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ABSTRACT 11 

Various perimeter metering control strategies have been proposed for urban traffic networks that 12 

rely on the existence of well-defined relationships between network productivity and accumulation, 13 

known more commonly as network Macroscopic Fundamental Diagrams (MFD). Most existing 14 

perimeter metering control strategies require accurate modeling of traffic dynamics with full 15 

knowledge of the network MFD and dynamic equations to describe how vehicles move across 16 

regions of the network. However, such information is generally difficult to obtain and subject to 17 

error. Some model free perimeter metering control schemes have been recently proposed in the 18 

literature. However, these existing approaches require estimates of network properties (e.g., the 19 

critical accumulation associated with maximum network productivity) in the controller designs. In 20 

this paper, a model free deep reinforcement learning perimeter control (MFDRLPC) scheme is 21 

proposed for two-region urban networks that features agents with either continuous or discrete 22 

action spaces. The proposed agents learn to select control actions through a reinforcement learning 23 

process without assuming any information about environment dynamics. Results from extensive 24 

numerical experiments demonstrate that the proposed agents: (a) can consistently learn perimeter 25 

control strategies under various environment configurations; (b) are comparable in performance to 26 

the state-of-the-art, model predictive control (MPC); and, (c) are highly transferable to a wide 27 

range of traffic conditions and dynamics in the environment.  28 

Keywords: Macroscopic Fundamental Diagram (MFD); model free deep reinforcement learning 29 

(Deep-RL); perimeter control 30 
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1. INTRODUCTION 1 

Network Macroscopic Fundamental Diagrams (MFDs) provide a unimodal, low-scatter 2 

relationship between the average productivity (e.g., network space-mean flow or trip completion 3 

rate) and average use (e.g., network vehicle density or accumulation) for homogeneously loaded 4 

urban networks. The proposition of the MFD was initially developed in (Godfrey, 1969) and later 5 

studied in (Mahmassani et al., 1987, 1984), but its existence was not established until recent 6 

theoretical and empirical findings (Daganzo, 2007; Geroliminis and Daganzo, 2008). Thereafter 7 

extensive empirical and simulation investigations have been conducted for the existence and 8 

properties of well-defined MFDs (Buisson and Ladier, 2009; Daganzo et al., 2011; Geroliminis 9 

and Sun, 2011; Ji et al., 2010; Mazloumian et al., 2010). 10 

MFDs can be used to model urban traffic networks with much less complexity by focusing 11 

on the movement of vehicles across regions, and this paradigm can lead to the design of elegant 12 

regional level traffic control strategies. Examples include pricing, street network design, and 13 

multimodal street allocation (Daganzo and Lehe, 2015; Gayah et al., 2014; Zheng et al., 2012; 14 

Zheng and Geroliminis, 2013). The most common application of MFDs for control purposes is 15 

perimeter metering control, which is the manipulation of vehicle flows between neighboring 16 

regions. Perimeter metering control strategies have been proposed for single-region networks in 17 

(Daganzo, 2007; Haddad, 2017a; Haddad and Shraiber, 2014; Keyvan-Ekbatani et al., 2012, 18 

2015a). For two-region urban networks, the perimeter control problem was first formulated in 19 

(Haddad and Geroliminis, 2012) and subsequently solved in (Geroliminis et al., 2013), while 20 

numerous extensions to multi-region networks can be found in (Aboudolas and Geroliminis, 2013; 21 

Haddad et al., 2013; Hajiahmadi et al., 2015; Keyvan-Ekbatani et al., 2015b; Lei et al., 2019; Ren 22 

et al., 2020; Sirmatel and Geroliminis, 2018).  23 

Various methods have been proposed to solve MFD-based perimeter control problems. The 24 

most promising and extensively used in the literature is model predictive control (MPC) 25 

(Geroliminis et al., 2013; Haddad, 2017b; Haddad et al., 2013; Hajiahmadi et al., 2015; Ramezani 26 

et al., 2015; Sirmatel and Geroliminis, 2018). However, the success of the MPC approach is 27 

heavily dependent on the accuracy of the MFD prediction model. While the estimation of a 28 

network’s MFD has been studied intensively (Ambühl and Menendez, 2016; Du et al., 2016; 29 

Gayah and Dixit, 2013; Nagle and Gayah, 2014; Saberi et al., 2014), the scarcity of empirically 30 

observed MFDs in the literature demonstrates the practical difficulty of such MFD estimation 31 

efforts. The MPC is a rolling horizon control scheme and may not generalize well to new plants 32 

(reality) owing to its sensitivity to horizon parameters and modeling uncertainties (Prabhu and 33 

George, 2014; Schrangl et al., 2018). Non-MPC methods for perimeter control have also been 34 

proposed and shown to be promising. These include proportional-integral based control (Haddad 35 

and Shraiber, 2014; Keyvan-Ekbatani et al., 2015b, 2015a, 2012), adaptive control (Haddad and 36 

Mirkin, 2017, 2016), and linear quadratic regulator (Aboudolas and Geroliminis, 2013; Kouvelas 37 

et al., 2017; Ni and Cassidy, 2020). However, all these methods are either model-based (i.e., 38 

assume full regional traffic dynamics to be known a priori) or require information about the 39 

network’s MFD, which render them susceptible to the potential mismatch between the prediction 40 

model and environment dynamics.  41 

To overcome these challenges, data-driven model free schemes have been proposed for 42 

perimeter control problems (Lei et al., 2019; Li and Hou, 2020; Ren et al., 2020, 2018). However, 43 

these schemes require the estimation of network properties (e.g., the critical accumulation 44 
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associated with maximum network productivity) that are embedded in the controller design. Thus, 1 

they may be prone to estimation errors due to multivaluedness, instability, and hysteresis 2 

phenomena that are common in real networks (Daganzo et al., 2011; Gayah and Daganzo, 2011; 3 

Mahmassani et al., 2013; Mazloumian et al., 2010). Further, it remains uninvestigated whether 4 

these methods could transfer to unencountered environment scenarios since the controllers learn 5 

from scratch for each case study considered. It is therefore desirable to develop methods for 6 

perimeter control that are completely model-free and do not build on pre-collected traffic data for 7 

the estimation of MFDs. 8 

Reinforcement learning (RL), which has long been studied for sequential decision-making 9 

problems (Sutton and Barto, 2018), might be an appropriate technique for this task. In particular, 10 

the authors are interested in the applicability of model-free control methods as they require little 11 

to no detailed knowledge on the environment dynamics. Pioneering works in this vein include TD 12 

learning (Sutton and Barto, 2018), SARSA (Rummery and Niranjan, 1994), and Q-learning 13 

(Watkins and Dayan, 1992). However, these methods store value functions in a tabular form and 14 

cannot scale to large, complex problems, such as perimeter control. To overcome this issue, 15 

extensive efforts have been invested to integrate RL with deep learning (Lecun et al., 2015). 16 

Nevertheless, when nonlinear function approximators such as neural networks are combined with 17 

off-policy and bootstrapping, instability and divergence might occur (Tsitsiklis and Roy, 1997), 18 

i.e., the deadly triad issue (Sutton and Barto, 2018). Deep Q-Networks (DQN) algorithm (Mnih et 19 

al., 2015) was the first work that successfully addressed this using experience replay and target 20 

networks. Following its seminal success, an increasing number of DQN variants have been 21 

proposed (Hessel et al., 2017; Schaul et al., 2016; van Hasselt et al., 2015; Wang et al., 2015) and 22 

deep reinforcement learning (Deep-RL) has attracted substantial research interests in the scientific 23 

community. 24 

Deep-RL has been applied by the transportation community for a variety of traffic control 25 

purposes, most notably signalized intersection control (Genders and Razavi, 2016; Li et al., 2016; 26 

Liang et al., 2018; Wei et al., 2019). An initial attempt to integrate RL into perimeter control 27 

problems can be found in (Ni and Cassidy, 2019). However, the RL method in this study was only 28 

utilized to redistribute metering rates derived from an MPC-based control framework along the 29 

cordon perimeters. In a separate study (Ni and Cassidy, 2020), a model-based RL method was 30 

incorporated in the MPC framework to solve the formulated open-loop optimization program as a 31 

replacement for the direct sequential method used in (Geroliminis et al., 2013). More recently, a 32 

neuro-dynamic programming approach was proposed in (Su et al., 2020) that integrates neural 33 

network function approximators and policy iteration. However, these components are only utilized 34 

to approximate the analytically found solution, which itself requires full system dynamics to obtain. 35 

In addition, the policy iteration technique is heavily model based since it models the transition 36 

function explicitly.  37 

In this paper, a model free deep reinforcement learning perimeter control (MFDRLPC) 38 

scheme is presented. The proposed scheme learns the long-term values (i.e., Q-values) of state-39 

action pairs iteratively through interactions with the environment, which allows the learning agents 40 

to make more sensible future decisions. Specifically, two different agent designs are introduced 41 

based on whether the control actions are discretized (referred to as D-RL) or treated as continuous 42 

(C-RL). The D-RL agent takes greedy actions based on the learned Q-values, while the C-RL agent 43 

features an actor to choose continuous control actions and a critic to evaluate the actions taken by 44 
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the actor. Both agent designs do not build on any information about the environment, like the 1 

functional form of the MFDs or impacts of vehicle routing decisions. Such strategy is called 2 

“model-free”, a terminology widely adopted in the literature (Hou and Xiong, 2019; Lei et al., 3 

2019; Li and Hou, 2020; Ren et al., 2020, 2018) that refers exclusively to the agent designs. Note 4 

that utilizing a simulation environment to train the agents—as done in this paper—would still 5 

require a model of traffic dynamics. Practically speaking, however, the agents can be trained in 6 

real life without this model information.  7 

The remainder of this paper is outlined as follows. Section 2 formulates the control problem 8 

for a two-region urban network with MFDs. Section 3 explains the proposed MFDRLPC scheme 9 

in detail. Section 4 presents the experiment setups and results. A discussion on the implementation 10 

prospect of the proposed scheme along with concluding remarks is provided in Section 5. 11 

2. PROBLEM FORMULATION  12 

This paper considers an urban network composed of two homogeneous sub-regions, 𝑅𝑖, 𝑖 = 1,2; 13 

see Fig. 1(a). Traffic states are expressed by the accumulations 𝑛𝑖𝑗(𝑡), 𝑖, 𝑗 = 1,2,  which represent 14 

the number of vehicles within 𝑅𝑖 with destinations in 𝑅𝑗 at time 𝑡. Denote as 𝑓𝑖(𝑛𝑖(𝑡)) the MFD for 15 

