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On far-outlying constant mean curvature spheres
in asymptotically flat Riemannian 3-manifolds

By Otis Chodosh at Princeton and Michael Eichmair at Vienna

Abstract. We extend the Lyapunov—Schmidt analysis of outlying stable constant mean
curvature spheres in the work of S. Brendle and the second-named author [3] to the “far-off-
center” regime and to include general Schwarzschild asymptotics. We obtain sharp existence
and non-existence results for large stable constant mean curvature spheres that depend deli-
cately on the behavior of scalar curvature at infinity.

1. Introduction

We complement in this paper our recent work [5] on the characterization of the leaves
of the canonical foliation as the unique large closed embedded stable constant mean cur-
vature surfaces in strongly asymptotically flat Riemannian 3-manifolds. More precisely, we
extend here the Lyapunov—Schmidt analysis of outlying stable constant mean curvature spheres
developed by S. Brendle and the second-named author in [3] to include the far-off-center
regime and general Schwarzschild asymptotics.

We begin by introducing some standard notation.

Throughout this paper, we consider complete Riemannian 3-manifolds (M, g) so there
are both a compact set K C M and a diffeomorphism

M\ K ={xeR’:|x|> 1}
such that, in this chart at infinity, for some g > % and non-negative integer k,
(1.1) gij = 8ij + Tij,
where
drzij = O(|x|747 1)
for all multi-indices I of length |/| < k. Moreover, we require that the boundary oM of M, if

non-empty, is a minimal surface and such that the components of 0M are the only connected
closed minimal surfaces in (M, g). We say that (M, g) is C*-asymptotically flat of rate q.
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It is convenient to denote, for r > 1, by S, the surface in M that corresponds to the
centered coordinate sphere S,(0) = {x € R3 : |x| = r} and by B, the bounded open region
enclosed by S, and OM . Given A C M, we let

ro(A) :=sup{r > 1: AN B, = @}.

A particularly important example of an asymptotically flat Riemannian 3-manifold is
Schwarzschild initial data

4 3
m . .
M={xeR>:|x|>2 d g=(1+-— dx' ® dx',
{x x| > 2} and g (+2|x|);x@9x
where m > 0 is the mass parameter.
We say that (M, g) as above is CX-asymptotic to Schwarzschild of mass m > 0 if, instead
of (1.1), we have

4
m
(1.2) gij = (1 + m) 8ij + 0ij.,
where
drai; = O(|x|72711)

for all multi-indices I of length |/] < k.
Our contributions here when combined with the key result in [5] give the following theo-
rem.

Theorem 1.1 ([5]). Suppose that (M, g) is a complete Riemannian 3-manifold that is
CS-asymptotic to Schwarzschild of mass m > 0 and whose scalar curvature vanishes. Every
connected closed embedded stable constant mean curvature surface with sufficiently large area
is a leaf of the canonical foliation.

The canonical foliation {X g }o<H<H, of M \ K (for appropriate Hy > 0 and K C M
compact) through stable constant mean curvature spheres ¥z with respective mean curvature
H was discovered by G. Huisken and S.-T. Yau in [9]. They showed that, for every s € (%, 1],
there is Hs € (0, Hp) such that for H € (0, Hy), X is the only stable constant mean curva-
ture sphere of mean curvature H in (M, g) that encloses the ball {x € R3 : |x| < H™*} in the
chart at infinity. This characterization was later refined by J. Qing and G. Tian [13]: Every leaf
3. g of the canonical foliation is the unique stable constant mean curvature sphere of mean cur-
vature H in (M, g) that encloses K. (In [5, Appendix F] we provide an alternative argument of
this result from [13] in the case where the scalar curvature of (M, g) is non-negative.) In joint
work with A. Carlotto [4] and inspired by earlier work of J. Metzger and the second-named
author [6], we extended this characterization further under the additional assumption that the
scalar curvature of (M, g) is non-negative in the following way: Choose a point p € M. Every
connected stable constant mean curvature sphere X C M that encloses p and whose area is
sufficiently large is a leaf of the canonical foliation. Thus, to prove an unconditional unique-
ness result along the lines of Theorem 1.1, it remains to understand large stable constant mean
curvature spheres that are outlying in the sense that the bounded region they enclose is disjoint
and — in view of the results in [4] — far from K. The center of mass flux integrals used in [9, 13]
vanish in this regime; new ideas are needed. S. Brendle and the second-named author discov-
ered a subtle relationship between scalar curvature and outlying stable constant mean curvature
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spheres in [3]. They gave examples of divergent sequences {X }?2_, of outlying stable con-
stant mean curvature spheres in (M, g) asymptotic to Schwarzschild with m > 0, which is the
setting of [9, 13]. In fact, X is a perturbation of the coordinate sphere

Sax Qk§) = {lx — Mgl = Ag 1 x € R?}

in the chart at infinity, where £ € R3 is such that || > 1 and where 1; — oco. On the other
hand, they showed that no such sequences can exist in (M, g) if the scalar curvature is non-
negative, provided a further technical assumption on the expansion of the metric in the chart at
infinity holds.

Theorem 1.2 (S. Brendle and M. Eichmair [3]). Let (M, g) be a complete Riemannian
3-manifold that is C*-asymptotic to Schwarzschild with mass m > 0. In addition to (1.2), we
also require here that

4
m _
(1.3) gij = (1 + m) 8ij + Tij + o(|x] %) as|x| — oo,

where Tj; is homogeneous of degree —2, with corresponding estimates for all partial deriva-
tives of order < 4. Assume that the scalar curvature of g satisfies R > —o(|x|™*) as |x| — oc.
There does not exist a sequence {Ek}zozl of outlying closed stable constant mean curvature
surfaces in (M, g) with

(1.4) ro(Zx) > 00 and ro(Zp)H(Zr) — n> 0.

In the statement of this result and below, we use H (X ) to denote the constant mean cur-
vature of ¥ with respect to the outward pointing unit normal in (M, g). Our sign convention
is such that coordinate spheres in Euclidean space have positive mean curvature.

In our recent work [5], we show that when (M, g) is asymptotic to Schwarzschild with
mass m > 0 and if the scalar curvature is non-negative, there are no sequences {72, of
embedded stable constant mean curvature spheres in (M, g) with

ro(Xx) > oo and ro(Zp)H(Zg) — 0.

(Note that the assumptions here imply that H(X;) — 0 and thus that areag(X;) — 00.)
Assuming in addition that g has additional homogeneity as in Theorem 1.2, this leaves only
the scenario of sequences {X 7 |, where

ro(Zg) — oo, areag(Zg) — oo, ro(Xg)H(Zg) — o0

to fully understand large stable constant mean curvature spheres in (M, g). To study this final
scenario and to investigate whether the assumption of additional homogeneity in the expansion
of the metric (1.3) off of Schwarzschild in Theorem 1.2 is really necessary, we revisit in this
paper the Lyapunov—Schmidt analysis carried out in [3].

We show that Theorem 1.2 is false without the assumption of additional homogeneity in
the expansion of the metric.

Theorem 1.3. There is an asymptotically flat complete Riemannian 3-manifold (M, g)
with non-negative scalar curvature that is smoothly asymptotic to Schwarzschild of mass m > 0
in the sense that

4
m
gij = (1 + _2|x|) 8ij +oij,
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where
or0ij = O(x| 7271y
or all multi-indices I, and which contains a sequence {Z;}3°_, of outlying stable constant
k=1

mean curvature spheres with

ro(Xg) > 00 and ro(Zp)H(Zr) — n> 0.

