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CONVERGENCE FRAMEWORK FOR THE SECOND BOUNDARY
VALUE PROBLEM FOR THE MONGE–AMPÈRE EQUATION∗
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Abstract. It is well known that the quadratic-cost optimal transportation problem is formally
equivalent to the second boundary value problem for the Monge–Ampère equation. Viscosity solu-
tions are a powerful tool for analyzing and approximating fully nonlinear elliptic equations. However,
we demonstrate that this nonlinear elliptic equation does not satisfy a comparison principle and thus
existing convergence frameworks for viscosity solutions are not valid. We introduce an alternative
PDE that couples the usual Monge–Ampère equation to a Hamilton–Jacobi equation that restricts
the transportation of mass. We propose a new interpretation of the optimal transport problem in
terms of viscosity subsolutions of this PDE. Using this reformulation, we develop a framework for
proving convergence of a large class of approximation schemes for the optimal transport problem.
Examples of existing schemes that fit within this framework are discussed.
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The goal of optimal transportation is to find a transport plan T (x) that rearranges
a distribution f into a second distribution g, while minimizing some transport cost.
In the most commonly studied case, the cost is quadratic in the displacement and the
goal is to compute the optimal mapping

(0.1) T (x) = argmin
T∈M

∫
X

|x− T (x)|2 f(x) dx,

where

M =

{
T : X → Y

∣∣∣∣∣
∫
E

f(x) dx =

∫
T (E)

g(y) dy for all measurable E ⊂ X

}
.

Formally, the optimal mapping can be characterized as the gradient of a convex
function u, which is given as the solution of a Monge–Ampère equation

g(∇u(x)) det(D2u(x)) = f(x)

equipped with the constraint
∇u(X) ⊂ Ȳ .

This is known as the second boundary value problem for the Monge–Ampère equation.
This PDE has been studied under strong hypotheses that yield classical solutions [11,
13, 34] and much weaker hypotheses that yield generalized solutions [35]. However,
existing solution notions do not lend themselves naturally to numerical approximation.
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946 BRITTANY FROESE HAMFELDT

In the case of semidiscrete optimal transportation (in which the density f is
replaced with a collection of Dirac masses), a generalized interpretation of the Monge–
Ampère equation led to the earliest numerical methods for optimal transport [2, 31],
and has more recently been developed into a very efficient method [25]. This approach
can be applied to the continuous problem through quantization of the continuous
density f . A proof of convergence for the semidiscrete problem, including convergence
rates, is also available [8].

In this work, we are concerned with optimal transport involving continuous mea-
sures (densities). A powerful tool for studying fully nonlinear second-order elliptic
equations is the viscosity solution [12], which uses a maximum principle argument to
transfer derivatives onto smooth test functions. This concept of weak solution is par-
ticularly useful for suggesting appropriate numerical methods [4, 17, 19, 30]. Several
numerical methods have been proposed for the second boundary value problem for
the Monge–Ampère equation [7, 16, 32]. However, these methods lack any proof of
convergence.

Recently, two new results have appeared related to the convergence of numerical
methods for the second boundary value problem for the Monge–Ampère equation [6,
26]. Both convergence results hinge on two important observations: (1) the Monge–
Ampère equation enforces volume conservation, and it is sufficient for the discrete
version of this operator to overestimate the true value (interpreted in an appropriate
weak sense), and (2) the stability of optimal transportation ensures that the solutions
to a sequence of “nearby” optimal transport problems converge to the desired solution.

The first of these methods describes an optimization problem that enforces over-
estimation of the Monge–Ampère operator via the objective function, with convexity
of the solution and the second boundary condition included as constraints [26]. The
optimization framework leads to a very robust approach that allows for proof that the
discrete problem is well-posed and that solutions converge to the true weak solution of
the optimal transport problem. A downside to this framework is that the convexity
of the solution is enforced as a global constraint, which is expensive to implement
numerically.

The second of these methods relies on a measure theory interpretation of the
Monge–Ampère equation to produce a discretization of the Monge–Ampère equation
and second boundary condition [6]. This leads to a fully local, computationally effi-
cient numerical method. Because of the natural interpretation of this approximation
in terms of measures, the authors successfully prove that solutions of the discrete
problem will converge to the solutions to the true problem. However, existence of
solutions to the discrete problem is left as an open question.

The goal of the present article is to develop a general framework for proving the
convergence of approximation schemes for the quadratic-cost optimal transport prob-
lem via the second boundary value problem for the Monge–Ampère equation. The
usual general techniques for proving uniqueness and convergence rely on a compar-
ison principle that is demonstrably false for this equation. We introduce an alter-
native form of the PDE that, while it does not satisfy a comparison principle, does
place strong constraints on subsolutions. As in [6, 26], we make the key observa-
tions that the Monge–Ampère operator need only be enforced as a constraint and
that optimal transportation is stable. Using these properties and the more general
theory of viscosity solutions, we show that subsolutions are equivalent to generalized
solutions of the optimal transportation problem. We then describe a general frame-
work for analyzing the convergence of approximation schemes. In particular, schemes
that are consistent, monotone, and underestimating are guaranteed to be well-posed
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and to converge. Several existing schemes for the Monge–Ampère equation, such
as [5, 6, 7, 15, 17, 18, 22, 27], after slight modification fit within this framework and
are thus guaranteed to compute the weak solution of the original optimal transporta-
tion problem.

1. Background.

1.1. Second boundary value problem. Due to key results by Brenier [10] and
Rockafellar [33], the optimal transport plan can be characterized as the (sub)gradient
of a convex function, T (x) = ∇u(x). Combining this with conservation of mass leads
to an elliptic Monge–Ampère equation

(1.1) g(∇u(x)) det(D2u(x)) = f(x), u is convex.

Instead of being coupled to a traditional boundary condition, this equation is aug-
mented with a global constraint on the solution (sub)gradient,

(1.2) ∂u(X) ⊂ Ȳ ,

which leads to the so-called second boundary value problem for the Monge–Ampère
equation.

By introducing a defining function for the target set Y , it is possible to re-
express (1.2) as a formally equivalent nonlinear Neumann boundary condition [13].

Definition 1.1 (defining function). A defining function for the set Y ⊂ Rn is
a continuous function H(y) satisfying

H(y)


< 0, y ∈ Y,
= 0, y ∈ ∂Y,
> 0, y /∈ Ȳ .

A natural choice of defining function is the signed distance function.
This is used to rewrite the global constraint (1.2) as

(1.3) H(∇u(x)) = 0, x ∈ ∂X,

which requires that boundary points be mapped to boundary points. When the
data is sufficiently smooth, with density functions supported in uniformly convex sets
X,Y and bounded away from 0 and ∞, the second boundary value problem (1.1),
(1.3) admits a smooth classical solution [11, 34]. If the equation is augmented by an
additional condition such as a mean-zero condition 〈u〉 = 0, the solution is unique.

In general, smooth solutions do not exist and some notion of weak solution is
needed in order to properly interpret solutions of the optimal transport problem using
the Monge–Ampère equation. A powerful option is the Aleksandrov solution, which
relies on the fact that the subgradient of the convex potential u can be used to define
a measure.

Definition 1.2 (Aleksandrov solution). We say that a convex function u is an
Aleksandrov solution of the Monge–Ampère equation (1.1) if

(1.4)

∫
E

f(x) dx =

∫
∂u(E)

g(y) dy

for every measurable set E ⊂ X.
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948 BRITTANY FROESE HAMFELDT

We will consider the problem under the following hypotheses on the data.

Hypothesis 1.3 (conditions on data).
(H1) X,Y are convex, bounded, open domains.
(H2) The source density f ∈ L1(X) is nonnegative and lower semicontinuous.
(H3) The target density g ∈ L1(Rn) is positive on Y , vanishes on Y c, and is upper

semicontinuous.
(H4) The data satisfies the mass balance condition

(1.5)

∫
X

f(x) dx =

∫
Y

g(y) dy.

