b
5 = ~Hees w — Heeltw — Hyil- Vb, — Hyil - Vb,
b
where  Cipy = Hyey' + Hoel' = Hy(e7' + 65 — —) + Hy(e7" + —).
€9 €2

Note that Ciyy as the coefficient of the linear part in (B.27) contains not only O(e™")
terms but also O(1) terms. Pulling out the e~! part, one arrives at the following version
of (B.27):

ab 2 2
D e H (S + S = ) 4 Ho (S + D) w + Hyii - Vb, + Hii - Vb, = 0. (B.28)
ot €1 ) €9 €1 €2

Apply operator (V%) on equation (B.27) leads to

OV2h
—Zth + V2 (Clyw) + V2 (Hyil - Vb, + H,ii - Vb,) = 0. (B.29)
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With this information in hand, we can now return to W, itself. Taking the time
derivative of variable Wy = £, — FV2b and combining the information from equation
(B.11) and (B.29), we find

a (gz - FV%Z))
ot

= 6_183 (w) + FV%L (C'(H)w)
— 0. (NLg) + FV3 (Hyii - Vb, + H,ii - Vb,) . (B.30)

With the replacement of Wy = VZw, Wy = &, — FV3b in linear part, one could update
the previous equation as

oW,
ot

=102 (V2Wh) + FV; (Cy)V2W7)
— 0. (NLg) + FV3 (Hyii - Vb, + H,ii - Vb,) . (B.31)

This concludes the derivation for the case of V,, = 0 with phase changes.

V,. =1 within purely saturated region

In now considering V,. # 0, in the following discussion, attention will be confined to
purely saturated region, so that H, = 0 and Hy = 1, without phase changes, but with
the presence of rainfall in consideration. Consequently, the ¢ equation in (B.5) will

q; .
have an extra — term, as shown in

0z
Dhg | Oq  _;  Og

Dt +w82 f2 W= 0z

(B.32)

The above modification of the ¢; equation will go through in the derivations of the M
equation and W5 equation, which are constructed based on the variable ¢;. By the
definition in (B.12), one may rewrite (B.13) as

oM aqt DM . aQt

LG IM = 22 —
ot t@-V 0z’ o Dt 0z

Since in a purely saturated region we have by, = 6, — £q;, we observe that the impact

(B.33)

of rainfall on the Wy equation will emerge through (B.28). After inserting the rainfall
term into the original (B.28), and restricting attention to the saturated, single-phase
scenario, we find

ob, 2 . 0
i g £ qt

-1
— 4+ — - Vby = —e—. B.34
5 € (61—|—82)w—|—u 582 ( )
Then we find the form of the W5 equation in a purely saturated region, with rainfall
impact:
oW, ~ _ e & o g
=102 (VW PV ((—+ =)V W FVi(==
gr = O (VW) e EVE (T VWL ) 4 eF V(G0

— 0. (NLg) + FV3 (i - Vb,) . (B.35)
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0
Though the 9% term has been introduced into this equation, it arises at order O(e),

z
which will not explicitly show up in the leading orders of behavior of W related to .Z,,
%y. Nevertheless, the rainfall term still impacts the M evolution at leading order, as
shown in (B.33).

V, = O(e™Y) within purely saturated region

A similar argument can be implemented here with V, = O(e™!). The corresponding
adjusted M, W, equations are given by

oM _10q,
— 4+ U4-VM =12 B.
T +u-V € 5, (B.36)
Wy 10 (o2 e (€ o2 2,0
5 ¢ 0; (V W1)+6 FV; (€1+82)V Wi +th<8z>
— 0. (NLg) + FV3 (i - Vb,) . (B.37)

Appendix C. Inverse change of variables to recover (u,v,w, 6., q)

In this appendix, we show how to recover the variables (u, v, w, 6., q;), given the variables
(PVy, M, W1, Wy, ty,, v). In a sense, this is a type of PV inversion, although also
including M and waves Wy, Ws, wy,, Uy

