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Abstract

Let (M, g) be an asymptotically flat Riemannian 3-manifold with nonnegative
scalar curvature and positive mass. We show that each leaf of the canonical
foliation of the end of (M, g) through stable constant mean curvature spheres
encloses more volume than any other surface of the same area.

Unlike all previous characterizations of large solutions of the isoperimetric
problem, we need no asymptotic symmetry assumptions beyond the optimal con-
ditions for the positive mass theorem. This generality includes examples where
global uniqueness of the leaves of the canonical foliation as stable constant mean
curvature spheres fails dramatically.

Our results here resolve a question of G. Huisken on the isoperimetric content
of the positive mass theorem. © 2021 The Authors. Communications on Pure
and Applied Mathematics published by Wiley Periodicals LLC.

1 Introduction

A complete Riemannian 3-manifold (M, g) is said to be asymptotically flat if
there is a nonempty compact subset K C M and a diffeomorphism

(1.1) M\ K = {xeR?:|x|>1/2}
with
(1.2) gij = 8ij +o0ij wheredjoi; = O(|x|_’_|1|) as |x| - o0

for some 7 > 1/2 and all multi-indices / of order |/| < 2. We also require that
the scalar curvature of (M, g) be integrable. If the boundary of M is nonempty,
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we require that it be minimal. We also require that there be no closed minimal
surfaces in the interior of M. Given p > 1, we use S, to denote the surface in M
that corresponds to the centered coordinate sphere {x € R? : |x| = p} in the chart
at infinity (1.1). We let B, denote the bounded open region in M that is enclosed
by S,.

The ADM-mass (after R. Arnowitt, S. Deser, and C. W. Misner [1]) of such an
asymptotically flat manifold (M, g) is given by

ol : ;
MADM = plggo T67p [{‘|x|=p} iJX::l(azgu 0;gii)x
where integration is with respect to the Euclidean metric. R. Bartnik [2] has shown
that this quantity is independent of the particular choice of chart at infinity (1.1).
The fundamental positive mass theorem, proven by R. Schoen and S.-T. Yau [39]
using minimal surface techniques and then by E. Witten [44] using spinors, asserts
that for (M, g) asymptotically flat with nonnegative scalar curvature, we have that
mapm > 0 with equality if and only if (M, g) is flat Euclidean space.

Let V > 0. Consider

Ry ={Q:Q C M is a compact region with dM C 92 and vol(R2) = V'}
and let
(1.3) A(V) = —area(dM) + inf{area(d2) : 2 € Ry }.

When the scalar curvature of (M, g) is nonnegative, a result of the third-named
author [40] combined with an observation in appendix K of [7] shows that there is
aregion Qy € Ry that achieves the infimum in (1.3). The proof that such isoperi-
metric regions exist in (M, g) is indirect and offers no clue as to the position of
these regions. The main result of this paper is to show that if (M, g) is not Eu-
clidean space and if V' > 0 is sufficiently large, then 2y is bounded by the horizon
dM and a stable constant mean curvature surface that belongs to the canonical fo-
liation (see Appendix D) of the end of M through stable constant mean curvature
spheres.

THEOREM 1.1. Let (M, g) be a complete Riemannian 3-manifold that is asymp-
totically flat at rate T > 1/2 and has nonnegative scalar curvature and positive
mass. There is Vo > 0 with the following property. Let V > Vy. There is a region
Qy € Ry such that

area(dQ2y) < area(dS2)

for all Q € Ry, with equality only when Q2 = Q. The boundary of Qy consists
of the horizon dM and a leaf of the canonical foliation of the end of M .

In particular, the solution of the isoperimetric problem in (M, g) is unique for
large volumes.

We have included the assumption that there are are no closed minimal surfaces
in the interior of (M, g) in the definition of asymptotically flat. One could omit this
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assumption first by replacing (M, g) with the region outside of all such closed min-
imal surfaces as in [25, lemma 4.1] and observing that the centering mechanisms
obtained in the proof of Theorem 1.1 imply that (M, g) satisfies the conclusion of
Theorem 1.1 as well.

Our proof of Theorem 1.1 shows that the outer boundary of a large isoperimetric
region Qy is close to a centered coordinate sphere S, where V' ~ 47p3 /3. From
this, uniqueness of 2y follows from characterization results for the leaves of the
canonical foliation that we discuss in Appendix D.

The special case of Theorem 1.1 where (M, g) is asymptotic to Schwarzschild
with positive mass, i.e., where instead of (1.2) we have

4
(1.4) gij = (1 + %) 8ij + 0(|x|_2) as |x| - oo
for some m > 0 was conjectured by H. Bray [5, p. 44] and G. Huisken and finally
settled in joint work [16] by J. Metzger and the second-named author. Their proof
develops an ingenious idea of H. Bray [5] for the exact Schwarzschild metric and
uses the spherical symmetry in the asymptotic expansion (1.4) in a crucial way.
It carries over to higher dimensions [17] and makes no assumption on the scalar
curvature.

We recall from, e.g., [32] that the value of the scalar curvature at a given point
can be characterized by the isoperimetric deficit of small geodesic balls. Qualita-
tively, in order to enclose a small given amount of volume by a geodesic sphere,
less area is needed when the sphere is centered at a point of larger scalar curva-
ture. In Appendix C, we discuss how the isoperimetric deficit of large solutions of
the isoperimetric problem detects the mass of (M, g). Theorem 1.1 expresses the
positive mass theorem as a local to global transfer of isoperimetry in the small to
isoperimetry in the large in a precise way. More importantly, it adds to the short
list of geometries and the even shorter list of geometries with no exact symmetries
(see appendix H in [17] for an overview), where we can describe the solutions of
the isoperimetric problem exactly.

The uniqueness of isoperimetric regions of a given volume in Theorem 1.1 is in
stark contrast to the nonuniqueness of stable constant mean curvature spheres of a
given area. This nonuniqueness is particularly dramatic in the following example
constructed by A. Carlotto and R. Schoen in [8, p. 561].

Example 1.2 ([8]). There is an asymptotically flat Riemannian metric
g = gij dx' ® dx’ onR3

with nonnegative scalar curvature and positive mass so that g;; = &;; on R? x
(0, 00).

We mention that there are examples of (M, g) asymptotic to Schwarzschild
where there are other large stable constant mean curvature spheres than the leaves
of the canonical foliation; cf. [6,12].
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We emphasize that the examples constructed in [8] are asymptotically flat of rate
Tt < 1. They clearly contain an abundance of sequences of stable constant mean
spheres that drift off in (M, g) while their area diverges. On the way of proving
Theorem 1.1, we show in Section 2 that, quite generally, the isoperimetric defect
along any such sequence tends to 0.

THEOREM 1.3. Let (M, g) be a Riemannian 3-manifold with nonnegative scalar
curvature that is asymptotically flat of rate T > 3/4. There is pg > 1 with the
following property. Fork = 1,2, ..., let Xj = 02} be connected stable constant
mean curvature spheres such that Qi N By, = @ and area(Xy) — oo as k — oo.

Then
area(Ek)3/2) _
6/ B

lim —— 1(2,) —
kgrolo area(Xy) (VO (§2%)
1.1 Outline of Our Proofs of Theorem 1.1

We now give two independent proofs of Theorem 1.1 that have different merits.

The Hawking mass of stable constant mean curvature spheres in maximal initial
data (M, g) for spacetimes that satisfy the dominant energy condition has been
affirmed by D. Christodoulou and S.-T. Yau [13] as a quasi-local measure of the
gravitational field. Indeed, they prove that the Hawking mass of such surfaces is
nonnegative in this case. Recall that stable constant mean curvature surfaces arise
as boundaries of isoperimetric regions. The potential for the development of quasi-
local mass of the isoperimetric defect from Euclidean space

2 area(92)3/2
area(02) (VOI(Q) Nz )

of compact regions 2 C M has been observed by G. Huisken; cf., e.g., [23,24].

For example, the ADM-mass of the initial data (and thus the spacetime evolving
from it) is encoded in the isoperimetric profile of (M, g). In fact, as we recall in

Appendix C,
i 2 (AW
MADM = Vlm ( 6ﬁ )

In particular, the isoperimetric defect mjs,(2y) of isoperimetric regions Qy of
large volume V' > O must be close to mapm. Now, as we recall in Appendix B,
large isoperimetric regions Qy in (M, g) look like Euclidean unit balls B;(§) C
R3 with center at £ € R3 when scaled by their volume in the chart at infinity (1.1).

When |£| > 1, we can use a delicate integration by parts inspired by the work
of X.-Q. Fan, P. Miao, L.-F. Tam, and the third-named author in [18] to relate
the isoperimetric defect of 2y to the mass integral of its boundary. Using that
the scalar curvature is integrable, one sees that the isoperimetric defect of such a
region is close to O rather than mapwm, a contradiction.

When |£] = 1, the argument becomes much harder. First, we use the solution
of a conjecture of R. Schoen by the first- and the second-named authors and dis-
cussed here in Appendix B to ensure that either Qy encloses the center of (M, g)

Miso () =
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or that the unique large component Q57 of Qy is far from the center, with the dis-
tance from the center diverging as ¥ — oo. In the latter case, we combine the
Christodoulou-Yau Hawking mass estimate with the monotonicity of the Hawking
mass towards mapym proven by G. Huisken and T. Ilmanen [25] to obtain a crucial
analytic estimate for 3237. This estimate allows us to compare the isoperimetric
deficit of Q%7 with that of a large outlying coordinate sphere to conclude as before
that it is foo Euclidean to be an isoperimetric region in (M, g).

The case where |€| < 1 is covered by the uniqueness of the leaves of the canon-
ical foliation.

The proof of Theorem 1.1 outlined above is carried out in Sections 2 and 3.
However, it only works when we impose the stronger decay assumptions (3.1) and
(3.2) on (M, g). Incidentally, the decay assumptions stated in Theorem 1.1 are op-
timal for the positive mass theorem. We obtain Theorem 1.1 in the stated generality
from a completely different line of argument that we develop in Section 4.

In this second proof of Theorem 1.1, we study the mean curvature flow of large
isoperimetric surfaces. We prove that, upon appropriate rescaling, the level set flow
of such large isoperimetric surfaces converges to the Euclidean flow

{Sm@)}te[o,%)

of Si(£) in R3. When & # 0, part of this flow will be in a shell-like region
that avoids the center of the manifold, which corresponds to the origin in the
rescaled picture. We show that the Hawking mass of the surfaces forming this
shell is close to 0. Using this, we apply the monotonicity of the isoperimetric
defect from Schwarzschild discovered by G. Huisken in two steps to obtain a con-
tradiction. First, we compare with Schwarzschild of mass mapy until the time
when the surfaces have jumped across the center of (M, g). Then, we compare
with Schwarzschild of mass o(1)mapwm until the surfaces have all but disappeared.
In this argument, we only need a very weak characterization of the leaves of the
canonical foliation to conclude uniqueness in Theorem 1.1.

This second proof of Theorem 1.1 is effective in that it provides an explicit esti-
mate for the isoperimetric deficit of general large outward area-minimizing regions
that are close to balls B;(£) on the scale of their volume. The more analytic, first
proof is delicately tuned to large stable constant mean curvature spheres for which
it provides very precise information. Furthermore, it allows us to prove Theorem
1.3 on the isoperimetric defect of large, outlying stable constant mean curvature
spheres.