We remark that while the density function g must be positive, it does not need
to be bounded away from zero. The source density f , on the other hand, is allowed
to vanish, and it can be supported on a nonconvex set.

Under these conditions, the second boundary value problem for the Monge–
Ampère equation, interpreted in the Aleksandrov sense, is equivalent to the solution
of the optimal transportation problem.

Theorem 1.4 (existence of Aleksandrov solution [35, Theorems 2.12 and 4.10]).
Under Hypothesis 1.3, there exists an Aleksandrov solution u of the Monge–Ampère
equation (1.1) that satisfies the second boundary constraint (1.2). Moreover, this
solution is uniquely defined on supp(f) up to additive constants and the subgradient
map ∂u solves the optimal transport problem (0.1).

The existence of Aleksandrov solutions to the Dirichlet problem is slightly more
delicate but will play an important role in building up a robust understanding of
viscosity solutions of the second boundary value problem. The following key result is
a special case of a more general theorem due to Bakelmen.

Theorem 1.5 (Aleksandrov solutions of the Dirichlet problem [3, Theorem 12.1]).
Let X be a uniformly convex, bounded, domain. Suppose that f is continuous and
nonnegative on X̄ with

f(x) ≤ C1dist(x, ∂X), x ∈ X ∩ U,

where C1 > 0 is a constant and U is some neighborhood of the boundary ∂X. Suppose
also that g(y) is continuous and satisfies

g(y) ≥ C2, y ∈ Rn,

for some constant C2 > 0. Let h be a continuous function on ∂X. Then there exists at
least one continuous Aleksandrov solution u(x) of the Monge–Ampère equation (1.1)
such that u(x) = h(x) on ∂X.

1.2. Viscosity solutions. The Monge–Ampère equation belongs to a class of
PDEs known as degenerate elliptic equations, which take the form

F (x, u(x),∇u(x), D2u(x)) = 0.

Definition 1.6 (degenerate elliptic). The operator F : X × R × Rn × Sn → R
is degenerate elliptic if

F (x, u, p, A) ≤ F (x, v, p,B)

whenever u ≤ v and A ≥ B.

D
ow

nl
oa

de
d 

05
/0

1/
19

 to
 1

28
.2

35
.2

51
.1

60
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SECOND BVP FOR MONGE–AMPÈRE 949

The notion of the viscosity solution has become a very powerful tool for analyzing
fully nonlinear degenerate elliptic PDEs [12]. The definition relies on a maximum
principle argument that moves derivatives onto smooth test functions.

Viscosity solutions of the equation

(1.6) F (x, u(x),∇u(x), D2u(x)) = 0

are defined as follows.

Definition 1.7 (viscosity solution). An upper (lower) semicontinuous function
u is a viscosity sub(super)solution of (1.6) in X if for every φ ∈ C2, whenever u−φ
has a local maximum (minimum) at x ∈ X, then

F
(∗)
∗ (x, u(x),∇φ(x), D2φ(x)) ≤ (≥)0,

where F
(∗)
∗ denotes the lower (upper) semicontinuous envelope of F .

A continuous function u is a viscosity solution of (1.6) if it is both a viscosity
subsolution and a viscosity supersolution.

By extending the operator F to the boundary of the domain, we can also interpret
boundary conditions in the viscosity sense.

It is not hard to show that Aleksandrov solutions of the Monge–Ampère equation
are also viscosity solutions of the Monge–Ampère equation in open sets. We obtain
the following result through a trivial adaptation of [20, Proposition 1.3.4]

Theorem 1.8 (Aleskandrov solutions are viscosity solutions). Let u be a convex
Aleksandrov solution of the Monge–Ampère equation in X. Then u is a viscosity
solution of the Monge–Ampère equation in X.

The converse of this theorem cannot be so trivially adapted from the results of [20],
particularly since we allow density functions that vanish and/or are discontinuous.

1.3. Comparison principle. A key property of many elliptic operators is a
comparison principle, which is used to prove uniqueness and existence results and
plays a key role in proving that monotone approximation schemes are convergent [4].
The classical form of the comparison principle allows us to compare subsolutions and
supersolutions in the interior of the domain using information from the boundary.
Under appropriate assumptions on the data, the Monge–Ampère equation does indeed
possess this form of comparison principle.

Theorem 1.9 (comparison principle for Monge–Ampère [23, Theorem V.2]). Let
X be a convex domain and let f, g be nonnegative and locally Lipschitz continuous with
g bounded away from zero. Suppose that u is a viscosity subsolution and v a viscosity
supersolution of the Monge–Ampère equation. Then

sup
X
{u− v} = sup

∂X
{u− v}.

However, the powerful Barles–Souganidis convergence framework [4]—and indeed
many uniqueness results—require a stronger form of the comparison principle that
involves interpreting the boundary conditions in the viscosity sense.

Definition 1.10 (comparison principle). Let the PDE operator F be defined on
X̄ × R × Rn × Sn. The PDE (1.6) has a comparison principle if whenever u is a
viscosity subsolution and v a viscosity supersolution, then u ≤ v on X̄.
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Unfortunately, many elliptic PDEs do not satisfy this strong form of the compar-
ison principle. For the Dirichlet problem, for example, the Monge–Ampère equation
does not always admit a continuous solution. In this setting, the Dirichlet boundary
condition is interpreted in a weak sense, and subsolutions need not lie below super-
solutions. Here, the violation of the comparison principle is relatively mild, occurring
only at boundary points. In the interior, sub- and supersolutions remain ordered, and
monotone approximation schemes are guaranteed to converge in the interior of the
domain [21].

The situation becomes much more delicate for the second boundary value problem.
To illustrate, we consider the one-dimensional problem of mapping the uniform density
f(x) = 1 on the line segment X = (−1, 1) back onto itself (g = f and Y = X). We
use the convex defining function H(y) = |y| − 1. The solution to this problem is the
identity map, which has potential

(1.7) u(x) =
1

2
x2 + C,

where C is any constant.
In order to obtain a unique solution (which is certainly necessary for the compari-

son principle), we need to include an additional condition. Many options are possible;
here we consider three popular options:

(Ex. 1) F (x, u, u′, u′′) =

{
−u′′ + 1, x ∈ (−1, 1),

|u′| − 1− 〈u〉, x = ±1.

(Ex. 2) F (x, u, u′, u′′) =

{
−u′′ + 1, x ∈ (−1, 1),

|u′| − 1− u(1), x = ±1.

(Ex. 3) F (x, u, u′, u′′) =

{
−u′′ + 1, x ∈ (−1, 1),

|u′| − 1, x = ±1,
〈u〉 = 0.

In the first example, the boundary points are mapped onto points satisfying
H(y) = 〈u〉, and the mean-zero condition 〈u〉 = 0 is enforced indirectly via mass
balance. Similarly, the second example fixes the value of one point u(1) = 0. In the
third example, the operator is defined only on functions satisfying the mean-zero con-
dition. In each case, the quadratic function (1.7) satisfies the boundary value problem
with C = −1/6 (examples 1 and 3) or C = −1/2 (example 2).

We remark that all of these operators actually include a nonlocal part (either the
average value of u or u at a fixed location in the domain). Thus none of these strictly
satisfy the usual definition of a (local) elliptic operator (Definition 1.6). In particular,
the modification necessary to ensure uniqueness sacrifices the comparison principle.

We notice that the functions u(x) are solutions, and therefore also subsolutions,
of the second boundary value problem. We can also construct supersolutions. For
example, the function v(x) = −2x is a supersolution of all three operators (and
〈v〉 = 0, so it is admissible in example 3). However, it is not the case that u(x) ≤ v(x)
in (−1, 1); see Figure 1. That is, these characterisations of the second boundary value
problem do not satisfy a comparison principle.
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-1 0 1
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-1
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(a)

-1 0 1
-2

-1

0

1

2

(b)

Fig. 1. Subsolution u and supersolution v of (a) (Ex. 1), (Ex. 3) and (b) (Ex. 2).