𝑅𝑖  that defines the regional trip completion rate at accumulation 𝑛𝑖(𝑡)  and note that 𝑛𝑖(𝑡) =16 
∑ 𝑛𝑖𝑗(𝑡)𝑗 . Provided that the trip lengths are similar for all trips within a region, the internal and 17 

external trip completion rates for 𝑅𝑖  are then respectively calculated by 𝑀𝑖𝑖(𝑡) = 𝑛𝑖𝑖(𝑡)/𝑛𝑖(𝑡) ⋅18 

𝑓𝑖(𝑛𝑖(𝑡)), 𝑀𝑖𝑗(𝑡) = 𝑛𝑖𝑗(𝑡)/𝑛𝑡(𝑡) ⋅ 𝑓𝑖(𝑛𝑖(𝑡)), 𝑖 ≠ 𝑗, where 𝑀𝑖𝑖(𝑡) stands for the regional exit flow and 19 

𝑀𝑖𝑗(𝑡) the transfer flow. Like accumulations, traffic demands are denoted by 𝑞𝑖𝑗(𝑡), 𝑖, 𝑗 = 1,2. Note 20 

that estimates of traffic demands can be conveniently obtained from historical observations and 21 

are thus assumed to be known, but distinctions between these estimates and the ground truth 22 

demands might exist, which will be systematically examined in Section 4.2.3. 23 

 24 

(a)  (b)  25 
Fig.  1. Schematic diagrams of: (a) a two-region urban network; (b) two-region MFDs  26 

 27 
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The perimeter controllers are presumed to operate on the boundary between neighboring 1 

regions for the purpose of improving network throughput, i.e., the number of trips completed; see 2 

also Fig. 1(a). The controllers are denoted by 𝑢12(𝑡) and 𝑢21(𝑡), which respectively define the 3 

allowable portions of transfer flows 𝑀12(𝑡) and 𝑀21(𝑡). Note that the perimeter controllers cannot 4 

constrain internal flows 𝑀11(𝑡) and 𝑀22(𝑡). Further, it is assumed in this paper that the existence 5 

of these controllers will not alter the environment dynamics. Relaxation of this assumption can be 6 

found in (Haddad, 2017b; Ni and Cassidy, 2020). 7 

Using this terminology, the two region perimeter control problem with MFDs is formulated 8 

as follows (similar to (Haddad et al., 2012)): 9 

max
𝑢12(𝑡),𝑢21(𝑡)

∫ [𝑀11(𝑡) + 𝑀22(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0

 (1) 10 

subject to: 11 

𝑑𝑛11(𝑡)

𝑑𝑡
= 𝑞11(𝑡) + 𝑢21(𝑡) ⋅ 𝑀21(𝑡) − 𝑀11(𝑡) (2) 12 

𝑑𝑛12(𝑡)

𝑑𝑡
= 𝑞12(𝑡) − 𝑢12(𝑡) ⋅ 𝑀12(𝑡)                    (3) 13 

𝑑𝑛21(𝑡)

𝑑𝑡
= 𝑞21(𝑡) − 𝑢21(𝑡) ⋅ 𝑀21(𝑡)                    (4) 14 

𝑑𝑛22(𝑡)

𝑑𝑡
= 𝑞22(𝑡) + 𝑢12(𝑡) ⋅ 𝑀12(𝑡) − 𝑀22(𝑡)  (5) 15 

𝑀𝑖𝑗(𝑡) =
𝑛𝑖𝑗(𝑡)

𝑛𝑖(𝑡)
𝑓𝑖(𝑛𝑖(𝑡)), 𝑖, 𝑗 = 1,2 (6) 16 

𝑛𝑖𝑗(𝑡) ≥ 0, 𝑖, 𝑗 = 1,2 (7) 17 

0 ≤ 𝑛11(𝑡) + 𝑛12(𝑡) ≤ 𝑛1,𝑗𝑎𝑚 (8) 18 

0 ≤ 𝑛21(𝑡) + 𝑛22(𝑡) ≤ 𝑛2,𝑗𝑎𝑚 (9) 19 

𝑢min ≤ 𝑢12(𝑡) ≤ 𝑢max (10) 20 

𝑢min ≤ 𝑢21(𝑡) ≤ 𝑢max (11) 21 

𝑛𝑖𝑗(𝑡0) = 𝑛𝑖𝑗,0, 𝑖, 𝑗 = 1,2 (12) 22 

where 𝑡0 is the start time and 𝑡𝑓 the final time, 𝑛𝑖𝑗,0 are the known initial accumulations at 𝑡0, 𝑛i,𝑗𝑎𝑚 23 

is the jam accumulation for 𝑅𝑖, and 𝑢min  and 𝑢max  are the lower and upper bounds for control 24 

actions, 𝑢12(𝑡) and 𝑢21(𝑡). Equation (1) provides the objective of the perimeter control problem, 25 

which is to maximize the cumulative number of trips completed. This objective is also equivalent 26 

to minimizing the total travel time in the system. Equation (2)-(6) describe the environment 27 

dynamics, which will be internalized by the proposed method and are not known or required for 28 

the controller design. Equation (7)-(9) and (10)-(11) are the boundary constraints for 29 

accumulations in both regions and control actions, respectively. 30 

3. METHODOLOGY 31 

This section first introduces the formulation of the perimeter control problem in the RL context. 32 

This is followed by a detailed explanation of the proposed MFDRLPC scheme that features two 33 

RL agents, C-RL and D-RL, with continuous and discrete action spaces, respectively. Finally, this 34 
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section provides an overview of the model predictive control method that is to be compared with 1 

the proposed scheme. 2 

3.1 RL formulation 3 

The standard RL formulation involves an agent interacting with an environment at discrete time 4 

intervals. At each time step 𝑡, the agent observes a numerical state of the environment 𝑠𝑡, takes an 5 

action 𝑎𝑡 according to a policy 𝜋, and receives a scalar reward 𝑟𝑡+1 from the environment. The 6 

return is defined as the cumulative discounted future reward from time step 𝑡, which might be 7 

stochastic. The goal of the RL agent is to learn a policy that maximizes the expected return from 8 

the start time. Formally, the optimal perimeter control problem is modeled as a Markov decision 9 

process characterized by a tuple < 𝓢, 𝓐, 𝓟, 𝓡, 𝝅, 𝜸 >. 10 

• State space, 𝓢. For the C-RL agent, the state consists of four accumulations 𝑛𝑖𝑗, 𝑖, 𝑗 = 1,2 11 

and four estimated traffic demands 𝑞𝑖𝑗, 𝑖, 𝑗 = 1,2 averaged over the next time step. Each 12 

element of the state is scaled to [0,1] through a division by its maximum value. For the D-13 

RL agent, the implemented controller values at the previous time step are also incorporated 14 

in the state design. 15 

• Action space, 𝓐. For the C-RL agent, the action is comprised of two real values from the 16 

allowable range [𝑢min , 𝑢max ] for the perimeter controllers 𝑢12 and 𝑢21. For the D-RL agent, 17 

three actions are defined for each of the two perimeter controllers: 1) increase its value by 18 

Δ𝑢 ; 2) keep its value unchanged; or, 3) decrease its value by Δ𝑢 , where Δ𝑢  is a 19 

predetermined amount indicating the allowable change in the perimeter controller values. 20 

Changing controller values by a set amount allows for gradual change in control over time. 21 

In total, the D-RL agent has 9 actions to choose from (three options for each of the two 22 

controllers). After an action is chosen by the agents, it is implemented in the environment 23 

for the duration of a time step, Δ𝑡. 24 

• Transition dynamics, 𝓟. The environment receives an action from the agent and arrives 25 

at a new state according to the transition dynamics 𝒫(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡): 𝒮 × 𝒜 → 𝒮. In this work, 26 

the transition dynamics are expressed by the traffic dynamics described in Section 2 and 27 

are not explicitly modeled. 28 

• Reward function, 𝓡. After taking an action, the agent receives an immediate reward from 29 

the environment as an assessment of the action just taken, according to the reward function 30 

𝑟(𝑠𝑡 , 𝑎𝑡): 𝒮 × 𝒜 → ℝ. The reward is defined as (𝑀11(𝑡)  +  𝑀22(𝑡))/𝐶, where 𝐶 is a large 31 

constant utilized to normalize the reward. In this paper, we purposefully normalize the 32 

reward to [0, 1], as suggested by (Henderson et al., 2017). The agent is trained to maximize 33 

the cumulative number of trips completed, which is identical to the objective function 34 

presented in Section 2. Further, a large negative quantity is added to the reward to penalize 35 

unreasonable control strategies that precipitate gridlock or invalid accumulations. 36 

• Policy, 𝝅, and discount factor, 𝜸. At each time step, the agent chooses an action based on 37 

a policy that maps states to actions, i.e., 𝜋: 𝒮 → 𝒜. The return 𝐺𝑡 measures the long-term 38 

quality of the policy and is defined as the total discounted reward from time step 𝑡 39 
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𝐺𝑡 = ∑ 𝛾𝜏−𝑡𝑟𝜏+1

𝑇

𝜏=𝑡

(13) 1 

where 𝑇 is the total time steps of an episode and 𝛾 ∈ [0,1] is a discount factor utilized to 2 

impose more values on immediate reward above delayed reward. Owing to the potential 3 

stochasticity in the policy, the purpose of the RL agent is to maximize the expected value 4 

of the return, 𝔼[𝐺𝑡], from the start time, which in this paper represents the expected total 5 

number of trips completed from 𝑡0.  6 

3.2 Algorithms 7 

3.2.1 Discrete agent (D-RL) 8 

Following the convention of model free control methods, the action value function 𝑄(𝑠, 𝑎) is used, 9 

which implies the expected return after taking action 𝑎 at state 𝑠 and then following policy 𝜋. The 10 

action value function follows the recursive relationship knowns as the Bellman Equation (Sutton 11 

and Barto, 2018): 12 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝜋(𝑠𝑡+1))] (14) 13 

where 𝜋(⋅) represents the policy to be learnt. 14 

Q-learning (Watkins and Dayan, 1992), a popular off-policy model free algorithm, uses the 15 

greedy policy (i.e., 𝜋(𝑠) = arg max
𝑎

𝑄(𝑠, 𝑎)) and updates the action value function in a tabular 16 

manner as per (14). However, this algorithm cannot be scaled up for complex problems with large 17 

state and/or action spaces since explicit storage of all possible state-action pairs is likely 18 

intractable. Therefore, function approximation has been proposed as a method for generalization 19 

to directly map state-action pairs to action values (also known as Q-values). Nonlinear function 20 

approximators have long been avoided due to the potential instability and divergence (Sutton and 21 