After his work was finished, a third proof of Theorem 1.1 was discovered by
the fourth-named author [45]. In fact, it is shown in [45] that Theorem 1.1 also
holds when the assumption of nonnegative scalar curvature is replaced by a decay
condition.
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2 Isoperimetric Deficit of Large Outlying Stable CMC Spheres

Throughout this section, we consider a complete Riemannian 3-manifold (M, g)
that is asymptotically flat at rate T = 1 and has nonnegative scalar curvature and
positive mass mapy > 0. We also require the additional decay assumption

drojj = O(|x|_1_|1|) as |x| - oo

for all multi-indices I of order |/| < 3. The control of the third-order derivatives
is used in the proof of Proposition 2.3. This could be avoided there by adapting
an important observation of J. Metzger from [31]—the derivatives of the ambient
curvature enter Simons’ identity in divergence form. We also mention that the
results in this section could be generalized to the slower decay t > 3/4. (This is
the threshold for the proof of the key estimate (2.10).) However, as a step in the
proof of Theorem 1.1, we require the full strength of the results by S. Ma in [30],
which in turn needs the even stronger assumptions (3.1) and (3.2). This is why we
restrict the exposition to the present case.

The results proven here will be applied in Section 3 to the study of large isoperi-
metric regions. Since the methods apply equally well to large stable constant mean
curvature surfaces, we consider this more general setting here.

Let ¥ = 92 C M be a connected stable constant mean curvature surface so
that 2 N By, = & where pp > 1 is large. The error terms in this section are all
with respect to area(X) — oo.

The following result is proven by the first- and second-named authors in sec-
tion 2 of [11].!

LEMMA 2.1. When py > 1 and area(X) are sufficiently large, then X is homeo-
morphic to a sphere.

Let r > 0 denote the area radius of X defined by
area(X) = 4mr?.

We use H > 0 to denote the mean curvature of X, The second fundamental
form of X and its trace-free part are denoted by / and £, respectively. Any quantity
computed with respect to the reference Euclidean metric as opposed to with respect
to g will have a bar over it.

Using (E.2) and Corollary E.3, we find

2.1) r/ h2dp < 487(1 + o(1))mapm
)

Un the original version of this argument, see https://arxiv.org/pdf/1606.04626v2.
pdf£, the analysis in this section used an a priori assumption that ¥ was spherical. This assumption
was subsequently justified by combining the results for spherical isoperimetric regions proven here
with a continuity argument involving the isoperimetric profile (inspired by ideas from [10]). This
continuity argument, while more complicated than the argument from [11, sec. 2], could be useful in
other settings.
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and

2/ 1 —=2mapm/r <rH <2.
From this, we see
(2.2) H—-2/r=00"?);

cf. [10, p. 425]. In conjunction with the results stated in Appendix G, with t = 1,
we obtain

[t ar = o [ au-+ [ w2 anr [ 1etan)
p) z z b))

=0(r~" + py?).
We next recall a consequence of J. Simons’ identity for the trace-free part of the
second fundamental form.
LEMMA 2.2 (cf. [17, cor. 5.3]). There is a constant ¢ > 0 with the following prop-
erty. Consider in a Riemannian manifold a two-sided hypersurface with constant

mean curvature H and trace-free second fundamental form h. Then
(2.3) 2|h? + Alh| > —c(H |h|* + H|Rm| + |k]||Rm| 4 |VRm])

holds weakly, where A is the induced Laplace-Beltrami operator and where Rm,
V Rm are the ambient Riemannian curvature tensor and its first covariant deriva-
tive, both restricted along the surface.

PROPOSITION 2.3. There is a constant ¢ > 0 depending only on (M, g) such that
h(x)] < cr5/4
forall x € ¥ such that 2|x| > r3/4.

PROOF. Assume that the assertion fails with ¢ = k along a sequence of regions
Q. with area radius r; — oo and at points x; € X = Q2 where r£/4 < 2|xg].
We work in the chart at infinity {x € R> : |x| > 1/2}. If we rescale by rk_z'/4 and
pass to a subsequence, curvature estimates as in [11, app. B] show that the rescaled
regions converge in Cliéa to a half-space in R3 \ {0}. Upon further translation by
the points rk_ 3/ 4xk, we find surfaces f]k in By/4(0) with 0 € ik that are locally
isoperimetric with respect to a metric g on By ,4(0) and such that

Q4 nlhe O, =k and e [, d7 < 48701+ o(D)manw
k

The second estimate follows from (2.1), inclusion, and scaling invariance. The
surfaces X; converge in C2% to a plane through the origin in B; /4(0). The Rie-
mannian metrics g converge to the Euclidean metric on Bj/4(0) with

Rmy = O(rk_3/4) and ViRmy = O(rk_3/4).
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For large k, (2.3) and (2.4) are incompatible with the standard De Giorgi—Nash—
Moser L% = L estimate for subsolutions; see theorem 8.17 in [20]. O
Using (2.2), (G.1), (G.2), and Proposition 2.3, we see that
H(x)=2/r + 0¢—3/?) and ﬁ(x) = 0%
for all points x € ¥ with 2|x| > r3/4

curvatures k; (x) of X satisfy

(2.5) Ki(x)=1/r + 0%

. In particular, the Euclidean principle

for 2|x| > r3/ 4 wherei = 1,2. Using the Gauss-Weingarten relations, we con-
clude that

(2.6) V@ —x/r) = 0F"5%

on X\ B,3/4/,.
Let ¥’ be a connected component of X \ B,3/4.

LEMMA 2.4. There is a € R3 with |a| > r + r3/* such that

2.7) T P YS VN

r
forall x € ¥'.

PROOF. We first show that the diameter of X’ is O(r). We only need to consider
the case where {x € ¥ : r3/4/2 < |x| < r3/*} is nonempty. Using the co-area
formula and the quadratic area growth? of stable constant mean curvature surfaces
(cf. [11, lemma B.5]), we see that

,3/4
f Hi({x € T x| = o})do = 0(r*/?).
r3/4/2
We can choose a regular value o with r3/4 /2 <o < r3/4 such that the curve
{x € T : |x| = o} has length O(r3/*). A standard variation of the argument
leading to the Bonnet-Myers diameter estimate shows that any two points p, g € X’
are connected by a curve in X’ whose length is O(r).

Integrating (2.6) along such curves, we see that there is a € R3 so that (2.7)
holds. Assume now that |a| < r + r3/4. It follows that there is xo € ¥’ with
|xo| = r3/*. Using (2.7), it follows that

lal = la = xo| = |xo| = r —cr3/*
where ¢ > 0 is independent of 3. Replacing a by
ad =0+ (+2)r Y

completes the proof. U

2 Such an estimate is simple to prove for isoperimetric regions; cf. Lemma F.1.



ISOPERIMETRIC STRUCTURE 873

Now by (2.5), there is an open subset I' C S? and u € C>%(I") with
Y ={a+u(@60:0eT}.
Let us assume for definiteness that a = |a|(0, 0, 1). We have the estimate
S2\T C {(sin¢ cos B, sin ¢ sin ¥, cos @) :
@8 ¥ €[0,2nr]and ¢ € (m — 2r V4, n]}.

We also remark that I' = S? when |a| > 2r.
Let v be the outward pointing unit normal and p the induced metric of X/, both
computed with respect to the Euclidean background metric. Then

— u(0)0 — (Vu)(0)

() = :
Vu()? + |[(Vu)(9)?

where both the gradient and its length are computed with respect to the standard

metric w;; on S? c R3 and where i, j are with respect to local coordinates on S2.
It follows from (2.7) that

2.9) u=r-+ 0(r3/4) and Vu = 0(r3/4).

Note that it also follows that X \ B,3,4 is connected (so £’ = X\ B,3/4).
In the remainder of this section, integrals will be with respect to the measure
induced by the Euclidean background unless otherwise indicated.

Pij (0) = u(6)*wij + (3;u)(6)(3;u)(6),

LEMMA 2.5. We have

(2.10) / 1 _m.
{

a+r0:0eS2\T} |X|

PROOF. We may assume that r + r3/% < |a| < 2r. Using (2.8), we have that

1 e r2sin¢ dep d v
LI — o(r)
{a+r0:0eS2\I} |X| o Jx—2r-174 \/|a? +r2 —2|a|r cos ¢

as claimed. O

PROPOSITION 2.6. We have

area(X) — areag (X) = area(S,(a)) — 47r? + o(r)

4rr3 5
vol(2) — volz (2) = vol(B(a)) — + o(r©).
PROOF. Set X" = ¥ — X/ = ¥ N B,3/4. Then
1 . o 1
area(X) = areag(X) + —/ (§Y —v'v)oy; + 0/ >
2Js z [x]

1 iy . 1 1
= areag(X) + —/ Y —v'v o + 0/ — + O/ —.
& 2 s Y z7 |x] z [x]?
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It follows from the quadratic area growth of 3 and Lemma F.2 that

1 1 1
/ T 0(7"), / T 0(73/4), / Tv12 = O(IOgr)’
z |x] 7 x| z |x|

so that
(2.11) area(X) = areag(X) + % /E /(5"/' — ' )ay; + o(r).
Now
[ (@ =505)) —
= [ (67 =5)0) @+ u@)0)u@) fu®)? + [(Tu) @)
(2.12) ber

= r2/ (67 — 5% )oy;) (@ + u(9)8)(1 + 0~ /4))
el

= 0(r3*) + r2/ (87 —v'v7)0ij)(a + u(6)6)
feTl
where we have used (2.9) in the second equality. Conversely,
/ (87 = v"v))oi5)(a + u(6)0) = o(r) + / (87 —6'67)0;(a + r6)
ferl’ fel’
since

/ (87 —v'v/ )0y (a + u(6)6) —/ (87 —6'07)0;(a + r6)
ferl’ ferl’

(2.13) _ /4 / _ ek / ;2
ger la +r0| ger la +ro|

= 0(r3’/4 logr) = o(r).

Substituting (2.12) and (2.13) into (2.11) gives
2
r

(2.14) area(X) = areag(X) + 5

/ (8" —0'07)0ij(a + r0) + o(r).
pel’

A direct computation shows that
area(Sy(a))

1 L
=4nr2+—/ (6Y —60'67)0i; —i—O/ —
2 /s, )0 Sr@) X2
2
_ 2, I ij _ pigiyg..
2.15) = 4nr? + = /F((S 667 )oij(a + )

—i—O/ L—i—o(r).
S

(a)—T |x]

2 .. - -
= dur? + % / (8Y —6'67)0i;(a +r6) + o(r)
r
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where we have used (2.10) in the last equality. Combining (2.14) and (2.15) yields
area(X) — areag(X) = area(S,(a)) — 4r? + o(r).
Finally, we have

vol(2) — vol(By(a))

— /Q Jdet(gij) — /B @ \/ det(gij)

= volgz(2) — volgz (B, (a))

1 1
vo o L
{xr—cr3/4<|x—a|<r+cr3/4} |X| {xeQ:|x|<r3/4} |x]
= volz(R2) — volz(Br(a)) + o(r?)
where we have used (2.9) in the third inequality. This completes the proof. 0

We arrive at the main results of this section, asserting that the isoperimetric
deficit of large outlying stable constant mean curvature spheres is very close to
Euclidean. The strategy of the approximation argument we have used here is illus-
trated in Figure 2.1.