2. Alternate form of the PDE. We propose an alternate form of the PDE
that incorporates the Monge–Ampère equation and boundary constraint into a single
equation posed throughout the domain. As in earlier examples, this new equation does
not satisfy a comparison principle, and thus we cannot apply the Barles–Souganidis
convergence framework [4]. However, we show that this new equation requires subso-
lutions to be unique (up to additive constants). The uniqueness of subsolutions will
be used to propose an alternate convergence framework in section 3.

2.1. Viscosity subsolutions of modified PDE. The examples of the previous
section indicate that traditional arguments relying on the comparison principle will
not be effective for establishing the convergence of approximation schemes for the
second boundary value problem for the Monge–Ampère equation. We propose an
alternate approach, which enforces the transport constraint (1.2) not as a boundary
condition but rather as a condition that must be satisfied in the interior of the domain.
This will be accomplished by requiring the convex function u to simultaneously be a
subsolution of two different equations.

We will again make use of the defining function H(y) for the target set (Defini-
tion 1.1). Notice that the transport constraint (1.2) is equivalent to the condition

(2.1) x ∈ X, y ∈ ∂u(x) ⇒ H(y) ≤ 0.

Thus formally we expect the optimal transport potential to be a subsolution of the
Hamilton–Jacobi equation

(2.2) H(∇u(x)) = 0, x ∈ X.

At the same time, we expect the convex function u to be a solution, and therefore
also a subsolution, of the Monge–Ampère equation

(2.3) − g(∇u(x)) det(D2u(x)) + f(x) = 0, x ∈ X.

A key observation we make is that if u is a convex subsolution of both (2.2) and (2.3),
it is automatically a solution of (2.3). Intuitively, this is because strict subsolutions
of the Monge–Ampère equation generate “too much” mass:

g(∇u(x)) det(D2u(x)) > f(x).

On the other hand, strict subsolutions of the Hamilton–Jacobi equation constrain mass
to be mapped inside the target set Y and thus generate “too little” mass. Enforcing
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(a) (b)

Fig. 2. (a) Strict subsolutions of the Monge–Ampère equation (2.3) satisfy
∫
∂u(E) g(y) dy >∫

E f(x) dx and produce “too much” mass. (b) Strict subsolutions of the Hamilton–Jacobi equa-
tion (2.2) satisfy ∇u(X) ⊂ Y and produce “too little” mass.

both constraints simultaneously requires that the map ∇u produce an amount of mass
that is “just right” and thus the Monge–Ampère inequality is forced to attain equality.
See Figure 2.

There is one additional constraint we need to enforce: convexity of the solution u.
Formally, this means that the Hessian D2u(x) should be positive semidefinite and all
eigenvalues of the Hessian nonnegative. If λ1(D2u(x)) denotes the smallest eigenvalue
of the Hessian, this condition can be enforced by requiring u to be a subsolution of
the convex envelope equation described in [28],

(2.4) − λ1(D2u(x)) = 0.

We remark that in regions with zero mass (f = 0), this is formally equivalent to
the equations used to produce a local representation of the minimal convex extension
described in [6].

Thus we propose looking for a function u that is a viscosity subsolution of three dif-
ferent PDEs: the Monge–Ampère equation (1.1), the Hamilton–Jacobi equation (2.2),
and the convex envelope equation (2.4). These requirements can be satisfied by seek-
ing a viscosity subsolution of the single combined PDE
(2.5)

max
{
−g(∇u(x)) det(D2u(x)) + f(x),−λ1(D2u(x)), H(∇u(x))

}
= 0, x ∈ X.

The next subsection is devoted to proving the following key theorem.

Theorem 2.1 (viscosity subsolutions solve the optimal transport problem). Let
u : X → R be an upper semicontinuous viscosity subsolution of (2.5) where the
data satisfies Hypothesis 1.3. Then u is uniquely defined on supp(f) up to additive
constants and the subgradient map ∂u solves the optimal transport problem.

Remark 2.2. The proof that a viscosity subsolution exists is deferred to sec-
tions 3–4, where suitable approximation schemes are used to constructively demon-
strate existence.
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2.2. Equivalence with optimal transport problem. We now build up sev-
eral lemmas that will be used to prove Theorem 2.1.

We first note that since we are only interested in viscosity subsolutions, we only
need to compute the lower envelope F∗ of the PDE operator in Definition 1.7. This
can be simplified because of the semicontinuity of the data f , g.

Lemma 2.3. Let u be an upper semicontinuous subsolution of (2.5) where the
data satisfies Hypothesis 1.3. Suppose also that for some φ ∈ C2, the function u− φ
has a strict local maximum at x ∈ X. Then

max{−g(∇φ(x)) det(D2φ(x)) + f(x),−λ1(D2φ(x)), H(∇φ(x))} ≤ 0.

Proof. From Definition 1.7, we must have that

−λ1(D2φ(x)) ≤ F∗(x, u(x),∇φ(x), D2φ(x)) ≤ 0.

Thus det(D2φ(x)) ≥ 0 and the result follows immediately from the lower semi-
continuity of f , the upper semicontinuity of g, and the continuity of H.

The convexity constraint is automatically enforced by subsolutions, as demon-
strated in the previous works [21, Lemma 3.4] and [28, Theorem 1].

Lemma 2.4 (subsolutions are convex). Let u : X → R be an upper semiconti-
nuous subsolution of (2.5). Then u is convex.

Next we demonstrate that subgradient maps induced by subsolutions do transport
all mass into the target set.

Lemma 2.5 (subsolutions satisfy optimal transport constraint). Let u : X → R
be an upper semicontinuous subsolution of (2.5). Then ∂u(X) ⊂ Ȳ .

Proof. Consider any x0 ∈ X. From Lemma 2.4, u is convex and therefore the
subgradient image ∂u(x0) is a convex set. Let p be an extreme point of this convex
set. That is, if L is any open line segment connecting two distinct points in ∂u(x0), p
does not lie in L. Additionally, all points in a closed, bounded, and finite dimensional
convex set can be expressed as a convex combination of the extreme points of the set.

Now choose any ε > 0. Since p is an extreme point, there exists y ∈ X such
that u is differentiable at y and |∇u(y)− p| < ε [9, Corollary 2.5.3]. Moreover, by a
continuity property of the (set-valued) subgradient of a convex function, there exists
δ > 0 such that |∂u(z)−∇u(y)| < ε whenever |z − y| < δ [9, Exercise 2.2.22].

By Alexandrov’s theorem [1], there exists some z ∈ B(y, δ) such that u has a
second-order Taylor expansion at z. That is, there exists q ∈ ∂u(z) and a symmetric
positive semidefinite matrix A such that

u(x) = u(z) + q · (z − x) + (z − x)TA(z − x) + o(|z − x|2).

Moreover, we have

|q − p| ≤ |q −∇u(y)|+ |∇u(y)− p| < 2ε.

Define the smooth test function

φ(x) = u(z) + q · (z − x) + (z − x)T (A+ I)(z − x)

and note that u−φ has a local maximum at x = z with∇φ(z) = q and D2φ(z) = A+I.
Then since u is a subsolution of (2.5) we must have

H(q) ≤ max{−g(q) det(A+ I) + f(z),−λ1(A+ I), H(q)} ≤ 0
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and thus q ⊂ Ȳ from Definition 1.1. We then have that

dist(p, Ȳ ) < 2ε.

Taking ε→ 0 we obtain p ∈ Ȳ .
Since this holds for all extreme points of the convex set ∂u(x0) and since Y is

itself convex, we conclude that ∂u(x0) ⊂ Ȳ for any x0 ∈ X and thus ∂u(X) ⊂ Ȳ .