Barto, 2018; Tsitsiklis and Roy, 1997). The Deep Q-Networks (DQN) algorithm (Mnih et al., 2015) 22 

marks the first success to have achieved consistent convergence while using large neural networks 23 

as function approximators. A schematic diagram of the DQN algorithm is presented in Fig. 2. 24 

Particularly, two major components have contributed to its ability to consistently converge: 25 

experience replay (Lin, 1992) and target network. The principal idea behind experience replay is 26 

to store the collected experiences in a replay buffer and apply Q-learning update rule on sampled 27 

batches of experiences. In this manner, the collected experiences could be used multiple times, 28 

improving sample efficiency significantly. Further, the sampling of experiences helps reduce 29 

correlations between the transitions utilized to update the Q-network, thus enhancing stability in 30 

the learning process. The target network shares the same structure as the Q-network, but its weights 31 

are periodically updated from the Q-network weights. Therefore, the learning targets are roughly 32 

static throughout the training process. Adjusting the Q-network towards static learning targets 33 

mimics supervised learning and has been shown to produce more stable learning processes.  34 

 35 
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 1 
Fig.  2. Schematic diagram of the DQN algorithm. 𝑸(: , ∶; 𝜽𝒕) and 𝑸(: , ∶; 𝜽𝒕

−) are the Q- and target networks, 2 
respectively. 𝝐 − greedy is the exploration strategy. 𝒏 is the number of actions (𝒏 = 𝟗 in this work). 3 

 4 

Note that the greedy policy is adopted by DQN similarly to Q-learning. Hence, the same 5 

value (i.e., max
𝑎

𝑄(𝑠, 𝑎)) is used to both select an action and evaluate it (see the learning targets in 6 

Fig. 2), which is likely to result in an overestimation of action values. This overestimation problem 7 

was first observed in (Thrun and Schwartz, 1993) and later affirmatively studied in (van Hasselt 8 

et al., 2015). In the latter reference, the authors proposed to decouple the max operation in the 9 

greedy policy into action selection and evaluation. Combining Double Q-learning (van Hasselt, 10 

2010) with advances of the DQN, a new algorithm named Double DQN was developed, where the 11 

Q-network is used for action selection and the target network for evaluation. In mathematical term, 12 

the learning target used by Double DQN is as follows 13 

𝑌𝑡 = 𝑟𝑡+1 + 𝛾𝑄 (𝑠𝑡+1, arg max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜽𝑡) ; 𝜽𝑡
−) (15) 14 

where 𝑄(: , : ; 𝜽𝑡) and 𝑄(: , : ; 𝜽𝑡
−) stand for the parameterized Q- and target networks, respectively. 15 

Substituting the learning targets in Fig. 2 with (15), one obtains the Double DQN algorithm, which 16 

is adopted as the learning algorithm for the D-RL agent in the present paper. 17 

Value-based methods such as DQN and Double DQN can only cope with discrete or low-18 

dimensional action spaces. Hence, the perimeter controller values are discretized for the D-RL 19 

agent as described in Section 3.1. The 𝜖 − greedy strategy is utilized for the D-RL agent to explore 20 

the state and action spaces. Specifically, with predicted Q-values from the Q-network, the agent 21 

takes the greedy action (i.e., arg max
𝑎

𝑄(𝑠, 𝑎)) with probability 1 − 𝜖 and takes a random action with 22 

probability 𝜖. To achieve sublinear total opportunity loss during exploration, the 𝜖 value is decayed 23 

throughout the learning process. The specific decay schedule will be presented in due course. The 24 

Q-network (hence the target network) is constructed as a multilayer perceptron that takes as input 25 

the state and outputs a 9-dimensional vector representing the Q-values for each state-action pair 26 

(the action space of the D-RL agent is 9-dimensional). More concretely, the Q-network has two 27 

64-unit dense layers with ReLU activations. The outputs of these two layers are then connected to 28 

a 9-unit dense linear layer. All dense layers initialize their weights based on a normal distribution 29 
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with default parameters. The optimization algorithm employed is Adam (Kingma and Ba, 2015) 1 

with epsilon set to 10−8. 2 

3.2.2 Continuous agent (C-RL) 3 

While the discretization strategy provides a straightforward approach to handle continuous action 4 

spaces, it still possesses numerous limitations, most notably the curse of dimensionality. 5 

Specifically, the number of discrete actions increases considerably with the granularity of 6 

discretization and finer grained control is likely intractable as the action space is too large to be 7 

explored efficiently. Moreover, such discretization cannot be scaled up to multi-regions since the 8 

dimension of the action space increases exponentially with the number of regions. In contrast, 9 

continuous control schemes can more flexibly choose perimeter controller values, making fine 10 

control possible. Note that, though perimeter controllers are typically implemented by traffic 11 

signals with discrete timing plans, continuous action designs are still an unspoken convention in 12 

the literature. In fact, continuous perimeter control actions render its implementation by traffic 13 

signal more feasible as the signal timing plans do not need to be adjusted drastically across time 14 

steps. Moreover, continuous control schemes are also scalable to multi-region networks, as shown 15 

in (Lei et al., 2019; Ramezani et al., 2015; Ren et al., 2020; Sirmatel and Geroliminis, 2018). The 16 

authors hence present the C-RL agent that assumes a continuous action space. Also note that the 17 

proposed agent has the same number of control variables as any other continuous control method 18 

and thus in theory can be applied to multi-region networks as well. However, showing so is beyond 19 

the scope of the present work.  20 

Unlike value-based methods that adopt a greedy policy based on Q-values, policy gradient 21 

methods (Sutton et al., 2000) explicitly parameterize the policy so that continuous control actions 22 

can be conveniently obtained. Optimization methods such as gradient ascent are then utilized to 23 

directly optimize the policy to achieve higher long-term value (e.g., return). Specifically, a policy 24 

objective function can be defined to evaluate the parameterized policy, 𝜋𝜃(𝑎|𝑠): 𝒮 → 𝑃(𝒜), which 25 

represents a stochastic distribution over actions. Since the policy is dependent only on the 26 

parameters 𝜃, the policy objective function is expressed as a function of the parameters, denoted 27 

as 𝐽(𝜃). The parameters are then updated iteratively in the direction of the policy objective function 28 

gradient ∇𝜃𝐽(𝜃) to maximize 𝐽(𝜃). The fundamental result behind these methods is the (stochastic) 29 

policy gradient theorem (Sutton et al., 2000) 30 

∇𝜃𝐽(𝜃) = 𝐸𝜋𝜃
[∇𝜃 log 𝜋𝜃(𝑎|𝑠) 𝑄𝜋𝜃(𝑠, 𝑎)] (16) 31 

which states the policy gradient irrespective of the policy objective function used. However, the 32 

estimation of the stochastic policy gradient involves an integral over both state and action spaces, 33 

thus requiring a large number of samples. For this reason, (Silver et al., 2014) modeled the policy 34 

as a deterministic decision 𝑎 = 𝜇𝜃(𝑠) and proposed the deterministic policy gradient,  35 

∇𝜃𝐽(𝜃) = 𝐸𝜇𝜃
[∇𝜃𝜇𝜃(𝑠)∇𝑎𝑄𝜇𝜃(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)] (17) 36 

which is the expected gradient of the action value function with respect to parameters 𝜃. Since the 37 

deterministic policy gradient only integrates over the state space, it can be estimated much more 38 

efficiently than its stochastic counterpart (16), especially with high-dimensional action spaces. To 39 

enhance exploration of the state and action space, an off-policy deterministic actor-critic algorithm 40 

was proposed in (Silver et al., 2014). This algorithm was subsequently extended in (Lillicrap et al., 41 

2016) where the actor and critic are modeled with neural networks. Integrating advances of the 42 



Zhou and Gayah  9 

  

DQN, the latter paper proposed the model-free, off-policy actor-critic Deep Deterministic Policy 1 

Gradient (DDPG) algorithm, which is the learning algorithm adopted for the C-RL agent in this 2 

paper. The DDPG algorithm is schematically presented in Fig.  3. 3 

 4 

 5 
Fig.  3. Schematic diagram of the DDPG algorithm. 𝝁(: ; 𝜽𝒕

𝝁
) and 𝑸(: , : ; 𝜽𝒕

𝑸
) are respectively the actor and 6 

critic networks, while 𝝁(: ; 𝜽𝒕
𝝁−

) and 𝑸(: , : ; 𝜽𝒕
𝑸−

) are the target actor and critic networks.  7 

 8 

Actor-critic methods (Bhatnagar et al., 2009; Degris et al., 2012; Grondman et al., 2012) 9 

combine the advantages of both value-based and policy gradient methods. These methods have an 10 

actor to take actions (i.e., policy) and a critic to evaluate the actions taken by the actor (i.e., value 11 

functions). Two sets of parameters are separately maintained for the actor and critic. The critic 12 

parameters are updated in a similar manner to Q-learning (Watkins and Dayan, 1992) while the 13 

actor parameters are updated in the direction suggested by the critic. Correspondingly, DDPG has 14 

an actor, which maps states to actions, and a critic, which maps state-action pairs to Q-values. The 15 

learning target for the critic is  16 

𝑌𝑡 = 𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1; 𝜽𝑡
𝜇−

); 𝜽𝑡
𝑄−

) (18) 17 

where 𝜇(: ; 𝜽𝑡
𝜇−

) and 𝑄(: , : ; 𝜽𝑡
𝑄−) are target networks for the actor and critic, respectively. After 18 

updating the critic parameters, the deterministic policy gradient is then computed (as per step 4) 19 

in Fig. 3), which is utilized to update the actor parameters with gradient ascent.  20 

It can be observed from the comparison between (15) and (18) that, the DDPG algorithm 21 

directly parameterizes the policy whereas the Double DQN algorithm obtains its policy from 22 

predicted Q-values. For problems with high-dimensional or even continuous action spaces, direct 23 

parameterization will be particularly advantageous as the argmax operation in (15) becomes an 24 

optimization problem that is too computationally expensive to solve at each time step. 25 

Discretization of the action space could help alleviate some of the computational burden. However, 26 

structure of the action space will be lost to some extent. Therefore, it can be expected that the C-27 