The definition of b,, and Wy give

by =(0c+eq —aq), bs=(0c—eq), (C.1)
Wy =& — FV3 (Hub, + Hyb,), (C.2)
and when b,, b, are inserted into (C.2), the W5 equation in terms of 0., ¢; yields
Wy =& — FVi (Hy (0 + g — i) + Hy (6 — £q1)) , (C.3)
or
& —Wy=FV; (0. — Huq +2q;) - (C.4)

Through neglecting ¢, we only put O(1) balanced terms into consideration, implying
leading order inversion formula in the end. Replacing ¢; by M — G,,,0. (for simplicity
setting G, = 1, F' = 1) shows

éz - W2 = V}ZL (96 - Hu (M - 96)) s (C5)
V2 (& —Wy) =(1+ H,)0. — H,M, (C.6)
vi:2 (fz - WQ) + HuM - (1 + Hu) Qea (07)

b = SHAV;? (€ — W) + M] + HL[V;? (€ — o)) ()
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The aforementioned straightforward work only depends on definitions of buoyancy b,,
bs, W5, and M, which simply express 6. in terms of M, &, W5, The next goal is to write
down the inversion of ¢ with respect to M, PV, and Wj.
To find the inversion PDE, we first apply operator (9,) to (C.8), and we see that
0.(0.) equals
g .1

S G HUIVL? (6 = Wa) + M] + H [V, 2 (€ = Wa)]} (C.9)

a0, L . :
Now recall the definition of PV, = £ + F 5 (for simplicity setting F' = 1), and notice
2

0c
that %—Z could be replaced by (C.9) to yield

§+ %{%Hu[vf (€. — W) + M] + H[V;2 (6. — W))]} = PV.. (C.10)

If a streamfunction ¥ = (V,?)¢ is introduced, which also implies & = (V3)v,
(V,2)&, = 1., one can rewrite (C.10) as

o 1
Vit + 5 {SHul0:40 = V2 Wa + M + H,[0.00 = V, W} = PV.. (C.11)

This is an elliptic PDE for the streamfunction v, given PV,, M, and W,. It is an
extension of PV-and-M inversion [47, 48] and now includes the influence of waves via
Ws.

An important point is that the PDE (C.11) illustrates how 1 is influenced by fast
waves in two ways. First, as mentioned above, the presence of Wj is one clear influence of
waves. Second, recall that the Heaviside functions H,,, H, also introduce ¢, 7 dependence.
In fact, even if one considers the recovery of ¢(as py,) (by considering a case of recovery
from given M, PV, with setting W; = 0, W, = 0), the 7-dependence of H,, H, will
introduce a fast 7-dependence to 1y py,), even though M and PV, themselves have no
T-dependence. It shows how waves can influence 1y py,) via phase changes.

Solving the elliptic PDE in (C.11) provides v in terms of (M, PV,, W5). Accordingly,
knowledge of 1 helps us to derive the inversion formulas for the velocity field
U7 = (u,v,w), which could be determined from ¢, W; and finally be expressed as
(M, PV, W1, Wo, ty,, vy,) only.

Similarly, the definition of W; = V2w demonstrates

w= V2. (C.12)
With the incompressibility condition
Uy + Uy = —w, = —(0.V )W, (C.13)
and the definition of { = v, — u,,, we arrive at

Vgo + Uyy = & — (0,0.V )W, (C.14)
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Uy + Uy = =& — (0,0.V )Wy, (C.15)

The results of u, v are expressed as
v= (V") (& — (9,0.V )W), (C.16)

u=(Vy?)(=¢& — (8,0.V2)W). (C.17)

As a more physically revealing form, one can rewrite (C.16)—(C.17) as
v — Uy = Oy — 9,0 (V; 2V W) (C.18)

U— Uy, = =0y — 8,0, (V;°V*W1) , (C.19)

where u,,, v,, are mean velocities and subscript m denotes the horizontal average.
(C.18)-(C.19) displays the contributions from the streamfunction 1, mean velocities
and from the velocity potential —V;QV—2W1 that is due to waves. Since v could
be found from (C.11) and written in terms of (M, PV,, W,), we see that the
velocity field @7 = (u,v,w) could be obtained through inverting state vector v/'T =
(M, PV, W1, Wo, ty, Un).

