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On far-outlying constant mean curvature spheres
in asymptotically flat Riemannian 3-manifolds

By Otis Chodosh at Princeton and Michael Eichmair at Vienna

Abstract. We extend the Lyapunov–Schmidt analysis of outlying stable constant mean
curvature spheres in the work of S. Brendle and the second-named author [3] to the “far-off-
center” regime and to include general Schwarzschild asymptotics. We obtain sharp existence
and non-existence results for large stable constant mean curvature spheres that depend deli-
cately on the behavior of scalar curvature at infinity.

1. Introduction

We complement in this paper our recent work [5] on the characterization of the leaves
of the canonical foliation as the unique large closed embedded stable constant mean cur-
vature surfaces in strongly asymptotically flat Riemannian 3-manifolds. More precisely, we
extend here the Lyapunov–Schmidt analysis of outlying stable constant mean curvature spheres
developed by S. Brendle and the second-named author in [3] to include the far-off-center
regime and general Schwarzschild asymptotics.

We begin by introducing some standard notation.
Throughout this paper, we consider complete Riemannian 3-manifolds .M; g/ so there

are both a compact set K �M and a diffeomorphism

M nK Š ¹x 2 R3 W jxj > 1
2
º

such that, in this chart at infinity, for some q > 1
2

and non-negative integer k,

(1.1) gij D ıij C �ij ;

where
àI �ij D O.jxj�q�jI j/

for all multi-indices I of length jI j � k. Moreover, we require that the boundary àM of M , if
non-empty, is a minimal surface and such that the components of àM are the only connected
closed minimal surfaces in .M; g/. We say that .M; g/ is C k-asymptotically flat of rate q.
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It is convenient to denote, for r > 1, by Sr the surface in M that corresponds to the
centered coordinate sphere Sr.0/ D ¹x 2 R3 W jxj D rº and by Br the bounded open region
enclosed by Sr and àM . Given A �M , we let

r0.A/ WD sup¹r > 1 W A \ Br D ;º:

A particularly important example of an asymptotically flat Riemannian 3-manifold is
Schwarzschild initial data

M D ¹x 2 R3 W jxj � m
2
º and g D

�
1C

m

2jxj

�4 3X
iD1

dxi ˝ dxi ;

where m > 0 is the mass parameter.
We say that .M; g/ as above is C k-asymptotic to Schwarzschild of massm > 0 if, instead

of (1.1), we have

gij D

�
1C

m

2jxj

�4
ıij C �ij ;(1.2)

where
àI�ij D O.jxj�2�jI j/

for all multi-indices I of length jI j � k.
Our contributions here when combined with the key result in [5] give the following theo-

rem.

Theorem 1.1 ([5]). Suppose that .M; g/ is a complete Riemannian 3-manifold that is
C 6-asymptotic to Schwarzschild of mass m > 0 and whose scalar curvature vanishes. Every
connected closed embedded stable constant mean curvature surface with sufficiently large area
is a leaf of the canonical foliation.

The canonical foliation ¹†H º0<H<H0 of M nK (for appropriate H0 > 0 and K �M
compact) through stable constant mean curvature spheres †H with respective mean curvature
H was discovered by G. Huisken and S.-T. Yau in [9]. They showed that, for every s 2 .1

2
; 1�,

there is Hs 2 .0;H0/ such that for H 2 .0;Hs/, †H is the only stable constant mean curva-
ture sphere of mean curvature H in .M; g/ that encloses the ball ¹x 2 R3 W jxj < H�sº in the
chart at infinity. This characterization was later refined by J. Qing and G. Tian [13]: Every leaf
†H of the canonical foliation is the unique stable constant mean curvature sphere of mean cur-
vatureH in .M; g/ that enclosesK. (In [5, Appendix F] we provide an alternative argument of
this result from [13] in the case where the scalar curvature of .M; g/ is non-negative.) In joint
work with A. Carlotto [4] and inspired by earlier work of J. Metzger and the second-named
author [6], we extended this characterization further under the additional assumption that the
scalar curvature of .M; g/ is non-negative in the following way: Choose a point p 2M . Every
connected stable constant mean curvature sphere † �M that encloses p and whose area is
sufficiently large is a leaf of the canonical foliation. Thus, to prove an unconditional unique-
ness result along the lines of Theorem 1.1, it remains to understand large stable constant mean
curvature spheres that are outlying in the sense that the bounded region they enclose is disjoint
and – in view of the results in [4] – far fromK. The center of mass flux integrals used in [9,13]
vanish in this regime; new ideas are needed. S. Brendle and the second-named author discov-
ered a subtle relationship between scalar curvature and outlying stable constant mean curvature
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spheres in [3]. They gave examples of divergent sequences ¹†kº1kD1 of outlying stable con-
stant mean curvature spheres in .M; g/ asymptotic to Schwarzschild with m > 0, which is the
setting of [9, 13]. In fact, †k is a perturbation of the coordinate sphere

S�k .�k�/ D ¹jx � �k�j D �k W x 2 R3º

in the chart at infinity, where � 2 R3 is such that j�j > 1 and where �k !1. On the other
hand, they showed that no such sequences can exist in .M; g/ if the scalar curvature is non-
negative, provided a further technical assumption on the expansion of the metric in the chart at
infinity holds.

Theorem 1.2 (S. Brendle and M. Eichmair [3]). Let .M; g/ be a complete Riemannian
3-manifold that is C 4-asymptotic to Schwarzschild with mass m > 0. In addition to (1.2), we
also require here that

gij D

�
1C

m

2jxj

�4
ıij C Tij C o.jxj

�2/ as jxj ! 1;(1.3)

where Tij is homogeneous of degree �2, with corresponding estimates for all partial deriva-
tives of order� 4. Assume that the scalar curvature of g satisfies R � �o.jxj�4/ as jxj ! 1.
There does not exist a sequence ¹†kº1kD1 of outlying closed stable constant mean curvature
surfaces in .M; g/ with

r0.†k/!1 and r0.†k/H.†k/! � > 0:(1.4)

In the statement of this result and below, we useH.†k/ to denote the constant mean cur-
vature of †k with respect to the outward pointing unit normal in .M; g/. Our sign convention
is such that coordinate spheres in Euclidean space have positive mean curvature.

In our recent work [5], we show that when .M; g/ is asymptotic to Schwarzschild with
mass m > 0 and if the scalar curvature is non-negative, there are no sequences ¹†kº1kD1 of
embedded stable constant mean curvature spheres in .M; g/ with

r0.†k/!1 and r0.†k/H.†k/! 0:

(Note that the assumptions here imply that H.†k/! 0 and thus that areag.†k/!1.)
Assuming in addition that g has additional homogeneity as in Theorem 1.2, this leaves only
the scenario of sequences ¹†kº1kD1, where

r0.†k/!1; areag.†k/!1; r0.†k/H.†k/!1

to fully understand large stable constant mean curvature spheres in .M; g/. To study this final
scenario and to investigate whether the assumption of additional homogeneity in the expansion
of the metric (1.3) off of Schwarzschild in Theorem 1.2 is really necessary, we revisit in this
paper the Lyapunov–Schmidt analysis carried out in [3].

We show that Theorem 1.2 is false without the assumption of additional homogeneity in
the expansion of the metric.

Theorem 1.3. There is an asymptotically flat complete Riemannian 3-manifold .M; g/
with non-negative scalar curvature that is smoothly asymptotic to Schwarzschild of massm > 0

in the sense that

gij D

�
1C

m

2jxj

�4
ıij C �ij ;
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where
àI�ij D O.jxj�2�jI j/

for all multi-indices I , and which contains a sequence ¹†kº1kD1 of outlying stable constant
mean curvature spheres with

r0.†k/!1 and r0.†k/H.†k/! � > 0:

We also prove that we may drop the assumption of additional homogeneity of the metric
in Theorem 1.2 in favor of a mild growth condition on the scalar curvature.

Theorem 1.4. Let .M; g/ be a complete Riemannian 3-manifold that is C 4-asymptotic
to Schwarzschild in the sense that

gij D

�
1C

m

2jxj

�4
ıij C �ij ;

where àI�ij D O.jxj�2�jI j/ for all multi-indices I of length jI j � 4. We also assume that
either

R D o.jxj�4/ as jxj ! 1

or

xiài .jxj2R/ � o.jxj�2/ as jxj ! 1:(1.5)

There does not exist a sequence ¹†kº1kD1 of closed outlying stable constant mean curvature
surfaces in .M; g/ with

r0.†k/!1 and r0.†k/H.†k/! � > 0:

Note that (1.5) holds in either one of the following two cases.