We also prove that we may drop the assumption of additional homogeneity of the metric
in Theorem 1.2 in favor of a mild growth condition on the scalar curvature.

Theorem 1.4. Let (M, g) be a complete Riemannian 3-manifold that is C*-asymptotic
to Schwarzschild in the sense that

m 4
gij = 1+m 8ij +0ij,
where 0jo;; = O(|x|727 1Yy for all multi-indices I of length |I| < 4. We also assume that

either
R =o(x|™* asl|x| - o0

or
(1.5) x'9:(|x]?R) < o(|x|7?) as|x| — oo.

There does not exist a sequence { X }72 | of closed outlying stable constant mean curvature
surfaces in (M, g) with

ro(Xg) > 00 and ro(Zp)H(ZE) — n> 0.

Note that (1.5) holds in either one of the following two cases.

(i) When R = 0. This is for example the case when (M, g) is time symmetric initial data for
a vacuum spacetime.

(i) When the metric in the chart at infinity has the special form (1.3) in Theorem 1.2, then
R =S +o(x|™).
where

3
S= > (0:9;Tij — %0 Tj;)-
i,j=1
Note that S is homogeneous of degree —4. Euler’s theorem shows that (1.5) holds if
and only if R > —o(|x|™*). Thus Theorem 1.4 generalizes Theorem 1.2 to the non-
homogeneous setting.

It is interesting to compare (1.5) to condition (H3) in S. Brendle’s version of Alexandrov’s
theorem for certain warped products [1]. Note that our example constructed in the proof of
Theorem 1.3 is a warped product. We also mention that S. Ma has constructed examples of
(M, g) that contain large unstable constant mean curvature spheres [10]. The scalar curvature
in these examples is negative in some places; see [10, discussion preceding the statement of
Theorem 1.1 and proof of Lemma 4.7].
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We now turn to the case of large stable constant mean curvature spheres that are very far
outlying in the sense that

ro(Zg) — oo, areag(Xy) — oo, ro(Zx)H(Zg) — oo.

These surfaces are not within the scope of the Lyapunov—Schmidt analysis in [3], where case
(1.4) is considered. The main difficulty in the regime considered here is that the “Schwarzschild
contribution” to the reduced area functional leveraged in [3] is no longer on the order of O(1)
but instead decaying. To proceed, it is necessary to obtain rather involved estimates for the
reduced functional. To describe our results, we first recall the basic setup and some terminology
from [3] that we will also adopt here. A standard application of the implicit function theorem
shows that, given A > 0 large and £ € R3 with |£| > 1, there is a closed surface Y (g,) in the
chart at infinity so that the following hold:

4 A3
3

* X(,) bounds volume with respect to the metric g.

* (g, is the Euclidean graph of a function u ) on S3(1£), i.e.

U (x)y

Y = {/\S +y+ h x=A+yce SA(AS)},

where

|
sup |u@gnyl +A sup [Vuge | + A2 sup |V2u(g’,1)| = 0(—)
2 (L) 3 (LE) S5 (LE) &1

* u(g,y) is orthogonal to the first spherical harmonics on S (A£) with respect to the Euclid-
ean metric.

* The mean curvature of X ) with respect to g viewed as a function on S, (A§) is the
restriction of a linear function.

Given a sequence {Z } 72, of connected closed stable constant mean curvature surfaces with
rO(Ek) — 0OQ, areag(Ek) — 00, rO(Ek)H(Ek) — OQ,

the argument in [3, p. 676] shows that for all k large enough, X = X, ) for appropriate
Ak > 0 and & € R3 both large. Whether (M, g) admits such sequences can now be decided
using the following result.

Theorem 1.5. Letr (M, g) be a complete Riemannian 3-manifold that is C>tt-asymp-
totic to Schwarzschild with mass m = 2, where £ is a non-negative integer. Let A > 0 and
£ € R3 both be large. Then

2 T
(1.6) areag (s 1)) = 4742 — TZA“R(Ag) AL

- i—glél_6 +OM7ET) + 0(El™),

where R is the scalar curvature of (M, g). This expansion can be differentiated € times with
respect to &.

D' We may compute the Laplacian of scalar curvature either with respect to g or with respect to the Euclidean
background metric in the chart at infinity. The difference is of the order of the error terms.
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Let £ > 1. Asin [12] or [3], we use that the map

£ > areag (X 1))

has a critical point at £ if, and only if, X g ) is a constant mean curvature sphere. If £ > 2, then
the critical point is stable if, and only if, (¢ ;) is a stable constant mean curvature sphere. This
immediately leads to the following corollary.

Corollary 1.6. Let (M, g) be a complete Riemannian 3-manifold that is C ®-asymptotic
to Schwarzschild in the sense that

N
gij = 1+m 8ij + 0ij,

where 070;; = O(|x|72711) for all multi-indices I of length |I| < 6. Assume that the scalar
curvature vanishes. There does not exist a sequence {Xy}72 | of connected closed stable con-
stant mean curvature surfaces in (M, g) with

ro(Xg) — oo, areag(Xy) — oo, and ro(Xx)H(Zg) — oo.

The analogue of Theorem 1.4 in this setting is not so clear-cut. We have the following
result.

Corollary 1.7. Let (M, g) be a complete Riemannian 3-manifold that is C-asymptotic
to Schwarzschild in the sense that

4
m
gij = (1 + —2|x|) 8ij + oij,
where
d0ro1j = O(|x|27 1

Sor all multi-indices I of length |I| < 6. We also assume that the scalar curvature R of (M, g)
is radially convex at infinity in the sense that

(1.7) x'x/9;0;R >0

outside of a compact set. There does not exist a sequence {Zy }77_, of connected closed stable
constant mean curvature surfaces in (M, g) with

ro(Xg) — 00, areag(Xy) — oo, ro(Xx)H(Xg) — oo.
Our assumption (1.7) here is surprisingly sharp. Comparing with Theorem 1.2 or Theo-
rem 1.4, one might be lead to conjecture that it can be weakened to
(i) assuming that x'x/9;0; R > —o(|x|™*) as |x| — oo, or, more generally,

(ii) assuming that 0;; = T;; + o(|x|72) as |x| — oo where T;; homogeneous of order —2,
and that the scalar curvature is non-negative.

The following example dashes any hope of such generalizations.



Chodosh and Eichmair, Far-outlying CMC surfaces 167

Theorem 1.8. There is an asymptotically flat complete Riemannian 3-manifold (M, g)
with non-negative scalar curvature such that, in the chart at infinity,

gij = (1+ [x[7H%; + Tij + o(Ix|™*) as|x| — oo

along with all derivatives, where Tj; is homogeneous of degree —2, and which contains
a sequence {3 }32, of outlying stable constant mean curvature spheres with

ro(Xg) — oo, areag(Xy) — oo, ro(Xg)H(Xg) — oo.

To conclude, we note that Lyapunov—Schmidt analysis was used by, e.g., R. Ye [14],
S. Nardulli [11], and F. Pacard and X. Xu in [12] to study the related question of when small
geodesic spheres admit perturbations to constant mean curvature. The answer depends on the
scalar curvature. In particular, S. Nardulli [11] applied Lyapunov—Schmidt reduction to study
the expansion of the isoperimetric profile of a Riemannian manifold for small volumes. We also
note that there is a large body of work on stable constant mean curvature spheres in general
asymptotically flat Riemannian 3-manifolds. We refer the reader to [5, Section 2.1] for an
overview and references to results in this direction.