The following contents offer a special inversion formula for the single phase case
(purely saturated region with H, = 0, H; = 1), under no presence of wave (W; =
0, Wy =0, u,, = 0,v,, = 0), which supports conclusions demonstrated on Section 5. In
a purely saturated region (Hs =1, H, = 0), (C.10) becomes

§+0. (V%) (& —Wa) = PV.. (C.20)

The remaining work is to introduce the streamfunction ¢ = (V;?)¢, which implies
£ = (V2), (V;?)E,. = 1., in (C.20). Without considering the impact of waves, setting
Wy =0 in (C.20) leads to

V%) = PV,. (C.21)

Then @, py,), as the slow part velocity field, coming from (C.12, C.18, C.19) with
Wy =0, Uy, = v, =0, and £ = (V2)1), is given by

upve) = Wy Vpve) = Yor Wanpv.) = 0. (C.22)

The slow thermaldynamic variable 6.z pv,), with contributions from M, PV, slow
components only, is derived through (C.8), with H, =0, H, =1,Wy = 0,& = (V3 ):

Oc(rr,pv,) = V2. (C.23)

Finally, the definition of M = 0, + ¢; directly expresses slow variable g;(ar,pv,) as

Qor,pv,) = M — .. (C.24)
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Appendix D. Fourier decomposition of .Z,

Two different scenarios will be presented corresponding to the purely saturated region
with two different rainfall speeds V, = 1 and V, = &7} (these two cases may be
generalized to V, = O(1) and V, = O(e™ '), respectively). The Fourier analysis in
following Appendix D, Appendix E will answer the main question: Will the slow
component Ugu,(t, Z) evolve independently from the fast component, as in (3.7)-(3.8),
even in the presence of precipitation V,.? Or will precipitation V. introduce an influence
of the fast waves on the evolution of the slow component? Eventually, exactly analogous
equations for suitably-defined potential vorticity variables displayed in Appendix E
clarifies that independence between slow and fast components. In other words, there is
no impact from rainfall on slow modes evolution.

Working through the Fourier decomposition of .Z,, we use dimensional variables in
order to make explicit the appearance of the dimensional frequencies Ny, No described
in (2.12), Coriolis parameter f and dimensional rainfall speed Vr, helping to elucidate
the dominant physics and to make contact with previous literature, e.g. [1, 3, 4, 8, 9, 15].
Based on the dimensional system (1a)—(1d) of [25] (see also 17(b) in [25] with g,s(z) = 0),
it is convenient to use rescaled variables

0 gL, q
o =L andgq = I3t D.1

Then the modified dynamic system in dimensional form will be given:

Du . ) Ooc
Dr +fixu= —V% + 2(N, 0, — z—vaqu (D.2)
V-u=0 (D.3)
Do’
£+ Nyw = D.4
Dt + Njw 0 ( )
Dg, g,
— Now — Vp—t = D.
Dt 2W VT 82 0 ( 5)

With the assumption of periodic boundary conditions in the spatial domain, we try
to seek dispersion relation, writing special eigenfunction wave solution as