COROLLARY 2.7. We have

/
(vol(sz) _ %) <o(1).

area(X)

PROOF. We abbreviate

zZ= / (Sij —ﬁiﬁj)aij.
Sr(a)

Note that z = O(r) and that areag(X) = 47r? + o(r?). Using Propositions 1.2
and 2.6 and also the Euclidean isoperimetric inequality in the last step, we obtain
that

area(X)3/2
6/

= volg(Q) + %

areag(E)Z’/z zr r 3/2 5
—— |1
6/ + 2areag(X) +o areag(X) o)
areag(Z)S/2
6/
< o(r?). -

vol(2) —

= volz(R2) — +o0(r?)
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WV X
N
B34 ~-7

FIGURE 2.1. We show that the boundary X of the large component of
an isoperimetric region, is very close to a sphere S, (a) outside of B,3/4;
note that “x” represents the origin here. This allows us to approximate
the isoperimetric deficit of X by that of S,(a). We show that in the
scenario depicted here, the isoperimetric deficit of S, (a) (and thus of )
is too close to Euclidean.

3 Proof of Theorem 1.1 Assuming (3.1) and (3.2)

Throughout this section, we assume that (M, g) is a complete (nonflat) asymp-
totically flat Riemannian 3-manifold with nonnegative scalar curvature that satis-
fies the decay assumptions

3.D drojj = O(|x|_1_|1|) as |x| > oo

for all multi-indices I of order |I| < 4 (so T = 1 and decay of two additional
derivatives) and

(3.2) R(x) = O(]x|7377) as|x| — o0

for some y > 0 in the chart at infinity (1.1). S. Ma has shown in [30] that under
these assumptions there is a compact subset C C M so that each leaf X of
the canonical foliation is the only stable constant mean curvature sphere of mean
curvature H € (0, Hp) enclosing C. As observed by the first- and second-named
authors, this statement remains true for surfaces of any genus; cf. [11, sec. 2].

Consider a sequence of large isoperimetric regions Qy, C M with Vy — oo.
Consider the two alternatives (a) and (b) in Lemma B.2. In (a), Qy, eventually
contains any compact set C. In particular, by the work of S. Ma [30] mentioned
above, we find that 0Q2y, is an element of the canonical foliation; cf. the discussion
at the end of Appendix D.
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On the other hand, if (b) from Lemma B.2 applies, then Qy, = Q3 U2 where
Q" is contained in a small neighborhood of the horizon and for k sufficiently
large, Qi N By, = & for any po > 1.

In this case, the analysis from the previous section applies. In particular, Corol-
lary 2.7 shows that the isoperimetric deficit of g, and thus Qy,, is very close
to Euclidean. By comparing, via Lemma C.1, with centered coordinate balls, this
contradicts the isoperimetric property of Qy, .

4 Mean Curvature Flow of Large Isoperimetric Regions

Let (M, g) be a complete Riemannian 3-manifold that is asymptotically flat at
rate T > 1/2 and has nonnegative scalar curvature and positive mass mapy > O.
The analysis in this and the subsequent sections will establish the proof of Theorem
1.1 in full generality.

Let Qy, be isoperimetric regions of volumes V; — oo. Let Q2 be the unique
large component of 2y, . We recall from Appendix B that €2 is connected with
connected outer boundary 92z \ dM, and that Qj is outer area-minimizing in
(M, g).

Let {Qx(t)};>0 denote the level set flow with initial condition Q; see [27,
§10.3]. Then Q2 (¢) is mean-convex in the sense of [42, p. 670] by theorem 3.1
in [42]. Moreover, by theorem 5.1 in [42], the 2-rectifiable Radon measures

@1 ui(r) = H? [ 9" (1)
define an integral Brakke flow {1tx (¢)};>0 in (M, g). For almost every time ¢ > 0,

i (t) is the Radon measure associated to an integer rectifiable varifold V), ().

LEMMA 4.1. There is a constant ¢ > 0 depending only on (M, g) so that
area(B, N 3*Q (1)) < cp?
forallp>1,k>1,andt > 0.

PROOF. By [42, theorem 3.5], Q2 (¢) is outward area-minimizing in Q. Com-
bined with the fact that Q0 is outward area-minimizing, we see that Qg (¢) is out-
ward area-minimizing in (M, g). The claim follows from comparison with coordi-
nate spheres. O

Define the volume radius p; > 0 by the expression
4

3
We may view g (¢) | (M \ K) as a measure on {x € R> : |x| > 1/2} using the
chart at infinity (1.1). In fact, consider the map

vol(Q) = —p3.

ne :R®> >R3> givenby x> x/pg
and the rescaled measures
Bk (6) = mies (i (0 1) L (M \ K))
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on {x € R3: pg|x| > 1/2}. Then {fiz(¢)};s>0 is a Brakke motion on {x € R3 :
Pk |x| > 1/2} with respect to the metric

3
Fe(0) =) gij(prx)dx’ @ dx?
i,j=1
on {x € R3: pg|x| > 1/2}. Ask — oo, ) converges to the standard Euclidean
inner product in Clg‘c’(]R{3\{0}). We let Q2 be the subset of {x € R3 : pg |x| > 1/2}
such that
Qk\KE {,ka:x EQk}.

We also let 2 (7) be the subset of {x € R3 : px|x| > 1/2} such that
Qrt)\ K = {pkx 1X € ﬁk(t)}.

By the remarks following Lemma B.2, there is £ € R> such that, upon passing to
a subsequence,

Qp — Bi(§) in C2(R3\ {0})

loc

as k — oo. Our goal will be to show that § = 0.
PROPOSITION 4.2. There is an integral Brakke flow {Ji(t)};>0 on R3 \ {0} with

the following three properties.
(1) There is a subsequence {£(k)}?7_, such that, for all t > 0,

oy (t) — fu(z)

as Radon measures on R3 \ {0}.
(2) For almost every t > 0, there is a further subsequence {£(k,1)}7° | of
{e(k) 2, such that

Viiewn® = Viiw
as varifolds on R \ {0}.
(3) There is a constant ¢ > 0 so that
Ji(t)(Bo(0)) < cp?
forall p>0andt > 0.
PROOF. The first two claims follow from T. [lmanen’s compactness theorem for
integral Brakke flows, theorem 7.1 in [27]. This result is only stated for sequences
of Brakke flows with respect to a fixed complete Riemannian metric in [27]. How-

ever, the same proof as in [27] applies in the present setting. The quadratic area
bounds carry over from Lemma 4.1. g

In view of Proposition J.5, it is now clear that {{t(¢)};>0 extends to an integral
Brakke flow in R? with initial condition

f(0) = H? | S1(6).
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Proposition J.6 shows that such a Brakke motion follows classical mean curvature
flow except possibly for sudden extinction:

i) =H> S j=:(6)

forall¢t € [0,T] where T € [0, %). The particular flow at hand is constructed as
the limit of level set flows. We use spherical barriers to show that the limiting flow
cannot disappear suddenly; i.e., we will show that T = %.

LEMMA 4.3. We have that Ji(t) = H? LSM(S)for allt €0, %).

PROOF. If not, then there is T € |0, %) so that Ji(t) = H? LS iz (6) for
t €[0,T]and ji(t) = 0 fort > T. We will prove the result for |§| > 1 and leave
the straightforward modification to the case of |£| < 1 to the reader.

Assume that T = 0. Let ¢ > 0 be small. Upper semicontinuity of den-
sity for surfaces with bounded mean curvature (see [41, cor. 17.8]) implies that
B ;=4:(6) C Q. (0) = Q4 for all sufficiently large k. Using that §; converges to
the standard Euclidean inner product in CI%C (R3\ {0}) and the avoidance princi-
ple for the level set flow, we see that B @(E) cQ  (¢) provided that k is suffi-
ciently large. Recall that fig (1) = H2 | *Qy(r). We obtain a contradiction with
the assumption that iz (e) — ji(e) = 0.

Assume now that T € (0, %). Let0 < ¢ < (1—4T)/100. Upper semi-continuity
of Gaussian density for integral Brakke flows implies that

B ji—a7=a:(6) C Qu(T)

for all k sufficiently large. Arguing as in the previous case, we see that

Bm(s) C Qk(T + ¢).

This is a contradiction for the same reason as before. 0

Using B. White’s version [43] of K. Brakke’s regularity theorem [4] for mean
curvature flow, we obtain the following consequence.
COROLLARY 4.4. Let (x,t) € (R3\ {0}) x [0, 00) with (x,t) # (&, %) There is a
neighborhood of (x,t) in R3 x R where {Qk(f)}tz() defines a classical mean cur-
vature flow with respect to the Riemannian metric gy, provided that k is sufficiently
large. These flows converge to the shrinking sphere S m(é) as k — oo locally
smoothly away from the spacetime set ({0} x [0, 00)) U {(§, %)}.

We define the disconnecting time for the rescaled flow by

g2
=oeny - )4 1< L
T(ls) = 0’4 "I
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Note that the bulk of Q4 (¢) is disjoint from the center of (M, g) after time ¢ =

P TENU +o(1)).
Assume now that £ # 0. Choose ¢ > 0 such that

4.2) 100 < 1 — 4T (|€)).

We can make this choice such that

~ 1
= e+ T and 7= g3 (4 e ),

are smooth times for all the level set flows {2 (¢)}s>0. Indeed, by the work of
B. White [42], almost every time is a smooth time for the individual flows. For
every t € [tg, Ty] there is a unique large component ['; () of Qf (¢) by Corollary
4.4. The boundary X (¢) of 'y (¢) is smooth and close to a Euclidean sphere with
radius (,o,% — 41)Y/2 and center pi& in the chart at infinity (1.1). Moreover, as
k — oo,

area((9* Q¢ (1) \ i (1)) = 0(03),

vol(Q (1) \ Tk (1) = o(p})-
Recall that the Hawking mass of a closed, two-sided surface X C M is defined

as
area(X) 1 2
Y) = 1— Hdu ).
mi () 167 ( 1671/2 “)
Let
mg = sup mp(Zg ().
1€tk Tk]

COROLLARY 4.5. We have that

lim my; = 0.
k—o00

PROOF. The surface Xz () is geometrically close to the coordinate sphere

S\/ﬂ(ﬂks)

in the chart at infinity (1.1) by Corollary 4.4. The assertion thus follows from
Appendix H. U

We denote by
Am 2 (0,00) = (0,00)

the isoperimetric profile of Schwarzschild with mass m > 0. Thus, given V' > 0,

4
A (V) = (1 n ﬁ) drr?
2r

where r = r(V) > m/2 is such that

r 6
V:4n/ (1+ﬂ) r2dr.
n 2r
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We denote by

Vin : (0, 00) — (0, 00)
the inverse of this function. We recall the following expansion. It follows from a
straightforward computation in view of H. Bray’s characterization of isoperimetric
surfaces in Schwarzschild as centered coordinate spheres [, theorem 8]. The claim
about the error term is proven in lemma 10 of [29].

LEMMA 4.6. We have that
1
Vimn(4d) = ——
as A — oo. The error is uniform with respect to the parameter m in a given range
0<m <my.

A3 4 %A + 04?2

G. Huisken has shown [23,24] that the quantity
4.3) t —> —vol(2;) + Vip(area(X;))

is nonincreasing along a classical mean curvature flow of boundaries

{2 = 0Q}re(a.b)

provided that my (£;) < m and |%,| > 16xm? forall ¢t € (a,b).