Acknowledgement. We thank S. Brendle for helpful conversations.

2. Proof of Theorem 1.4

The proof follows the lines of [3] with one important difference: We do not assume here
that the deviation of the metric from Schwarzschild is homogeneous of degree —2 to top order.
Without loss of generality, we may assume that the mass m is equal to 2. Thus,

gij = (1+ |x|7H*8;; + i),
where
oroi; = O(Ix[7>71))
for all multi-indices 7 of length |7| < 4.

Let Q be a bounded subset with compact closure in R3 \ B;(0). For £ € Q and A > 0
sufficiently large, we may use the implicit function theorem to find surfaces ¥ 1) as in
[3, Proposition 4]. Moreover, the surface X ) is a constant mean curvature sphere (respec-
tively, a stable constant mean curvature sphere) if, and only if, £ is a critical point (respectively,

a stable critical point) for the map § + areag (X, 4)). The derivation of [3, Proposition 5]
carries over to give

2.1) areag (S (g 1)) = 4nA% + 21 Fo(|€]) + Fo(E,A) +0(1) as A — oo.
Indeed, the assumption that o is homogeneous is not used up to this point of [3]. We recall that

2 -1 t+1

Fo(t) = —14 4+ 16¢% log + (15t —t7 Yy log

12 r—1
is the contribution from the Schwarzschild background, while
1 1
(2.2) Fo(E,0) = —/ trs,. ,, 0 — — tro
’ 2 /S e A B s

is the contribution from o.
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Here and below, unless explicitly noted otherwise, all geometric operations are with
respect to the Euclidean background metric in the chart at infinity. Following the notation of [3],
given £ € R3 and A > 0, we will often write

S(E,A) = Sk(ké) and B(g’,\) = BA()Lé).

2.1. Radial variation. In the computation of the radial derivative of (2.2) in [3, proof
of Proposition 7], the additional assumption that o is homogeneous is used in various places.
We compute the radial derivative of (2.2) for general o below. Our computation parallels that
in [3] but requires several additional integrations by part:

d
(VeFo)(§.A) = —|  Fs(s§. 1)

s=1

ds

- % /S(E.A) S 2 VEO — /:S‘(S.A)(tra)(f, v)  (we write § = éT + (&)
A

=3 ), eVt = [ wore

2 S
L2 / t \%
— T o
2 Jses S VET

:géwm%MW®@w5mew@w
" % /S  Verwo = (Vo))

=%LMM%”W®@”7me®@”
+ % /SM Ver(tro — o(v.v)) + 20 (Vgrv. v)

A
=—me%mww@w—/ (tro) (£ v)

2 S

A
+ = / ((tro —o(v,v))(—divg, ,, gT) +20(VegTv,v)
2 s '

A
=—Awm%mwm&w—/ (tro) (€. v)

2 S
+/ (tro) (&, v) —o (v v)(E.v) +0(ET V)
Se.n

A
== A(g,m(trS@M Vyo)(§.v) +/ o(E,v) —20(v, V) (£, V).

2 S

We define a vector field
Y = (£.v)o(v.-)F

on S ) and compute

divs,,, ¥ = /—10(51 V) — %(S, v)a(v.v) + (§.v) trs ;, (V.o)(v.-) + %@’ V) IS 3, O



Chodosh and Eichmair, Far-outlying CMC surfaces 169

The first variation formula gives

A 1 !
2 /S(“) (trse ) (Vo) (v, ))(E,v) = 3 /S@.A) (Bo(v,v) —trg,, 0)(E. V) — E/S(“) o (£, v).

We insert this into the above expression, and continue:

ds

A
s=1F(s§, A) = 5 /S(“) (trse.y Voo —trs ,, (V.o) (v, ) (&, v)

We write (£, v) = —|€]%> + A7 1(€, X) in the first integrand, where X is the position field, to
obtain

d

A
F(SE’ A) = E\/:S‘ (trS(g';\)(V'O—)(V’ ) - trS(E,)L) VUO-)(|E|2 - A_I(S’ X))
(€3]

s=1
1

-3 (ro)(§,v) —o (€, v)

2\/:9@‘)‘) ro % o %

A
=5 | @V - uViopeP - A7 e X))
S

1
-5 ) @ o,
S
We define a vector field W = divo — V tro. This yields

d 1 1
R =g [ Eaem 0w =g [ ol —o

“ S
1 ) )
2 /B(s,m ({5 A5 — )W) - 2 /S@,A) (ro)(€,v) —o(&,v)

1 1
_ - div W)(£, A6 — X) — = W
2 /B(S.A)( ! )(§. A8 ) 2 /B(S.A) ¢ )
1
-5 /S(E’M(tro)(é,ﬂ —a(§,v).

Note that (£, W) = div(a (€, ) — (tro)&). We apply the divergence theorem to arrive at
d 1 ) 1
5 reen =3 [ @vwieas-x - [ o - @0y

s=1 B

1
-5 (tro)(§,v) —o(§,v)
2/S(“) ro)(&,v) —o(§,v

1
= (div W) (& A& — X).
2 /B(S.A) !

Note that
divW = R + O(|x|™).

where R is the scalar curvature of g. In conclusion, we obtain

d
(2.3) (VeFo)(§. 1) = I

F(sé,k)=l/ (E,AE— XYR+0(l) asA — oo.
1 2 JBe s

S=
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2.2. Radial variation in spherical coordinates. Assume first that
R>0 and x'9;(Jx|*>R) <0.

For definiteness, we assume that
£ = [&]es,

where |£] > 1. In this subsection, we compute the radial variation

/ (A€~ X.E)R
B, (A§)

in spherical coordinates
(p. ¢, 0) — (psing cos b, psing sin b, p cos @).
on the complement of the z-axis. The radial line in direction
(sin ¢ cos 6, sin ¢ sin 0, cos @)

intersects the ball B, (A£) in the p-interval whose endpoints are the solutions
I , \?
P+ = )\|§|(cos¢ + (W — sin ¢) )

p> —2pA|E|cos ¢ + A*(|E]* — 1) = 0.

of the quadratic equation

The intersection is non-empty for angles ¢ € [0, ¢+ ], where ¢+ € (0, ) solves
1
612

SiIl2 ¢+ =

We then have that

/ (A — X.6)R
B, (A§)

2r o+ o+
- / / / R(p. . 0)(MEI? — plE] cos §)0? sinp dp dep d
0 0 _

2 o
- |s|/O /0 +/:+ P R(p. 6. 0)(ME| — peos ) sing dp dp d

e [0 (MELN (2 o+ .
= |§|/0 /0 (c0s¢) R(cos¢’¢’0)(/p (kISI—pcos¢)dp) sing de¢ db.

Now, for every ¢ € (0, ¢4),

p+
/ (AE| = pcosd) dp = (p+ — p-)A|€| sin*§ > 0

so that, in conclusion,

/ (AE— X,E)R > 0.
Bi(A8)

Arguing as in [3, p. 677] shows that 3¢ 3) cannot be a constant mean curvature sphere.
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We now discuss how to proceed if we only impose the weaker assumption (1.5). Note that
R = O(]x|™*) by asymptotic flatness. It follows that there is a function f with f = o(|x|™%)
as |x| — oo such that

R+ f>0 and x'9;(|x|>(R+ f)) <O.