We now turn our attention to demonstrating that subsolutions are actually so-
lutions of the Monge–Ampère equation. We begin by making rigorous our intuitive
idea that subgradient maps induced by subsolutions generate “to much” mass.

Lemma 2.6 (subsolutions and mass balance). Let u : X → R be an upper semi-
continuous subsolution of (2.5) and let E be any uniformly convex set such that
Ē ⊂ X. Then

(2.6)

∫
∂u(E)

g(y) dy ≥
∫
E

f(x) dx.

Proof. From Lemma 2.4, u is convex and therefore continuous on Ē ⊂ X. More-
over, from Lemma 2.5, ∂u(E) ⊂ ∂u(X) ⊂ Ȳ .

Now we choose ε > 0 and mollify the data in order to take advantage of existing
results on weak solutions of the Monge–Ampère equation.

We define the set
Eε = {x ∈ E | dist(x, ∂E) > ε}.

By Baire’s theorem and the integrability of f , we can produce a locally Lipschitz
continuous approximation f̃ε that underestimates the original lower semicontinuous
density function f , 0 ≤ f̃ε ≤ f , with ‖f − f̃ε‖L1(X) < ε [14, Exercise 1.7.15(c)]. We
further adjust this in an ε-neighbourhood of the boundary by defining

fε(x) =
1

ε
f̃ε(x) min{dist(x, ∂E), ε}.

Notice that fε ≤ f̃ε ≤ f in Ē with fε = f̃ε in Eε.
Next we define the augmented target set

Yε = Y ∪ {y ∈ Rn | dist(y, ∂Y ) < ε}

and produce a locally Lipschitz continuous approximation g̃ε that overestimates the
original upper semicontinuous density function g, g̃ε ≥ g on Yε, with g̃ε = 0 on Y cε
and ‖g− g̃ε‖L1(Rn) < ε. We further shift this so that it is strictly positive by defining

gε(y) = g̃ε(y) + ε.

Now we consider the following Dirichlet problem for the Monge–Ampère equation:

(2.7)


−gε(∇uε(x)) det(D2uε(x)) + fε(x) = 0, x ∈ E,
uε(x) = u(x), x ∈ ∂E,
uε is convex.

First we notice that u itself is a viscosity subsolution of this PDE. To check this,
consider any x0 ∈ E and convex φ ∈ C2 such that u− φ has a local maximum at x0.
Using the fact that u is a subsolution of (2.5) we can verify that

D
ow

nl
oa

de
d 

05
/0

1/
19

 to
 1

28
.2

35
.2

51
.1

60
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SECOND BVP FOR MONGE–AMPÈRE 955

−gε(∇φ(x0)) det(D2φ(x0)) + fε(x0) ≤ −g(∇φ(x0)) det(D2φ(x0)) + f(x0)

≤ max
{
−g(∇φ(x0)) det(D2φ(x0)) + f(x0),−λ1(D2φ(x0)), H(∇φ(x0))

}
≤ 0.

Thus u is a subsolution.
Next, we let vε be any continuous Aleksandrov solution of (2.7); see Theorem 1.5.

By Theorem 1.8, vε is also a viscosity solution and therefore a supersolution as well.
We can then use the classical comparison principle (Theorem 1.9) to conclude that
u ≤ vε in E with equality on the boundary ∂E. Then we also have that ∂vε(E) ⊂
∂u(E) ⊂ Ȳ by [20, Lemma 1.4.1].

Combining these observations with the fact that vε is an Aleksandrov solution
of (2.7), we can calculate∫

∂u(E)

g(y) dy ≥
∫
∂vε(E)

g(y) dy

≥
∫
∂vε(E)

g̃ε(y) dy − ‖g − g̃ε‖L1(∂vε(E))

≥
∫
∂vε(E)

(gε(y)− ε) dy − ε

=

∫
E

fε(x) dx− ε (|∂vε(E)|+ 1)

≥
∫
Eε

fε(x) dx− ε(|Y |+ 1)

=

∫
Eε

f̃ε(x) dx− ε(|Y |+ 1)

≥
∫
Eε

f(x) dx− ‖f̃ε − f‖L1(Eε) − ε(|Y |+ 1)

≥
∫
Eε

f(x) dx− ε(|Y |+ 2).

Since f ∈ L1(E) we can take ε→ 0 to obtain∫
∂u(E)

g(y) dy ≥
∫
E

f(x) dx.

This result immediately generalizes to general subsets of the domain through
approximation by the union of convex sets as in [20, Proposition 1.7.1].

Corollary 2.7. Let u : X → R be an upper semicontinuous subsolution of (2.5)
and let E ⊂ X. Then ∫

∂u(E)

g(y) dy ≥
∫
E

f(x) dx.

Lemma 2.8 (viscosity subsolutions are Aleksandrov solutions). Let u : X → R
be an upper semicontinuous subsolution of (2.5). Then u is an Aleksandrov solution
of (1.1).

Proof. Choose any E ⊂ X. Then from the mass balance condition on the data,
Corollary 2.7, and Lemma 2.5 we can compute
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E

f(x) dx =

∫
X

f(x) dx−
∫
X\E

f(x) dx

≥
∫
Y

g(y) dy −
∫
∂u(X\E)

g(y) dy

≥
∫
∂u(X)

g(y) dy −
∫
∂u(X\E)

g(y) dy.

Since the intersection of ∂u(E) and ∂u(X\E) has zero measure [20, Lemma 1.1.12]
and g does not give mass to small sets, this simplifies to∫

E

f(x) dx ≥
∫
∂u(E)

g(y) dy.

Combining this with Corollary 2.7, we obtain∫
E

f(x) dx =

∫
∂u(E)

g(y) dy

and thus u is an Aleksandrov solution.

These lemmas lead directly to our main result.

Proof of Theorem 2.1. This follows immediately from Lemmas 2.4, 2.5, and 2.8
and Theorem 1.4.

3. Approximation of solutions. We are particularly interested in developing
criteria that will allow for convergent numerical approximation of the second boundary
value problem for the Monge–Ampère equation. The Barles–Souganidis framework
suggests that consistent, monotone schemes will converge. However, their proof re-
quires a comparison principle, which is not satisfied by this PDE (subsection 1.3).

In this section, we show that consistent, monotone approximations can indeed
be used to approximate (2.5) if they are additionally required (or modified) to be
underestimating. A surprising result of this section is that a wide range of artificial
boundary conditions will lead to correct results.

A delicate issue is the existence of a solution to the approximation scheme. Re-
call that the PDE itself has only one subsolution (up to additive constants). Thus
perturbing the equation could easily lead to a scheme with no subsolutions and thus
no solution. We show that by restricting ourselves to schemes that underestimate the
value of the PDE operator, we can ensure existence and stability of the methods.

3.1. Properties of schemes. We begin by reviewing basic properties of ap-
proximation schemes.

Consider a set of discretisation points Gh ⊂ X̄, which can contain points in both
the domain X and its boundary. We define the resolution h by

(3.1) h = sup
x∈X

inf
y∈Gh

|x− y| .

That is, every ball of radius h contains a discretization point.
We consider finite difference schemes that have the form

(3.2) Fh(x, u(x), u(x)− u(·)) = 0, x ∈ Gh,

where u : Gh → R is a grid function. We are interested in schemes that are consistent
and monotone.
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We require a one-sided notion of consistency when the scheme acts on convex
functions. Since the boundary condition used is artificial and we are only seeking
convergence in the interior of the domain, we can make use of a separate definition of
consistency at boundary points.

Definition 3.1 (consistency). The scheme (3.2) is consistent with (2.5) on X
if for any smooth convex function φ and x ∈ X,

lim inf
h→0,y∈Gh→x,ξ→0

Fh(y, φ(y) + ξ, φ(y)− φ(·)) ≥ F (x, φ(x),∇φ(x), D2φ(x)).