J. Jauregui and D. Lee [29] have introduced a modification of the level set flow
starting from a mean convex region along which G. Huisken’s monotonicity holds.
Their result applies beautifully to our setting.

Let 2 be the (unique) large component of a large isoperimetric region in (M, g).
We consider the modified level set flow {Q(t)}i=0 with Q(0) = € defined by
J. Jauregui and D. Lee in definition 24 and definition 27 of [29]. The modified flow
agrees with the original level set flow {€2(¢)};>0 except that components of the
original flow are frozen when their perimeter drops below 367 (m Apm)2. J. Jau-
regui and D. Lee show that G. Huisken’s monotonicity holds along their modified
level set flow. In the statement of their result below, 7" > 0 as in lemma 29 of [29]
is the time when the flow freezes up completely.

PROPOSITION 4.7 ([29, prop. 30]). The quantity
t > —vOl(Q(1)) + Vinyoy (area(d* (1))
is nonincreasing on [0, T1.

We return to our previous setting, where each 2 is the large component of a
large isoperimetric region and where the rescaled regions 2; converge to By (£)
for some £ # 0. We have already seen that the original level set flow {Qx(¢)}+>0
with initial condition Q4 (0) = @ has the property that, for ¢ € [t;, T¢], there is

a unique large component ['; (¢) of Q4 (¢). The boundary X (f) = d';(¢) of this
component is smooth. We recall that

w= e+ TO) a7y = ()
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have been chosen as smooth times for the level set flow {4 (#)}s>0. The surface
Y, () is close to a Euclidean sphere of radius (,o,zC — 41)Y/2 with center at p§ in

the chart at infinity (1.1). Consider the modified flow {ﬁk(z‘)},zo of J. Jauregui
and D. Lee described above. By what we have just said,

area(Zg (tx)) > 367 (mapm)?
provided that k is sufficiently large. We see that the large components [';(¢z)
are not affected by the freezing that defines the passing from the original to the

modified level set flow—their perimeter is too large. Thus ﬁk(tk) is the disjoint
union Ej (t) U 'y (¢;) where

(4.4) vol(Eg (1)) = o(p}) and area(0E(tx)) = o(p7).
5 Proof of Theorem 1.1 When 7 > 1/2

We continue with the notation of Section 4. The strategy of the proof is illus-
trated in Figure 5.1.

PROPOSITION 5.1. £ = 0.

PROOF. Assume that £ # 0. We continue with the notation set forth above.
Note that
{Zk @)} el 1]
is a smooth mean curvature flow where X;(¢) = 0% (¢). In Corollary 4.5 we
have seen that the Hawking masses of the surfaces along this flow are bounded by
my = o(l) as k — oo. By G. Huisken’s monotonicity (4.3) for X (¢) applied
with the Hawking mass bound m = mj = o(1), we have that

~ol14) + 5= area(Ze (1)) + o (e})
> VOl (7)) + = area(S(T) 2 + o(o})

where we have also used that
area(Zg (Ty)) = 4epz + o(pf) > 367 (my)?
as k — oo. Conversely, by the sharp isoperimetric inequality (C.2) for (M, g),

—vol(T (Ty)) + area(Sy (Tx))>'? > —mapm area(Sy (Tx))

1
67
= —16wemapmpg + 0(p7)-

Combining these two estimates, we obtain

1
(5.1)  —vol(I'x (1)) + W area(Sg (tx))>/? > —16memapmp; + o(p7).

67
We now apply Proposition 4.7 to the modified weak flow {Q k (1)} >0 between
the (smooth) times ¢ = 0 and ¢ = #;. In the first line below we use that Q;—as the
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substantial component of a large isoperimetric region—almost saturates the sharp
isoperimetric inequality (C.2) on (M, g).

0 =—vol(2y) + 6\1/5 area(an)3/2 2 area(afzk) + o(pk)
> —vol(Q(tr)) + # area(0Q (11))>? + —M area(9Qy (1)) + 0(p?)
= —vol(Te (1)) + % area(Sg (40)¥/2 — vol(Ex (1))

* 6%((”%@(%)) + area(DE (1x)))*/? — area( Tk (t4))*/?)
n MADM area(Xg (tx)) + 0(,0,2()

> —vol(Eg (1))
* 6\1/5((“‘:3@%)) + area(DE (1x)))*/? — area( T (1))
n MADM area(Xg (tx)) — 167r8mADMpi + O(IOI%)'

The final inequality follows from (4.4) and (5.1).
Assume first that area(dEy (1)) = O(1) as k — oo. Then vol(Er (1)) = O(1)
as well, and

— vol(Ey (1)) + %((area(Ek (tx)) + area(0Ey (tk))) — area(Ek(tk))3/2)
>—-0(1)

as k — oo. Thus
(5.2) area(Sg (1)) < (8 + o(1))dnpz.
This contradicts the choice ¢ > 0 in (4.2), because
area(Ey (1)) = (1 —4e — 4T (I€]) + o(1))4mp?.

Assume now that area(dEy (t;)) — oo as k — oo. Then

Vol(Eg (1)) = area(0Ex (1))>/? + (mapm — o(1)) area(IE (1))

1
N
by the sharp isoperimetric inequality (C.2). Combining this with the above and
(4.4), we have

1

0>
= oum

((area(Zx () + area(dEx (16)))*'?

— area(Xy (1))>/? — area(dEx (11.))%/?)

mMapMm
_l’_

area(Xy (1)) — 16n8mADMp,% + 0(,0,%).
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Using that
¥3/2 4 y3/2 <(x+ y)3/2

for all x, y > 0, we arrive again at the contradictory estimate (5.2). U

PROOF OF THEOREM 1.1. Combining Lemma B.2 and Proposition 5.1, we see
that every sufficiently large isoperimetric region is connected and close to the cen-
tered coordinate ball By (0) when put to scale of its volume in the chart at infinity
(1.1). By the uniqueness of large stable constant mean curvature spheres described
in Appendix D, the outer boundary of such an isoperimetric region is a leaf of the
canonical foliation. g

Appendix A General Properties of the Isoperimetric Profile

Let (M, g) be an asymptotically flat Riemannian 3-manifold as defined in Sec-
tion 1. We recall below several properties of the isoperimetric profile A : (0, c0) —
(0, 0) of (M, g) as defined by (1.3) that we use throughout this paper. The results
on the regularity of the isoperimetric profile are given in or follow easily from,
e.g., [3,5,19,38].

Locally, the isoperimetric profile can be written as the sum of a concave and a
smooth function. In particular, the isoperimetric profile is absolutely continuous.
The left derivate A~ (V) and the right derivative A™ (V) exist at every V > 0. They
agree at all but possibly countably many V' > 0. Moreover,

lim AT(W) <AT(WV)< A~ (V)< lim A~ (W).
WV w AV

Assume that, for some V' > 0, there is Qy € Ry with
A(V) = area(0Qy ) — area(dM ).

The proof of theorem 1.2 in [17] shows that such isoperimetric regions exist for
every sufficiently large volume V' > 0 when the mass of (M, g) is positive. They
exist for every volume V > 0 when the scalar curvature of (M, g) is nonnegative
by proposition K.1 in [7]. The outer boundary 02y \ dM is a stable constant mean
curvature surface. Its mean curvature H is positive when computed with respect to
the outward unit normal. Moreover,

ATWV)y<H <A (V).

In particular, the isoperimetric profile is a strictly increasing function. Moreover, at
volumes V' > 0 where the isoperimetric profile is differentiable, the outer bound-
aries of all isoperimetric regions of volume V' have the same constant mean curva-
ture.
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R3\ {0}
B, (5)

0%
Zi(Tk) R3\ {0} 2y (T) R?\ {0}

Sk ik , Sk (te ,
( @ 3§2k @ a§Nzk

3Ek (tr agk(tk
(b) ()

FIGURE 5.1. We depict here the case where 0 < |§| < 1. In (a),
a sequence of large isoperimetric regions $2; is assumed to limit to
Bj (§) after rescaling. The convergence is smooth on compact subsets of
R3\ {0}. Here, the origin is denoted by “x.”

In (b) and (c), we depict boundaries of the (modified) level set
flows. We show that the large component of the level set flow “dis-
connects.” The large disconnected component is labeled f?k(tk). It is
possible that there are additional components Ex (tx) of the modified
flow.

In (b), the change of the isoperimetric deficit as the flow sweeps
out the shaded region is estimated by the Hawking mass bound of
my4pp - On the other hand, in (c), the lightly shaded region is swept out
by surfaces with Hawking mass bounded by o(1) as k — oco. This leads
to improved estimates for the deficit, showing that the original region
2 cannot have been isoperimetric.

When |£] = 1, a similar situation occurs, except the flow discon-
nects from the origin after a short time (in the rescaled picture). We
must wait this short time before arguing as in (c), so there will be a
thin region as in (b) in this case. If || > 1, the flow is completely
disconnected, so we do not need to consider the shaded region as in (b).
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Appendix B Divergent Sequences of Isoperimetric Regions

The following result of the first- and the second-named authors is included as
corollary 1.13 in [7]. It is a consequence of the solution of the following conjecture
by R. Schoen: The only asymptotically flat Riemannian 3-manifold with nonneg-
ative scalar curvature that admits a noncompact area-minimizing boundary is flat
Euclidean space.

LEMMA B.1. Let (M, g) be a complete Riemannian 3-manifold that is asymptot-
ically flat with nonnegative scalar curvature and positive mass. Let U C M be a
bounded open subset that contains the boundary of M. There is Vo > 0 so that for
every isoperimetric region Qy of volume V. > Vy, either U C Qy or U N Qy
is a thin smooth region that is bounded by 0M and a nearby stable constant mean
curvature surface.

The conclusion of the lemma clearly fails in Euclidean space. Under the addi-
tional assumption that the scalar curvature of (M, g) is everywhere positive, this
result was observed by the second-named author and J. Metzger as corollary 6.2
in [16]. Together with elementary observations on the number of components of
large isoperimetric regions as in Section 5 of [15] and the proof of theorem 1.12
in [7], we obtain the following dichotomy for sequences of isoperimetric regions
with divergent volumes.

LEMMA B.2. Let (M, g) be a complete Riemannian 3-manifold that is asymptot-
ically flat with nonnegative scalar curvature and positive mass. Let Qy, be an
isoperimetric region of volume Vi where Vi — 00. After passing to a subse-
quence, exactly one of the following alternatives occurs:

(a) Each Qy, is connected, 0Qy, \ 0M is connected, and the sequence is in-
creasing to M .

(b) Each Qy, splits into a union Qrﬁz and Q(I)/i where the Q?,‘; are connected
with connected boundary and divergent in M as k — 00, and where each
Qﬁiz is contained in an ey -neighborhood of OM where g — 0 as k — o0.

In particular, every isoperimetric region Qy in (M, g) of sufficiently large vol-
ume V' > 0 has exactly one large connected component—either 2y in alternative
(a) or Q‘I’,o in alternative (b). Note that Theorem 1.1 implies that alternative (b) in
Lemma B.2 doesn’t occur.