7 —

7= e(ik-f—ia(ﬁ)t)gb’ (D.6)

where k is the wave number, a(/;) is the eigenfrequencies, gg is the eigenvector, and v
should satisfy the incompressibility condition. Similarly, as described in Section 2.1,
after non-dimensional process, one could fill the system (D.2 — D.5) in the abstract
formulation (2.2) to construct concrete %, and %, as follows. (Note that the pressure
term is rewritten using the expression Ap = —eV - (4 - Vi) + 90, /0z — €0q; /0z + £.)
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V., =1:
—-9,A7'9, —1+0zA7'9, 0 o,A7'9, 0 U
1—g,A"9, oA, o aa'a. o w
2@ =| —a.a79,  aae, 0 aA'o.—10|| w| ©
0 0 1 0 0 0.
0 0 1 0 0 "
0000 —-9,A7'0, U
0000 -9, v
L@ =10000 1-0.07. || w (D.8)
00 0O 0 0.
0 00O -0, 4t
V,=¢"
—0xA70y —14+0xA 9x 0 OrA~10z 0 u
1 — yA~1oy OyA~t0x 0 OyA~10z 0 v
Z(u)=| —02zA719y 0zA"10x 0 0:2A7'92—-1 0 w | (D.9)
0 0 1 0 0 0.
0 0 -1 0 —0z Gt
0000 —-9zA1'0z u
0000 —OyA—'oz v
L@ =10 0 0 0 1-02A710z w (D.10)
00 0O 0 0.
0000 0 @

The implementation of Fourier transform .% : (z,y, z,t) — (k,,m, o) on the ¢! balance

—

0
part of abstract equation (2.2), which is (9_: + e L% (0) = 0, will directly give the

following matrix equation

—ioch=—A,0. (D.11)

The associated matrix A,, A, with respect to the dimensional form of ¢~ 1.%,, % are
-2~ o9~
displayed below. (Note that A, = —| k| A, Ao = —| k| Ao.)

V. =1:
klf (E=k)f 0 —kmN, 0
K+ f  —klf 0 —mN, 0
A, = Imf —kmf 0 k2N, 0 (D.12)
0 0 e R
0 0 E'N, 0 0
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000 0 km%N,
0000 Im%2N,
Ag=10 0 0 0 —kp%eN, (D.13)
0000 0
0000 imlk|Vr
V., =¢1
kLf (P =K f 0 —kmN 0
|k +2)f  —klf 0 —ImN, 0
A, = Imf —kmf 0 kn2 Ny 0 (D.14)
0 0 EPN 0 0
0 0 EPN. 0 iml k[ Ve
000 0 km%EN,
0000 Im%2N,
Ag=10 0 0 0 —kp%eN, (D.15)
0000 0
0000 0
By the incompressibility condition, notice that
ki + 10 + ma = 0, = kli + 1?0 + lmd = 0, k>4 + klo + kma = 0, (D.16)
and simple algebra presents
— | k PNy = —m* Ny — k2 Ny = kmNydi + ImNyo — k2 Ny, (D.17)
Similarly, | k |*Nat could be expressed as
| k >Nyt = —kmNyti — ImNoyd + ki, Notb. (D.18)

Complete the symmetrization for the 4 x 4 sub-matrix of A,, giving analogous structure
(see (D.19)) with previous literature [8, 9, 15], so as the corresponding eigen-vectors.
Since the last column entries of A, are different from dry case, which breaks the
symmetrizing process for full matrix. In an abuse of notation, we use ¢ to replace
gz; in following content, if there is no misunderstanding and contradiction.

For V. =1 case, new matrix A, and associated eigenvalues, eigenvectors are given

as:
0 m2f  —Ilmf —kmN,

—m2f 0 kmf  —ImN;
A = | Imf —kmf 0 kN,
kmN; ImN; —k,%Nl 0
0 0 Nylkf? 0

(D.19)

o O O o O
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o =0 (triple) o

—Nil
1 N1k
¢ = 0 ¢ =
VNERR P |
0

2 _ leklzl+f2m2

43

A special case must be considered, which is k, =0 :

o =0 (triple) o

AS

o

I
o= o oo

ASR

Q

I
—_ o oo o

P (o0 = |o*|) (D.20)
0 ok £ilf)
0 (ol Fikf)
0| o¢F= —okp, (D.21)
0 +i Nk,
1 :FZNQth
2= f2 (o =107 (D.22)
144
2
1—i
2
gt =1 0 (D.23)
0
0