The scheme is uniformly consistent with (2.5) if it is consistent and the above limit
is achieved uniformly on X.

Note that this is consistent with conventional definitions of consistency since we
will also require schemes to underestimate the value of the PDE operator in order to
prove existence and stability.

We also rely on the usual notion of monotonicity.

Definition 3.2 (monotonicity). The scheme (3.2) is monotone if Fh is a non-
decreasing function of its final two arguments.

We remark that boundary points need to be available in order to build schemes
for second-order elliptic equations that are consistent and monotone at interior points
near the boundary [24]. While the particular definition of the scheme Fh at the
boundary does not particularly matter (i.e., a variety of boundary conditions are
possible), it needs to satisfy the monotonicity condition. In the following, we will
consider a simple homogeneous Dirichlet condition,

(3.3) Fh(x, u(x), u(x)− u(·)) = u(x), x ∈ ∂X.

The following analysis can also be extended to more general Dirichlet boundary con-
ditions and some nonlinear Neumann type boundary conditions.

Schemes are required to satisfy mild stability and continuity conditions.

Definition 3.3 (stability). The scheme (3.2) is stable if there exists a con-
stant M , independent of h, such that if h > 0 and uh is any solution of (3.2), then
‖uh‖∞ ≤ M .

Definition 3.4 (continuity). The scheme (3.2) is continuous if Fh is continu-
ous in its last two arguments.

We remark that we do not require any form of uniform continuity, and the limiting
PDE operator need not be continuous.

Even though the original PDE does not have a comparison principle, the discrete
approximation does satisfy a weakened form of the comparison principle.

Lemma 3.5 (discrete comparison principle [29, Theorem 5]). Let Fh be a mono-
tone scheme and Fh(x, u(x), u(x)− u(·)) < Fh(x, v(x), v(x)− v(·)) for every x ∈ Gh.
Then u(x) ≤ v(x) for every x ∈ Gh.

Remark 3.6. Because the inequality in this discrete comparison principle is strict,
it does not guarantee solution uniqueness. For some monotone schemes, it is not
possible to find u, v such that Fh[u] < Fh[v] at every grid point.

Finally, we will use strict sub- and supersolutions of schemes to demonstrate
existence and stability.
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Definition 3.7 (subsolutions and supersolutions of schemes). A grid function
u is a strict sub(super) solution of the scheme Fh if

Fh(x, u(x), u(x)− u(·)) < (>)0

for every x ∈ Gh.

Strict supersolutions are typically straightforward to generate when approximat-
ing (2.5). Strict subsolutions are more delicate; this is related to the fact that the
PDE itself has many supersolutions but only a single subsolution. A variety of options
are possible for ensuring the existence of a strict subsolution. A simple option is to
require the scheme to underestimate the value of the PDE operator on an appropriate
class of test functions.

Definition 3.8 (underestimating scheme). Let Gh ⊂ X̄ be a set of discretization
points, V hx the Voronoi cell containing x ∈ Gh, and Ahx the area of this Voronoi cell.
The approximation scheme (3.2) is an underestimating scheme if, whenever u is a
convex piecewise linear surface with node values at Gh satisfying ∂u(x) ∩ Ȳ 6= ∅ for
every x ∈ Gh, then

Fh(x, u(x), u(x)− u(·)) ≤ max

{
−
∫
∂u(V hx )

g(y) dy +
∫
V hx

f(z) dz

Ahx
, 0

}

for every x ∈ Gh ∩X.
We say that the approximation scheme is a strictly underestimating scheme if

this inequality is strict.

We note that in this definition, underestimation is required on piecewise linear
functions, which concentrate all mass on the grid points x ∈ Gh. Thus ∂u(x) = ∂u(V hx )
at these points since each Voronoi cell V hx contains only a single node point x. The
expressions in this definition are reminiscent of the methods [2, 31] for semidiscrete
optimal transport, which directly evaluate

∫
∂u(V hx )

h dy for u in this same class of

functions.

Remark 3.9. An alternative definition for an underestimating scheme is to require

Fh(x, u(x), u(x)−u(·))≤max{−g(∇u(x)) det(D2u(x))+f(x),−λ1(D2u(x)), H(∇u(x))}

for every smooth convex u and x ∈ Gh ∩X.

In subsections 3.2–3.3, we will focus on proving the following two key convergence
theorems. In section 4 we give examples of how to construct schemes that satisfy these
hypotheses.

Theorem 3.10 (existence and stability). Given data satisfying Hypothesis 1.3,
let Fh be a uniformly consistent, monotone, continuous, strictly underestimating ap-
proximation scheme. Then the approximation scheme (3.2) has a solution uh and the
scheme is stable.

Theorem 3.11 (convergence of schemes). Given data satisfying Hypothesis 1.3,
let uh be any solution of the consistent, monotone, stable approximation scheme (3.2).
Define the piecewise constant nearest-neighbors extension

(3.4) Uh(x) = sup

{
uh(y) | y ∈ Gh, |y − x| = min

z∈Gh
|z − x|

}
.
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Then for any x ∈ X,
lim
h→0

Uh(x) = u(x),

where u(x) is an Aleksandrov solution of (1.1), (1.2).

3.2. Existence and stability. First we seek to prove that approximation
schemes have solutions that can be bounded in L∞. The key to existence is to use
a discrete version of Perron’s method. Solutions are then bounded via the discrete
comparison principle (Lemma 3.5). Both arguments will require the existence of strict
sub- and supersolutions.

Lemma 3.12 (existence of stable subsolution). Let Fh be a strictly underesti-
mating approximation scheme for (2.5) with data satisfying Hypothesis 1.3. Then
there exists a bounded function u : X̄ → R, independent of h, such that u is a strict
subsolution of the scheme (3.2).

Proof. We begin by approximating the density function f by a discrete measure,

µ(x) =
∑
xi∈Gh

µiδxi(x), µi =

∫
V hxi

f(z) dz.

Now we let u be a convex Aleksandrov solution of the Monge–Ampère equation

(3.5)

{∫
∂u(E)

g(p) dp = µ(E),

∂u(Rn) ⊂ Ȳ .

Since u is unique up to additive constants and bounded on compact sets, we can
assume without loss of generality that M < u(x) < 0 for some M ∈ R and every
x ∈ X̄.

Next we define v(x) to be the largest convex function such that v(x) = u(x) for
every x ∈ Gh. Notice that v is piecewise linear with nodes at the points x ∈ Gh.
Moreover, v ≥ u by definition since u is itself a convex function, with M < v(x) < 0
for x ∈ X̄. Because of the equality at the node points, we also have ∂u(x) ⊂ ∂v(x) for
every x ∈ Gh. In particular, since ∂u(Rn) ⊂ Ȳ , we can conclude that ∂v(x) ∩ Ȳ 6= ∅
for every x ∈ Gh.

Now we show that v (restricted to node points) is a strict subsolution of Fh.
Choose any x ∈ Gh and p ∈ ∂u(x) ⊂ ∂v(x). If x ∈ ∂X then

Fh(x, v(x), v(x)− v(·)) = v(x) < 0

and the condition for a subsolution is trivially satisfied.
Otherwise, we have x ∈ Gh ∩X.

Case 1.

max

{
−
∫
∂v(V hx )

g(y) dy +
∫
V hx

f(z) dz

Ahx
, 0

}
= 0.

In that case, since the scheme underestimates it will trivially satisfy

Fh(x, v(x), v(x)− v(·)) < 0.

Case 2.

max

{
−
∫
∂v(V hx )

g(y) dy +
∫
V hx

f(z) dz

Ahx
, 0

}
=
−
∫
∂v(V hx )

g(y) dy +
∫
V hx

f(z) dz

Ahx
.
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Since the scheme underestimates, we have

AhxF
h(x, v(x), v(x)− v(·)) < −

∫
∂v(V hx )

g(y) dy +

∫
V hx

f(z) dz.