We include several additional observations—extracted from the proofs of The-
orem 1.2 in [17] and Theorem 1.12 in [7]—about the sequences in Lemma B.2.
Let

Qy, C{x e R?: Ax|x| > 1/2}
be such that 5
QVk \K = {/\kx X € QVk}

A = V(BVi)/ ().

where
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Then, possibly after passing to a further subsequence,
Qy, — Bi1(£)
in Cli;a (R3\ {0}) for some £ € R3. In particular,
area(Ty, ) = 4mAZ (1 + o(1)),
Hs,, =21+ o(1))/As.
as k — oo where Xy, = dQy, \ M.

Appendix C Sharp Isoperimetric Inequality

The characterization of the ADM-mass through the isoperimetric deficit of large
centered coordinate spheres in Lemma C.1 below was proposed by G. Huisken
[23] and proved by X.-Q. Fan, P. Miao, L.-F. Tam, and the third-named author as
corollary 2.3 in [18].

LEMMA C.1. Let (M, g) be a complete Riemannian 3-manifold that is asymptoti-
cally flat of rate t > 1/2. Then

area(S p)3/ 2
6/ '
The next result was also proposed by G. Huisken [23,24]. A detailed proof,

following the ideas of G. Huisken, was given by J. Jauregui and D. Lee as theorem 3
in [29].

Moo — 1 2 I(B
mapm(M, g _pgrolom voltB) =

THEOREM C.2. Let (M, g) be a complete Riemannian 3-manifold with nonnega-
tive scalar curvature that is asymptotically flat of rate T > 1/2. Then

, 2 A(V)3/2
mapm(M. g) = lim o (V N )

We recall from [29] that the inequality

(M.g) <1i 2 (V A(V)3/2)

mapm(M, g) = Iim sup - =

V—oo A(V) 6ﬁ

follows from Lemma C.1 and the elementary observation that, for every V' > 0,

the function
2 x3/2

”’E(V—w%)

is decreasing on (0, 00). We include a short new proof of the reverse inequality

1) Mg = tim 2 (v A
. m s > lim —— -~ 7
ADMEEE 8) = | 647
below. We also refer to the recording of the Marston Morse lecture given by
G. Huisken [24] for the original argument.
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ALTERNATIVE PROOF OF (C.1). Assume first that 0M = &.

Let V' > 0 large be such that A’(V') exists. An isoperimetric region € of volume
V is connected with connected, outward area-minimizing boundary X of constant
mean curvature A’(V) = H > 0. Using the work of G. Huisken and T. Ilmanen
[25] as stated in Lemma E.1, we see that

A(V) (

1 1 2
T Ukt 10 A(V))

167

b)) 1
_  jarea(®) (1 ~ T H? area(E)) < MADM.
T

167
From this, we compute that
A(V)3/2 ' 1 / 1
V| =1——=A'(V)A(V)'/?
( 6/ 47 AW
1— s A(V)2A(V) - 4T AV) V2

= < mAD
1+ ﬁEA’(V)A(V)l/z 1+ #EAf(V)A(V)l/2

Using the remarks following Lemma B.2, we see that A’(V)/A(V) approaches
4./ as V — oo. It follows that the above expression is bounded above by

M -

SA WV maou(1 +0(1)

as V' — oo. Using that the isoperimetric profile is absolutely continuous, it follows
that

) (V Ay
imsu —
Vaen A(V) 63/

In the general case, where dM # &, we work with the (unique) large component

of a large isoperimetric region instead. We omit the necessary but purely formal
modifications of the proof. O

) =< MADM-

COROLLARY C.3 (Sharp isoperimetric inequality). Let (M, g) be an asymptoti-
cally flat Riemannian 3-manifold with nonnegative scalar curvature. Let Q@ C M
be a compact region. Then

211r6:21(<9S2)3/2 MADM

(C2) vol(R2) < 6/ + 5 area(d2) + o(1) area(d<2)

as vol(2) — oo.

Appendix D Canonical Foliation

Here we collect results on the existence and uniqueness of a canonical foliation
through stable constant mean curvature spheres of the end of an asymptotically flat
Riemannian 3-manifold (M, g) with positive mass. The asymptotic assumptions
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in the discussion are tailored to our applications. We refer to [33] and [34, sec. 5]
for more general results.

The results discussed below depart from the pioneering work of G. Huisken
and S.-T. Yau [26] and of J. Qing and G. Tian [36] for initial data asymptotic to
Schwarzschild. We also mention the crucial intermediate results by L.-H. Huang
[21] for asymptotically even data. We refer to the recent articles [9,22, 30, 33] for
an overview of the literature on this subject.

The following uniqueness and existence results are, in the stated generality, due
to C. Nerz [34, sec. 5]. Let (M, g) be a Riemannian 3-manifold that is asymptot-
ically flat at rate ¢ > 1/2 and has nonnegative scalar curvature and mapym > O.
There are a number Hy > 0, a compact subset C C M with By C C, and a
diffeomorphism

®:(0,Hy)xS?—>M\C
such that
>H = o({H} x S?)

is a constant mean curvature sphere with mean curvature H > 0 for every H €
(0, Hp). In the chart at infinity (1.1),

(H/2) =7 5 §1(0) = {x e R : |x| = 1}

smoothly as H \ 0. We have, by the remark preceding Proposition A.1 in [33],
that

O.1) i area(XH) . H? area(2H)
. m = lim — .
APMT o VT e 167

Moreover, £ is the unique stable constant mean curvature sphere of mean curva-
ture H that is geometrically close to the coordinate sphere S, /77 (0) in the chart at
infinity (1.1).

S. Ma has shown in [30] that under the stronger decay assumptions on the metric
stated here as (3.1) and (3.2), the compact subset C C M above can be chosen
so that each leaf X of the canonical foliation is the only stable constant mean
curvature sphere of mean curvature H € (0, Hyp) that encloses C.

Appendix E A Priori Estimates for the Hawking Mass

The next lemma due to G. Huisken and T. Ilmanen is extracted from section 6
in [25]. Recall from section 4 in [25] that M is diffeomorphic to the complement in
IR3 of a finite union of open balls with disjoint closures. Fix a complete Riemannian
manifold (M\ , &) with M = R3 that contains (M, g) isometrically. We think of M
as being included in M below.
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LEMMA E.1 ([25]). Assume (M, g) to be a complete Riemannian 3-manifold that
is asymptotically flat with nonnegative scalar-curvature. Let ¥ C M be a con-
nected closed surface that is outward area-minimizing in (M , g). Then

area(X) 1 / 5
1-— H~d < .
167 ( l6r Jg ) =TaDM

COROLLARY E.2. Let (M, g) be a complete Riemannian 3-manifold that is asymp-
totically flat with nonnegative scalar curvature. The outer boundary ¥ = 92\ 0M
of the unique large component Q of a large isoperimetric region Qy in (M, g) is
connected and outward area-minimizing in (ﬁ . ). In particular,

area(X) 1 / 5
1— H*d < .
167 ( lx J5 7 4H) =Tapm

PROOF. We have already seen in Appendix B that ¥ is connected. Let Q C
M be the least area enclosure of € in (1\//7 . £). Recall from e.g. Theorem 1.3
in [25] that the boundary S of Qis C! and smooth away from the coincidence
set & N . Assume that Q # Q. It follows that the volume of (M N ﬁ) U
Q" is strictly larger than that of the isoperimetric region Q U Q' so that by
the monotonicity of the isoperimetric profile of (M, g) its boundary area is less.
A cut-and-paste argument using that the area of 3 is less than that of £ shows
otherwise—a contradiction. g

COROLLARY E.3. Let (M, g) be a complete Riemannian 3-manifold that is asymp-
totically flat with nonnegative scalar curvature. Consider ¥ C M a large con-
nected stable constant mean curvature surface. Then,

b 1
area(%) 1 - / sz[,L < (1 4+ o(1))ymapm
16 16 Jx

as area(X) — oo.

PROOF. This follows exactly as before when ¥ is outer-minimizing. To handle
the case when X is not outer-minimizing, we can apply the previous argument to
the outer-minimizing hull of X and then use the fact that after rescaling to unit
size, X is close to a round sphere (and thus the difference in area between X and
its outer-minimizing hull is small). The details are given in [11, prop. D.1]. O

D. Christodoulou and S.-T. Yau [13] have proven (E.2) below. Estimate (E.1)
follows from a variation of their argument as in the proof of theorem 6 in [37].

LEMMA E4 (cf. [13,37]). Let ¥ C M be a connected closed stable constant mean
curvature surface in a Riemannian 3-manifold (M, g). Then

2 o 64
(E.1) H?area(X) + 3 / (R + |h))dp < Tﬂ
z
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When X is a sphere, then

2 o
(E2) H? area(Y) + 3 / (R + |h|?)dp < 167.
X

Here, R denotes the ambient scalar curvature and H and ]; denote, respectively,
the constant scalar mean curvature and the trace-free part of the second fundamen-
tal form of ¥ with respect to a choice of unit normal, and d is the area element
of X with respect to the induced metric.

Appendix F Elementary Growth Estimates

The elementary and well-known fact stated in the lemma below follows from an
explicit “cut and paste” argument by comparison with balls B, for p > 1 large.

LEMMA FE.1. Let (M, g) be a complete Riemannian 3-manifold that is asymptoti-
cally flat. There is a constant ¢ > 0 depending only on (M, g) such that, for every
isoperimetric region 2 C M,

area(B, N 0Q2) < cp?
forall p > 1.

The following lemma is a standard consequence of the layer-cake representation
of a function. We frequently apply this result in conjunction with the previous
lemma to surfaces ¥ = 92 where 2 C M is an isoperimetric region.

LEMMA F.2. Let (M, g) be an asymptotically flat 3-manifold. Let ¥ C M be a
surface such that, for some ¢ > 0,

area(B, N X) < c,o2
forall p > 1. Then, fora > 0and 1 < o < p,

/ |x|™%dp < area(x N (B, \ Bo)) + ca /p
EN(B,\By) B p*

Appendix G Geometry in the Asymptotically Flat End

=Y dr.

g

Consider a Riemannian metric
g = gijdxi ® dx’  where gij = 8ij + 0ij
on R? such that
|xllozj| + |x1|9k 03] = O(1x|7%)  as |x| = o0
for some 7 > 1/2. We denote the Euclidean background metric by
g =8;dx' ®dx’.
Let ¥ C R3 be a two-sided surface. The unit normal, the second fundamental

form, the trace-free second fundamental form, the mean curvature, and the in-
o
duced surface measure of X are denoted by v, 4, h, H, and pu, respectively. These
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geometric quantities can also be computed with respect to the standard Euclidean
metric g. To distinguish these Euclidean quantities from those with respect to the

curved metric, we denote them using an additional bar: v, A, A, H, and n. A
standard computation as in, e.g., [25, p. 418] shows how to compare the respective

quantities:

v(x) = T(x) = O(|x|7),

h(x) = h(x) = O(h(x)]]x|7%) + O(|x| 179,
(G.1) H — H(x) = 0(h(x)[|x|7%) + O(|x[~'77),
(G.2) h(x) = h(x) = O(h(x)]1x|7) + O(x|~"79),

dp—dp = O(x|7' ) dfi.