RL agent will significantly outperform the D-RL agent for the perimeter control problem under 28 

study, which will be demonstrated in Section 4.  29 
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For the C-RL agent, both the actor and critic networks are constructed as multilayer 1 

perceptron, a structure commonly seen in DDPG-related studies (Horgan et al., 2018; Lillicrap et 2 

al., 2016) that is suitable for low-dimensional input-output relationships considered in this work. 3 

The actor network takes as input an 8-dimensional state vector that contains the set of four 4 

accumulations and the averages of four estimated traffic demands. These inputs are then connected 5 

to two 64-unit dense layers with ReLU activations. Outputs of these dense layers are projected to 6 

a 2-dimensional space with a dense tanh layer. Finally, a Lambda layer is used to bound the outputs 7 

between 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥, thus producing a 2-dimensional action vector containing the perimeter 8 

controller values. Moreover, unbiased noise drawn from a normal distribution is directly injected 9 

into the actions to facilitate exploration of the state and action spaces. The scale parameter of the 10 

normal distribution is decayed in the learning process since less exploration is needed as the agent 11 

gathers more information about the environment. The critic network receives the state and action 12 

vector and passes these inputs through two 64-unit dense layers with ReLU activations. Outputs 13 

of these layers are subsequently connected to a dense linear layer that has only 1 unit representing 14 

the Q-value for the input state-action pair. The weights of all dense layers are initialized from a 15 

normal distribution with default parameters. Target networks share the same structure as the 16 

corresponding actor and critic networks. Adam (Kingma and Ba, 2015) is utilized to optimize the 17 

loss for the critic network with epsilon set to 10−8. 18 

3.2.3 Formalization of the MFDRLPC scheme 19 

In this work, the proposed model free C-RL and D-RL agents learn entirely from interactions with 20 

the environment and a significant amount of experiences are needed for efficient learning. For this 21 

purpose, the distributed architecture Ape-X (Horgan et al., 2018) is combined with the learning 22 

algorithms to collect more experiences. More specifically, the Ape-X architecture maintains 23 

numerous experience generators and a single centralized learner. Each generator has its own 24 

instance of the environment and is assigned different exploration strategies to expand the amount 25 

of experiences they jointly encounter. These experiences are then stored in a fixed-size replay 26 

buffer in a first in first out order, i.e., prioritization of experiences is performed based only on 27 

recency as opposed to TD errors (Horgan et al., 2018; Schaul et al., 2016). In this manner, the 28 

experiences where the agents are making more educated decisions are valued more than outdated 29 

ones, which are removed from the buffer once the buffer size is exceeded by the amount of 30 

collected experiences. The centralized learner uniformly samples experiences from the shared 31 

buffer, which are utilized to update the neural networks of the agents. For the C-RL agent, all 32 

generators assume unbiased Gaussian noise with decaying parameter for the normal distribution. 33 

The sampled experiences are used to update the actor and critic networks. At convergence, the 34 

learned policy is explicitly represented by the fully trained actor network. For the D-RL agent, all 35 

generators use decaying 𝜖-greedy strategy for exploration and the sampled experiences are used to 36 

update the Q-network. At convergence, the learned policy can be derived by taking greedy actions 37 

with respect to the learned Q-values. The proposed C-RL and D-RL agents of the model free deep 38 

reinforcement learning perimeter control (MFDRLPC) scheme are formalized in Algorithm 1 and 39 

2, respectively.  40 
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 1 

Algorithm 1. Model Free Deep Reinforcement Learning Perimeter Control: C-RL Agent 2 

1: Randomly initialize actor network 𝜽0
𝜇

 and critic network 𝜽0
𝑄

  3 

Initialize target actor and critic networks 𝜽0
𝜇−

= 𝜽0
𝜇

, 𝜽0
𝑄− = 𝜽0

𝑄
 4 

Initailize replay buffer B, buffer size M, sample size m, iteration number I, genetaor number 𝐺  5 
2: for iter = 1 to 𝐼 do 6 
3:  Initialize a normal distribution N for action exploration with decayed scale parameter 7 
4:  for generator = 1 to 𝐺 do 8 

5:   Load actor network 𝜽𝑖𝑡𝑒𝑟
𝜇

= 𝜽𝑖𝑡𝑒𝑟−1
𝜇

 9 

6:   𝑠0 ← Environment.Reset() 10 
7:   for 𝑡 = 1 to T do 11 

8:    𝑎𝑡−1 = 𝜇(𝑠𝑡−1; 𝜽𝑖𝑡𝑒𝑟
𝜇

) + 𝑁𝑡−1 12 

9:    (𝑟𝑡 , 𝑠𝑡) ← Environment.Step(𝑠𝑡−1, 𝑎𝑡−1) 13 
10:    B.add((𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 , 𝑠𝑡)) 14 
11:   end for 15 
12:  end for 16 
13:  if B.size() > M then 17 
14:   B.remove() 18 
15:  end if 19 
16:  Training samples ← B.sample(m) 20 

17:  Periodically load target actor and critic networks 𝜽𝑖𝑡𝑒𝑟
𝜇−

= 𝜽𝑖𝑡𝑒𝑟−1
𝜇

, 𝜽𝑖𝑡𝑒𝑟
𝑄− = 𝜽𝑖𝑡𝑒𝑟−1

𝑄
 21 

18:  𝜽𝑖𝑡𝑒𝑟
𝑄 ← Update the critic network towards learning target (18) 22 

19:  𝜽𝑖𝑡𝑒𝑟
𝜇

← Update the actor network using the sampled policy gradient (17)  23 

20: end for 24 

 25 
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 1 
Algorithm 2: Model Free Deep Reinforcement Learning Perimeter Control: D-RL Agent 2 
1: Randomly initialize Q-network 𝜽0 and target Q-network 𝜽0

− = 𝜽0 3 
Initialize replay buffer B, buffer size M, sample size m, iteration number I, generator number 𝐺 4 

2: for iter = 1 to 𝐼 do 5 
3:  Decay the 𝜖 value for 𝜖 − greedy exploration 6 
4:  for generator = 1 to 𝐺 do 7 
5:   Load Q-network 𝜽𝑖𝑡𝑒𝑟 = 𝜽𝑖𝑡𝑒𝑟−1 8 
6:   𝑠0 ← Environment.Reset() 9 
7:   for 𝑡 = 1 to T do 10 
8:    𝑎𝑡−1 = arg max

𝑎
𝑄(𝑠𝑡−1, 𝑎; 𝜽𝑖𝑡𝑒𝑟) with probability 1 − 𝜖  11 

a random action with probability 𝜖 12 
9:    (𝑟𝑡 , 𝑠𝑡) ← Environment.Step(𝑠𝑡−1, 𝑎𝑡−1) 13 
10:    B.add((𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 , 𝑠𝑡)) 14 
11:   end for 15 
12:  end for 16 
13:  if B.size() > M then 17 
14:   B.remove() 18 
15:  end if 19 
16:  Training sample ← B.sample(m) 20 
17:  Periodically load target network 𝜽𝑖𝑡𝑒𝑟

− = 𝜽𝑖𝑡𝑒𝑟−1 21 
18:  𝜽𝑖𝑡𝑒𝑟 ← Update Q-network towards learning target (15) 22 
19: end for 23 
 24 

The list of important hyperparameters for the C-RL and D-RL agents is presented in Table 25 

1. Note that, a systematic grid search of hyperparameter values is not conducted due to the high 26 

computational burden. However, as will be shown, the proposed scheme is able to compete with 27 

the state-of-the-art MPC method even with randomly chosen hyperparameters. This demonstrates 28 

the significant potential of Deep-RL methods on MFD-based network traffic control. On the other 29 

hand, with systematically tuned hyperparameters, the proposed agents will be trained in a more 30 

specialized manner, which will increase performance but might be more prone to overfitting and 31 

reduced transferability. 32 

 33 
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Table 1. List of hyperparameters and their values 1 

Hyperparameter 
Value  

C-RL 

Value  

D-RL 
Description 

Iteration number (𝐼) 250 250 The number of iterations to train the agents 

Generator number (𝐺) 32 32 The number of generators used to collect experiences 

Replay buffer size (𝑀) 10000 10000 Storage capacity of the replay buffer 

Sample size (𝑚) 1000 1000 The number of transitions sampled for network updates 

Initial scale parameter 0.3 - Initial scale of normal distribution for action noise 

Action Noise scale decay 0.001 - Linear exploration decay in each iteration 

Final scale parameter 0.05 - Final scale of normal distribution for action noise 

Initial 𝜖 - 0.8 Initial value of 𝜖 in 𝜖 − greedy exploration 
𝜖 decay - 0.98 Exponential exploration decay factor in each iteration 

Final 𝜖 - 0.01 Final value of 𝜖 in 𝜖 − greedy exploration 

Critic epoch 128 - Number of forward and backward pass for sampled transitions 

Initial critic learning rate 0.001 - The initial learning rate used by Adam for the critic 

Critic learning rate decay 0.98 - Exponential learning rate decay factor in each iteration 

Actor epoch 2 - The times gradient ascent is executed for the actor 

Initial actor learning rate 0.0025 - The initial learning rate used by gradient ascent for the actor 

Actor learning rate decay 0.93 - Exponential learning rate decay factor in each iteration 

Q-network epoch - 128 Number of forward and backward pass for sampled transitions 

Initial learning rate - 0.001 The initial learning rate used by Adam for the Q-network 

Learning rate decay - 0.95 Exponential learning rate decay factor in each iteration 

Minimum learning rate 0.0001 0.0001 The minimum learning rate for the actor, critic, and Q-network 

Batch size 256 128 The number of transitions to update the networks once  

Discount factor 0.95 0.8 Discount factor 𝛾 used to compute the learning targets 

Target networks lifetime  5 5 The number of iterations to periodically update target networks 

Early stopping patience 20 20 The number of epochs with no improvement to stop training 

 2 

3.3 Model Predictive Control 3 

The proposed scheme is compared against the state-of-the-art method, i.e., model predictive 4 

control (MPC) (Geroliminis et al., 2013). MPC is an advanced model-based control method which 5 

assumes sufficient knowledge of environment dynamics. Using a closed-loop framework, the MPC 6 

can accommodate discrepancy between the prediction model and plant (reality). At each time step, 7 

an open-loop of the control problem is formulated as a nonlinear program (NLP). Controller values 8 

are obtained by solving the formulated NLP and only the first controller is implemented into the 9 

plant. This procedure is iteratively carried out until termination of the control period.  10 