The first two eigenvectors have 0 eigenfrequencies, called slow modes, while fast modes
represent the rest of two vectors with nonzero frequencies. Meanwhile, one eigenvector

corresponding to 0 eigenvalue has been abandoned, since it violates the incompressibility

condition. Orthogonality of the associated eigenvectors is not guaranteed. Nevertheless,

one may process to analyse one of the slow modes (¢° mode also known as PV, mode)

by projecting (3.6) into ¢ mode in Fourier space, since ¢° is perpendicular to the rest

of three modes ¢?, ¢+, ¢~ .

For V, = ¢7! case, with similar argument we simply demonstrate the results of

matrix A,, eigenvalues and eigenvectors as follows:

o 2
i UEF -
(=l k[ +8)f  —kif
A, = Imf —kmf
0 0
0 0
0" =0 (double) 0%=-mVy o=
— Nyl
1 Nk
0
R e B
0

0 —kmN, 0
0 —lle 0
0 En? Ny 0 (D.24)
KN 0 0
KN, 0 iml k'
N2k2 + f2m2
— g (0 =07 (D.25)
||
0 P (ok il f)
0 (ol F ik [)
0| ¢F= —oky, (D.26)
0 +i Ny ky,
1 __iN2kyo

mVrto
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And the special case kj, = 0 yields

o =0 (double) o?=-mVy o?=f? (0=|0"| (D.27)
0 0 L
0 0 =
=10 o'=[0] oF=| 0 [|. (D.28)
1 0 0
0 1 0

It’s worth to remind reader here, under V, = ¢! and m # 0 circumstance, there is only
one slow mode ¢° since ¢? is no longer to be slow due to the nonzero eigenvalue o9.

Appendix E. Analysis of Resonant Interaction for Slow Dynamics

Based on the well constructed eigenvectors described above, we start to build the
concrete form of the average equation (3.6) in Fourier space. In the end, through
the analysis of resonant triad interactions arising from bi-linear operator (%) one could
verify whether the decoupling property between slow and fast modes is still valid in the
limit ¢ — 0 under the presence water (¢;) and rainfall (V7).

Initial condition ©(Z,t) in (3.2) is written in terms of the aforementioned

eigenvectors ¢((f) D.21) or (D.26) together with amplitude function a'?(t ,
(k) (k)

o iRE (@), () _ _
EGZS aEd
Plugging (E.1) into %, thus the bi-linear term could be represented explicitly
Ble 5% v, e %) = (E.2)
_ LFF=s(o () 105, plaaa) (@) 4y (") (a)
- Z Z Z Z (k ) B(E/’E//j) a(El) (t)a(]'c'//) (t> ¢(E)7
kezd acd \ (k+k"=F) (/o' es)

where the coefficient B arrives to be

(o) i —(c _' . (o) 7y o) o)
o) = S| @) B@) - S + ) @) a3

Hence the quadratic contribution due to bi-linear operator 4 in the abstract averaging

B

equation (3.6) is given as

1 T
lim = [ e (,%’(e_s'z*@, e_ngT))) ds =
T T Jg

i(k-2 (« ) (a) (@)
= lim — / Z Z } E e 0 T (k)”
T—=00 T
k‘EZS acd —I—k” kO‘ a''eod

/ 1" )

oo o (a/) () (a)
X Bl D (0ale (1) o). (E4)
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Only three wave resonances can survive inside the fast averaging equation, and we define
the set . i as survival index set:

SR = {(k’ K oo )|k’ + k' =k, 0 o) —1—022:;)) = 0(%)} : (E.5)

Directly projecting (3.6) onto the slow mode ¢° will focus our attention on the
analysis of slow component dynamics and its evolution equation. Verification on
resonant triad interactions under the index set . ; will be operated as follows (for
both V;, = 1 and V, = & '), which will illuminate the decoupling relationship between
slow and fast components.