Since ∂u(x) ⊂ ∂v(x) and since both measures concentrate all mass at the node points,
we obtain

AhxF
h(x, v(x), v(x)− v(·)) < −

∫
∂u(V hx )

g(y) dy +

∫
V hx

f(z) dz

= −µ(V hx ) +

∫
V hx

f(z) dz

= −
∫
V hx

f(z) dz +

∫
V hx

f(z) dz

= 0.

We conclude that v is a stable strict subsolution of Fh.

Lemma 3.13 (existence of stable supersolution). Let Fh be a uniformly con-
sistent approximation scheme for (2.5) with data satisfying Hypothesis 1.3. Then
there exists a bounded function u : X̄ → R, independent of h, such that u is a strict
supersolution of the scheme (3.2) for sufficiently small h > 0.

Proof. Choose any p /∈ Ȳ so that H(p) > ε for some ε > 0. Define the function

u(x) = p · x− inf
y∈∂X

{p · y}+ ε.

For x ∈ X, the PDE operator (2.5) satisfies

F (x, u(x),∇u(x), D2u(x)) ≥ H(∇u(x)) > ε.

Since Fh is uniformly consistent we have for x ∈ Gh ∩X and sufficiently small h > 0
(independent of x),

Fh(x, u(x), u(x)− u(·)) ≥ lim inf
h→0,y∈Gh→x,ξ→0

Fh(y, u(y) + ξ, u(y)− u(·))− ε

2

≥ F (x, u(x),∇u(x), D2u(x))− ε

2

>
ε

2
.

For x ∈ ∂X, the boundary operator (3.3) satisfies

Fh(x, u(x), u(x)− u(·)) = u(x) ≥ ε.

We conclude that u is a strict supersolution.

Lemma 3.14 (existence of solution). Under the assumptions of Hypothesis 1.3,
let Fh be a consistent, monotone, continuous, strictly underestimating approximation
scheme. Then there exists a solution uh to the scheme (3.2).

Proof. By Lemmas 3.12–3.13 there exist a strict subsolution vh and a strict su-
persolution wh. Using a discrete version of Perron’s method, identical to the proof
of [21, Lemma 5.8], we can construct a solution to the scheme.
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Lemma 3.15 (stability of solutions). Under the assumptions of Hypothesis 1.3,
let Fh be a consistent, monotone, continuous, strictly underestimating approximation
scheme. Then Fh is stable for sufficiently small h > 0.

Proof. Let uh be any solution of (3.2). For small enough h > 0, Lemmas 3.12–
3.13 ensure the existence of bounded, strict sub- and supersolutions vh and wh. Note
also that for any x ∈ Gh,

Fh(x,vh(x), vh(x)− vh(·)) < 0

= Fh(x, uh(x), uh(x)− uh(·))
< Fh(x,wh(x), wh(x)− wh(·)).

By the discrete comparison principle (Lemma 3.5), we have

−M ≤ vh(x) ≤ uh(x) ≤ wh(x) ≤M

for some M ∈ R independent of h.
Thus uh is bounded independent of h and the scheme is stable.

These lemmas immediately yield the proof of Theorem 3.10.

3.3. Convergence of schemes. Next we prove the main convergence result
(Theorem 3.11). The idea will be to use the usual Barles–Souganidis approach to
demonstrate that the upper semicontinuous envelope of the approximate solutions is
a subsolution of the PDE. We will use the underestimating property of schemes to
control the lower semicontinuous envelope and complete the convergence proof.

Lemma 3.16 (upper semicontinuous envelope of approximations). Under the as-
sumptions of Hypothesis 1.3, let Fh be a uniformly consistent, monotone, contin-
uous, strictly underestimating approximation scheme. Let uh be a solution of the
scheme (3.2) and Uh a piecewise constant extension onto X̄. Define

(3.6) ū(x) = lim sup
h→0,y→x

Uh(y).

Then ū(x) is a subsolution of (2.5) on X.

Proof. This proof is identical to the Barles–Souganidis convergence result [4] and
the extension to general point clouds in [21, Theorem 9].

Lemma 3.17 (approximations are nonpositive). Under the assumptions of Hy-
pothesis 1.3, let Fh be a uniformly consistent, monotone, continuous, strictly under-
estimating approximation scheme. Let uh be any solution of the scheme (3.2) and Uh

a piecewise constant extension onto X̄. Define

(3.7) ū(x) = lim sup
h→0,y→x

Uh(y).

Then ū(x) ≤ 0 on X̄.

Proof. For ε > 0 define

vε(x) = −εdist(x, ∂X)2 + 2εM,

where
M = sup

x∈∂X
dist(x, ∂X)2.
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For x ∈ X, we notice that

F (x, vε(x),∇vε(x), D2vε(x)) ≥ −λ1(D2vε(x)) ≥ 2ε.

Uniform consistency ensures that for sufficiently small h, we have

Fh(x, vε(x), vε(x)− vε(·)) > 0.

For x ∈ ∂X, we have

Fh(x, vε(x), vε(x)− vε(·)) = vε(x) ≥ εM > 0.

Thus for small enough h and any x ∈ X̄ ∩ Gh,

Fh(x, vε(x), vε(x)− vε(·)) > 0 = Fh(x, uh(x), uh(x)− uh(·)).

By the discrete comparison principle (Lemma 3.5), uh(x) ≤ vε(x) ≤ 2εM in X̄.
Taking ε→ 0 we obtain

ū(x) ≤ 0.

Proof of Theorem 3.11. As before, we define

(3.8) ū(x) = lim sup
h→0,y→x

Uh(y),

which is a subsolution of (2.5) by Lemma 3.16 and is therefore an Aleksandrov solution
of the optimal transport problem (1.1), (1.2).

We also let vh be the Aleksandrov solution of the semidiscrete Monge–Ampère
equation

(3.9)


∫
∂vh(E)

g(p) dp = µh(E),

∂vh(Rn) ⊂ Ȳ ,
sup
x∈X

vh(x) = −h,

where the measure µ is given by

µh(x) =
∑
xi∈Gh

µiδxi(x), µi =

∫
V hxi

f(z) dz.

Notice that µh converges weakly to the measure with density f since each V hxi has
diameter O(h) and they together form a partition of X. Moreover, the family of
solutions vh(x) is uniformly Lipschitz continuous (with Lipschitz constant constrained
to lie in the set Ȳ ). Thus by the stability of the optimal transport problem vh(x)
converges uniformly to ū(x), the solution of the original optimal transport problem
[36, Theorem 5.20].

From the proof of Lemma 3.12, vh is a strict subsolution of the approximation
scheme (3.2). Since

Fh(x, vh(x), vh(x)− vh(·)) < 0 = Fh(x, uh(x), uh(x)− uh(·)),

the discrete comparison principle (Lemma 3.5) ensures that vh(x) ≤ uh(x) at every
x ∈ Gh.
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Next we define

(3.10) u = lim inf
h→0,y→x

Uh(y).

Let K be a bound on the Lipschitz constant for the family {vh}. For each x ∈ X
and h > 0 we can find some xh ∈ Gh such that Uh(x) = uh(xh) with xh → x as
h→ 0. Thus we can compute

Uh(x) = uh(xh) ≥ vh(xh) ≥ vh(x)−K |xh − x| .

Letting h→ 0 we obtain

u(x) ≥ lim
h→0

vh(x) = ū(x).

Moreover, by definition we must have u(x) ≤ ū(x). Combining these results, we
conclude that

lim
h→0

Uh(x) = ū(x),

which is a solution of the optimal transport problem.

4. Examples of schemes. A key contribution of our convergence theorem is
that it provides a solid theoretical foundation to many existing methods after only
slight modification. To demonstrate the reasonableness of our assumptions, we provide
a concrete example of one such method.