Proceeding as before, we obtain the estimate

/ (AE— X, E)R > —0(1) as A — oo.
B, (A8)

This is enough for the argument in [3] to yield that X ) does not have constant mean
curvature.

3. Proof of Theorem 1.3

We follow the lines of [3, proof of Theorem 1] in that our metric has a pulse in its scalar
curvature which forces the reduced area functional § > areag (X 4)) to have stable critical
points. Unlike the examples in [3], our metric is spherically symmetric and — more importantly
— has non-negative scalar curvature.

Let S : (0,00) — (—o00, 0] be a smooth function such that

SOy =004

for every non-negative integer £. We define a smooth function ¢ : (0, 00) — R by

p(r) = %/ (o —r)pS(p) dp.

Note that
/ 1 o 2
@'(r)= 2 p°S(p)dp
r
SO
r2 N/
3.1) ( r‘;’) — S(r).

Lemma 3.1. For every non-negative integer £, we have that
¥ Q) =007,
Proof. Because S(r) = O(r—%), we see that
e(r)=0(7?) and ¢'(r) =003,
Using (3.1), we find

2¢'(r)

¢'(r)+ L2 = s0).

From this, the asserted decay of the higher derivatives can be verified by induction. |
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On R3\ {0}, we define a conformally flat Riemannian metric

1 4 N\ 1
g=(1+—+<p(r)) g=(1+—) g+0(—2),
r r r

where r = |x|. Note that g is smoothly asymptotic to Schwarzschild with mass 2. Its scalar
curvature is easily computed as

=5/.2 1/
R:—8(1+1+¢(r)) U f) :—8(1+0(1))S(r).
r r r

In particular, the scalar curvature is non-negative on the complement of a compact set. We now
make a particular choice for S. Fix y € C°°(R) that is positive on (3, 4) and supported in [3, 4].
Let

o0
S(r)=—-A4)_107*y(107%7),
k=0

where A > 0 is a large constant that we will fix later. Recall from (2.1) that, as A — oo,
areag (S (g 1)) = 47A% + 21 Fo(|€]) + Fo (€, 1) + o(1).

We choose £ € R3 with 2 < |£| < 9and A = 10/ where j > 1 is a large integer. Using (2.3),
we compute

1

d ,
|, e (Saea) =27 6IRED 5 [ RGOS = X) 4 o)

— 21| Fy([€]) — 4 / S(X(EAE — X) + o(1)

X€B)(A§)

= 2ulglFgeh + 44 [ )Y DEE-Y) + o).
YeB(§)

When |£| = 2+/2, the integral on the last line is negative. We choose A > 0 large so that the
sum of the first two terms is negative. When |&| = 5, the second term vanishes while the first
term is strictly positive. Thus, for j > 1 sufficiently large, the derivative

75 areag (E(sg,;k))

s=1

is negative when |£| = 2+/2 and positive when |€| = 5. Using that the metric g is rotationally
symmetric, we see that the map

&> areag(E(E’m,—))

has a stable critical point — a local minimum — at some £; € R? with |& | € (2+4/2, 5). In other
words, X (€;,107) is a “far-off-center” stable constant mean sphere for j sufficiently large.

Remark 3.2. As noted by S. Brendle in [1, Theorem 1.5], the work of F. Pacard and
X. Xu [12] shows that every rotationally symmetric Riemannian manifold whose scalar curva-
ture has a strict local extremum contains small stable constant mean curvature spheres.
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4. Proof of Theorem 1.5

Consider
gij = (14 |x|7H*8;; + o)
with
0701 = O(1x| 72711y as x| = o0

for all multi-indices / of length |/| < 7.

Our proof follows the Lyapunov—Schmidt reduction and the expansion for the reduced
area functional in [3]. However, we need to extend the approach of [3] to allow for the transition
& — o0. To this end, we develop the expansion of the reduced area functional to a higher order
than was necessary in [3].

The computations in this section are also related and in part inspired by those for exact
Schwarzschild in [2, Appendix A]. Note that part of our expansion for the reduced area func-
tional areag (X 4)) follows upon rescaling the chart at infinity by A|£| from the work of
S. Nardulli [11] or of F. Pacard and X. Xu [12]. Note that the estimate for the error term in
(1.6) in, e.g., [12] is O(A%|€|™>), where we obtain O(A™!|£]7%) + O(|£|~7). Our stronger
estimate is crucial for our applications in this paper.

Let A > 0 and £ € R both be large. There exist r > 1 with r ~ A and a smooth function
u(g,2) on the sphere Sy (A£) that is perpendicular to constants and linear functions with respect
to the Euclidean metric such that the mean curvature with respect to g of the Euclidean normal
graph X (g 3) of ug ) — as a function on S, (A§) — is a linear combination of a constant and
a linear function and such that

47 )3
VOlg(Z(S’A)) = 3
Moreover,
1
4.1) sup |uce,)l + A sup |Vu(g,;k)|+)&2 sup |V2u(g,k)| =0(—).
r (L) Sy (hE) Sy (AE) &

Indeed, this is a standard consequence of the implicit function theorem; cf. [3, Proposition 4].
We will improve estimate (4.1) below.

It is convenient to abbreviate a = A£. In this section, we will frequently use standard
integral identities recalled in Appendix A.

4.1. Estimating volg (B, (a)). We have that

4.2) (1+ x| fdet(;; + (1 + |x[~1)~*a3)
= (14 ™ 4 0+ 15 tro
# 0 2 (G = o) + 01

Noting the dependence of the error term on r in [2, proof of Proposition 17], we find

47 ,-2 9 r4
/ (4|57 = S+ |a|‘1)6(1 +3(0+ a2+ ——6)
Br(a) 3 lal* ~ 7lal

+ O0(r®lal™7).
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Next, we turn to the terms in the expansion of the volume form (4.2) that involve 0. We
write o for o evaluated at a. When ¢ appears with derivatives, the derivatives are taken firsz,
then the result is evaluated at a.

First, note that for y € B, (0) withx = a + y,

I+ x> =0 +lal™H* + 21 + |a|Y(a + y| 7' = la|™h)
+ (la + y|7' = la|™h)?
=0(la|*|y1?)

as well as

1 _ fay) 1laPlyP —3(a.y)? 3 4

ja+y|™ ~la
By Taylor expansion, we have that

1
tro =tro + Vytro + V2 tr0+6V$yy ro

1 _
+ 24V;‘yyytrg+ o(yP1xI77).

Combining the above expansions and using the expressions found in Appendix A, we have

1 1
—/ A+ |x™H%tre = =(1 + |a|_1)2/ tro
2 JB,(a) 2 B, (a)

+<1+|a|—1)/ (la+y[™" ~ o o

By (a)

+ O0(r°|a|™®)
1 1
Lo+ |a|—1)2/ tro + ~(1+ |a|—1>2/ V2 tro
2 B, 4 B, .,y

1 —1,\2 4
+4_8(1+|a| )Lvyyyy ro

1+ |a|—1)|a|—3/ (@.y)Vy tra

+0(r°|al™%) + 0(r7|a|_7)

2
= —r3(1 + la| ™Y tro + 5(1 + la| ™Y Atro

+4%r7A(Atro)——(1+|a| YrSla| 3V, tra
+ 0(r°la|™®) + 0@ "|al™7).