To formulate the open-loop control problem into an NLP problem, a prediction horizon 𝑁𝑝 11 

and a control horizon 𝑁𝑐 are assumed. The MPC controller assumes piecewise constant controls 12 

for each step in the prediction horizon. To reduce computational complexity, the perimeter 13 

controllers are only allowed to change for 𝑁𝑐 steps and are kept fixed at the last control values 14 

thereafter. Specifically, in the context of perimeter control, at each time step, the MPC controller 15 

predicts the evolution of accumulations for the next 𝑁𝑝 steps based on the initial accumulations, 16 

theorized MFDs prediction model, and control variables. An objective function is then constructed 17 

to maximize the throughput of the network depending on how the accumulations change. The 18 

objective function and corresponding constraints (e.g., path constraints, vehicle conservation) are 19 

then transformed to the standard form of an NLP. The formulated NLP could be solved using 20 

popular NLP solvers such as IPOPT (Wächter and Biegler, 2006). In the present work, the NLP is 21 
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solved using the Sequential Least SQuares Programming (SLSQP) method (Kraft, 1988), a 1 

wrapper of the Sequential Quadratic Programming method (Nocedal and Wright, 2006) that can 2 

handle any combination of bounds, inequality, and equality constraints. The obtained solutions 3 

provide values for the perimeter controllers and the first one is carried out in the plant. Note that, 4 

the MFDs used in the prediction model are accurate while the MFDs in the plant might exhibit 5 

uncertainty and scatter, especially as the network becomes more congested.  6 

In this paper, the MPC is implemented according to (Geroliminis et al., 2013) without 7 

adding smoothing control constraints to provide best-case performance for comparison. Both the 8 

prediction and control horizons are set to 20. The selection of the prediction horizon is in line with 9 

previous research studies that apply the MPC to perimeter control problems (Geroliminis et al., 10 

2013; Hajiahmadi et al., 2015; Ramezani et al., 2015). The control horizon is selected to maximize 11 

the performance of the MPC. 12 

4. EXPERIMENTS 13 

In this section, the proposed MFDRLPC scheme is compared with the MPC to perform perimeter 14 

control in a two-region urban network as in Fig. 1(a). Note that the major benefit of the proposed 15 

method is that it does not build on any information about the environment dynamics, whereas the 16 

MPC assumes full knowledge of regional traffic dynamics. Comparison between the C-RL and D-17 

RL agents is also provided, which aims to verify the advantage of continuous control scheme over 18 

discretization of actions in high-dimensional control problems. The discretization is conducted by 19 

setting the predetermined allowable change in perimeter controller values to Δ𝑢 = 0.1. In addition, 20 

the no control (NC) strategy is also included for comparison. Under the NC strategy, transfer flows 21 

will not be restricted and the perimeter controllers are set to their maximum values for the whole 22 

control period, i.e., 𝑢12 = 𝑢21 = 𝑢max. This strategy provides a baseline for other methods whose 23 

performances can be expressed as relative improvements over it. 24 

4.1 Experiment setup 25 

For the two-region network considered in this paper, the MFD for 𝑅1  is the same as the one 26 

observed in Yokohama, Japan1 (Gao and Gayah, 2018; Geroliminis and Daganzo, 2008), whereas 27 

a scaled-down version of it is adopted for 𝑅2 that corresponds to a smaller region (e.g., a city 28 

center); see Fig. 1(b). The critical accumulations associated with maximum productivity are 29 

𝑛1,𝑐𝑟 = 8241 veh and 𝑛2,𝑐𝑟 = 4120 veh for 𝑅1 and 𝑅2, respectively. Note that the MFDs do not need 30 

to be exact and the impact of modeling errors in the MFDs will be explicitly examined in Section 31 

4.2.3.  32 

The estimated traffic demand profile is illustrated in Fig. 4(a), which exhibits higher 33 

demand to 𝑅2 (the simulated city center) than to 𝑅1 (the periphery of a city) during the 1-hour 34 

period. The demand profile presented here represents traffic conditions during morning peak. In 35 

 

1 The functional form of the MFD selected here is piecewise: a third-order polynomial when the region is not 

extremely congested and linear for extreme congestion. Tests using strictly third-order polynomial for the entire range 

of densities reveal that this choice does not negatively impact the performance of the MPC method. The piecewise 

MFD is adopted since it more accurately represents macroscopic traffic dynamics. 
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subsequent experiments, more extreme demand patterns will be considered as well. The initial 1 

traffic states in 𝑅1 and 𝑅2 are respectively assumed to be uncongested and congested with 𝑛1(𝑡0) =2 

6000 veh and 𝑛2(𝑡0) = 5000 veh. 3 

 4 

(a)  (b)  5 
Fig.  4. (a) estimated traffic demands; (b) accumulations under the NC strategy 6 

 7 

Perimeter controllers are often implemented by signalized intersections along the perimeter 8 

borders. Due to the loss time of signal timing plans, transfer flows may not be fully accommodated 9 

by the controllers, hence the maximum controller value is fixed at 𝑢max = 0.9. On the other hand, 10 

a complete prohibition of transfer flows can hardly be enforced in a realistic manner, thus the 11 

minimum control value is set to 𝑢min = 0.1. Further, the signalized intersections are assumed to 12 

have a uniform cycle length of 60s, so the duration of a time step is Δ𝑡 = 60𝑠. 13 

With these settings, the evolution of accumulations under the NC strategy is presented in 14 

Fig. 4(b), which shows a steadily decreasing accumulation in 𝑅1 and increasing accumulation in 15 

𝑅2 . Note that 𝑅1  is initially uncongested. Thus, reduced accumulation decreases its regional 16 

production. On the other hand, 𝑅2 is initially congested and the increasing accumulation leads to 17 

consistently reduced production. As a consequence, the network throughput is relatively low under 18 

the NC strategy. In subsequent sections, it will be shown how the network throughput can be 19 

effectively improved by properly implementing perimeter control in the system to mitigate the 20 

unbalanced traffic condition. 21 

The simulation environment used in the present paper is a realistic two-region MFDs plant 22 

with potential uncertainty in the MFDs and/or traffic demand, as described in (Geroliminis et al., 23 

2013). Specifically, the MFDs and traffic demands in the environment are expressed by 24 

𝑓𝑖(𝑛𝑖(𝑡)) = 𝑓𝑖(𝑛𝑖(𝑡)) + 𝜍(𝑡) ⋅ 𝑛𝑖(𝑡), 𝑖 = 1,2 (19) 25 

𝑞̃𝑖𝑗(𝑡) = max (𝑞𝑖𝑗(𝑡) ⋅ (1 + 𝜀(𝑡)), 0), 𝑖, 𝑗 = 1,2 (20) 26 

where 𝜍(𝑡)~𝑈(−𝛼, 𝛼) and 𝜀(𝑡)~𝑁(0, 𝜎2). The predefined parameters 𝛼 and 𝜎 are separately the 27 

level of uncertainty in the MFDs and traffic demands. Under this definition, the uncertainty in the 28 

MFDs is proportional to current accumulations. As a region becomes more congested, the errors 29 

between the expected and realized trip completion rates grow, which is consistent with empirical 30 
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and analytical findings (Buisson and Ladier, 2009; Daganzo et al., 2011). The uncertainty in traffic 1 

demands represents temporal fluctuations and is proportional to the estimated traffic demands. For 2 

the same value of 𝜎, the magnitude of potential errors in demand would increase with the estimated 3 

traffic demands. The level of uncertainty in the environment with 𝜎 = 0.1, 𝛼 = 0.1 is illustrated in 4 

Fig. 5(a) and (b) for traffic demands and MFDs, respectively. The simulation environment is then 5 

obtained by replacing MFDs and demand values in Equation (2)-(6) with terms (19)-(20). The 6 

proposed C-RL and D-RL agents learn the long-term values (i.e., Q-values) for various actions 7 

taken at each state via interaction with the simulation environment. The agents also internalize the 8 

environment dynamics via this interaction. Specifically, the agents receive states and rewards from 9 

the environment while the environment implements actions taken by the agents. 10 

 11 

(a)  (b)  12 
Fig.  5. Environment uncertainty: (a) estimated traffic demands; (b) two-region MFDs 13 

 14 

It is worth reiterating that, while the agent designs of the proposed MFDRLPC scheme are 15 

model free, the environment still involves a model, i.e., the MFD-based traffic dynamics. However, 16 

the use of the MFD model to construct the simulation environment or I/O data generator is not 17 

atypical when applying model free methods for perimeter control; for example, see (Lei et al., 18 

2019; Li and Hou, 2020; Ren et al., 2020, 2018).  19 

The objective of perimeter control is to improve network production, i.e., cumulative trip 20 

completion (CTC), which equivalently is to minimize the total travel time (TTT) in the system. 21 

Therefore, these two quantities, CTC and TTT, are used to evaluate the performances of the four 22 

perimeter control strategies: NC, MPC, and the proposed C-RL and D-RL agents. All strategies 23 

are applied for perimeter control under various environment configurations. The environment 24 

configurations considered in this paper are arranged according to the level of environment 25 

uncertainty, with more details provided in Table 2. Note that while the initial accumulations are 26 

the same among different environment configurations, their impacts will be thoroughly 27 

investigated in Section 4.2.3.  28 

 29 
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Table 2. Environment configurations under consideration 1 
Env. No. 𝝈 𝜶 Description 

1 0 0 Deterministic scenario as a benchmark 

2 0.1 0 Medium uncertainty in traffic demands 

3 0.2 0 High uncertainty in traffic demands 

4 0 0.1 Medium uncertainty in MFDs 

5 0.1 0.1 Medium uncertainty in traffic demands and MFDs 

6 0.2 0.1 High uncertainty in traffic demands and medium uncertainty in MFDs 

7 0 0.2 High uncertainty in MFDs 

8 0.1 0.2 Medium uncertainty in traffic demands and high uncertainty in MFDs 

9 0.2 0.2 High uncertainty in traffic demands and MFDs 

4.2 Experiment results 2 

4.2.1 Convergence consistency of the MFDRLPC scheme 3 

Performance curves of the four methods under all environment configurations are presented in Fig. 4 