Appendix H The Hawking Mass of Outlying Spheres

We continue with the notation of Appendix G. Let § > 0. Let ¥ C R? be
geometrically close to a coordinate sphere S,(a) with |a| > (1 + §)pand p > 1
large. More precisely, we ask that the rescaled surface

p s ={px:xex}
be C2-close to a coordinate sphere of radius 1 in R3. We claim that
my (3) = o(1)

as p — oo. To see this, we follow the strategy of G. Huisken and T. Ilmanen in
their proof of the asymptotic comparison lemma 7.4 in [25]. We use the positiv-
ity of a term dropped in [25] in conjunction with estimates of C. De Lellis and
S. Miiller [14] to handle an additional technical difficulty brought about by our
weaker decay assumptions 7 > 1/2. All integrals below are with respect to the
Euclidean background metric unless explicitly noted otherwise.

Let r > 0 so that

areag(X) = 4rr2.

Note that r and p are comparable. Following G. Huisken and T. Ilmanen [25,
(7.11)], we compute

167[—/ H?*du
z
_ 1
= 167r—/ H2—|-/ (—EHztrga+2Hg(0,h)—H20(v,v)
z z

+2H trg(V.o)(v, -) — H try Vva)du

+ 0/ lo|?|h)? + 0/ |00 |?.
x x
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The error terms are both O(r_zt), since

/ h12dp = O(1).
X

By the Gauss equation and the Gauss-Bonnet formula,

16n—/ H2=—2/ 2.
z z

Using this in the above equation and computing as in [25, p. 420], we arrive at
167 — / H*du
z
=2 / |2
s B
1
+ - / (Htrgo —2Ho(v,v) +4trs(V.o)(v,:) —2try Vy0)du
rJz

+ 0/ |H =2/r|(H]|o| + |do|) + 0/ Hh||o| + O(27).
z b
Finally, integrating by parts as in Huisken-Ilmanen (7.15), we find

/2trg(V.0)(v,-)du:/(ZHa(v,v)—Htrzor)d,u—i-0/ |13||0|
by b by

so that

167 —/ H?%dp = —2/ %
z b))

+0/ \H —2/r|(H|o| + |30])
>
+ 0/ H|h||o| + 0G%%)

>

+ %/ (tr(V.o)(v,-) —tr V,0)dpu.
rJs

Using that the scalar curvature is integrable and that X is outlying and divergent as
r — 00, we see that the “mass integral” on the second line is o(r~1). Using (G.1)
and the trivial estimate |h(x)| = O(r~!), we may rewrite the above expression as

167r—/ H?*du
x
=2 [z + 0 [ 1 =2/ri(l0)/r + lao)

+ 0/ H|h||o| + 0/ (lol/7 + [80])? + o(rY).
> >
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It is clear that this additional error term is o(r~!). Simplifying, we find

167 —/ H?*dp = —2/ k% + o(r—l—r/ |H —2/r|)
b b b
n o(r—l—ff |i§|) Fo(r ),
b
Using now that |}‘;(x)| = |E(x)|g + O(r~'77) by (G.2), we obtain
167 —f H?%du = —2/ h|Z + O(r—l—f/ |H —2/r|)
b b b
+ o(r—l—r/ |}7|) +o(r™h).
by

Using Holder’s inequality, we find

167r—/ szuf—/ |}7|§+ O(r_l_’/ |I-_I—2/r|) +o(r™.
= b b

Using now the estimate

(H.1) /(ﬁ—z/r)zscf h2
x z

due to C. De Lellis and S. Miiller [14] where ¢ > 0 is a universal constant, it

follows that
o(r—l—r/ |H —2/r|) 5/ k% + O(~).
by by

167 —/ H%du <o(r™Y)  or, equivalently, mg(Z) = o(1)
=

Thus

asr — OQ.

Remark H.1. Note that X is convex since it is geometrically close to S,(a). We
mention that there are two alternative proofs of (H.1) in this case. One is due to
G. Huisken and uses the inverse mean curvature flow of mean-convex, star-shaped
regions in R3—see theorem 3.3 in [35]. A second proof is due to D. Perez [35,
theorem 3.1], who proves (H.1) for convex hypersurfaces in R”?*1 and proceeds via
integration by parts with an appropriately chosen solution to the Poisson equation.

Appendix I Area and Volume of Large, Outlying Coordinate Spheres

The computations below follow closely the ideas leading to Corollary 2.3 in
[18], which we have stated here as Lemma C.1.

Let (M, g) be a complete Riemannian 3-manifold that is asymptotically flat at
rate T = 1.

Givena € R3 and p > 0, we let

Sp(a) ={xeR?®:|x—a|=p} and By(a) = {x eR3:|x—a| < pl.
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We also abbreviate ) )
- xt—a
n'(x) =

Ix —al’
Integration is with respect to the Euclidean metric in the chart at infinity (1.1)
unless we indicate otherwise.

LEMMA L1. Leta € R® and p > 0. Then, as |a| — p — oo,

3
> /S (3015 — djoii)n? = o(1).

ij=1750(
PROOF. We compute

3
1
0(1)2/ R = Z/ (3iajgij_aj8jgii)+0/
Bp(a) By(a)

=1 B,(a) W
> . 1
= Z / (0;0i; — djoii)n’ + 0(—)
2 dse@ lal —p

where we use the decay assumptions on the metric and the integrability of the scalar
curvature. g

PROPOSITION 1.2. We have, as p — oo and |a| — p — o0,

1 .
(I.1) area(S,(a)) = 4mp? + —/ (8% —n'n’)o;j + o(p),
2 Spla)
drnp®>  p ij i j 2
1.2) vol(By(a)) = ——— + —/ (87 —n'n’)oi; + o(p”).
3 4 S,(a) ’

PROOF. Lett € [1, p]. Note that

1
(L.3) area(S;(a)) = 4wt? + _/
2 Js(a)

/ 1 _/2”/” 1% sin¢ i db
s X2 Jo Jo lal> +12—2lalt cos ¢

t t
_ ”—10g(|"| + ) — o(t).
la la| —¢

which gives (I.1). Differentiating (I1.3), we obtain
d; area(S; (a))

1 p o 1 . .
= 8nt + —/ n* (67 —n'nl)oy;) + —/ (8" —n'n’)
2 JSi(@ tJs

¢ (a)
1
+ 0/ |x|73 + - 0/ x| 2.
Si(a) L Jsi@

(8" —n*n')o;i + 0/ —.
Y S, |xI?
Now,

(14)
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Using that nkakni =0foralli = 1,2, 3, it follows that
d¢ area(S; (a))

1 iy P 1 . .
= 8nt + —/ nk (84 —n'n’)ooij + —/ (8" —n'n’)oy;
Si(a) LS
+0 / Lilo / !
si@ Xt I X2
Observe that
/ ninjnkakaij
St (a)
:/ ninkak(nfaij)
S (a)

= —/ (8% — n'n*)ag (n' 03) + / %0y (n’ 0y5)
Si(a) Si(a)
2

= ——/ n’n-’(r,-j -l—/ SIkHJBkOij + —/ (5” —n’n-’)aij
L Js () Si(a) L Js @

2 . L 1 .. .

= ——/ nlnjaij —i—/ 51k}’l]3k0ij + —/ (5” —n’n-’)aij,
L Js (@) Si(a) L Js @

where we have used the first variation formula in the second equality. Thus

d; area(S; (a))
= 8nt + l/ §Knd 801k — d;0%;) + l/ n'n’ oy
(L5) 2 Js.@ . 7t s ’

1 L 1 1 1
+ — (5”—111}1])0','.,'4——0/ —2+0/ R
2t Js,@) t o Js ) 1X] S,(a) 1X|

Substituting (I.3) into (I.5) and applying Lemma I.1 leads to

d; area(S;(a))
S 1 o 1
16 =M+47f[+—/ nanO'ij—i-O/ 3
(1.6) t t s, (a) ' S, @) ||
1 1
t o Jsa) x|
Next, we give an estimate of vol(B;(a)). By the co-area formula,
td
duvol(Bi(@) = [ A —
17) Si@) v/gij(xF —a?)(x/ —al)
' 1 o 1
= area(S¢(a)) + —/ n'n’o;; + 0/ )
2 St (a) St (a) | x|
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which in conjunction with (I1.6) yields
d; area(S¢(a))

18) = M +dmi + ;(2at vol(By(a)) — 2 area(S;(a)))

1 1 1
S;(a) 1] t o Js, @ x|

It follows that
9; (t area(S; (a))) = 4nt? + 29, vol(B;(a))

1 1
+f0/ —3+0/ —2+0(t).
Si(a) 1x] S (a) 1x]

Integrating from 1 to p yields
parea(Sp(a))

- Ik
1.9 3 S, (a) |x|3

1 S[((Z) |x|

A direct computation shows

/ 1 _2m( 1 1 )
si@ X lal \la| =1 la| +1

so that
L t
(L.10) / / —di = o(p?).
1J8,@) x|
Similarly,
P 1
(L11) // —=dt = o(p”).
1/ X
Substituting (I.10) and (I.11) into (1.9) gives (1.2). [l

Appendix J Extension of Brakke Flow Across a Point

In this appendix, we follow the notation, conventions, and some of the ideas in
T. Ilmanen’s article [27].

Let (M, g) be an (n + 1)-dimensional Riemannian manifold M. Consider a
Radon measure 4 on M and a nonnegative test function ¢ € Cc2 (M). We first
recall definition 6.2 in [27] of the quantity (i, ¢): In all of the four cases,

(1) p|{¢ > 0} is not a n-rectifiable Radon measure,
(2) |6V | {¢ > 0} is not a Radon measure on {¢ > 0} where V is the varifold
on {¢ > 0} associated to ju,
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(3) |8V | {¢ > 0} is singular with respect to u | {¢p > 0}, or
(4) [ ¢IH|? du = oo where H = 297 | {¢ > 0},
we let B(u, ¢) = —oo. Else, we set

Be.#) = [ (~9IBP + Vrup - H)dp.

Recall from definition 6.3 in [27] that a family {x;};>0 of Radon measures on M
is a Brakke flow if

Dipe (@) < B(pis. ¢)
for all # > 0 and all nonnegative ¢ € C2(M).

We now discuss the extension of Brakke flows across a point. First, we define
an injective map of Radon measures

MR" N\ {0}) := {p € MR\ {0}) : w(B1(0) \ {0}) < 00} - M(R" )
that extends 2 € M(R"+1\ {0}) to a Radon measure i € M(R”*1) such that
p({o}) = 0.
This map restricts to an injection of integer n-rectifiable Radon measures
ME™ I\ {0) N IMu R\ {0}) — IMp (R,
which in turn lifts to an injection of integer n-rectifiable varifolds
{V eIV, (R" 1) : uy (B1(0) \ {0}) < oo} — IV, (R"F1),
which we denote by R
Vi>V.

The extension of a stationary varifold across a point is not necessarily again

stationary as shown by the following well-known example.

Example J.1. Let 01, ...,0, € R. Consider the rays £ = [0,00)¢'% C R2.
The varifold V = |y, [€x| is stationary as an element of ZM; (R? \ {0}). Itis
stationary as an element of ZM (R?) if and only if ¢! + ... 4 ¢/ =0,

However, the phenomenon in the previous example is particular to dimension
n=1.

LEMMA J.2. Let n > 2. There are radial functions y; € CZ°(B1(0)) with 0 <
k. < 1 such that xx(x) = 1 when |x| < 1/(2k?) and y3(x) = 0 when |x| >
1/ k and constants c; \( 0 with the following property: Let |1 be a measure on
B1(0) \ {0} such that, for some ¢ > 0,

J.1) 1(Bp(0) \ {0}) < cp"
forall0 < p < 1. Then

1
o 190l i =
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Below we will often work with the functions
Jd.2) o =1— xx € COR" 1\ {0}).