(i) When R D 0. This is for example the case when .M; g/ is time symmetric initial data for
a vacuum spacetime.

(ii) When the metric in the chart at infinity has the special form (1.3) in Theorem 1.2, then

R D S C o.jxj�4/;

where

S D

3X
i;jD1

�
àiàjTij � àiàiTjj

�
:

Note that S is homogeneous of degree �4. Euler’s theorem shows that (1.5) holds if
and only if R � �o.jxj�4/. Thus Theorem 1.4 generalizes Theorem 1.2 to the non-
homogeneous setting.

It is interesting to compare (1.5) to condition (H3) in S. Brendle’s version of Alexandrov’s
theorem for certain warped products [1]. Note that our example constructed in the proof of
Theorem 1.3 is a warped product. We also mention that S. Ma has constructed examples of
.M; g/ that contain large unstable constant mean curvature spheres [10]. The scalar curvature
in these examples is negative in some places; see [10, discussion preceding the statement of
Theorem 1.1 and proof of Lemma 4.7].
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We now turn to the case of large stable constant mean curvature spheres that are very far
outlying in the sense that

r0.†k/!1; areag.†k/!1; r0.†k/H.†k/!1:

These surfaces are not within the scope of the Lyapunov–Schmidt analysis in [3], where case
(1.4) is considered. The main difficulty in the regime considered here is that the “Schwarzschild
contribution” to the reduced area functional leveraged in [3] is no longer on the order of O.1/
but instead decaying. To proceed, it is necessary to obtain rather involved estimates for the
reduced functional. To describe our results, we first recall the basic setup and some terminology
from [3] that we will also adopt here. A standard application of the implicit function theorem
shows that, given � > 0 large and � 2 R3 with j�j > 1, there is a closed surface †.�;�/ in the
chart at infinity so that the following hold:

� †.�;�/ bounds volume 4��3

3
with respect to the metric g.

� †.�;�/ is the Euclidean graph of a function u.�;�/ on S�.��/, i.e.

†.�;�/ D

²
�� C y C

u.�;�/.x/y

�
W x D �� C y 2 S�.��/

³
;

where

sup
S�.��/

ju.�;�/j C � sup
S�.��/

jru.�;�/j C �
2 sup
S�.��/

jr
2u.�;�/j D O

�
1

j�j

�
:

� u.�;�/ is orthogonal to the first spherical harmonics on S�.��/ with respect to the Euclid-
ean metric.

� The mean curvature of †.�;�/ with respect to g viewed as a function on S�.��/ is the
restriction of a linear function.

Given a sequence ¹†kº1kD1 of connected closed stable constant mean curvature surfaces with

r0.†k/!1; areag.†k/!1; r0.†k/H.†k/!1;

the argument in [3, p. 676] shows that for all k large enough, †k D †.�k ;�k/ for appropriate
�k > 0 and �k 2 R3 both large. Whether .M; g/ admits such sequences can now be decided
using the following result.

Theorem 1.5. Let .M; g/ be a complete Riemannian 3-manifold that is C 5C`-asymp-
totic to Schwarzschild with mass m D 2, where ` is a non-negative integer. Let � > 0 and
� 2 R3 both be large. Then

areag.†.�;�// D 4��
2
�
2�

15
�4R.��/ �

�

105
�6.�R/.��/(1.6)

�
8�

35
j�j�6 CO.��1j�j�6/CO.j�j�7/;

where R is the scalar curvature of .M; g/.1) This expansion can be differentiated ` times with
respect to �.

1) We may compute the Laplacian of scalar curvature either with respect to g or with respect to the Euclidean
background metric in the chart at infinity. The difference is of the order of the error terms.
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Let ` � 1. As in [12] or [3], we use that the map

� 7! areag.†.�;�//

has a critical point at � if, and only if,†.�;�/ is a constant mean curvature sphere. If ` � 2, then
the critical point is stable if, and only if,†.�;�/ is a stable constant mean curvature sphere. This
immediately leads to the following corollary.

Corollary 1.6. Let .M; g/ be a complete Riemannian 3-manifold that is C 6-asymptotic
to Schwarzschild in the sense that

gij D

�
1C

m

2jxj

�4
ıij C �ij ;

where àI�ij D O.jxj�2�jI j/ for all multi-indices I of length jI j � 6. Assume that the scalar
curvature vanishes. There does not exist a sequence ¹†kº1kD1 of connected closed stable con-
stant mean curvature surfaces in .M; g/ with

r0.†k/!1; areag.†k/!1; and r0.†k/H.†k/!1:

The analogue of Theorem 1.4 in this setting is not so clear-cut. We have the following
result.

Corollary 1.7. Let .M; g/ be a complete Riemannian 3-manifold that is C 7-asymptotic
to Schwarzschild in the sense that

gij D

�
1C

m

2jxj

�4
ıij C �ij ;

where
àI�ij D O.jxj�2�jI j/

for all multi-indices I of length jI j � 6. We also assume that the scalar curvature R of .M; g/
is radially convex at infinity in the sense that

(1.7) xixj àiàjR � 0

outside of a compact set. There does not exist a sequence ¹†kº1kD1 of connected closed stable
constant mean curvature surfaces in .M; g/ with

r0.†k/!1; areag.†k/!1; r0.†k/H.†k/!1:

Our assumption (1.7) here is surprisingly sharp. Comparing with Theorem 1.2 or Theo-
rem 1.4, one might be lead to conjecture that it can be weakened to

(i) assuming that xixj àiàjR � �o.jxj�4/ as jxj ! 1, or, more generally,

(ii) assuming that �ij D Tij C o.jxj�2/ as jxj ! 1 where Tij homogeneous of order �2,
and that the scalar curvature is non-negative.

The following example dashes any hope of such generalizations.
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Theorem 1.8. There is an asymptotically flat complete Riemannian 3-manifold .M; g/
with non-negative scalar curvature such that, in the chart at infinity,

gij D .1C jxj
�1/4ıij C Tij C o.jxj

�4/ as jxj ! 1

along with all derivatives, where Tij is homogeneous of degree �2, and which contains
a sequence ¹†kº1kD1 of outlying stable constant mean curvature spheres with

r0.†k/!1; areag.†k/!1; r0.†k/H.†k/!1:

To conclude, we note that Lyapunov–Schmidt analysis was used by, e.g., R. Ye [14],
S. Nardulli [11], and F. Pacard and X. Xu in [12] to study the related question of when small
geodesic spheres admit perturbations to constant mean curvature. The answer depends on the
scalar curvature. In particular, S. Nardulli [11] applied Lyapunov–Schmidt reduction to study
the expansion of the isoperimetric profile of a Riemannian manifold for small volumes. We also
note that there is a large body of work on stable constant mean curvature spheres in general
asymptotically flat Riemannian 3-manifolds. We refer the reader to [5, Section 2.1] for an
overview and references to results in this direction.

Acknowledgement. We thank S. Brendle for helpful conversations.

2. Proof of Theorem 1.4

The proof follows the lines of [3] with one important difference: We do not assume here
that the deviation of the metric from Schwarzschild is homogeneous of degree �2 to top order.
Without loss of generality, we may assume that the mass m is equal to 2. Thus,

gij D .1C jxj
�1/4ıij C �ij ;

where
àI�ij D O.jxj�2�jI j/

for all multi-indices I of length jI j � 4.
Let � be a bounded subset with compact closure in R3 n B1.0/. For � 2 � and � > 0

sufficiently large, we may use the implicit function theorem to find surfaces †.�;�/ as in
[3, Proposition 4]. Moreover, the surface †.�;�/ is a constant mean curvature sphere (respec-
tively, a stable constant mean curvature sphere) if, and only if, � is a critical point (respectively,
a stable critical point) for the map � 7! areag.†.�;�//. The derivation of [3, Proposition 5]
carries over to give

areag.†.�;�// D 4��
2
C 2�F0.j�j/C F� .�; �/C o.1/ as �!1:(2.1)

Indeed, the assumption that � is homogeneous is not used up to this point of [3]. We recall that

F0.t/ D �14C 16t
2 log

t2 � 1

t2
C .15t � t�1/ log

t C 1

t � 1

is the contribution from the Schwarzschild background, while

F� .�; �/ D
1

2

Z
S.�;�/

trS.�;�/ � �
1

�

Z
B.�;�/

tr �(2.2)

is the contribution from � .
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Here and below, unless explicitly noted otherwise, all geometric operations are with
respect to the Euclidean background metric in the chart at infinity. Following the notation of [3],
given � 2 R3 and � > 0, we will often write