6. Each curve provides the evolution of CTC across consecutive training iterations. The C-RL and 5 

D-RL agents were trained with numerous random seeds to fully gauge their ability to consistently 6 

converge, as suggested in (Henderson et al., 2017). The darker line in Fig. 6 represents the median 7 

training performance over random seeds while the shaded areas are obtained by plotting the two 8 

extreme values in each iteration and filling the areas in between. Reporting the mean results does 9 

not affect the conclusions to be presented. However, since the mean is more sensitive to extreme 10 

values than the median, they are not included. Results for the NC and MPC in Fig. 6 are obtained 11 

by running both strategies multiple times and reporting the median and extreme values. The NC 12 

and MPC are not learning-based methods, hence their performances are relatively fixed across 13 

different runs and environments, as indicated by the flat darker line and narrow shaded band.  14 

The shaded areas in Fig. 6 are neither representative of the level of uncertainty in the 15 

environment nor the fluctuations in the training process. Instead, they represent the randomness 16 

experienced by the agents. As an example, suppose the agents collected disastrous experiences in 17 

the deterministic environment (i.e., Env. No. 1), then their performance curves are likely to exhibit 18 

a rather poor lower bound. Contrarily, if the agents happen to follow a large quantity of desirable 19 

trajectories while exploring in the high uncertainty environment (i.e., Env. No. 9), then they will 20 

likely achieve decent lower-bound performances. This would occur even though the level of 21 

uncertainty in the deterministic environment is the lower. In general, training fluctuations are better 22 

captured by the median curves as they are illustrative of the normalized performances and are 23 

comparable across different environments. The seemingly fluctuating median performance curves 24 

are not atypical; for example, see (Horgan et al., 2018; Lillicrap et al., 2016). As shown in Fig. 6, 25 

the median performance curves of the proposed C-RL and D-RL agents appear to be noisier with 26 

increasing uncertainty in the traffic demands (column-wise comparison) but remain relatively 27 

invariant to uncertainty in the MFDs (row-wise comparison). This is reasonable since the 28 

magnitude of uncertainty in the demands, which is proportional to flows, is much larger than that 29 

of uncertainty in the MFDs, which is proportional to accumulations. Comparing across the median 30 
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performance curves of the proposed agents, one could observe that the training processes of the C-1 

RL agent exhibit greater fluctuations than the D-RL agent before convergence.  2 

 3 

 4 
Fig.  6. Performance curves of the four methods under all environment configurations.  5 

Blue: C-RL; Orange: MPC; Green: D-RL; Gray: NC2 6 
 7 

As shown in Fig. 6, performances of the MFDRLPC scheme (the C-RL and D-RL agents) 8 

steadily improve as training proceeds and become stable after some time under all environment 9 

configurations. This demonstrates the ability to consistently learn and converge regardless of 10 

experiment scenarios. Both agents outperform the NC strategy well before convergence, with the 11 

C-RL agent taking around 5 iterations while D-RL agent around 100 iterations. In addition, at the 12 

end of the training process, all three perimeter control methods achieve much higher CTC than the 13 

NC, indicating that the congestion can be effectively mitigated and network throughput increased 14 

using perimeter control. A further comparison between the C-RL and D-RL agents reveals the 15 

significantly superior convergence property of the former. On one hand, the C-RL agent can learn 16 

much more efficiently than the D-RL agent. Specifically, it takes the C-RL agent around 3 17 

iterations to exceed the D-RL agent though it underperforms the latter initially. Additionally, the 18 

C-RL agent achieves its best performance within 100 iterations for all environment configurations. 19 

In contrast, the D-RL agent is just about to conduct effective learning after 100 iteration.  The C-20 

RL agent also realizes much better asymptotic performances than the D-RL agent. For one, 21 

performance curves of the C-RL agent exhibit variations of CTC that are far smaller than the D-22 

RL agent towards the end of the training process. For another, the final achieved CTC of the C-23 

RL agent are always better than the D-RL agent. These observations demonstrate the advantage of 24 

 

2 The figures here adopt colors to differentiate between control methods and the reader is encouraged to refer 

to the electronic version of the figures when possible. 
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continuous control scheme over discretized control strategy in high-dimensional problems, as 1 

expected.  2 

More importantly, the performance of the C-RL agent is comparable with and may even 3 

exceed the MPC method for all scenarios considered. In cases where there is relatively large 4 

uncertainty in the environment (Env. No. 3, 5-9), the performance of the D-RL agent also 5 

approaches the MPC, though consistently inferior. These results showcase the considerable 6 

potential of Deep-RL on MFD-based network traffic control. However, they are not surprising. In 7 

fact, it has been shown in the literature that model free methods have the potential to achieve 8 

comparable or even better performances to the MPC; see (Lei et al., 2019; Ren et al., 2020) for 9 

example. The reasons are twofold. For one, the MPC relies heavily on an accurate prediction model. 10 

When there is discrepancy in the traffic dynamics between the prediction model and plant, the 11 

performance of the MPC might deteriorate as it receives wrong information from the environment. 12 

On the contrary, the proposed agents internalize such dynamics via interaction with the 13 

environment. Consequently, the agents become roughly as knowledgeable about the environment 14 

as the MPC. For another, the MPC is sensitive to horizon parameters (Prabhu and George, 2014; 15 

Schrangl et al., 2018). While the MPC considers only part of future conditions (i.e., the prediction 16 

horizon), the proposed agents consider the entire simulation period with discount. In addition, 17 

careful tuning of the horizon parameters is nontrivial yet time consuming, and it is uncertain 18 

whether a particular parameter setting works consistently well across different environments. 19 

These two reasons also justify the development of model free methods for perimeter control.  20 

4.2.2 Effectiveness of the MFDRLPC scheme 21 

The effectiveness of the proposed scheme is examined by visualizing its control outcomes and 22 

comparing those with the MPC approach. The deterministic environment (i.e., Env. No. 1) is 23 

considered here for illustration. Similar considerations can be conducted for other environments, 24 

but the conclusions are the same. The evolution of accumulations and controller values for 𝑢12 in 25 

the 1-hour period are provided in Fig. 7 and Fig. 8, respectively. Note that the demand profile 26 

adopted in this paper exhibits a smaller overall demand to 𝑅1, which has a larger production 27 

function (i.e., a larger MFD). Transfer flows to 𝑅1 are thus not constrained by any control strategy 28 

during the whole study period, i.e., 𝑢21 = 𝑢max . This is excluded from the control actions in Fig. 29 

8 for clarity of presentation. 30 

 31 
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 1 
Fig.  7. Evolution of accumulations in the deterministic environment.  2 

Blue: C-RL; Orange: MPC; Green: D-RL; Gray: NC 3 
 4 

 5 
Fig.  8. Control action (𝒖𝟏𝟐) over time in the deterministic environment.  6 

Blue: C-RL; Orange: MPC; Green: D-RL; Gray: NC 7 
 8 

The evolution of accumulations for the NC strategy shown in Fig. 7 corresponds to that in 9 

Fig. 4(b). The total accumulation in 𝑅2 keeps increasing as a consequence of the high demand to 10 

𝑅2. Note that 𝑛21 first decreases as initially the demand 𝑞21 is rather small. Later, as 𝑞21 increases 11 

and 𝑅2 becomes sufficiently congested, the accumulation 𝑛21 increases even though no limitation 12 

is imposed on the transfer flow 𝑀21(𝑡). Contrarily, accumulations in 𝑅1 steadily decrease since 13 
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internal flows are not restricted while the inter-region traffic demand is offset by the transfer flow. 1 

When perimeter control is applied, a fraction of transfer vehicles to 𝑅2 are blocked and instead 2 

remain within 𝑅1, resulting in an initial increase of 𝑛12. Approaching the end of the 1-hour period, 3 

𝑛12 decreases following the reduction of transfer demand 𝑞12 and relaxed controller 𝑢12. Owing to 4 

perimeter control, accumulations in 𝑅1 end up higher than realized by the NC strategy. However, 5 

𝑅1 is still uncongested and a higher regional production can be achieved. Unlike the NC method 6 

that allows 𝑛2 to increase in an unconstrained manner, perimeter control strategies effectively 7 

maintain 𝑛2 around the critical value such that throughput in 𝑅2 is improved as well. Overall, the 8 

progression of accumulations depicted in Fig. 7 clearly illustrates how the unbalanced traffic 9 

condition by the NC approach can be productively mitigated by perimeter control and how network 10 

throughput can be increased.  11 

A closer examination of Fig. 7 reveals that the accumulations realized by the proposed C-12 

RL and D-RL agents are similar to those by the MPC, mostly due to the resemblance of control 13 

actions between them, as shown in Fig. 8. At the beginning of the study period, all three perimeter 14 

control methods tend to allow more transfer flows by increasing 𝑢12, with the MPC having the 15 

sharpest increase. Around the same time when the MPC begins to decrease 𝑢12 in response to the 16 

high transfer demand 𝑞12, the C-RL agent also starts to impose stricter controls, whereas the D-RL 17 

agent keeps the control inputs static. For the D-RL agent that takes discrete actions with fixed 18 

jumps, this is a sensible decision since adjusting the control downwards or upwards might result 19 

in drastic changes in the accumulations and hurt the trip completion. However, a better decision 20 

could be readily obtained. For example, the D-RL agent could increase 𝑢12 by 0.1 and maintain 21 

the value until decreasing it around 1000s. The D-RL agent fails to learn such strategy, which 22 

explains why its realized trip completion is lower than the C-RL agent or the MPC. Later, as overall 23 

demand to 𝑅2  reaches its maximum, the MPC enforces even stricter control. When internal 24 

demand 𝑞22 decreases and traffic conditions in the two regions become slightly unbalanced, the 25 

MPC lessens its restriction on the transfer flow. During this period, however, both proposed agents 26 

apply a roughly constant control value for 𝑢12. Finally, as all traffic demands diminish at the end 27 

of the 1-hour period and no severe congestion is present in the system, all three perimeter control 28 

methods are inclined to increase 𝑢12 so that more transfers can be made and more trips completed. 29 

Note that, the C-RL agent generally selects smaller controller values for 𝑢12 than the MPC in the 30 

early period (before 1000s). However, such smaller values are compensated by its looser control 31 

in the later period (around 1000~3000s), which explains its competitiveness to the MPC method. 32 

In addition, the control policy learned by the C-RL agent is more implementable than the MPC 33 

since its actions change more smoothly. Such smoothness is built in the design of the actor network, 34 

which uses the tanh activation for action outputs. Given that perimeter control is typically 35 

implemented by traffic signals in practice, a smooth control policy could thus avoid the need to 36 

adjust the signal timing plans abruptly across consecutive time steps. In summary, these results 37 

indicate that the proposed scheme, especially the C-RL agent, is capable of deriving similar control 38 

policies to the MPC while in the meantime preserving the easiness of practical implementations. 39 