Note that 0 < ¢; — 1 locally uniformly on R”*! \ {0} and that, under the as-
sumptions of the previous lemma,

lim /|Vgok|2d,u =0.
k—o0

We include a proof of the following, well-known result as preparation for Propo-
sition J.5.
LEMMA J.3 (Extending stationary varifolds across a point). Letn > 2. Let V be a
stationary n-rectifiable varifold on R"T1 \ {0} such that vy (B1(0) \ {0}) < oo.
The extension V of V' across the origin is stationary as an n-rectifiable varifold on
RrR2t+ 1‘

PROOF. Let ¢ € C®(R™F1\ {0}) be cutoff functions as in (J.2). Note that
(J.1) holds by the monotonicity formula for stationary varifolds as stated in (17.5)
of [41]. Let X € C}H(R"+!;R?*1). Then

0= [ avs@@eX)diy = [ pndive X duy + [ X -proips Ve dw

because V = v(X, 0) is stationary in R” \ {0}. As k — o0, the first term on the
right tends to (6V)(X), while the second term tends to 0. O

A similar argument gives the following result.

LEMMA J4. Letn > 2. Let V be an n-rectifiable varifold on R" 1\ {0} such
that, for some ¢ > 0,

pv (Bp(0) \ {0}) < cp"
forall0 < p < 1. Let ¢ € C(R"1) be a nonnegative function such that V
is n-rectifiable on {x € R"T1\ {0} : ¢(x) > 0} with absolutely continuous first
variation such that [ ¢|H|2 duy < oo. The first variation of the extension v of V
across the origin is absolutely continuous on {x € R"*1 : ¢(x) > 0}.

PROOF. Let X € Cl({x € R"tL: ¢(x) > 0}, R"T1). Let g € C®(R" T\
{0}) be cutoff functions as in (J.2). We compute that

V) (e /BX) = fwk\/aH-de < (/¢|H|2dw)2([ |X|2dw)

< ClXlr2¢u)

and

V) (/) = / o /B.dive X dpy + f JPorojrs Vo) - X duy
4 / o (prois Vv/B) - X duy
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where V = v(XZ, 0). In the last expression, the second term tends to 0 by Holder’s
inequality and the construction of ¢, while the first term tends to (§V)(X).
Finally, by Holder’s inequality, we may bound the third term by

Vol/PllL2u) 1 X 1L2¢uy )

The first quantity here can be bounded using the estimate in lemma 6.6 of [27].
Putting these facts together, we find that

IBV)(VOX)| = ClX 2200,y = ClIXN2qup)-
This completes the proof. |
We now turn to the situation for Brakke flows.

PROPOSITION J.5 (Extending Brakke flows across a point). Let n > 2. Let
{it¢}r>0 be a codimension 1 integral Brakke flow on R™ 1\ {0} such that, for
some constant ¢ > 0,

e (Bp(0) \ {0}) < cp”
forallt > 0and 0 < p < 1. Then {[i;};>0 is a codimension 1 integral Brakke
flow on R*+1,
PROOF. We use the cutoff functions ¢ € C®(R”*1\ {0}) from (J.2). Let
0<¢ e C2R"Y).
Recall from lemma 6.6 in [27] that, on {x € R"*1 : ¢(x) > 0},

2
(1.3) % < 2max |V?¢).

In a first step, we verify that, for all 7 > 0,
(J.4) lim B(,u;,go,%¢) = B(ils, $).
k—o0
Assume first that B(ji;, ¢) > —oc. Then
—00 < B(ﬁt,(pg(ﬁ) = B(Mt#ﬂ/%(ﬁ)

2 2 2 .
= —¢IH|” + ¢ (projros, Vo) -H
(JS) /{(p%¢>0}( k k T Z:t

+ 2¢r ¢ (projrrs, Vor) - H)dp,

for all k. The sum of the first two terms in (J.5) tends to B(ji;,¢) as k — oo
by dominated convergence. Using the Holder inequality and the properties of the
functions ¢y, we see that the third term tends to 0. This establishes (J.4) when
B(iis. ¢) > —oo.

Assume now that liminf; o0 B(ps, (p,%(ﬁ) > —o0. From (J.5), we see that

/ SR dp, = timsup [ GEgIHP dus < .
{xeR"+1\{0}:¢(x)>0} k—oo J{pZ¢>0
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Lemma J.4 shows that B(fi;, ¢) > —oo. The claim follows from our earlier com-
putation.

Finally, it is easy to see that limy_, o B(it¢, go,%gb) = —oo when B(fis,¢) =
—00.

Estimating (J.5) as in §6.7 of [27], we see that

1 1 ,|Ve|?
B(pe.o7d) < /{(p2¢>0} (—Zwiqﬁlle + -9}
k

2
In combination with (J.3) and the uniform mass bounds, we obtain

i 4¢|V<pk|2)dm.

supsup B(r. ¢7¢) = C(¢) < oo,
k t>0
As in [27, §7.2(1)], in conjunction with the Brakke property for {ji;};>¢, this esti-
mate implies that

t > ui(pgg) — C(p)t

is nonincreasing. Passing to the limit as k — oo and using the uniform mass
bounds, it follows that

1> () — C(g)

is nonincreasing.
We now verify that

Difir(¢) < B(fis. ¢)

for all ¢ > 0. The argument follows a step of the proof of theorem 7.1 on pp. 4041
in [27] closely. 3
Fix t > 0. We may assume that —oo < D;[i;(¢). Suppose that there are times
ty 't with
Ao (@) — (@)
Iy —t

Difis(9) < +o(1)

as k — oo. (The case where f; | ¢ is analogous.) By choosing the indices £(k)
to tend to infinity sufficiently fast, we arrange that

M (‘Pf(k)ﬁb) — My (‘/’ez(k)‘p) .
t— 1

—00 < D¢fis(¢) < o(1)

as k — oo. Arguing as on p. 40 in [27], we see that there are s € [y, t] with

(J.6) —00 < Dy ($) < B(ps 970)¢) + 0(1)

as k — oo. In particular,
limsup/gof(k)¢|H|2d/Lsk < 00.
k—o00

The measures s, | {x € R?T1\ {0} : ¢(x) > 0} converge to p; | {x € R"T1\
{0} : ¢(x) > 0} as k — oo by the same argument as on page 41 of [27]. In fact,
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the associated varifolds converge. It follows (cf. theorem 7.3 in [27]) that
lim sup B(/Lsk s (pg(k)¢) < B(ﬁt ) ¢)
k—o00
Together with (J.6) this finishes the proof. U

Example J.1 shows that there is no analogue of Proposition J.5 when n = 1.
Indeed, stationary varifolds are (constant) Brakke flows.

The following result and its proof should be compared with the constancy theo-
rem for stationary varifolds [41, §41].

PROPOSITION J.6 (Constancy theorem). Let {{t;};>0 be an integral Brakke flow
in R3 such that u(0) = H? | S1(§). Thereis T € [0, %] such that

pe =H>|S jj=3;€) forallt €[0,T)and ju; = Oforallt > T.

PROOF. The avoidance principle for Brakke flows as stated in §10.7 of [27]
shows that

supp iur C S s7—4;(§)

for all ¢t € [0, %]. The entropy of S1(§) is less than 3/2. The entropy decreases
along the Brakke flow by lemma 7 of [28]. Using that {{¢; };>¢ is an integral Brakke
flow, we see that for almost every # > 0 the measure p; has an approximate tangent
plane with multiplicity 1 at x for p;—almost every x. Thus, for almost every ¢ > 0,
there is a measurable subset X; C S m(é) with u; = H? | Z,.

We claim that X; as a varifold with multiplicity 1 has absolutely continuous first
variation for almost every ¢ > 0. Indeed, by §7.2(ii) in [27], given ¢ € C°(R?)
we have that —oo < D;u;(¢) for almost every ¢ > 0. Let ¢ such that ¢(x) = 1
for all x € B, (§). Using that D; s (¢) < B(jis. ¢) for a Brakke motion, the claim
follows.

For such ¢ > 0 and every X € C!(R3 R3), we have that

Guo = [ xs, divs @ X
S =€)
1/2
scl(/ |X|2) <e2 swp |X].
S =4 &) S =€)

It follows that the perimeter of X, as a subset of S JIZ41() vanishes. The Poincaré
inequality (as in lemma 6.4 of [41]) shows that either X, or its complement in
S m(é) is a set of 2—dimensional measure zero. We have thus shown that for
almost every ¢ > 0, either 1, = H? LSM(S) or u(t) = 0.

By §7.2 (ii) of [27], we have that

th/rg ws(@) > ps(p) = th\n} we (@)

forall ¢ € C2° (R3) and all s > 0. This finishes the proof. O



ISOPERIMETRIC STRUCTURE 903

Acknowledgment. We sincerely thank Hubert Bray, Simon Brendle, Gerhard
Huisken, Jan Metzger, Richard Schoen, and Brian White for their encouragement
and support over a long period of time. We also thank Christopher Nerz for sharing
with us his expertise on the canonical foliation, and Felix Schulze and Lu Wang
for helpful discussions about the Brakke flow. We are grateful to Thomas Koerber
for his valuable suggestions that have helped improve the exposition of the article.

Otis Chodosh has been supported at various times during this research by EP-
SRC Grant EP/K00865X/1, the National Science Foundation Grants No. 1638352
and 1811059/2016403, the Oswald Veblen Fund, a Sloan Fellowship, and a Ter-
man Fellowship. Michael Eichmair is supported by the START-Project Y963-N35
of the Austrian Science Fund (FWF). Yuguang Shi is supported in part by NSFC
Grant 11671015.

Bibliography

[1] Arnowitt, R.; Deser, S.; Misner, C. Coordinate invariance and energy expressions in general
relativity. Phys. Rev. (2) 122 (1961), no. 3, 997-1006. doi:10.1103/PhysRev.122.997

[2] Bartnik, R. The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39 (1986),
no. 5, 661-693. doi:10.1002/cpa.3160390505

[3] Bavard, C.; Pansu, P. Sur le volume minimal de RZ. Ann. Sci. Ecole Norm. Sup. (4) 19 (1986),
no. 4, 479-490.

[4] Brakke, K. A. The motion of a surface by its mean curvature. Mathematical Notes, 20. Princeton
University Press, Princeton, N.J., 1978.

[5] Bray, H. L. The Penrose inequality in general relativity and volume comparison theorems in-
volving scalar curvature. Ph.D. thesis, Stanford University, 1997.