Note that in fact, any consistent, monotone scheme Fh can be modified to produce
a scheme that is (at least locally) underestimating and therefore convergent. This can
be accomplished by using a scheme of the form Fh − hα where α > 0 is related to
the discretization error of the method. Thus with only slight modification, existing
schemes for the Monge–Ampère equation [5, 6, 7, 15, 17, 18, 22, 27], eigenvalues of
the Hessian [28, 30], and Hamilton–Jacobi equations (which are first-order and more
well-developed) can fit within this convergence framework.

Below we give an example of a method that is naturally underestimating, which
allows for an improvement in the formal consistency error. The foundation of this
method is a careful combination of the lattice basis reduction (LBR) method [5] and
constrained Lax–Friedrichs approximations. The LBR method has been successfully
used to solve the second boundary value problem for the Monge–Ampère equation
in [6]. In that work, an underestimating property of the LBR scheme was used to
prove convergence. However, existence of solutions to the scheme was left open. Here
we show how the LBR scheme can be incorporated into our convergence framework by
using modified Lax–Friedrichs approximations for the transportation constraint and
density functions. The result is a globally monotone and underestimating scheme,
which guarantees both existence of solutions and convergence to the appropriate weak
solution.

For simplicity, we restrict our attention to Lipschitz continuous densities f, g on
a square domain X in two dimensions. However, these can be generalized to more
complicated problems using, for example, the techniques of [22].

4.1. Finite difference approximations. For this example, our grid Gh consists
of a uniform Cartesian grid with spacing h, augmented by O(h3/2) points uniformly
distributed along the boundary of the domain.
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We will break the scheme into three components, which will all be consistent,
monotone, and underestimating:

Fh1 [u] ≈ −g(∇u(x)) det(D2u(x)) + f(x),

Fh2 [u] ≈ −λ1(D2u(x)),

Fh3 [u] ≈ H(∇u(x)).

Then a consistent, monotone, strictly underestimating scheme is

(4.1) Fh[u] =

{
max{Fh1 [u], Fh2 [u], Fh3 [u]} − hα, x ∈ Gh ∩X,
u(x), x ∈ Gh ∩ ∂X,

where hα is chosen to be less than the discretization error of the component schemes.
We will rely on the following standard finite difference operators on the Cartesian

grid. Here ej is a unit vector in the coordinate direction xj ,

D+
xju(x) =

u(x+ hej)− u(x)

h
,

D−xju(x) =
u(x)− u(x− hej)

h
,

D0
xju(x) =

u(x+ hej)− u(x− hej)
2h

,

Dxjxju(x) =
u(x+ hej) + u(x− hej)− 2u(x)

h2
,

∆hu(x) = Dx1x1
u(x) +Dx2x2

u(x).

We denote by Lf , Lg, and LH the Lipschitz constants of f , g, and H, respectively.

4.2. Monge–Ampère operator. As an example of a scheme for the Monge–
Ampère operator that is known to be monotone and underestimating, we consider a
scheme based on the LBR method [5]. This scheme has a natural interpretation in
terms of measures and was also used to discretize the Monge–Ampère equation in the
method of [6].

This operator relies on the concept of a superbase.

Definition 4.1 (superbase). A superbase of Z2 is a triplet (e, e′, e′′) ∈ (Z2)3

satisfying det(e, e′) = 1 and e+ e′ + e′′ = 0.

Like other monotone finite difference methods for fully nonlinear elliptic equa-
tions, this scheme relies on a wide stencil. The superbases will define the grid direc-
tions that are utilized in the stencil. We consider the following admissible set:

Ahx ={(e, e′, e′′) superbases of Z2 |(4.2)

x± he, x± he′, x± he′′ ∈ Gh, ‖e‖∞, ‖e′‖∞, ‖e′′‖∞ <
√
N}.

The scheme makes use of standard centered differencing in grid-aligned directions,

(4.3) ∆h
eeu(x) = u(x+ eh) + u(x− eh)− 2u(x).

Then the Monge–Ampère operator can be approximated by
(4.4)
deth(D2u)(x)= min

(e,e′,e′′)∈A
G(max{∆h

eeu(x), 0},max{∆h
e′e′u(x), 0},max{∆h

e′′e′′u(x), 0}),
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where

G(a, b, c) =


bc, a ≥ b+ c,

ca, b ≥ c+ a,

ab, c ≥ a+ b,
1
2 (ab+ bc+ ca)− 1

4 (a2 + b2 + c2) otherwise.

We use a Lax–Friedrichs approximation of the target density g(∇u), which is
constrained to be nonnegative,

(4.5) gh(∇u)(x) = max{g(D0
x1
u(x),D0

x2
u(x)) + hLg∆

hu(x), 0},

and an underestimate of the source density f ,

(4.6) fh(x) = max

{
f(x)− 1√

2
hLf , 0

}
.

Then a monotone scheme for the combined Monge–Ampère equation is

(4.7) Fh1 (x, u(x), u(x)− u(·)) = −gh(∇u)(x)deth(D2u)(x) + fh(x).

Lemma 4.2 (underestimation of Monge–Ampère). Let u be a convex piecewise
linear surface with node values on Gh. For any x ∈ Gh ∩ X define the rectangle
Rhx = x+ [−h/2, h/2]2. Then

Fh1 (x, u(x), u(x)− u(·)) ≤
−
∫
∂u(Rhx)

g(y) dy +
∫
Rhx
f(z) dz

h2
.

Proof. We begin by controlling the approximation of the source density function.
For any z ∈ Rhx we have

f(z) ≥ f(x)− Lf |z − x| ≥ f(x)− Lf
h√
2
.

Since f is nonnegative, we conclude that

f(z) ≥ max

{
f(x)− Lf

h√
2
, 0

}
= fh(x).

Therefore

(4.8) fh(x) ≤ 1

h2

∫
Rhx

f(z) dz.

Next we control the target density. We begin by investigating arguments belong-
ing to ∂u(x). Define v as the following convex cone:

v(x)= sup {v convex |v(x)=u(x), v(x± he1)=u(x± he1), v(x± he2)=u(x± he2)} .

Notice that v ≥ u and thus ∂u(x) ⊂ ∂v(x), where ∂v(x) is given explicitly by the
following rectangle:

R ≡ ∂v(x) =
[
D−x1

v(x),D+
x1
v(x)

]
×
[
D−x2

v(x),D+
x2
v(x)

]
=
[
D−x1

u(x),D+
x1
u(x)

]
×
[
D−x2

u(x),D+
x2
u(x)

]
=

[
D0
x1
u(x)− `1

2
,D0

x1
u(x) +

`1
2

]
×
[
D0
x2
u(x)− `2

2
,D0

x2
u(x) +

`2
2

]
.
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Here, the side lengths are given by

`j = D+
xju(x)−D−xju(x) = hDxjxju(x).

We recall that this is necessarily nonnegative since u is a convex function. Thus we
can also bound this side length by the discrete Laplacian of u,

0 ≤ `j ≤ `1 + `2 = h∆hu(x).

Now consider any p ∈ ∂u(x). Then p ∈ R as well so that∣∣p− (D0
x1
u(x),D0

x2
u(x))

∣∣ ≤ 1

2
|(`1, `2)| ≤ h√

2
∆hu(x).

Since g is Lipschitz continuous, we can control its variation over ∂u(x) by

g(p) ≤ g(D0
x1
u(x),D0

x2
u(x)) +

h√
2
Lg∆

hu(x).

As g is nonnegative, we also have

g(p) ≤ max{g(D0
x1
u(x),D0

x2
u(x)) + hLg∆

hu(x), 0} = gh(∇u)(x).

Now we recall that the subgradient measure ∂u has all its mass concentrated on
node points x ∈ Gh. That is, ∣∣∂u(Rhx)

∣∣ = |∂u(x)| .

Then we can bound the approximation of the target measure by

(4.9)

∫
∂u(Rhx)

g(y) dy =

∫
∂u(x)

g(y) dy ≤ |∂u(x)| gh(∇u)(x).