We now turn to the third term in the expansion of the volume form (4.2),

1 —1\—2 1 2 2
Z/B,(a)“*'x' ) (5<tra) —|o|)

= 2P0+ (Swe? - o) + 06%lal™)
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Now, putting these terms together, we find that

4 _ 12 9r
volg (B; (@) = 5-r*(1 +|al 1)6(1+3(1+|a| g 2W+7la|6)

21
+?r3(1+|a| 1)2tr0+ 5(1+|a| H2Atre

+ mﬂA(Atra) - —(1 + la|™Hr’la| 2V, tro

+ 530+ |a|—1)—2(5<trg)2 ~lg) + 06%1al) + 0 %al),

4.2. Estimating areag (S, (a)). The density of the area form of S, (a) relative to the
Euclidean background is given by

(1 + [xI™H)*det(Sls + (1 + [x|"H)~o]s)
1 1 1
= U+ T+ Sus o+ (1 + |X|_1)_4(§(trs o) - |o|s|2) +O(x[9)

_ 1 1 _
= (1+ |x| 1)4+§tro—§r 2U(y,y)

+30 B H (G 0 =20 ) ~ loP

1
21 2o (y. ) = 57402 + O+l )

As in [2, Proposition 17], we have that

r2 6
/ 1+ |x|—1)4 =47r2(1 + |a|_1)4(1 1201 + |a|_1)_ LA _r_6)
Sy (a) | 5 |a|
+ 0@ al™7).

We compute, using standard integral identities recalled in Appendix A,

1 1 1 1
5 tro=_ [t —| Vit v4 ¢ 0681al-8
2/Sr(a) e 2/, rg+4/Sr ro+48/ Yoy WO+ 0@ lal™)

=2nr?tro + %r“Atrg + %rGA(A tro) + O(r8la|™®)

and

1 / -2 1 -2 1 —2/y2
= r d%w=—/r ﬂ%w+—fr (V5,0 y)
2 Sy (a) 2 Sy 4 Sr 7Y

1 _ _
+ 4_8 Z(V;,y’y,yg)(y7 y) + O(r8|a| 8)

2 2
= ?nr tro + — G 4Atr0+ 1 —r*div(div(o))

T 6 s 8,18
+ 420r A(Atro) + 1OSA(le(le(Q) + O(r®lal™®).
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Putting these two expressions together, we find

1 1 2
—/ tra——/ r20(y,y) =2ﬂr2trg——nr2trg+£r4Atrg
2 Jsr (@ Sr(a) 3 3

2
— ;T—Sr“A tra — %r4 div(div(a))
+ %réA(A tro) — 472T—Or6A(A tro)

- %A(div(div(g)) + 0(r®la|™®)
4

4 2
= 2o+ ot Aro) - Tt dividivia))

T 6 b4 o

— ——A
+ 70r A(Atro) 105 (div(div(o))
+ O(r®|a|™®).

Finally, we compute

1 —1\—4 1 2 -2 2
i |, @ (G - 2w o

_ I _
2 o3, = 3 o)

= 0+l [ o - Lt [ ooty

r

1 e 1 1 _
3@ [P e Sl [ lep
S, s,

-5 +1a ™ [ e + 06l

= 22 +1a ) M we)? = T2 + lal ) wre)?
2 142, 2T 5 —1\—4) |2
—nro(1 +lal”")""a] +5r (1 +lal=")"al
T T _
- %rz(l +la ™) (ro)? - Erz(l +la™) o> + 0(r*|al~®)
27 21 T _
= 20+l ) ) = T2+ lal ™) e + 0 al ™)

2 —1y—42 -
= 21+ Jal ) S + O(*al 7).

5
In conclusion, we have
2 1,4 Sz 1P 6 rt
areag(Sr(a)) = dmr (1 +la|" )"\ 1+2(0 + |a|) " —7 + ¢
la|* ~ 5lal®
4 4 2
+ ?nrztrg + %r“Atrg— 1—751r4 div(div(a))
n :—OrGA(Atrg) - 1%sr%(chv(div@)

2 C1e_4, 0 _ _
—?r2(1+|a| D7THEP + 0 Hal~®) + O |al 7).
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4.3. Estimating .7 (S, (a)). We let

F (Sr(a)) = areag (S (@) —2r (1 + |a| =) 7 volg (S;(a)).

We then compute

2 1,4 1\—2 r? 6 r
F(Sr(a) =4nar (A +a| D)1 +20 +|a| ) "— + =-—
lal* * 51al®
4 4 2
+ ?nrz tro + 1—75Tr4Atrg— l—jstr4 div(div(a))

2 o
+ ;T—Ommtrg - %r%(cﬁv(div(g)) - ?”rz(l +la™H G

81 5 1,4 12?9t
— 21 1+ 3(1 =
3}" ( —|-|a| ) ( + ( —|—|Cl| ) |a|4+7|a|6
4 2 2n 4 T .6
——rtra— —r"Atra — —r°A(Atro)
3 15 210
8
* %(1 +la™H 7 a| PV wa
2 1
~ 2+ ) 2 (re)® — o
3 2
+0@0*al™® + o7 |a]™7)
4 487 r® 2 2
RTINS N

2 o
+ lg—sr6A(Atrg) . %Sr%(div(div(g)) _ ?ﬂrz(l ¥ la"H 482

2 1
=220l (G2 - o)

8
+ S5rtal 7 Vatra + 0(*a[ %) + 07|l 7).

4.4. Estimating the mean curvature of S, (a). Consider
gij = &ij +6ij
where
Gij = (1 +|x[7H) %0y
By the computation in [8, p. 418], we have
H=H-r""tusé+r360.y)—r tus(V.6)(y.")
1
+ Er_l trs Vy6 4+ O(r x| ™)
-1_ —1. .~ —3 —1 g:0A L A
=2r " —r tro +2r76(y,y)—r " div(o)(y) + 3" V) tro
1 _ R 1y
+ 57 (V8 (3 y) + 00T X

for the mean curvature of S, (a) with respect to g. The mean curvature of S, (a) with respect
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to g is given by
He = (1+ x|™H2H — 41 + [x[7H73|x 73 (x, )
=L+ ™Y 72H -4 A+ x[TH73 3 x y) + 0(lx ™
=2r M+ X TH T2 =4 A+ | TH T T (x )
—r N+ ] TH 2w s 4+ 2030+ X7 T26(0, p)

. 1 _ i .
—r_l(l+|x|_1)_2div(o)(y)—|—§r Y+ 1x™H 72V, 6

1 _ e R _
+5r A+ 1xTHTH6) (v, y) + O(Ix] 7
=257 (4 XD 72 =4 A T T T )
—r (4 alTH ™ wo +2r 3 (1 + a0 (v, )
1 1
—r L div@) () + 5 Vy o+ Sr 3 (Vy0) () + O[T,
Expanding as in [2, proof of Lemma 18], we have that

(1 x7H 72 =200+ x[TH 73 x 7 x, p)

lal?|y]? — 3(a, y)?
laf?

= (1+la|™)7? - + 00 |x| ™).