[6] Brendle, S.; Eichmair, M. Large outlying stable constant mean curvature spheres in initial data
sets. Invent. Math. 197 (2014), no. 3, 663-682. doi:10.1007/s00222-013-0494-8

[7] Carlotto, A.; Chodosh, O.; Eichmair, M. Effective versions of the positive mass theorem. Invent.
Math. 206 (2016), no. 3, 975-1016. doi:10.1007/s00222-016-0667-3

[8] Carlotto, A.; Schoen, R. Localizing solutions of the Einstein constraint equations. Invent. Math.
205 (2016), no. 3, 559-615. doi:10.1007/s00222-015-0642-4

[9] Cederbaum, C.; Nerz, C. Explicit Riemannian manifolds with unexpectedly behaving center of
mass. Ann. Henri Poincaré 16 (2015), no. 7, 1609-1631. doi:10.1007/s00023-014-0346-0

[10] Chodosh, O. Large isoperimetric regions in asymptotically hyperbolic manifolds. Comm. Math.
Phys. 343 (2016), no. 2, 393—443. Available at: http://dx.doi.org/10.1007/s00220—
015-2457-y

[11] Chodosh, O.; Eichmair, M. Global uniqueness of large stable CMC surfaces in asymptotically
flat 3-manifolds. Preprint, 2017. arXiv:1703.02494 [math.DG]

[12] Chodosh, O.; Eichmair, M. On far-outlying constant mean curvature spheres in asymptotically
flat Riemannian 3-manifolds. J. Reine Angew. Math. 767 (2020), 161-191. doi:10.1515/crelle-
2019-0034

[13] Christodoulou, D.; Yau, S.-T. Some remarks on the quasi-local mass. Mathematics and general
relativity (Santa Cruz, CA, 1986), 9—14. Contemporary Mathematics, 71. American Mathemat-
ical Society, Providence, R.I., 1988. doi:10.1090/conm/071/954405

[14] De Lellis, C.; Miiller, S. Optimal rigidity estimates for nearly umbilical surfaces. J. Differential
Geom. 69 (2005), no. 1, 75-110. doi:10.4310/jdg/1121540340

[15] Eichmair, M.; Metzger, J. On large volume preserving stable CMC surfaces in initial data sets.
J. Differential Geom. 91 (2012), no. 1, 81-102.


http://dx.doi.org/doi:10.1103/PhysRev.122.997
http://dx.doi.org/doi:10.1002/cpa.3160390505
http://dx.doi.org/doi:10.1007/s00222-013-0494-8
http://dx.doi.org/doi:10.1007/s00222-016-0667-3
http://dx.doi.org/doi:10.1007/s00222-015-0642-4
http://dx.doi.org/doi:10.1007/s00023-014-0346-0
http://dx.doi.org/10.1007/s00220-015-2457-y
http://dx.doi.org/10.1007/s00220-015-2457-y
http://arxiv.org/abs/1703.02494
http://dx.doi.org/doi:10.1515/crelle-2019-0034
http://dx.doi.org/doi:10.1515/crelle-2019-0034
http://dx.doi.org/doi:10.1090/conm/071/954405
http://dx.doi.org/doi:10.4310/jdg/1121540340

904 O. CHODOSH ET AL.

[16] Eichmair, M.; Metzger, J. Large isoperimetric surfaces in initial data sets. J. Differential Geom.
94 (2013), no. 1, 159-186.

[17] Eichmair, M.; Metzger, J. Unique isoperimetric foliations of asymptotically flat manifolds in
all dimensions. Invent. Math. 194 (2013), no. 3, 591-630. doi:10.1007/s00222-013-0452-5

[18] Fan, X.-Q.; Shi, Y.; Tam, L.-F. Large-sphere and small-sphere limits of the Brown-York mass.
Comm. Anal. Geom. 17 (2009), no. 1, 37-72. doi:10.4310/CAG.2009.v17.n1.a3

[19] Flores, A. M.; Nardulli, S. Continuity and differentiability properties of the isoperimetric pro-
file in complete noncompact Riemannian manifolds with bounded geometry. Preprint, 2014.
arXiv:1404.3245 [math.MG]

[20] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order. Classics in
Mathematics. Springer, Berlin, 2001.

[21] Huang, L.-H. Foliations by stable spheres with constant mean curvature for isolated systems
with general asymptotics. Comm. Math. Phys. 300 (2010), no. 2, 331-373. doi:10.1007/s00220-
010-1100-1

[22] Huang, L.-H. On the center of mass in general relativity. Fifth International Congress of Chi-
nese Mathematicians. Part 1, 2, 575-591. AMS/IP Studies in Advanced Mathematics, 51, pt. 1,
vol. 2. American Mathematical Society, Providence, RI, 2012.

[23] Huisken, G. An isoperimetric concept for mass and quasilocal mass. Oberwolfach Rep., vol. 3,
87-88, 2006. doi:10.4171/OWR/2006/02

[24] Huisken, G. “An Isoperimetric Concept for the Mass in General Relativity”. Marston Morse
Lecture, 2009. https://www.youtube.com/watch?v=4aG5L49p428

[25] Huisken, G.; Ilmanen, T. The inverse mean curvature flow and the Riemannian Penrose inequal-
ity. J. Differential Geom. 59 (2001), no. 3, 353-437.

[26] Huisken, G.; Yau, S.-T. Definition of center of mass for isolated physical systems and unique
foliations by stable spheres with constant mean curvature. Invent. Math. 124 (1996), no. 1-3,
281-311. doi:10.1007/s002220050054

[27] Ilmanen, T. Elliptic regularization and partial regularity for motion by mean curvature. Mem.
Amer. Math. Soc. 108 (1994), no. 520, x+90. doi:10.1090/memo/0520

[28] Ilmanen, T. Singularities of mean curvature flow of surfaces. Preprint, 1995.

[29] Jauregui, J. L.; Lee, D. A. Lower semicontinuity of mass under C 0 convergence and Huisken’s
isoperimetric mass. J. Reine Angew. Math. 756 (2019), 227-257. doi:10.1515/crelle-2017-0007

[30] Ma, S. On the radius pinching estimate and uniqueness of the CMC foliation in asymptotically
flat 3-manifolds. Adv. Math. 288 (2016), 942-984. doi:10.1016/j.aim.2015.11.009

[31] Metzger, J. Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean cur-
vature. J. Differential Geom. 77 (2007), no. 2, 201-236.

[32] Nardulli, S. The isoperimetric profile of a smooth Riemannian manifold for small volumes.
Ann. Global Anal. Geom. 36 (2009), no. 2, 111-131. doi:10.1007/s10455-008-9152-6

[33] Nerz, C. Foliations by stable spheres with constant mean curvature for isolated systems without
asymptotic symmetry. Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1911-1946.
doi:10.1007/s00526-015-0849-7

[34] Nerz, C. Foliations by stable spheres with constant mean curvature for isolated systems without
asymptotic symmetry. Preprint, 2016. arXiv:1408.0752 [math.AP]

[35] Perez, D. On nearly umbilical hypersurfaces. Ph.D. thesis, University of Zurich, 2011.

[36] Qing, J.; Tian, G. On the uniqueness of the foliation of spheres of constant mean curva-
ture in asymptotically flat 3-manifolds. J. Amer. Math. Soc. 20 (2007), no. 4, 1091-1110.
doi:10.1090/S0894-0347-07-00560-7

[37] Ritoré, M.; Ros, A. Stable constant mean curvature tori and the isoperimetric problem in three
space forms. Comment. Math. Helv. 67 (1992), no. 2, 293-305.

[38] Ros, A. The isoperimetric problem. Global theory of minimal surfaces, 175-209. Clay Mathe-
matics Proceedings, 2. American Mathematical Society, Providence, R.I., 2005.


http://dx.doi.org/doi:10.1007/s00222-013-0452-5
http://dx.doi.org/doi:10.4310/CAG.2009.v17.n1.a3
http://arxiv.org/abs/1404.3245
http://dx.doi.org/doi:10.1007/s00220-010-1100-1
http://dx.doi.org/doi:10.1007/s00220-010-1100-1
http://dx.doi.org/doi:10.4171/OWR/2006/02
https://www.youtube.com/watch?v=4aG5L49p428
http://dx.doi.org/doi:10.1007/s002220050054
http://dx.doi.org/doi:10.1090/memo/0520
http://dx.doi.org/doi:10.1515/crelle-2017-0007
http://dx.doi.org/doi:10.1016/j.aim.2015.11.009
http://dx.doi.org/doi:10.1007/s10455-008-9152-6
http://dx.doi.org/doi:10.1007/s00526-015-0849-7
http://arxiv.org/abs/1408.0752
http://dx.doi.org/doi:10.1090/S0894-0347-07-00560-7

ISOPERIMETRIC STRUCTURE 905

[39] Schoen, R.; Yau, S.-T. On the proof of the positive mass conjecture in general relativity. Comm.
Math. Phys. 65 (1979), no. 1, 45-76

[40] Shi, Y. The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar
curvature. Int. Math. Res. Not. IMRN (2016), no. 22, 7038-7050. doi:10.1093/imrn/rnv395

[41] Simon, L. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical
Analysis, Australian National University, 3. Australian National University, Centre for Mathe-
matical Analysis, Canberra, 1983.

[42] White, B. The size of the singular set in mean curvature flow of mean-convex sets. J. Amer.
Math. Soc. 13 (2000), no. 3, 665—695. doi:10.1090/S0894-0347-00-00338-6

[43] White, B. A local regularity theorem for mean curvature flow. Ann. of Math. (2) 161 (2005),
no. 3, 1487-1519. doi:10.4007/annals.2005.161.1487

[44] Witten, E. A new proof of the positive energy theorem. Comm. Math. Phys. 80 (1981), no. 3,
381-402

[45] Yu, H. Isoperimetry for asymptotically flat 3-manifolds with positive ADM mass. Preprint,
2020. arXiv:2008.13307 [math.DG]

OT1s CHODOSH

Department of Mathematics

Building 380

Stanford University

Stanford, CA 94305

USA

E-mail: ochodosh@
stanford.edu

YUGUANG SHI

Key Laboratory of Pure

and Applied Mathematics

School of Mathematical Sciences

Peking University

Beijing 100871

CHINA

E-mail: ygshie
math.pku.edu.cn

Received May 2019.

MICHAEL EICHMAIR

Faculty of Mathematics

University of Vienna

Oskar-Morgenstern-Platz 1

1090 Vienna

AUSTRIA

E-mail: michael.eichmair@
univie.ac.at

HAOBIN YU

Department of Mathematics

Hangzhou Normal University

Hangzhou, 311121

CHINA

E-mail: yhbmath@hznu.edu.cn


http://dx.doi.org/doi:10.1093/imrn/rnv395
http://dx.doi.org/doi:10.1090/S0894-0347-00-00338-6
http://dx.doi.org/doi:10.4007/annals.2005.161.1487
http://arxiv.org/abs/2008.13307
mailto:ochodosh@\stanford.edu
mailto:ygshi@\math.pku.edu.cn
mailto:michael.eichmair@\univie.ac.at
mailto:yhbmath@hznu.edu.cn

	1. Introduction
	2. Isoperimetric Deficit of Large Outlying Stable CMC Spheres
	3. Proof of Theorem 1.1 Assuming (3.1) and (3.2) 
	4. Mean Curvature Flow of Large Isoperimetric Regions
	5. Proof of Theorem 1.1 When > 1/2
	Appendix A. General Properties of the Isoperimetric Profile
	Appendix B. Divergent Sequences of Isoperimetric Regions
	Appendix C. Sharp Isoperimetric Inequality
	Appendix D. Canonical Foliation
	Appendix E. A Priori Estimates for the Hawking Mass
	Appendix F. Elementary Growth Estimates
	Appendix G. Geometry in the Asymptotically Flat End
	Appendix H. The Hawking Mass of Outlying Spheres
	Appendix I. Area and Volume of Large, Outlying Coordinate Spheres
	Appendix J. Extension of Brakke Flow Across a Point
	Bibliography