Finally, we need to control the approximation of the subgradient measure. By [6,
Lemma 4.3], the approximation of the Monge–Ampère operator is an overestimation
on piecewise linear grid functions so that

(4.10) deth(D2u)(x) ≥ 1

h2
|∂u(x)| .

Combining (4.8), (4.9), and (4.10), we obtain

Fh1 (x, u(x), u(x)− u(·)) = −gh(∇u)(x)deth(D2u)(x) + fh(x)

≤
−
∫
∂u(Rhx)

g(y) dy +
∫
Rhx
f(z) dz

h2
.

4.3. Convexity constraint. To discretize the smallest eigenvalue of the Hes-
sian, we use the generalized finite difference schemes described in [17]. We begin by
seeking an approximation of a general second directional derivative in the direction
ν. We propose the form

(4.11) Dννu(x0) =
4∑
j=1

aj(u(xj)− u(x0)).
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Here the xi ∈ Gh are four points within a distance
√
h of x0 that align as well as

possible with the direction ν. To do this, we consider orthogonal coordinate axes
defined by the lines x0 + tν and x0 + tν⊥. Then the four neighbors are given by

xj = argmax
x∈Gh

{∣∣∣∣ x− x0|x− x0|
· ν
∣∣∣∣ | 0 < |x− x0| < √h, x is in the jth quadrant

}
.

The nonnegative coefficients are chosen via Taylor expansion to ensure consistency
of the expression. The requirements for the scheme are

(4.12)



4∑
j=1

aj(xj − x0) · ν̂ = 0,

4∑
j=1

aj(xj − x0) · ν̂⊥ = 0,

1
2

4∑
j=1

|(xj − x0) · ν̂|2 = 1,

aj ≥ 0.

A consistent, monotone approximation is guaranteed to exist (and can be obtained
explicitly) by [17, Theorem 13].

The approximation of λ1(D2u(x)) is based on the Rayleigh–Ritz characterization
of the eigenvalues of the Hessian:

(4.13) λ1(D2u) = min
|ν|=1

∂2u

∂ν2
.

We consider the following discretization of all unit vectors:

νj = (cos(jdθ), sin(jdθ)), j = 0, . . . , Nθ,

where dθ = O(
√
h) and (Nθ + 1)dθ = π. Then a consistent, monotone approximation

of this operator is

(4.14) Fh2 (x, u(x), u(x)− u(·)) = − min
j=1,...,Nθ

Dνjνju(x).

Lemma 4.3 (underestimation of convexity constraint). Let u be any convex fun-
ction. Then

Fh2 (x, u(x), u(x)− u(·)) ≤ 0, x ∈ Gh ∩X.
Proof. We will show that if u is convex,

Dννu(x0) ≥ 0

for any choice of |ν| = 1 and x0 ∈ Gh ∩X.

Let A =
∑4
j=1 aj and recall that all aj ≥ 0 because of monotonicity. Since u is

convex, we can compute

Dννu(x0) = A

 4∑
j=1

aj
A

u(xj)− u(x0)


≥ A

u
 4∑
j=1

aj
A
xj

− u(x0)

 .D
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The consistency conditions (4.12) guarantee that

1

A

4∑
j=1

ajxj =
1

A

4∑
j=1

ajx0 = x0

and therefore
Dννu(x0) ≥ 0.

Then we trivially have that

Fh2 (x, u(x), u(x)− u(·)) = − min
j=1,...,Nθ

Dνjνju(x) ≤ 0.

4.4. Transport constraint. To discretize the Hamilton–Jacobi operator that
enforces the transport constraint, we will use a modified version of the Lax–Friedrichs
scheme.

We begin by defining two constants related to the convex target set Y . The first
is an inner diameter,
(4.15)
D = sup

{
` | any line segment of length ` that intersects Ȳ has an endpoint in Ȳ

}
.

Using this, we can define a discretization parameter M (independent of h) by

(4.16) M = d2max
y∈∂Y

|y|/De.

Next, we use approximations of the gradient that rely on weighted averages of
the forward and backward differencing operators,
(4.17)

∇hiju(x) =

((
1− i

M

)
D−x u(x) +

i

M
D+
x u(x),

(
1− j

M

)
D−y u(x) +

j

M
D+
y u(x)

)
.

Finally, we can define the following modified Lax–Friedrichs scheme, which is
consistent and monotone:

(4.18) F3(x, u(x), u(x)− u(·)) = min
0≤i,j≤M

H(∇hiju(x))− hLH∆hu(x).

Lemma 4.4 (underestimation of transport constraint). Let u be any convex func-
tion with ∂u(Gh) ∩ Ȳ 6= φ. Then for any x ∈ Gh ∩X,

F3(x, u(x), u(x)− u(·)) ≤ 0.

Proof. We begin by defining the following cone:

v(x)= sup {v convex |v(x)=u(x), v(x± he1)=u(x± he1), v(x± he2)=u(x± he2)} .

Notice that v ≥ u and thus ∂u(x) ⊂ ∂v(x), where ∂v(x) is given explicitly by the
following rectangle:

R ≡ ∂v(x) =
[
D−x v(x),D+

x v(x)
]
×
[
D−y v(x),D+

y v(x)
]

=
[
D−x u(x),D+

x u(x)
]
×
[
D−y u(x),D+

y u(x)
]
.

In particular, it must be the case that R ∩ Ȳ is nonempty since ∂u(x) ⊂ R.
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Moreover, we can find a priori bounds on the size of this rectangle since u is
convex and we have information about its subgradient. In particular, for j = 1, 2 we
have

|u(x± hej)− u(x)| ≤ h max
y∈∂Y

|y|

and thus the side lengths of the rectangle are bounded by

D+
xju(x)−D−xju(x) ≤

∣∣∣D+
xju(x)

∣∣∣+
∣∣∣D−xju(x)

∣∣∣ ≤ 2 max
y∈∂Y

|y| .

Now we notice that ∇hiju(x), i, j = 0, . . . ,M , is a discretization of the rectangle
R with stepsize

D+
x u(x)−D−x u(x)

M
≤

2 max
y∈∂Y

|y|

d2 max
y∈∂Y

|y| /De
≤ D.

Recalling the definition of D as the inner diameter of Y , we find that

∇hiju(x) ∈ Ȳ

for some choice of i∗, j∗ = 0, . . . ,M .
Because H is a defining function for Y , we are guaranteed that

H(∇hi∗j∗u(x)) ≤ 0

and therefore
min

i,j=0,...,M
H(∇hiju(x)) ≤ 0.

Finally, we observe that the discrete Laplacian satisfies

∆hu(x) = Dx1x1
u(x) +Dx2x2

u(x),

which is nonnegative since u is convex.
Combining these results, we obtain

Fh3 (x, u(x), u(x)− u(·)) = min
i,j=0,...,M

H(∇hiju(x))− hLH∆hu(x) ≤ 0.

5. Conclusions. In this article, we introduced and analyzed a new notion of
weak solution for the second boundary value problem for the Monge–Ampère equation.
This definition relied on the usual concept of a viscosity subsolution applied to a
modified PDE that simultaneously enforced the Monge–Ampère equation, convexity
constraint, and global constraint on the solution gradient. We proved that these
viscosity subsolutions are equivalent to solutions of the original optimal transportation
problem.

Using this new formulation, we showed that the Barles–Souganidis convergence
framework, which requires PDEs to satisfy a comparison principle, can be modi-
fied to apply to viscosity subsolutions of the second boundary value problem for
Monge–Ampère (which does not satisfy a comparison principle). In particular, we
demonstrated that consistent, monotone, underestimating schemes will converge to
the weak solution of the optimal transportation problem. Many existing numerical
methods that were previously not equipped with convergence proofs can be modified
to fit into this framework. We also provided a concrete example showing how existing
discretizations can be easily modified to fit this convergence framework.
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