Thus,
_ylal?|y? —3{a. y)?
|a]®

— r_l(l + |a|_1)_6 tro + 2r_3(1 + |a|_1)_60(y, V)

He =2r'(1 +|a|™H ™2 —2r

1 1
— 1 div(o)(y) + Er_lvy tro + Er_3(Vya)(y, y) + O(r2|x|_4).

Now, we consider the (Euclidean) projection of Hg to A and A>3, where A is the space of
second eigenfunctions on S, and A~ is the L?(S,)-orthogonal complement of Ag @ A1 P A»:

20aPlyl? = 3(a.y)?

projp, He = . alp +2r 3 (1 +|a| ") projx, o (v, y) + O 3|x[H)
2 al?|y|? = 3{a, y)> N L 1
Sl et LI M I PR B LT
r la| 3
+ 00 |x[™%).

For the higher eigenspaces, we will only need the estimate
proja., Hg = O(|x|7) + 0 ?[x[™).
4.5. Estimates for u. Our goal here is to improve upon the initial estimate (4.1). To

this end, let ¢ € [0, 1]. Consider the Euclidean graph above S;(a) of the function zu. The initial
normal speed with respect to g of this family of surfaces is given by

w—u(lv)
_gr,g,
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Note that

y - 1 12— -
e2ove) = 0 7024 50+ T2 2000 + 0T
= (1 +x[7)* + 0(x|?)
up to and including second derivatives. It follows that
Ag@w + (|hg g + Ricg (vg.ve))w = Hg — Hg + 07 |€ 7).
where Hy is the mean curvature of S, (a) with respect to g. From this, we see that
AS" @y + 2772y = Hy — HE + O(A 3£ 7).
In conjunction with the estimate
proja_, (Hg — Hy) = proja_, Hy = OQ7|€]7%) + O 2[E[7?)
from the previous subsection, we obtain

sup ugal + A sup [Vugnyl +A% sup [Vug = O EIT2) + O(JE] 7).
Sy (AE) Sy (A§) Sy (AE)

This allows us to improve the coarse estimate above to
Ay @w + (|hg g + Ricg (vg.ve))w = Hg — Hg' + O™ + 007 [€79).
Thus
Ay @w = (14 |a|TH AT @u + 07 e + 0ATE ).
Continuing on, we have that
lhelz = 2r2(1L+ [a| ™)™ + 0 731E17%) + 0 7HEI )

and
Ricg (vg.vg) = OAT[E]7).

Putting these estimates together, we find that
(1+]a™H2A5% @y 427721 + |a| ™) 2u
= Hy — Hy + 075 + 07 7).
Hence,
ASr(@ proja, u + 2r—? proja, u
= projAz(AS’(a)u + 2r2u)
= (1 + la|™")? proja, Hg + O T*E[™H + 07| 7)

2|al?|y]? = 3(a.y)* | 2 . 1 -
=T a4 (2000 - 3P + 06
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This implies that

r (12 2_3a7 2 1 1
rlal7lyl” = 3{a. y) ——+1a™H™Ha.y) = slyPro)+ 0™
2 |a|5 2r 3

together with two derivatives. In particular,

projy, u =

proja, u = O E[7%) + O(E[7).
The above expression also implies that

proja_, u = OQE[T?) + O(lE™)

along with two derivatives.
4.6. Estimating .7 (X). Let

F(T) = areag (T) — 2r (1 + |a|™1) 72 vol4 (Q),

where €2 is the compact region bounded by X. Recall that
4
volg (Q) = ?”13.

Our goal is to compare .7 (X) with .7 (S (a)). We will make heavy use of the estimates for u
derived in the previous subsection. Computing as in [3, proof of Proposition 5], we obtain

F(X) = F(Sr(a)) +/ )(Hg —2r Y1 + |a|—1)_2)w dug

r(a

1

+ -/ Hg(Hg —2r (1 + |a| ™)™ w? dug
2 Jsr (@
1

2 /S (a)(Agr(a)w + (|hg|§ + Ricg (vg, vg))w)w ditg
+ O THE[T®) + 0T E).

By the computation at the beginning of Section 4.2,

1 1
ditg = (0 7 4 o = 2720030 + Ol ™) ).
We begin with the first of three terms in the expansion of .% (X) off of .7 (S, («a)).

/ (Hg — 2r Y1+ Ja™HHw dig
Sy (a)

/S ( )(Hg =2r7 (14 JalTHu( + x[TH + 073 ETT) + 0T ETE)

=1+ IaI_I)G/S ( )(Hg =2 (14 [a| ™) u + OAT2ET) + 0 THET)

2 2 2
a — 3{a, _
— -2 ja e [ C'“” 2 ”)u+w3/' o (v
S (a) |al S, (a)

+O0QTHET) + 0(EIT)
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5 2 2\ 2 2 2 _ 2
:_/ (|a| |y[? —3(a. y) ) +r_2(1+|a|_1)2/S (Ial |y[> = 3(a. y) )Q(y,y)

af aF
1 2
™ [ (e - 5P

+ r‘zf (WMZ 7 3(a’y>2)g(y’y> + 007 ET®) + O[T

laf?

B lal?y? = 3(a, »)2\* . _, lal?|y|? - 3(a, y)?
“[,( PE ) o /( af$ )g(y’y)

2
a7 [ (e = 3 Pra) 06T+ 0qe ).

The second term satisfies

1 _ Ll 4y — “1ye—
E/S()Hg(Hg—ﬂ YA+ lal™H ™ w dug = 00THET) + 0GTET).
r(a

r

Finally, the last term satisfies

1

5 ) AT Ou (e} + Ricg (v vy dig
Sy (a)

= —1(1 + |a|_1)4/ (A u 4+ 2r 2u)u + OA3|E70) + 0LV EI™Y)
2 S, (a)

= 2r2(1 + a1 / (proj ., 1> + OG7?IE[~) + 0(E[™®)

Sy (a

1 _ 1 1
=—r (1 +la|™) 4/ a(y.y)— zlylPua
2 S, 3

L lal?]y|? - 3(a, y)? 1 lal?|y]? - 3(a, y)*\?
ey ( PE )Q(y’y”ifs,.( PE )

+OQTE®) + O(ET).

2

Putting this together, we find that

2
F(2) = y(gr(a))_/ (|a|2|y|2_3(a,y)z)

p la|?

N 2r_2/ (|a|2|y|2 — 3(a, y)z)g(y’ )

la|?

_ i 1 2
—r7* 1+ a|™h) 4/S (g(y,y)—glylztrg)
1 L 1 2
L=y “f 5(r.y) — LlyPuo
2 S, 3

2 (|a|2|y|2—3<a,y>2)g(y’y)

|al®

2(y,12 _ 2\ 2

2 ja|?
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1 2 2_3 , 2\ 2
PR (et

o (|a|2|y|2—3<a,y>2)g(y’y)

lal?