S.�;�/ D S�.��/ and B.�;�/ D B�.��/:

2.1. Radial variation. In the computation of the radial derivative of (2.2) in [3, proof
of Proposition 7], the additional assumption that � is homogeneous is used in various places.
We compute the radial derivative of (2.2) for general � below. Our computation parallels that
in [3] but requires several additional integrations by part:

.r�F� /.�; �/ D
d

ds

ˇ̌̌̌
sD1

F� .s�; �/

D
�

2

Z
S.�;�/

trS.�;�/ r�� �
Z
S.�;�/

.tr �/h�; �i (we write � D �> C h�; �i�)

D
�

2

Z
S.�;�/

.trS.�;�/ r��/h�; �i �
Z
S.�;�/

.tr �/h�; �i

C
�

2

Z
S.�;�/

trS.�;�/ r�>�

D
�

2

Z
S.�;�/

.trS.�;�/ r��/h�; �i �
Z
S.�;�/

.tr �/h�; �i

C
�

2

Z
S.�;�/

r�> tr � � .r�>�/.�; �/

D
�

2

Z
S.�;�/

.trS.�;�/ r��/h�; �i �
Z
S.�;�/

.tr �/h�; �i

C
�

2

Z
S.�;�/

r�>.tr � � �.�; �//C 2�.r�>�; �/

D
�

2

Z
S.�;�/

.trS.�;�/ r��/h�; �i �
Z
S.�;�/

.tr �/h�; �i

C
�

2

Z
S.�;�/

..tr � � �.�; �//.� divS.�;�/ �
>/C 2�.r�>�; �/

D
�

2

Z
S.�;�/

.trS.�;�/ r��/h�; �i �
Z
S.�;�/

.tr �/h�; �i

C

Z
S.�;�/

.tr �/h�; �i � �.�; �/h�; �i C �.�>; �/

D
�

2

Z
S.�;�/

.trS.�;�/ r��/h�; �i C
Z
S.�;�/

�.�; �/ � 2�.�; �/h�; �i:

We define a vector field
Y D h�; �i�.�; � /]

on S.�;�/ and compute

divS.�;�/ Y D
1

�
�.�; �/ �

1

�
h�; �i�.�; �/C h�; �i trS.�;�/.r ��/.�; � /C

1

�
h�; �i trS.�;�/ �:
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The first variation formula gives

�

2

Z
S.�;�/

.trS.�;�/.r ��/.�; � //h�; �i D
1

2

Z
S.�;�/

�
3�.�; �/� trS.�;�/ �

�
h�; �i �

1

2

Z
S.�;�/

�.�; �/:

We insert this into the above expression, and continue:

d

ds

ˇ̌̌̌
sD1

F.s�; �/ D
�

2

Z
S.�;�/

.trS.�;�/ r�� � trS.�;�/.r ��/.�; � //h�; �i

�
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/:

We write h�; �i D �j�j2 C ��1h�; Xi in the first integrand, where X is the position field, to
obtain

d

ds

ˇ̌̌̌
sD1

F.s�; �/ D
�

2

Z
S.�;�/

.trS.�;�/.r ��/.�; � / � trS.�;�/ r��/.j�j
2
� ��1h�; Xi/

�
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/

D
�

2

Z
S.�;�/

.tr.r ��/.�; � / � trr��/.j�j2 � ��1h�; Xi/

�
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/:

We define a vector field W D div � � r tr � . This yields

d

ds

ˇ̌̌̌
sD1

F.s�; �/ D
1

2

Z
S.�;�/

h�; �� �XihW; �i �
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/

D
1

2

Z
B.�;�/

div.h�; �� �XiW / �
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/

D
1

2

Z
B.�;�/

.divW /h�; �� �Xi �
1

2

Z
B.�;�/

h�;W i

�
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/:

Note that h�;W i D div.�.�; � / � .tr �/�/. We apply the divergence theorem to arrive at

d

ds

ˇ̌̌̌
sD1

F.s�; �/ D
1

2

Z
B.�;�/

.divW /h�; �� �Xi �
1

2

Z
S.�;�/

�.�; �/ � .tr �/h�; �i

�
1

2

Z
S.�;�/

.tr �/h�; �i � �.�; �/

D
1

2

Z
B.�;�/

.divW /h�; �� �Xi:

Note that
divW D RCO.jxj�5/;

where R is the scalar curvature of g. In conclusion, we obtain

(2.3) .r�F� /.�; �/ D
d

ds

ˇ̌̌̌
sD1

F.s�; �/ D
1

2

Z
B.�;�/

h�; �� �XiRC o.1/ as �!1:
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2.2. Radial variation in spherical coordinates. Assume first that

R � 0 and xiài .jxj2R/ � 0:

For definiteness, we assume that
� D j�je3;

where j�j > 1. In this subsection, we compute the radial variationZ
B�.��/

h�� �X; �iR

in spherical coordinates

.�; �; �/ 7! .� sin� cos �; � sin� sin �; � cos�/:

on the complement of the z-axis. The radial line in direction

.sin� cos �; sin� sin �; cos�/

intersects the ball B�.��/ in the �-interval whose endpoints are the solutions

�˙ D �j�j

�
cos� ˙

�
1

j�j2
� sin2 �

� 1
2
�

of the quadratic equation

�2 � 2��j�j cos� C �2.j�j2 � 1/ D 0:

The intersection is non-empty for angles � 2 Œ0; �C�, where �C 2 .0; �/ solves

sin2 �C D
1

j�j2
:

We then have thatZ
B�.��/

h�� �X; �iR

D

Z 2�

0

Z �C

0

Z �C

��

R.�; �; �/.�j�j2 � �j�j cos�/�2 sin� d� d� d�

D j�j

Z 2�

0

Z �C

0

Z �C

��

�2R.�; �; �/.�j�j � � cos�/ sin� d� d� d�

� j�j

Z 2�

0

Z �C

0

�
�j�j

cos�

�2
R

�
�j�j

cos�
; �; �

��Z �C

��

.�j�j � � cos�/d�
�

sin� d� d�:

Now, for every � 2 .0; �C/,Z �C

��

.�j�j � � cos�/ d� D .�C � ��/�j�j sin2 � > 0

so that, in conclusion, Z
B�.��/

h�� �X; �iR � 0:

Arguing as in [3, p. 677] shows that †.�;�/ cannot be a constant mean curvature sphere.
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We now discuss how to proceed if we only impose the weaker assumption (1.5). Note that
R D O.jxj�4/ by asymptotic flatness. It follows that there is a function f with f D o.jxj�4/
as jxj ! 1 such that

RC f � 0 and xiài .jxj2.RC f // � 0:

Proceeding as before, we obtain the estimateZ
B�.��/

h�� �X; �iR � �o.1/ as �!1:

This is enough for the argument in [3] to yield that †.�;�/ does not have constant mean
curvature.

3. Proof of Theorem 1.3

We follow the lines of [3, proof of Theorem 1] in that our metric has a pulse in its scalar
curvature which forces the reduced area functional � 7! areag.†.�;�// to have stable critical
points. Unlike the examples in [3], our metric is spherically symmetric and – more importantly
– has non-negative scalar curvature.