To more comprehensively demonstrate the effectiveness of the proposed scheme, three 40 

more tests are conducted: (1) the environment exhibits atypical traffic demand patterns; (2) the 41 

network becomes empty at the end of an extended control period; and (3) the agent only has limited 42 

access to accumulations in the environment. Specifications of these tests will be provided shortly. 43 

Note that, since the C-RL agent has been shown much superior to the D-RL agent, the latter is not 44 

considered in the following experiments. 45 
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4.2.2.1 Atypical traffic demand profiles in the environment 1 

For all experiments presented above, the environment assumes approximately realistic traffic 2 

demand profiles that simulate traffic conditions during morning peaks. The objective of this test is 3 

thus to investigate whether the proposed C-RL agent could still learn reasonable control strategies 4 

with atypical demand profiles in the environment. The deterministic environment is considered in 5 

this test for illustration.  6 

The demand profile in Fig. 9(a) is scaled down from that in Fig. 4(a) with a coefficient of 7 

0.3, which simulates extremely low traffic demands in the environment. In Fig. 9(b), internal 8 

demand in 𝑅2 is increased drastically while the demands to 𝑅1 are kept unchanged to simulate a 9 

busy city center. Intuitively, when traffic demands are extremely low in the environment (first 10 

demand profile), congestion should rarely exist and little to no perimeter control should be 11 

implemented, i.e., 𝑢12 ≈ 0.9, 𝑢21 ≈ 0.9. On the contrary, when one region is always congested due 12 

to high internal demand and the other barely congested (second demand profile), perimeter 13 

controllers should be activated to allow as many outbound vehicles as possible and as few inbound 14 

vehicles as possible for the congested region, i.e., 𝑢12 ≈ 0.1, 𝑢21 ≈ 0.9. This intuition is confirmed 15 

by solutions to the control problem using the MPC; see Fig. 10. 16 

 17 

 18 
Fig.  9. Atypical demand profiles: (a) low demands; (b) high internal demand 𝒒𝟐𝟐 19 

 20 
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 1 
Fig.  10. MPC control variables for: (a) low demands; (b) high internal demand 𝒒𝟐𝟐 2 

 3 

Similarly, control actions chosen by the C-RL agent are presented in Fig. 11, which are 4 

also consistent with the above intuition. The control actions by the MPC and the C-RL agent are 5 

not exactly identical, thus resulting in slightly different performance curves, as reflected in Fig. 12. 6 

As can be observed from Fig. 12, the C-RL agent can learn the optimal policy fairly quickly (within 7 

50 iteration) and achieve comparable performances with the MPC. Note that since the policies for 8 

these extreme scenarios are adequately simple to learn, only one performance curve is presented 9 

for each case, but the C-RL agent was tested using numerous random seeds. 10 

 11 
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 1 
Fig.  11. C-RL control variables for: (a) low demands; (b) high internal demand 𝒒𝟐𝟐 2 

 3 

 4 
Fig.  12. Performance curves for: (a) low demands; (b) high internal demand 𝒒𝟐𝟐 5 

Blue: C-RL; Orange: MPC 6 
 7 

4.2.2.2 Extended control period with network being empty in the end 8 

The demand profile in Fig. 4(a) simulates a morning peak. At the end of the simulated morning 9 

peak, the two regions both operate around their respective critical value under perimeter control; 10 

see Fig. 7. However, it remains uncertain whether subsequent operations of the two regions would 11 

alter the conclusions presented above. Hence, this test considers an experiment scenario where the 12 
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network becomes nearly empty at the end of the control period. To do so, the control period is 1 

extended to 3 hours with a demand profile shown in Fig. 13(a). The extended portion from Fig. 2 

4(a) represents the traffic situations after the morning peak with a constant small value for all four 3 

demands. Again, the deterministic environment is considered here as an illustration. The evolution 4 

of accumulations under the NC strategy is presented in Fig. 13(b). As can be observed, the network 5 

becomes close to empty at the end of the simulation even when no perimeter control is applied. 6 

Therefore, a reasonable comparison could be established between the C-RL agent and the MPC as 7 

the accumulation trajectories beyond the control period will not affect the comparison. 8 

 9 

(a)  (b)  10 
Fig.  13. (a) 3-hour demand profile; (b) accumulations under the NC strategy  11 

 12 

To compare with the MPC, a combined control strategy is presented. Specifically, during 13 

the first hour of the simulation, the C-RL agent is utilized for perimeter control. For the subsequent 14 

control period, the NC strategy is adopted. Reasons for choosing such a combination of control 15 

methods are twofold. For one, as demonstrated in the test above with atypical demand profiles, no 16 

control should be implemented with extremely low traffic demands in the environment. Though 17 

nontrivial accumulations are present in the network, they are near the critical values and do not 18 

cause congestion. In practice, it is natural to lift any restriction on transfer flows after the morning 19 

peak. For another, when the traffic demands are close to zero, four input signals to the C-RL agent 20 

will be close to zero, which hurts its training process. 21 

The evolution of trip completion over time is provided in Fig. 14 for the NC, the MPC, and 22 

the proposed control method (i.e., C-RL + NC). Note that, all control methods should have the 23 

same trip completion when the network becomes empty, which is consistent with Fig. 14. As can 24 

be observed, the performance of the proposed control strategy is almost identical to the MPC, 25 

which is indicative of an extremely high level of comparability between the two methods. In 26 

addition, the proposed method and the MPC realize trip completions much more efficiently than 27 

the NC, resulting in a substantial area between the completion curves. This area represents the 28 

saved total travel time (TTT) from the NC strategy, a term to be revisited shortly. This observation 29 

again indicates the notable advantage of perimeter control over the NC method. 30 
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 1 

 2 
Fig.  14. Evolution of trip completion over time 3 

 4 

4.2.2.3 Limited access to environment accumulations for the agent 5 

As described in Section 3.1, the proposed C-RL agent receives accumulations and demands from 6 

the environment as its state and acts based on this information. While estimates of traffic demands 7 

can be readily obtained from historical observations, the acquisition of accumulations 𝑛𝑖𝑗 might 8 

not be straightforward, though they can be estimated using loop detectors and probe vehicles. 9 

Therefore, this test investigates whether the proposed agent works in the absence of such detailed 10 

accumulation when it only has access to total regional accumulations 𝑛𝑖, 𝑖 = 1,2. The evolution of 11 

trip completion in the deterministic environment is presented in Fig. 15, where the original C-RL 12 

agent trained with accumulations 𝑛𝑖𝑗 is denoted by C-RL (ij) while the one trained with 𝑛𝑖 by C-13 

RL (i). As can be observed, training the C-RL agent with total regional accumulations 𝑛𝑖 is almost 14 

identical to training with detailed accumulations 𝑛𝑖𝑗, which indicates that the proposed agent works 15 

with only regional accumulations 𝑛𝑖. This result also manifests the implementation potential of the 16 

proposed agent since total regional accumulations are comparatively easy to obtain.  17 
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 1 
Fig.  15. Evolution of trip completion over time for the NC, the MPC, the C-RL agent trained with 𝒏𝒊, and the 2 

one trained with 𝒏𝒊𝒋. 3 

 4 

To sum up, the results presented in this section suggest that the proposed method can 5 

effectively learn sensible perimeter control strategies to maximize the number of trips completed. 6 

For realistic experiment scenarios, the proposed scheme (the C-RL agent in particular) obtains 7 

similar but more implementable control policies to the MPC. The proposed scheme could also 8 

learn the optimal control policy with relative ease for scenarios with irregular traffic demands. 9 

Additionally, the proposed scheme is highly comparable to the MPC when the network becomes 10 

nearly empty towards the end of the control period. Moreover, the proposed scheme works even 11 

without detailed accumulations 𝑛𝑖𝑗 from the environment. These results have fully demonstrated 12 

the effectiveness of the proposed scheme and imply that it might be applicable on all types of 13 

traffic conditions in the environment. Finally, these results also show the promising application 14 

prospect of Deep-RL methods on MFD-based traffic control.  15 

4.2.3 Transferability of the MFDRLPC scheme 16 

The transferability of the proposed scheme is examined in this section by applying the pretrained 17 

C-RL agents on a variety of unseen environments. To the best of our knowledge, this is the first 18 

examination of whether perimeter control methods can generalize to unencountered environments. 19 

For all case studies reported in (Ren et al., 2020), it is uninvestigated whether the learned controller 20 

for one case could transfer to another without performing the learning process all over again. The 21 

model based MPC formulates an optimization problem at each time step for each environment and 22 

it remains in question whether a particular parameter setting could work in another environment. 23 

Note that the term “transferability” is employed here instead of “robustness” as the latter has a 24 
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broader meaning which does not fit in well with the context. Moreover, since the proposed C-RL 1 

agent has clear advantages over the D-RL agent, the latter is excluded from following experiments.  2 

The performances of the C-RL agent are compared with the MPC and NC strategies in 3 

terms of total travel time (TTT) in the system. The new environments considered here have 4 

different traffic conditions (i.e., initial accumulations and traffic demands) and traffic dynamics 5 

(i.e., MFDs) from those used to train the agents. The initial accumulations and traffic demands in 6 

the unseen environments are obtained by: 7 

𝑛𝑖,𝑛𝑒𝑤 = 𝑛𝑖,0 ⋅ (1 + 𝜙) (21) 8 

𝑞̃𝑖𝑗(𝑡) = 𝑞𝑖𝑗(𝑡) ⋅ (1 + 𝜂) (22) 9 

where 𝜙, 𝜂 denote the level of variation.  Values of  𝜙, 𝜂 considered here range from -0.10 to 0.10. 10 