For V, = 1 case, we turn to eigenvectors set (D.21), where ¢, ¢@ are known
as slow modes while ¢*), ¢(=) are fast since previous two are associated with zero
frequencies and later two own non-zero frequencies. When we confine that the resonant
triad interactions involve at least one slow mode ¢® (slow — (¥) — () impact), all
possible resonant interactions coefficient B under the survival index set .7, 0.5 are

( (=+0) _ p(,e0) _ p(g00) (0,g,0)  _
(k’,k’,E) (K K" k) B(k?,k7’,E) - B(];/’k7/7]_€') B( 2 7/7];‘) =0. (E6>

Similar concrete form can be formulated for the linear operator ., and simply yields

T

: 1 s Ly -5 Ly = ik
Tlgg}; i e Ly(e (X t))ds = E g L ) gb(k), (E.7)
kez? ;o) _ ()

(k) (k)

where LE%’O‘) = <A0(E)¢ 7¢(a)> is the coefficient for linear operator % and Ag(k) is

(D.13). Direct calculation gives following two inner product for o = 0 (Note that we

only need to check two cases o/ = ¢ and o = 0 when o = 0 since only % 59—

@ BEG!
q
and U(E) O = 0.)

(Ao(F)6 , 6@) = (A(B)82 00 0= L = L8O =0, (B8)

Finally for ¢ mode, the explicit limiting dynamic evolution equation (derived from
projecting (3.6) into ¢° mode) expressed as an ODE of its amplitude a% are given as
follows (by setting o = 0 in (E.4, E.7)),

da(o)

(k) (',a",0) (') (a”) (@0) (0) _
a Z: B B iy U Gy T Z Ly ag =0 (E.9)
K4 =F o2 =5 ®
(0/) (@) _ (0
+o =0 P

(k’) (k) (

We remind the reader that orthogonality is not guaranteed in previous eigenvectors
(D.21), however, the reason one could still process the ODE analysis of a% by successfully
projecting (3.6) on ¢ mode is because that ¢° is perpendicular to the rest of three
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modes ¢?, ", ¢~. Together with the resonant coefficient calculation showed above in
(E.6) and linear term coefficient (E.8), one may observe that the slow mode (¢°) is free
of interactions with the fast modes. In other words, the amplitudes a% is well determined
only by itself in the limiting fast wave averaging equation (3.6):

da(q)

_ Kk 000) (0) (0) _
K+ k" =k
() (0) (0)
Ty T P = O

An inversion transformation of the Fourier-space equation for slow mode ¢° leads to
the conservation of equivalent potential voriticity. Technically speaking, the fast-wave-
averaging equation for PV, in purely saturated region with V, =1 is given by

D 9
S
pil V=

+tpy,) - V)PV, =0, (E.11)
implying that slow mode (PV, or ¢°) evolves independently from fast mode (waves
or ¢*) under the presence of water and rainfall. The subscript (PV,) indicates that
a variable has been computed by inverting from (M, PV,, W1, Wo, ty,, Uy) to (4, Oe, q;)
using (PV,) only. From the perspective of Fourier space, one may treat py,) as the
contribution only from the entries in slow mode ¢°.

For V, = ! case, eigenvectors set (D.26) will be used to process analysis. In
contrast with V, = 1 case, only one mode ¢" with zero eigenvalue remains to be slow.
Similar algebra states the following resonant interactions coefficient B under the survival
index set . - and linear term coefficient L as follows

(kK7 k) R (k’ 2 R (15 KR 0, (E.12)
(0) > (0,0) _
<A (k )qb ,gb(k 0= L(k) 0. (E.13)

Hence, in the remarkable resonant triad interactions only slow-slow-slow impact survives.
The possibility of slow-fast-fast has been eliminated by (E.12), meanwhile, slow-fast-
slow, slow-slow-fast aren’t counted since no resonant interaction is generated from them
(K, K", slow, fast) & 7). In conclusion, V. = ¢~ gives the same result as (E.10) and
(E.11).
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