1 2
— gt [ (o000 =3P
OO E) + 0l )

We now use the expansions given in Appendix A.3 to compute

8 8 rt
F() = FS@) = L7+ (5o = 3lal o)
~ (Ll + 0G0 + 0

4 487 r® 2 2
- ?nrz(l +la|™hH* + 3—;;? + 1—75Tr4Atrg - I—Zr“ div(div(a))

+ 105" AB r) = TP AiV(diV(©)

2 1_4,0 2 —1e—af1
=220+ a8 - B o) (0 - o)

87 r4

EW(UQ_ 3la|™ a(a, a))

8 8
+ ortlal T Vatrg - 167 +

— 321 4 ) B + 007 + O(lel ™)

15
4 8 2 2
_ anz(l +lal™H* ~ %Iél‘6 + TZV4AM_ 1—Zr4 div(div(2))
2 °
+ o= A(A ) — S AEV(Aiv©) — S (1 + lal ) TGP
2 1 8
=20 a7 (G re? — o) + Fral Ve
T r4

iap e 3la| " a(a. a)) + O E|7®) + O(18] 7).

Going back to the definition of .% (X), we obtain that

A7 _ 8 _ L 8w .. _
areag(2)=7r2(1+|a| 1)4+Tx3r YA+ laI™) 2—§|g| 6

2 2
+ %r“Atrg— 1—];r4 div(div(o)) + %rGA(A tro)

2 o
— 1S AWdiv(div(o)) — ?”rz(l +la|H 74512

105
2 1 8

=20+ ) (S0 ko ) + T Vatwre)
8w r4

+ (tro —3lal"%a(a.a)) + OAT'EI®) + O(IE]77).

15 Jaf?
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4.7. Estimating r. We now use the expansion

1
volg (2) = volg (Br(a)) + / wdpg + —/ ng2 dug
S/ (a) 2 Js @

+OMIE™) + 0(E7)

to relate A and r. Note that because u is orthogonal to constants and to linear functions,
/ wdpg = O(§]7) + O(A[§]7%)
Sy (a)

and
1

5/ Hgw?dpug = OAE™) + O(AE0).
Sy (a)

Hence, using the expression for volg (B, (a)) obtained previously, we find that

4 4 2
T”M - an3(1 +la|™H + ?”r3(1 Fla ™2 o + OAE

4 1
= Tl (14 30+l e+ 0GR ).

It is convenient to write
A =r (1 + la|7He + ¥),
where |
V= 5(1 +la|™H ™ ro + OAT?E[TH = 0(AT3IE[ 7).
We now estimate the first line in the expansion for areag (X) obtained above.
4 81
?rz(l + la|™H* + 713f-1(1 + la|™H2
4 8
= 32+ la ™)+ 20+ e TH A+ )
2
= 4mr?(1 + |a|—1)4(1 + g‘ﬂ)
2 —1\4 2 4w o, —1\4.,2 2,3
=d4xr*(1 +|a|™") (1+1ﬁ)3+?r (I +lal™") Y~ + 0@ y7)

—4m2? + %rz(l T lal™H (o) + OA2|E[76).

183

4.8. Concluding the estimate for areag (X). Combining the results in the previous

two subsections, we obtain that
8 2
areag (¥) = 4 A2 — %EI_G + %rz(l + la|™H*(tro)? + %r“Atrg

2
— 1—7;r4 div(div(a)) + %rGA(A tro) — %rGA(diV(diV(g))

3
4

8 87 r
+ a3V, tro + = (tro — 3]a| 2o (a. a))

15 15 |af?
+O07EIT) + 0(ElT)

25 —1e—4.0 2 _1—af1
- 2+ )8R - e (G r0? - o)
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8 2 2
= 47)% — £|$|_6 + —nr4Atrg e div(div(a))

15 15
+ %rGA(A trag) — %I’GA(diV(diV@)
4

8 8
+1_75TV4|a|_3VatrQ+ = Ls(ro —3la| 20 (a.a))

15 JaP?
+ O ETO + 0(ElT)
= 47)% — i—’;|s|—6 + 21—’5714(1 + la|™H ¥ (A tro — div(div(o)))

I %Aﬁ(A(A tro) — A(div(div(0)))
4

8 8
+ 2 Al Vatre + S (o — 3lalo(a.a)

15 ]al?
+ 0O ET) + 0317

4.9. Estimating R and AR. We now relate this expression for areag (X) to the scalar
curvature R of (M, g). As with mean curvature, we first consider

gij = &ij + 0ij

where
6ij = (1+ |x|7H) %0y
Then
Ry =divdivée — Atré + O(|x| 7).
Note that
dive = (1 + [x|"H ™ *dive + 40 + [x|H 2 |x|Po(x,-)
and

divdivé = (1 + |x|"H)™*divdive + 4(1 + |x|7H 7 |x| 3 (div o) (x)
+20(1 + |x|7H70x [0 (x, x) — 12(1 + |x|"H) 3 |x| o (x, x)
+4(1 + [x]7H 77 x| P divo)(x) + 40 + [x[TH x| P o
= (1 + |x|"H ™ *divdive + 8]x|3(divo)(x)
+4(1+ |x|TH 72 x| (o = 3|x[ 2o (x, X)) + O(|x| ).

Similarly,

Atré = A((1 + |x|™H*tro)
=0+ x"H*Atro +8(1 + |x| H 2 |x| 3V tro + (tro) A + |x|7H)™*
=1+ |x|TH™Atro + 8|x| 3V tro + O(]x]7°).

Thus, we find that

Ry = (1+ lx|"H™*(divdive — Atro) + 4|x| 3 (tro — 3|x] 20 (x, x))
+ 8|x|3(divo)(x) — 8]x| 3V tro + O(|x|79).
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It follows that
R=—8(1+|x|"HAglx|71 + (1 + |x|7H™*R;
= —=8(1 + |x|7H Az |x|7t + (1 + x| " (div(div(o)) — Atro)
+ 4|x| 3 (tro = 3|x| 20 (x, x)) + 8|x| 3 (divo)(x)
—8|x| 3V, tro + O(x]7%).

It remains to estimate Ag |x|~1. We have that

X - 1, _
Jdet @i = /det(sij +63) = 1+ S w6+ 0(x ™
and .. .. ..
g7 =87 — &7 + o(x|™.
Thus,
Aglx|™ = =3|x| o (x,x) + x| P tro + [x] > (divo)(x)

1
— §|x|—3vx tro + O(|x|7%).
It follows that
R = (1+ |x|H78(div(div(0)) — Atro) — 4|x| > (tro — 3|x| 20 (x, x))
—4|x| 3V tro + O(|x]79).

Similarly,
AR = A(div(div(c)) — Atro) + O(|x|™7).

4.10. Reduced area-functional. We finally obtain that, for £ € R and A > 0 both
large,

2 T 8
) =472 — ZA*R— —ASAR— —|g|7®
aredg (X(g,i)) = 4mAT = AR = s AT AR = 22 ]

+ O ETO) + O(ElT),
where R is the scalar curvature of (M, g) and

R = R(A§),
AR = (AR)(AE).

This completes the proof of Theorem 1.5. We also record here the first radial derivative

d 2 T 481
43 — > =" AIElo, R — —M"|E]0, AR + ——|&]7°
(4.3) 75 Szlareag( (s€,2) G |€]or R 105 |€]0, AR + 35 €]

+OM7YET) + 0(ET)

T —
= 105 C14AIEOrR — A7|E|0, AR + 144[17°)

+OQTE®) + O(EIT).
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5. Proof of Corollary 1.7

We assume that (M, g) is C%-asymptotically Schwarzschild in the sense that
gij = (1+ |x[TH*; + 0y,
where 070;; = O(|x|727 11y for all multi-indices I of length | 7| < 6. We also assume that
xix/ 0;i0;jR >0
outside of a compact set. This condition integrates to yield
x'%R<0 and R>0

We now consider a sequence of connected closed stable constant mean curvature surfaces >y
with
ro(Xg) — 00, areag(Xy) — oo, ro(Xx)H(Xg) — oo.