Let S W .0;1/! .�1; 0� be a smooth function such that

S .`/.r/ D O.r�4�`/

for every non-negative integer `. We define a smooth function ' W .0;1/! R by

'.r/ D
1

r

Z 1
r

.� � r/�S.�/ d�:

Note that

'0.r/ D �
1

r2

Z 1
r

�2S.�/ d�

so

(3.1)
.r2'0/0

r2
D S.r/:

Lemma 3.1. For every non-negative integer `, we have that

'.`/.r/ D O.r�2�`/:

Proof. Because S.r/ D O.r�4/, we see that

'.r/ D O.r�2/ and '0.r/ D O.r�3/:

Using (3.1), we find

'00.r/C
2'0.r/

r
D S.r/:

From this, the asserted decay of the higher derivatives can be verified by induction.
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On R3 n ¹0º, we define a conformally flat Riemannian metric

g D

�
1C

1

r
C '.r/

�4
Ng D

�
1C

1

r

�4
Ng CO

�
1

r2

�
;

where r D jxj. Note that g is smoothly asymptotic to Schwarzschild with mass 2. Its scalar
curvature is easily computed as

R D �8

�
1C

1

r
C '.r/

��5 .r2'0/0
r2

D �8

�
1CO

�
1

r

��
S.r/:

In particular, the scalar curvature is non-negative on the complement of a compact set. We now
make a particular choice for S . Fix � 2 C1.R/ that is positive on .3; 4/ and supported in Œ3; 4�.
Let

S.r/ D �A

1X
kD0

10�4k�.10�kr/;

where A > 0 is a large constant that we will fix later. Recall from (2.1) that, as �!1,

areag.†.�;�// D 4��
2
C 2�F0.j�j/C F� .�; �/C o.1/:

We choose � 2 R3 with 2 � j�j � 9 and � D 10j where j � 1 is a large integer. Using (2.3),
we compute

d

ds

ˇ̌̌̌
sD1

areag.†.s�;�// D 2�j�jF
0
0.j�j/C

1

2

Z
X2B�.��/

R.X/h�; �� �Xi C o.1/

D 2�j�jF 00.j�j/ � 4

Z
X2B�.��/

S.jX j/h�; �� �Xi C o.1/

D 2�j�jF 00.j�j/C 4A

Z
Y2B1.�/

�.jY j/h�; � � Y i C o.1/:

When j�j D 2
p
2, the integral on the last line is negative. We choose A > 0 large so that the

sum of the first two terms is negative. When j�j D 5, the second term vanishes while the first
term is strictly positive. Thus, for j � 1 sufficiently large, the derivative

d

ds

ˇ̌̌̌
sD1

areag.†.s�;�//

is negative when j�j D 2
p
2 and positive when j�j D 5. Using that the metric g is rotationally

symmetric, we see that the map

� 7! areag.†.�;10j //

has a stable critical point – a local minimum – at some �j 2 R3 with j�j j 2 .2
p
2; 5/. In other

words, †.�j ;10j / is a “far-off-center” stable constant mean sphere for j sufficiently large.

Remark 3.2. As noted by S. Brendle in [1, Theorem 1.5], the work of F. Pacard and
X. Xu [12] shows that every rotationally symmetric Riemannian manifold whose scalar curva-
ture has a strict local extremum contains small stable constant mean curvature spheres.
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4. Proof of Theorem 1.5

Consider
gij D .1C jxj

�1/4ıij C �ij

with
àI�ij D O.jxj�2�jI j/ as jxj ! 1

for all multi-indices I of length jI j � 7.
Our proof follows the Lyapunov–Schmidt reduction and the expansion for the reduced

area functional in [3]. However, we need to extend the approach of [3] to allow for the transition
� !1. To this end, we develop the expansion of the reduced area functional to a higher order
than was necessary in [3].

The computations in this section are also related and in part inspired by those for exact
Schwarzschild in [2, Appendix A]. Note that part of our expansion for the reduced area func-
tional areag.†.�;�// follows upon rescaling the chart at infinity by �j�j from the work of
S. Nardulli [11] or of F. Pacard and X. Xu [12]. Note that the estimate for the error term in
(1.6) in, e.g., [12] is O.�2j�j�5/, where we obtain O.��1j�j�6/CO.j�j�7/. Our stronger
estimate is crucial for our applications in this paper.

Let � > 0 and � 2 R3 both be large. There exist r > 1 with r � � and a smooth function
u.�;�/ on the sphere Sr.��/ that is perpendicular to constants and linear functions with respect
to the Euclidean metric such that the mean curvature with respect to g of the Euclidean normal
graph †.�;�/ of u.�;�/ – as a function on Sr.��/ – is a linear combination of a constant and
a linear function and such that

volg.†.�;�// D
4��3

3
:

Moreover,

sup
Sr .��/

ju.�;�/j C � sup
Sr .��/

jru.�;�/j C �
2 sup
Sr .��/

jr
2u.�;�/j D O

�
1

j�j

�
:(4.1)

Indeed, this is a standard consequence of the implicit function theorem; cf. [3, Proposition 4].
We will improve estimate (4.1) below.

It is convenient to abbreviate a D ��. In this section, we will frequently use standard
integral identities recalled in Appendix A.

4.1. Estimating volg.Br.a//. We have that

.1C jxj�1/6
q

det.ıij C .1C jxj�1/�4�ij /(4.2)

D .1C jxj�1/6 C
1

2
.1C jxj�1/2 tr �

C
1

4
.1C jxj�1/�2

�
1

2
.tr �/2 � j� j2

�
CO.jxj�6/:

Noting the dependence of the error term on r in [2, proof of Proposition 17], we findZ
Br .a/

.1C jxj�1/6 D
4�

3
r3.1C jaj�1/6

�
1C 3.1C jaj�1/�2

r2

jaj4
C
9

7

r4

jaj6

�
CO.r8jaj�7/:
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Next, we turn to the terms in the expansion of the volume form (4.2) that involve � . We
write � for � evaluated at a. When � appears with derivatives, the derivatives are taken first,
then the result is evaluated at a.

First, note that for y 2 Br.0/ with x D aC y,

.1C jxj�1/2 D .1C jaj�1/2 C 2.1C jaj�1/.jaC yj�1 � jaj�1/

C .jaC yj�1 � jaj�1/2„ ƒ‚ …
DO.jaj�4jyj2/

as well as

jaC yj�1 � jaj�1 D �
ha; yi

jaj3
�
1

2

jaj2jyj2 � 3ha; yi2

jaj5
CO.r3jaj�4/:

By Taylor expansion, we have that

tr � D tr � Cry tr � C
1

2
r
2
y;y tr � C

1

6
r
3
y;y;y tr �

C
1

24
r
4
y;y;y;y tr � CO.jyj5jxj�7/:

Combining the above expansions and using the expressions found in Appendix A, we have

1

2

Z
Br .a/

.1C jxj�1/2 tr � D
1

2
.1C jaj�1/2

Z
Br .a/

tr �

C .1C jaj�1/

Z
Br .a/

.jaC yj�1 � jaj�1/ tr �

CO.r5jaj�6/

D
1

2
.1C jaj�1/2

Z
Br

tr � C
1

4
.1C jaj�1/2

Z
Br

r
2
y;y tr �

C
1

48
.1C jaj�1/2

Z
Br

r
4
y;y;y;y tr �

� .1C jaj�1/jaj�3
Z
Br

ha; yiry tr �

CO.r5jaj�6/CO.r7jaj�7/

D
2�

3
r3.1C jaj�1/2 tr � C

�

15
r5.1C jaj�1/2� tr �

C
�

420
r7�.� tr �/ �

4�

15
.1C jaj�1/r5jaj�3ra tr �

CO.r5jaj�6/CO.r7jaj�7/:

We now turn to the third term in the expansion of the volume form (4.2),

1

4

Z
Br .a/

.1C jxj�1/�2
�
1

2
.tr �/2 � j� j2

�
D
�

3
r3.1C jaj�1/�2

�
1

2
.tr �/2 � j� j2

�
CO.r5jaj�6/:
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Now, putting these terms together, we find that

volg.Br.a// D
4�

3
r3.1C jaj�1/6

�
1C 3.1C jaj�1/�2

r2

jaj4
C
9

7

r4

jaj6

�
C
2�

3
r3.1C jaj�1/2 tr � C

�

15
r5.1C jaj�1/2� tr �

C
�

420
r7�.� tr �/ �

4�

15
.1C jaj�1/r5jaj�3ra tr �

C
�

3
r3.1C jaj�1/�2

�
1

2
.tr �/2 � j� j2

�
CO.r5jaj�6/CO.r8jaj�7/:

4.2. Estimating areag.Sr.a//. The density of the area form of Sr.a/ relative to the
Euclidean background is given by

.1C jxj�1/4
q

det.ıjS C .1C jxj�1/�4� jS /

D .1C jxj�1/4 C
1

2
trS � C

1

4
.1C jxj�1/�4

�
1

2
.trS �/2 � j� jS j2

�
CO.jxj�6/

D .1C jxj�1/4 C
1

2
tr � �

1

2
r�2�.y; y/

C
1

4
.1C jxj�1/�4

�
1

2
.tr �/2 � r�2.tr �/�.y; y/ � j� j2

C 2r�2j�.y; � /j2 �
1

2
r�4�.y; y/2

�
CO.jxj�6/:

As in [2, Proposition 17], we have thatZ
Sr .a/

.1C jxj�1/4 D 4�r2.1C jaj�1/4
�
1C 2.1C jaj�1/�2

r2

jaj4
C
6

5

r4

jaj6

�
CO.r7jaj�7/:

We compute, using standard integral identities recalled in Appendix A,

1

2

Z
Sr .a/

tr � D
1

2

Z
Sr

tr � C
1

4

Z
Sr

r
2
y;y tr � C

1

48

Z
Sr

r
4
y;y;y;y tr � CO.r8jaj�8/

D 2�r2 tr � C
�

3
r4� tr � C

�

60
r6�.� tr �/CO.r8jaj�8/

and

1

2

Z
Sr .a/

r�2�.y; y/ D
1

2

Z
Sr

r�2�.y; y/C
1

4

Z
Sr

r�2.r2y;y�/.y; y/

C
1

48

Z
Sr

r�2.r4y;y;y;y�/.y; y/CO.r
8
jaj�8/

D
2�

3
r2 tr � C

�

15
r4� tr � C

2�

15
r4 div.div.�//

C
�

420
r6�.� tr �/C

�

105
�.div.div.�//CO.r8jaj�8/:
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Putting these two expressions together, we find

1

2

Z
Sr .a/

tr � �
1

2

Z
Sr .a/

r�2�.y; y/ D 2�r2 tr � �
2�

3
r2 tr � C

�

3
r4� tr �

�
�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

60
r6�.� tr �/ �

�

420
r6�.� tr �/

�
�

105
�.div.div.�//CO.r8jaj�8/

D
4�

3
r2 tr � C

4�

15
r4�.tr �/ �

2�

15
r4 div.div.�//

C
�

70
r6�.� tr �/ �

�

105
�.div.div.�//

CO.r8jaj�8/:

Finally, we compute

1

4

Z
Sr .a/

.1C jxj�1/�4
�
1

2
.tr �/2 � r�2.tr �/�.y; y/ � j� j2

C 2r�2j�.y; � /j2 �
1

2
r�4�.y; y/2

�
D
1

8
.1C jaj�1/�4

Z
Sr

.tr �/2 �
1

4
.1C jaj�1/�4

Z
Sr

r�2.tr �/�.y; y/

�
1

4
.1C jaj�1/�4

Z
Sr

j� j2 C
1

2
.1C jaj�1/�4

Z
Sr

r�2j�.y; � /j2

�
1

8
.1C jaj�1/�4

Z
Sr

r�4�.y; y/2 CO.r4jaj�6/

D
�

2
r2.1C jaj�1/�4.tr �/2 �

�

3
r2.1C jaj�1/�4.tr �/2

� �r2.1C jaj�1/�4j� j2 C
2�

3
r2.1C jaj�1/�4j� j2

�
�

30
r2.1C jaj�1/�4.tr �/2 �

�

15
r2.1C jaj�1/�4j� j2 CO.r4jaj�6/

D
2�

15
r2.1C jaj�1/�4.tr �/2 �

2�

5
r2.1C jaj�1/�4j� j2 CO.r4jaj�6/

D �
2�

5
r2.1C jaj�1/�4j V� j2 CO.r4jaj�6/:

In conclusion, we have

areag.Sr.a// D 4�r2.1C jaj�1/4
�
1C 2.1C jaj�1/�2

r2

jaj4
C
6

5

r4

jaj6

�
C
4�

3
r2 tr � C

4�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

70
r6�.� tr �/ �

�

105
r6�.div.div.�//

�
2�

5
r2.1C jaj�1/�4j V� j2 CO.r4jaj�6/CO.r7jaj�7/:
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4.3. Estimating F .Sr.a//. We let

F .Sr.a// D areag.Sr.a// � 2r�1.1C jaj�1/�2 volg.Sr.a//:

We then compute

F .Sr.a// D 4�r
2.1C jaj�1/4

�
1C 2.1C jaj�1/�2

r2

jaj4
C
6

5

r4

jaj6

�
C
4�

3
r2 tr � C

4�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

70
r6�.� tr �/ �

�

105
r6�.div.div.�// �

2�

5
r2.1C jaj�1/�4j V� j2

�
8�

3
r2.1C jaj�1/4

�
1C 3.1C jaj�1/�2

r2

jaj4
C
9

7

r4

jaj6

�
�
4�

3
r2 tr � �

2�

15
r4� tr � �

�

210
r6�.� tr �/

C
8�

15
.1C jaj�1/�1r4jaj�3ra tr �

�
2�

3
r2.1C jaj�1/�4

�
1

2
.tr �/2 � j� j2

�
CO.r4jaj�6/CO.r7jaj�7/

D
4�

3
r2.1C jaj�1/4 C

48�

35

r6

jaj6
C
2�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

105
r6�.� tr �/ �

�

105
r6�.div.div.�// �

2�

5
r2.1C jaj�1/�4j V� j2

�
2�

3
r2.1C jaj�1/�4

�
1

2
.tr �/2 � j� j2

�
C
8�

15
r4jaj�3ra tr � CO.r4jaj�6/CO.r7jaj�7/:

4.4. Estimating the mean curvature of Sr.a/. Consider

Ogij D Ngij C O�ij

where
O�ij D .1C jxj

�1/�4�ij :

By the computation in [8, p. 418], we have

OH D H � r�1 trS O� C r�3 O�.y; y/ � r�1 trS .r � O�/.y; � /

C
1

2
r�1 trS ry O� CO.r�1jxj�4/

D 2r�1 � r�1 tr O� C 2r�3 O�.y; y/ � r�1 div. O�/.y/C
1

2
r�1ry tr O�

C
1

2
r�3.ry O�/.y; y/CO.r

�1
jxj�4/

for the mean curvature of Sr.a/ with respect to Og. The mean curvature of Sr.a/ with respect
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to g is given by

Hg D .1C jxj
�1/�2 OH � 4.1C jxj�1/�3jxj�3hx; O�i

D .1C jxj�1/�2 OH � 4r�1.1C jxj�1/�3jxj�3hx; yi CO.jxj�4/

D 2r�1.1C jxj�1/�2 � 4r�1.1C jxj�1/�3jxj�3hx; yi

� r�1.1C jxj�1/�2 tr O� C 2r�3.1C jxj�1/�2 O�.y; y/

� r�1.1C jxj�1/�2 div. O�/.y/C
1

2
r�1.1C jxj�1/�2ry tr O�

C
1

2
r�3.1C jxj�1/�2.ry O�/.y; y/CO.jxj

�4/

D 2r�1.1C jxj�1/�2 � 4r�1.1C jxj�1/�3jxj�3hx; yi

� r�1.1C jaj�1/�6 tr � C 2r�3.1C jaj�1/�6�.y; y/

� r�1 div.�/.y/C
1

2
r�1ry tr � C

1

2
r�3.ry�/.y; y/CO.jxj

�4/:

Expanding as in [2, proof of Lemma 18], we have that

.1C jxj�1/�2 � 2.1C jxj�1/�3jxj�3hx; yi

D .1C jaj�1/�2 �
jaj2jyj2 � 3ha; yi2

jaj5
CO.r3jxj�4/:

Thus,

Hg D 2r
�1.1C jaj�1/�2 � 2r�1

jaj2jyj2 � 3ha; yi2

jaj5

� r�1.1C jaj�1/�6 tr � C 2r�3.1C jaj�1/�6�.y; y/

� r�1 div.�/.y/C
1

2
r�1ry tr � C

1

2
r�3.ry�/.y; y/CO.r

2
jxj�4/:

Now, we consider the (Euclidean) projection of Hg to ƒ2 and ƒ>2, where ƒ2 is the space of
second eigenfunctions on Sr andƒ>2 is theL2.Sr/-orthogonal complement ofƒ0˚ƒ1˚ƒ2:

projƒ2 Hg D �
2

r

jaj2jyj2 � 3ha; yi2

jaj5
C 2r�3.1C jaj�1/�6 projƒ2 �.y; y/CO.r

2
jxj�4/

D �
2

r

jaj2jyj2 � 3ha; yi2

jaj5
C 2r�3.1C jaj�1/�6

�
�.y; y/ �

1

3
jyj2 tr �

�
CO.r2jxj�4/:

For the higher eigenspaces, we will only need the estimate

projƒ>2 Hg D O.jxj
�3/CO.r2jxj�4/:

4.5. Estimates for u. Our goal here is to improve upon the initial estimate (4.1). To
this end, let t 2 Œ0; 1�. Consider the Euclidean graph above Sr.a/ of the function tu. The initial
normal speed with respect to g of this family of surfaces is given by

w D ug

�
y

r
; �g

�
:
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Note that

g

�
y

r
; �g

�
D .1C jxj�1/2 C

1

2
.1C jxj�1/�2r�2�.y; y/CO.jxj�4/

D .1C jxj�1/2 CO.jxj�2/

up to and including second derivatives. It follows that

�Sr .a/g w C .jhg j
2
g C Ricg.�g ; �g//w D Hg �H†

g CO.�
�3
j�j�2/;

where Hg is the mean curvature of Sr.a/ with respect to g. From this, we see that

�Sr .a/uC 2r�2u D Hg �H
†
g CO.�

�3
j�j�2/:

In conjunction with the estimate

projƒ>1.Hg �H
†
g / D projƒ>1 Hg D O.�

�3
j�j�2/CO.��2j�j�3/

from the previous subsection, we obtain

sup
Sr .��/

ju.�;�/j C � sup
Sr .��/

jru.�;�/j C �
2 sup
Sr .��/

jr
2u.�;�/j D O.�

�1
j�j�2/CO.j�j�3/:

This allows us to improve the coarse estimate above to

�Sr .a/g w C .jhg j
2
g C Ricg.�g ; �g//w D Hg �H†

g CO.�
�5
j�j�4/CO.��3j�j�6/:

Thus

�Sr .a/g w D .1C jaj�1/�2�Sr .a/uCO.��4j�j�4/CO.��3j�j�5/:

Continuing on, we have that

jhg j
2
g D 2r

�2.1C jaj�1/�4 CO.��3j�j�3/CO.��4j�j�2/

and
Ricg.�g ; �g/ D O.��3j�j�3/:

Putting these estimates together, we find that

.1C jaj�1/�2�Sr .a/uC 2r�2.1C jaj�1/�2u

D Hg �H
†
g CO.�

�4
j�j�4/CO.��3j�j�5/:

Hence,

�Sr .a/ projƒ2 uC 2r
�2 projƒ2 u

D projƒ2.�
Sr .a/uC 2r�2u/

D .1C jaj�1/2 projƒ2 Hg CO.�
�4
j�j�4/CO.��3j�j�5/

D �
2

r

jaj2jyj2 � 3ha; yi2

jaj5
C
2

r3
.1C jaj�1/�4

�
�.y; y/ �

1

3
jyj2 tr �

�
CO.��2j�j�4/:
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This implies that

projƒ2 u D
r

2

jaj2jyj2 � 3ha; yi2

jaj5
�
1

2r
.1C jaj�1/�4

�
�.y; y/ �

1

3
jyj2 tr �

�
CO.j�j�4/

together with two derivatives. In particular,

projƒ2 u D O.�
�1
j�j�2/CO.j�j�3/:

The above expression also implies that

projƒ>2 u D O.�
�1
j�j�3/CO.j�j�4/

along with two derivatives.

4.6. Estimating F .†/. Let

F .†/ D areag.†/ � 2r�1.1C jaj�1/�2 volg.�/;

where � is the compact region bounded by †. Recall that

volg.�/ D
4�

3
�3:

Our goal is to compare F .†/ with F .Sr.a//. We will make heavy use of the estimates for u
derived in the previous subsection. Computing as in [3, proof of Proposition 5], we obtain

F .†/ D F .Sr.a//C

Z
Sr .a/

.Hg � 2r
�1.1C jaj�1/�2/w d�g

C
1

2

Z
Sr .a/

Hg.Hg � 2r
�1.1C jaj�1/�2/w2 d�g

�
1

2

Z
Sr .a/

.�Sr .a/g w C .jhg j
2
g C Ricg.�g ; �g//w/w d�g

CO.��4j�j�6/CO.��1j�j�9/:

By the computation at the beginning of Section 4.2,

d�g D

�
.1C jxj�1/4 C

1

2
tr � �

1

2
r�2�.y; y/CO.jxj�4/

�
d� Ng :

We begin with the first of three terms in the expansion of F .†/ off of F .Sr.a//.Z
Sr .a/

.Hg � 2r
�1.1C jaj�1/�2/w d�g

D

Z
Sr .a/

.Hg � 2r
�1.1C jaj�1/�2/u.1C jxj�1/6 CO.��3j�j�7/CO.��2j�j�8/

D .1C jaj�1/6
Z
Sr .a/

.Hg � 2r
�1.1C jaj�1/�2/uCO.��2j�j�7/CO.��1j�j�8/

D �2r�1.1C jaj�1/6
Z
Sr .a/

�
jaj2jyj2 � 3ha; yi2

jaj5

�
uC 2r�3

Z
Sr .a/

�.y; y/u

CO.��1j�j�6/CO.j�j�7/
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D �

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
C r�2.1C jaj�1/2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/

� r�4.1C jaj�1/�4
Z
Sr

�
�.y; y/ �

1

3
jyj2 tr �

�2
C r�2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/CO.��1j�j�6/CO.j�j�7/

D �

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
C 2r�2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/

� r�4.1C jaj�1/�4
Z
Sr

�
�.y; y/ �

1

3
jyj2 tr �

�2
CO.��1j�j�6/CO.j�j�7/:

The second term satisfies

1

2

Z
Sr .a/

Hg.Hg � 2r
�1.1C jaj�1/�2/w2 d�g D O.�

�4
j�j�6/CO.��1j�j�9/:

Finally, the last term satisfies

�
1

2

Z
Sr .a/

.�Sr .a/g w C .jhg j
2
g C Ricg.�g ; �g//w/w d�g

D �
1

2
.1C jaj�1/4

Z
Sr .a/

.�SruC 2r�2u/uCO.��3j�j�6/CO.��1j�j�8/

D 2r�2.1C jaj�1/4
Z
Sr .a/

.projƒ2 u/
2
CO.��2j�j�6/CO.j�j�8/

D
1

2
r�4.1C jaj�1/�4

Z
Sr

�
�.y; y/ �

1

3
jyj2 tr �

�2
� r�2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/C

1

2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
CO.��1j�j�6/CO.j�j�7/:

Putting this together, we find that

F .†/ D F .Sr.a// �

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
C 2r�2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/

� r�4.1C jaj�1/�4
Z
Sr

�
�.y; y/ �

1

3
jyj2 tr �

�2
C
1

2
r�4.1C jaj�1/�4

Z
Sr

�
�.y; y/ �

1

3
jyj2 tr �

�2
� r�2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/

C
1

2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
CO.��1j�j�6/CO.j�j�7/
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D F .Sr.a// �
1

2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
C r�2

Z
Sr

�
jaj2jyj2 � 3ha; yi2

jaj5

�
�.y; y/

�
1

2
r�4.1C jaj�1/�4

Z
Sr

�
�.y; y/ �

1

3
jyj2 tr �

�2
CO.��1j�j�6/CO.j�j�7/:

We now use the expansions given in Appendix A.3 to compute

F .†/ D F .Sr.a// �
8�

5
j�j�6 C

8�

15

r4

jaj3
.tr � � 3jaj�1�.a; a//

�
4�

15
r2.1C jaj�1/�4j V� j2 CO.��1j�j�6/CO.j�j�7/

D
4�

3
r2.1C jaj�1/4 C

48�

35

r6

jaj6
C
2�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

105
r6�.� tr �/ �

�

105
r6�.div.div.�//

�
2�

5
r2.1C jaj�1/�4j V� j2 �

2�

3
r2.1C jaj�1/�4

�
1

2
.tr �/2 � j� j2

�
C
8�

15
r4jaj�3ra tr � �

8�

5
j�j�6 C

8�

15

r4

jaj3
.tr � � 3jaj�1�.a; a//

�
4�

15
r2.1C jaj�1/�4j V� j2 CO.��1j�j�6/CO.j�j�7/

D
4�

3
r2.1C jaj�1/4 �

8�

35
j�j�6 C

2�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

105
r6�.� tr �/ �

�

105
r6�.div.div.�// �

2�

3
r2.1C jaj�1/�4j V� j2

�
2�

3
r2.1C jaj�1/�4

�
1

2
.tr �/2 � j� j2

�
C
8�

15
r4jaj�3ra tr �

C
8�

15

r4

jaj3
.tr � � 3jaj�1�.a; a//CO.��1j�j�6/CO.j�j�7/:

Going back to the definition of F .†/, we obtain that

areag.†/ D
4�

3
r2.1C jaj�1/4 C

8�

3
�3r�1.1C jaj�1/�2 �

8�

35
j�j�6

C
2�

15
r4� tr � �

2�

15
r4 div.div.�//C

�

105
r6�.� tr �/

�
�

105
r6�.div.div.�// �

2�

3
r2.1C jaj�1/�4j V� j2

�
2�

3
r2.1C jaj�1/�4

�
1

2
.tr �/2 � j� j2

�
C
8�

15
r4jaj�3ra.tr �/

C
8�

15

r4

jaj3
.tr � � 3jaj�2�.a; a//CO.��1j�j�6/CO.j�j�7/:
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4.7. Estimating r . We now use the expansion

volg.�/ D volg.Br.a//C
Z
Sr .a/

w d�g C
1

2

Z
Sr .a/

Hgw
2 d�g

CO.��3j�j�6/CO.j�j�9/

to relate � and r . Note that because u is orthogonal to constants and to linear functions,Z
Sr .a/

w d�g D O.j�j
�5/CO.�j�j�6/

and
1

2

Z
Sr .a/

Hgw
2d�g D O.�

�1
j�j�4/CO.�j�j�6/:

Hence, using the expression for volg.Br.a// obtained previously, we find that

4�

3
�3 D

4�

3
r3.1C jaj�1/6 C

2�

3
r3.1C jaj�1/2 tr � CO.�j�j�4/

D
4�

3
r3.1C jaj�1/6

�
1C

1

2
.1C jaj�1/�4 tr � CO.��2j�j�4/

�
:

It is convenient to write
�3 D r3.1C jaj�1/6.1C  /;

where
 D

1

2
.1C jaj�1/�4 tr � CO.��2j�j�4/ D O.��2j�j�2/:

We now estimate the first line in the expansion for areag.†/ obtained above.

4�

3
r2.1C jaj�1/4 C

8�

3
�3r�1.1C jaj�1/�2

D
4�

3
r2.1C jaj�1/4 C

8�

3
r2.1C jaj�1/4.1C  /

D 4�r2.1C jaj�1/4
�
1C

2

3
 

�
D 4�r2.1C jaj�1/4.1C  /

2
3 C

4�

9
r2.1C jaj�1/4 2 CO.r2 3/

D 4��2 C
�

9
r2.1C jaj�1/�4.tr �/2 CO.��2j�j�6/:

4.8. Concluding the estimate for areag.†/. Combining the results in the previous
two subsections, we obtain that

areag.†/ D 4��2 �
8�

35
j�j�6 C

�

9
r2.1C jaj�1/�4.tr �/2 C

2�

15
r4� tr �

�
2�

15
r4 div.div.�//C

�

105
r6�.� tr �/ �

�

105
r6�.div.div.�//

�
2�

3
r2.1C jaj�1/�4j V� j2 �

2�

3
r2.1C jaj�1/�4

�
1

2
.tr �/2 � j� j2

�
C
8�

15
r4jaj�3ra tr � C

8�

15

r4

jaj3
.tr � � 3jaj�2�.a; a//

CO.��1j�j�6/CO.j�j�7/



184 Chodosh and Eichmair, Far-outlying CMC surfaces

D 4��2 �
8�

35
j�j�6 C

2�

15
r4� tr � �

2�

15
r4 div.div.�//

C
�

105
r6�.� tr �/ �

�

105
r6�.div.div.�//

C
8�

15
r4jaj�3ra tr � C

8�

15

r4

jaj3
.tr � � 3jaj�2�.a; a//

CO.��1j�j�6/CO.j�j�7/

D 4��2 �
8�

35
j�j�6 C

2�

15
�4.1C jaj�1/�8.� tr � � div.div.�///

C
�

105
�6.�.� tr �/ ��.div.div.�///

C
8�

15
�4jaj�3ra tr � C

8�

15

�4

jaj3
.tr � � 3jaj�2�.a; a//

CO.��1j�j�6/CO.j�j�7/:

4.9. Estimating R and �R. We now relate this expression for areag.†/ to the scalar
curvature R of .M; g/. As with mean curvature, we first consider

Ogij D Ngij C O�ij

where
O�ij D .1C jxj

�1/�4�ij :

Then
R Og D div div O� �� tr O� CO.jxj�6/:

Note that
div O� D .1C jxj�1/�4 div � C 4.1C jxj�1/�5jxj�3�.x; � /

and

div div O� D .1C jxj�1/�4 div div � C 4.1C jxj�1/�5jxj�3.div �/.x/

C 20.1C jxj�1/�6jxj�6�.x; x/ � 12.1C jxj�1/�5jxj�5�.x; x/

C 4.1C jxj�1/�5jxj�3.div �/.x/C 4.1C jxj�1/�5jxj�3 tr �

D .1C jxj�1/�4 div div � C 8jxj�3.div �/.x/

C 4.1C jxj�1/�5jxj�3.tr � � 3jxj�2�.x; x//CO.jxj�6/:

Similarly,

� tr O� D �..1C jxj�1/�4 tr �/

D .1C jxj�1/�4� tr � C 8.1C jxj�1/�5jxj�3rx tr � C .tr �/�.1C jxj�1/�4

D .1C jxj�1/�4� tr � C 8jxj�3rx tr � CO.jxj�6/:

Thus, we find that

R Og D .1C jxj
�1/�4.div div � �� tr �/C 4jxj�3.tr � � 3jxj�2�.x; x//

C 8jxj�3.div �/.x/ � 8jxj�3rx tr � CO.jxj�6/:
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It follows that

R D �8.1C jxj�1/�5� Og jxj
�1
C .1C jxj�1/�4R Og

D �8.1C jxj�1/�5� Og jxj
�1
C .1C jxj�1/�8.div.div.�// �� tr �/

C 4jxj�3.tr � � 3jxj�2�.x; x//C 8jxj�3.div �/.x/

� 8jxj�3rx tr � CO.jxj�6/:

It remains to estimate � Og jxj�1. We have thatq
det Ogij D

q
det.ıij C O�ij / D 1C

1

2
tr O� CO.jxj�4/

and
Ogij D ıij � O� ij CO.jxj�4/:

Thus,

� Og jxj
�1
D �3jxj�5�.x; x/C jxj�3 tr � C jxj�3.div �/.x/

�
1

2
jxj�3rx tr � CO.jxj�6/:

It follows that

R D .1C jxj�1/�8.div.div.�// �� tr �/ � 4jxj�3.tr � � 3jxj�2�.x; x//

� 4jxj�3rx tr � CO.jxj�6/:

Similarly,
�R D �.div.div.�// �� tr �/CO.jxj�7/:

4.10. Reduced area-functional. We finally obtain that, for � 2 R3 and � > 0 both
large,

areag.†.�;�// D 4��
2
�
2�

15
�4R �

�

105
�6�R �

8�

35
j�j�6

CO.��1j�j�6/CO.j�j�7/;

where R is the scalar curvature of .M; g/ and

R D R.��/;

�R D .�R/.��/:

This completes the proof of Theorem 1.5. We also record here the first radial derivative

d

ds

ˇ̌̌̌
sD1

areag.†.s�;�/ D �
2�

15
�5j�jàrR �

�

105
�7j�jàr�RC

48�

35
j�j�6(4.3)

CO.��1j�j�6/CO.j�j�7/

D
�

105
.�14�5j�jàrR � �7j�jàr�RC 144j�j�6/

CO.��1j�j�6/CO.j�j�7/:
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5. Proof of Corollary 1.7

We assume that .M; g/ is C 6-asymptotically Schwarzschild in the sense that

gij D .1C jxj
�1/4ıij C �ij ;

where àI�ij D O.jxj�2�jI j/ for all multi-indices I of length jI j � 6. We also assume that

xixj àiàjR � 0

outside of a compact set. This condition integrates to yield

xiàiR � 0 and R � 0

We now consider a sequence of connected closed stable constant mean curvature surfaces †k
with

r0.†k/!1; areag.†k/!1; r0.†k/H.†k/!1:

For k large, we may find � > 0 and � 2 R3 both large so that †k D †.�;�/ and

d

ds

ˇ̌̌̌
sD1

areag.†.s�;�// D 0:

By (4.3), we have that

0 D
�

105
.�14�5j�jàrR � �7j�jàr�RC 144j�j�6/CO.��1j�j�6/CO.j�j�7/:

It follows that
àrR D O.��5j�j�7/ D o.��5j�j�5/:

Using this and (1.7), we may integrate in the radial direction to find that for t � 0,

.àrR/..1C t /��/ � àrR D o.��5j�j�5/:

Integrating this again, we find that

R � o.��4j�j�4/t CR..1C t /��/ � O.��4j�j�4/.o.1/t C .1C t /�4/:

Choosing t judiciously, we arrange for the term in parenthesis to be o.1/. We have proven that

R D o.��4j�j�4/:

On the other hand, by combining àrR D o.��5j�j�5/, àrR � 0, and Taylor’s theorem, we find

à2rR D o.�
�6
j�j�6/:

Together with (1.7), we similarly obtain

à3rR D o.�
�7
j�j�7/:

Now, we consider the first variation of areag.†.�;�// in directions orthogonal to � . It fol-
lows that

DR D O.��5j�j�7/:
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Now, as in the radial case, combining Taylor’s theorem with R � 0, R D o.��4j�j�4/, and
DR D o.��5j�j�5/, we obtain

D2R � �o.��6j�j�6/:

Similarly, we find that
D2àrR � o.��7j�j�7/:

Finally, we see from

àr�R D �àrR � 2j�j�1��1�RC 2��1j�j�1à2rRC 2�
�2
j�j�2àrR

that
àr�R � o.��7j�j�7/:

Returning to the radial first variation, we see that

0 � 14�5j�jàrR � 144j�j�6 CO.��1j�j�6/CO.j�j�7/:

This contradiction completes the proof.

6. Proof of Theorem 1.8

Our strategy here follows that of [3, proof of Theorem 1]. However, unlike in [3], we
work in the regime where � !1.

Let S W .0;1/! .�1; 0� be a smooth function with

S .`/ D O.r�5�`/

for every non-negative integer `. We define a smooth function ' W .0;1/! R by

'.r/ D
1

r

Z 1
r

.� � r/�S.�/ d�:

Arguing as in Lemma 3.1, we find that

'.`/.r/ D O.r�5�`/

for all derivatives. We now define a conformally flat Riemannian metric

g D

�
1C

1

r
C '.r/

�4
Ng D

�
1C

1

r

�4
Ng CO

�
1

r5

�
on the complement of a compact subset of R3. Note that the asymptotics of g are of the form
asserted in Theorem 1.8. The scalar curvature R of g satisfies

R D �8

�
1CO

�
1

r

��
S.r/:

Fix � 2 C1.R/ with support in Œ4; 6� that is positive on .4; 6/. Assume that �0.5/ D �1.
Define

S.r/ D �

1X
jD0

10�5j�.10�j r/:

Note that, as required, S .`/.r/ D O.r�5�`/.
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Consider � 2 R3 with j�j D 10kt for t 2 Œ3; 7�. Then, taking � D 10k , we have that

areag.†.�;10k// D 4��
2
�
2�

15
104kR.10k�/ �

�

105
106k.�R/.10k�/

�
8�

35
j�j�6 CO.10�7k/

D 4��2 C
16�

15
10�6k�.t/ �

8�

35
10�6kt�6 CO.10�7k/

and

d

ds

ˇ̌̌̌
sD1

areag.†.s�;10k// D
16�

15
10�6k�0.t/C

48�

35
10�6kt�6 CO.10�7k/:

For t D 7, we have

d

ds

ˇ̌̌̌
sD1

areag.†.s�;10k// D
48�

35
10�6k7�6 CO.10�7k/ > 0

for sufficiently large k. On the other hand, for t D 5, we have

d

ds

ˇ̌̌̌
sD1

areag.†.s�;10k// D �
16�

15
10�6k C

48�

35
10�6k7�6 CO.10�7k/ < 0:

It follows that for some tk 2 .5; 7/ and every �k 2 R3 with j�kj D 10ktk , †.�k ;10k/ is a stable
constant mean curvature sphere. This completes the proof.

A. Some integral expressions

In this appendix, we recall several standard identities that are used in the proof of Theo-
rem 1.5. A comprehensive account of computations of this type is given in the book [7] by
A. Gray. See in particular [7, Appendix A.2] for the calculation of the moments of the sphere.

A.1. Integrals over Br.0/. Recall thatZ
Br .0/

.yi /2 D
1

3

Z
Br .0/

jyj2 D
4�

15
r5 for all i D 1; 2; 3:

Thus, for a symmetric tensor Aij on R3, we haveX
i;j

Z
Br .0/

Aijy
iyj D

4�

15
r5 trA:

Similarly, Z
Br .0/

.yi /4 D
4�

35
r7

and for i 6D j , Z
Br .0/

.yi /2.yj /2 D
4�

105
r7:
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For a totally symmetric tensor Bijkl on R3, we have thatX
i;j;k;l

Z
Br .0/

Bijkly
iyjykyl D

X
i

Bi i i i

Z
Br .0/

.yi /4 C 3
X
i 6Dj

Bi ijj

Z
Br .0/

.yi /2.yj /2

D
4�

35
r7
�X

i

Bi i i i C
X
i 6Dj

Bi ijj

�

D
4�

35
r7
X
i;j

Bi ijj :

A.2. Integrals over Sr.0/. Recall thatZ
Sr .0/

.yi /2 D
4�

3
r4:

It follows that, for a symmetric tensor Aij on R3,X
i;j

Z
Sr .0/

Aijy
iyj D

4�

3
r4 trA:

Similarly, Z
Sr .0/

.yi /4 D
4�

5
r6 for all i D 1; 2; 3;Z

Sr .0/

.yi /2.yj /2 D
4�

15
r6 for all i ¤ j:

Thus, for a totally symmetric tensor Bijkl on R3, we haveX
i;j;k;l

Z
Sr .0/

Bijkly
iyjykyl D

4�

5
r6
X
i;j

Bi ijj :

If Bijkl is symmetric in the first two slots and in the second two slots separately, we obtainX
i;j;k;l

Z
Sr .0/

Bijkly
iyjykyl D

X
i

Bi i i i

Z
Sr .0/

.yi /4 C
X
i

X
j 6Di

Bi ijj

Z
Sr .0/

.yi /2.yj /2

C 2
X
i

X
j 6Di

Bij ij

Z
Sr .0/

.yi /2.yj /2

D
4�

15
r6
�
3
X
i

Bi i i i C
X
i

X
j 6Di

Bi ijj C 2
X
i

X
i 6Dj

Bij ij

�

D
4�

15
r6
�X
i;j

Bi ijj C 2
X
i;j

Bij ij

�
:

Finally, recall that Z
Sr .0/

.yi /6 D
4�

7
r8 for all i D 1; 2; 3;Z

Sr .0/

.yi /4.yj /2 D
4�

35
r8 when i ¤ j;Z

Sr .0/

.y1/2.y2/2.y3/2 D
4�

105
r8:
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Assume now that the tensorCijklmn on R3 is symmetric in the first four indices and, separately,
in the last two indices.X

i;j;k;l;m;n

Z
Sr .0/

Cijklmny
iyjykylymyn

D

X
i

Ci i i i i i

Z
Sr .0/

.yi /6 C 6
X
i;j

distinct

Ci ijjjj

Z
Sr .0/

.yi /2.yj /4

C

X
i;j

distinct

Ci i i ijj

Z
Sr .0/

.yi /4.yj /2 C 3
X
i;j;k

distinct

Ci ijjkk

Z
Sr .0/

.yi /2.yj /2.yk/2

C 8
X
i;j

distinct

Ci i ij ij

Z
Sr .0/

.yi /4.yj /2 C 12
X
i;j;k

distinct

Ci ijkjk

Z
Sr .0/

.yi /2.yj /2.yk/2

D
4�

35
r8
�X
i;j;k

Ci ijjkk C 4
X
i;j;k

Ci ijkjk

�
:

A.3. Further useful integrals. The following computations needed in the proof of
Theorem 1.5 are readily verified using the identities from the previous subsection. Recall that
� is a constant tensor field of rank 2.Z

Sr .0/

�
jaj2jyj2 � 3ha; yi2

jaj5

�2
D
16�

5

r6

jaj6
;Z

Sr .0/

�
�.y; y/�

1

3
jyj2 tr �

��
jaj2jyj2�3ha; yi2

jaj5

�
D

Z
Sr .0/

�.y; y/

�
jaj2jyj2�3ha; yi2

jaj5

�
D
8�

15

r6

jaj3

�
tr � � 3jaj�2�.a; a/

�
;Z

Sr .0/

�
�.y; y/ �

1

3
jyj2 tr �

�2
D
8�

45
r6
�
3j� j2 � .tr �/2

�
D
8�

15
r6j V� j2:
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