For k large, we may find A > 0 and £ € R3 both large so that X = (g, and

d
7 . areag (X s¢,2)) = 0.

By (4.3), we have that

0= %(—1415|g|a,g—x7|g|a,A§ + 1441€]7%) + O[T + 0(E[ 7).

It follows that
R =00QT[E[T7) = oA 7).

Using this and (1.7), we may integrate in the radial direction to find that for > 0,
@ R)((1 +1)AE) = 3R = 0(A 7] ).
Integrating this again, we find that
R < oQ7HE™r 4+ R((1+0)A8) = OTHEI™H (o) + (1 +1)77).
Choosing ¢ judiciously, we arrange for the term in parenthesis to be o(1). We have proven that
R =0T,
On the other hand, by combining 0, R = o(A™>|£|™>), 0, R < 0, and Taylor’s theorem, we find
7R =0o(L°lE7°).
Together with (1.7), we similarly obtain
RR =o(LTIEIT).

Now, we consider the first variation of areag (X (g, 1)) in directions orthogonal to §. It fol-
lows that
DR = O0MAE[77).
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Now, as in the radial case, combining Taylor’s theorem with R > 0, R = o(A~*#|£|™*), and
DR = o(A7>|£|7%), we obtain
D?R > —o(A~°|§|7°).

Similarly, we find that
D?3;R = o(A7"IE|7).

Finally, we see from
OrAR = A0, R —2|§|"AT AR + 2071 |E|T107 R + 2072 |E[ 20, R

that
AR < o(A7|E|T).

Returning to the radial first variation, we see that
0> 142°|£[0, R > 144]£|7° + O(A7'[E]7°) + O(€] 7).

This contradiction completes the proof.

6. Proof of Theorem 1.8

Our strategy here follows that of [3, proof of Theorem 1]. However, unlike in [3], we
work in the regime where §& — oco.
Let S : (0,00) — (—o0, 0] be a smooth function with

SO =00=7h

for every non-negative integer £. We define a smooth function ¢ : (0, 00) — R by

1 o0
o) = [ 0=npsrdp.
r
Arguing as in Lemma 3.1, we find that
¢y =007

for all derivatives. We now define a conformally flat Riemannian metric

1 4 1\*_ 1
g=(1+—+<p(r)) gz(l-l——) g+0(—5)
r r r

on the complement of a compact subset of R3. Note that the asymptotics of g are of the form
asserted in Theorem 1.8. The scalar curvature R of g satisfies

(ol o

Fix y € C°°(R) with support in [4, 6] that is positive on (4,6). Assume that y'(5) = —1.
Define
o0
S(r) ==Y 107 y(107/r).
Jj=0
Note that, as required, N, (r)y= 0(,,—5—6).
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Consider £ € R3 with |€] = 10%¢ for ¢ € [3,7]. Then, taking A = 10%, we have that
areag (X 1or)) = 4mA% — 21 10** R(10%€) — 106k(AR)(1okg)
- —|§|—6 + 0(10—7k)

167
= d7)? + 1—10—6k 1) — B 1 o6k, =6 0(1077%)

35
and
16 48
s areag (X (5¢,10k)) = 1_;710—6k "(t) + — 10_6kl‘_6 + 0(10_7k)
s=1
For t = 7, we have
481
| areag (S i00) = —510—6"7‘6 +0(1077%) >0
s=1

for sufficiently large k. On the other hand, for # = 5, we have

167 4871
areag (3¢ 106)) = —Flo— - Z2107% 776 1 0(1077%) < 0.
s=

ds

It follows that for some 7 € (5,7) and every & € R3 with |&| = 10%7, X (&, 10k 1s a stable
constant mean curvature sphere. This completes the proof.
A. Some integral expressions
In this appendix, we recall several standard identities that are used in the proof of Theo-
rem 1.5. A comprehensive account of computations of this type is given in the book [7] by

A. Gray. See in particular [7, Appendix A.2] for the calculation of the moments of the sphere.

A.1. Integrals over B, (0). Recall that

: 1 4
/ ()2 = —/ 2= 225 foralli = 1,2,3.
B, (0) 3 /B0 b

Thus, for a symmetric tensor 4;; on R3, we have
S 4
Z/ Aijy'y! = ErstrA.
i VB0
Similarly,

: 4
o= or”
/Br(O) 35

. : 4
ON207)? = —r'.
/Br(o) 105

and fori # j,
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For a totally symmetric tensor B;;x; on R3, we have that

> / Bijriy'y! yFy! = ZBiiii/ (' )4+3ZBIIJJ/ 2 (r7)?
ik, ?Br© ' B (

m oyt B, (0)
471
7(2311” +ZB,,,,)
i#]
4
= —5r7 ZBiijj.
ij

A.2. Integrals over S, (0). Recall that

o=
5-(0) 3

It follows that, for a symmetric tensor A;; on R3,

Similarly,

; 4
/ ) =26 foralli =1,2,3,
$(0) 5
. . 4
/ H2(H7)? = "6 foralli £ j.
$,(0) 15
Thus, for a totally symmetric tensor B;jx; on R3, we have

4
> / Bijiay' v/ y*y! = %Y Biijy.
iy

i,7,k,l

If B;j; is symmetric in the first two slots and in the second two slots separately, we obtain

kI — 4 iN2(,7\2
Z/ Bijiry' v y*y ZB””/S ") +ZZBZUJ[S(O)(y) ()

i,7,k,l i r( i j#i r
2% By / 02072
i j#E ©)
- ( ZB,,,,+ZZB”,,+2223,,,,)
i j#i i)

47T 6(2311// + ZZBljl])

Finally, recall that
4
/ (yHe = T8 foralli = 1,2,3,
$,(0) 7
[, 000N =T heni £
[ 020N =
Sr(0)
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Assume now that the tensor C; k7, on R3 is symmetric in the first four indices and, separately,
in the last two indices.

> f  Cijktmn)’ 'yl ykytymyn

i,j,k,l,m,n r(
= ZCiiiiiif (e +6 Z Ciijjjj/ CORCEN
- S, (0 Sr(0)
dlstmct
Y G f OV 43 Y G [ 07P0720M2
Y, Sy (0 ik Sr(0)
distinct dlsqtmct
18 Y Giiijy / OV 412 3 e [ GDPOIROR
i Sr(0) .k Sr(0)
distinct dl’stmct
471 8
Z Clljjkk +4 Z Clljkjk
i,].k i),k

A.3. Further useful integrals. The following computations needed in the proof of
Theorem 1.5 are readily verified using the identities from the previous subsection. Recall that
o is a constant tensor field of rank 2.

/ (|a|2|y|2—3<a,y>2)2_ 167 r®
S,(0) lal? 5 |al®’

1 2 2_3 , 2 2 2_3 , 2
/ (g(y,y)——|y|2trg)(|a| |y] 5(61 y) ):/ g(y’y)(lal || 5(61 y) )
S1(0) 3 || +(0) |al

8 6
_ —’”—(trg— 3|a|—2g(a,a>),
a

15 |a|3
Lo N 87 ofa 2
[ o (20 =5Pwe) = e (e ~ re?)
= TEroi8P
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