Thus, higher values indicate higher initial accumulations or traffic demands in the environment 11 

than originally seen by the C-RL agent. Note that, the MPC has full knowledge of the new traffic 12 

conditions. The MFDs in the unseen environment are defined as: 13 

𝑓𝑖(𝑛̃𝑖(𝑡)) = 𝑓𝑖(𝑛̃𝑖(𝑡)) + 𝜑 ⋅ 𝑛̃𝑖(𝑡) (23) 14 

where 𝜑  stands for the MFD modeling errors. Negative values of 𝜑  are indicative of over-15 

representation of environment dynamics and the new environment is not as productive as perceived 16 

by the C-RL agent or the MPC. On the contrary, positive values of 𝜑 suggest underestimation of 17 

environment production. Values of 𝜑 considered here range from -0.50 to 0.50. The experiments 18 

in this section are conducted on a large number of different environments, and only a subset of the 19 

results is presented here for brevity.  20 

The first set of experiments test the transferability of the proposed method with respect to 21 

different initial accumulations in the environment. Thus, the traffic demands and MFDs are kept 22 

constant. Intuitively, higher initial accumulations will aggravate the unbalanced traffic condition 23 

under the NC strategy, making perimeter control increasingly necessary. Contrarily, perimeter 24 

control might not be needed if the initial accumulations are low enough such that congestion rarely 25 

exists. The achieved TTT of three control methods with respect to the initial accumulations is 26 

presented in Fig. 16, where each subplot represents a C-RL agent trained in the corresponding 27 

environment (see Table 2). Heights of the green shaded areas represent saved TTT by the C-RL 28 

agent from the NC strategy. Similarly, heights of the pink shaded areas represent the saved TTT 29 

by the MPC from the C-RL agent. The new environments considered here assume 𝜂 = 0, 𝜑 = 0 for 30 

illustration. Note that, performances of C-RL agent trained on individual environments are less 31 

informative due to randomness, hence more analytical focus is placed on the general trend. 32 

 33 
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 1 
Fig.  16. TTT achieved by three methods with respect to initial accumulations.  2 

Blue: C-RL; Orange: MPC; Gray: NC 3 
 4 

As can be observed from Fig. 16, the saved TTT from the NC increase monotonically with 5 

initial accumulations, which suggests a higher level of necessity to implement perimeter control 6 

as the network becomes more congested initially. It can also be inferred that, if the network starts 7 

with extremely small initial accumulations (𝜙 = −0.3, for example), the NC might be the optimal 8 

control strategy. More importantly, Fig. 16 shows that the realized TTT of the C-RL agent is about 9 

the same as the MPC when initial accumulations are moderately larger than those perceived by the 10 

agents during training (i.e., 0 ≤ 𝜙 ≤ 0.10). This suggests the C-RL agent is highly transferable to 11 

environments with larger initial accumulations, even more so considering that the MPC has full 12 

access of the new initial accumulations and system dynamics whereas the C-RL agent has never 13 

encountered these test environments. When the initial accumulations are smaller than perceived 14 

by the C-RL agent, it fails to compete with the MPC, which might result from its strict control 15 

policy as more relaxed controls are favorable in an environment that is less congested. Additionally, 16 

Fig. 16 reveals that the C-RL agent performs approximately similarly when transferring to unseen 17 

environments regardless of the environment it was trained on. This might suggest the C-RL agent 18 

has decent generic property, i.e., it can cope with any traffic condition in the environment. 19 

The second set of experiments test the transferability of the proposed method to different 20 

demands patterns, so initial accumulations and the MFDs are held constant. The performance of 21 

the C-RL agent with respect to traffic demands is presented in Fig. 17, where all new environments 22 

assume 𝜙 = 0, 𝜑 = 0. As can be observed, the pretrained C-RL agent is remarkably comparable to 23 

the MPC when applied to environments with different levels of traffic demands, irrespective of its 24 

training environments. In particular, the C-RL agent appears notably transferable to large demand 25 

patterns. On the other hand, as traffic demands in the environment become much smaller than 26 

those known to the agent, the MPC is more advantageous, which is also likely the result of the 27 

stricter controls of the C-RL agent. Overall these two sets of tests suggest that the proposed method 28 
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is resilient to slightly more congested traffic conditions but might be insufficient if the test 1 

environment is much less congested than perceived by the pretrained agents. 2 

 3 

 4 

Fig.  17. TTT achieved by three methods with respect to traffic demands. 5 
Blue: C-RL; Orange: MPC; Gray: NC 6 

 7 

 The transferability of the proposed scheme with respect to the MFD modeling errors is 8 

investigated in this final set of experiments. Intuitively, when large distinctions of traffic dynamics 9 

exist between the training environments and the new environments, the pretrained agents may 10 

cease to achieve consistently satisfactory performances. Assume for example that the proposed 11 

method is trained to control a relatively small urban network; the learnt policy should not be 12 

expected to perform well on a much larger urban network as the dynamics of the small network 13 

would likely not be representative of the larger one.  14 

The performance of the C-RL agent with respect to MFD modeling errors is shown in Fig. 15 

18, where the new environments assume 𝜙 = 0, 𝜂 = 0. Initially when the environment dynamics 16 

are severely over-represented (𝜑 ≤ −0.4), perimeter control methods significantly outperform the 17 

NC. This is reasonable as when the environment is not as productive as perceived, more serious 18 

congestion is likely to arise under the NC strategy. As the environment dynamics becomes less 19 

overrated or even slightly underestimated (−0.3 ≤ 𝜑 ≤ 0.1), the advantage of perimeter control 20 

diminishes, but the C-RL agent is still comparable to the MPC. However, when the environment 21 

production is highly underestimated (𝜑 ≥ 0.3), both perimeter control methods fail to compete 22 

with the NC, suggesting that vehicle movements should not be restricted. This again is sensible 23 

since congestion might not exist with higher production in the environment and the NC can allow 24 

more vehicles to complete their trips, thus reducing the TTT in the system. 25 

 26 
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 1 
Fig.  18. TTT achieved by three methods with respect to MFD modeling errors. 2 

Blue: C-RL; Orange: MPC; Gray: NC 3 
 4 

To conclude, the experiment results presented in this section have demonstrated that the 5 

proposed C-RL agent is comparable to the MPC when applied to test environments with slightly 6 

more congested traffic conditions even though the MPC has full knowledge of the traffic dynamics 7 

in the test environments. In addition, the C-RL agent has been shown transferable to environments 8 

with moderate MFD modeling errors. Results also suggest the proposed scheme and the MPC may 9 

not adapt well to environments with considerably underestimated traffic dynamics. However, this 10 

should not be an issue in practice. The reasons are twofold. First, one could train a C-RL agent for 11 

each network to be controlled. This pretrained agent will then be resilient to changeable traffic 12 

conditions as shown above. Second, traffic dynamics in a network are roughly reproducible 13 

(Geroliminis and Daganzo, 2008) with the upper bounds largely confined by the network topology. 14 

Therefore, the pretrained agent is unlikely to severely underestimate the environment production 15 

and thus could consistently work for the network. Additionally, as with the convention of applying 16 

pretrained RL agents, the test scenario should not be greatly different from the training ones. 17 

5. DISCUSSION AND CONCLUDING REMARKS 18 

In summary, this paper proposes a novel Deep-RL based scheme (i.e., the MFDRLPC) for the 19 

canonical two-region perimeter control problems. The proposed scheme features two agents that 20 

respectively assume continuous and discrete action spaces. The distributed Ape-X architecture is 21 

combined with the learning algorithms of the agents to facilitate efficient learning. Extensive 22 

numerical experiments have been conducted to assess the convergence consistency of the proposed 23 

approach and to compare its performance against the state-of-the-art MPC method. Results show 24 

that the proposed scheme could consistently converge under a wide range of environments even 25 

with significant uncertainty in realized traffic demands and network MFDs. Moreover, the 26 
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proposed agents are highly comparable to the MPC method when applied to the environments that 1 

they were specifically trained in, even with atypical demand profiles in the environment, extended 2 

control period, or limited access to accumulation information. In addition, the proposed scheme 3 

demonstrates a high level of transferability in application to new unseen environments, which 4 

indicates great potential for practical implementations. Concretely, the agents generally achieve 5 

comparable performances to the MPC approach when applied to environments with slightly more 6 

congested traffic conditions and moderate MFD modeling errors. 7 

The proposed MFDRLPC scheme has some clear advantages over existing model based or 8 

model free perimeter control methods (Geroliminis et al., 2013; Lei et al., 2019; Ren et al., 2020, 9 

2018; Sirmatel and Geroliminis, 2018; Su et al., 2020). The principal benefit is that the proposed 10 

scheme does not build on any information about environment dynamics, thus avoiding the need to 11 

estimate the MFD or critical accumulation. In addition, the proposed scheme does not require pre-12 

collected external traffic data but instead learns control strategies entirely from direct interaction 13 

with the environment. Though the learning process could potentially benefit from additional 14 

network-wide data (such as the critical accumulation, maximum trip completion rate or even the 15 

entire region’s MFD), the results show that the latter are not needed since the proposed scheme 16 

learns from the overall network outcomes. In this manner, the proposed scheme can internalize the 17 

traffic dynamics and achieve comparable performances to the state-of-the-art MPC approach. 18 

There are, however, potential obstacles that may hinder its real-life application. 19 

 First, the proposed scheme could be data intensive and computationally expensive, 20 

particularly in the learning portion. In this paper, it takes around 43 to 52 minutes to train the C-21 

RL and D-RL agents respectively whereas the computation time of the MPC is negligible in 22 

comparison. However, such straightforward comparison of computational time does not fairly 23 

assess the two methods. Model free Deep-RL methods require numerous samples to produce a 24 

reasonable control policy as the samples are utilized to learn the environment dynamics. On the 25 

contrary, the MPC requires that such dynamics be known and incorporated into the framework. 26 

Therefore, though the MPC appears computationally cheap, it is considerably data intensive as it 27 

depends on detailed traffic dynamics and the MFD, which are generally difficult to obtain. Thus, 28 

by nature of the model free design, the proposed scheme will take longer computation time to train 29 

than the MPC. However, while it does take more time to train the agents from scratch, the time 30 

required to implement the pretrained Deep-RL agents is negligible. In fact, the proposed scheme 31 

is much less computationally intensive in the application process than the MPC as the latter always 32 

formulates and solves a high-dimensional nonlinear program every time it is implemented. In 33 

addition to this benefit, the proposed scheme exhibits decent potential for real-life application. For 34 

one, the proposed scheme could be trained offline in simulation and then applied to a more realistic 35 

environment. As the transferability tests indicate, the proposed scheme could generalize to 36 

environments with slightly more congested traffic conditions and moderate MFD modeling errors. 37 

Hence, the agent could first be trained with slightly uncongested traffic condition and high 38 

environment production such that it can achieve promising performances at the time of adaptation. 39 

For another, the offline pretrained agent could keep on training at the time of application, thus 40 

improving its control outcomes. This process could be conducted in real time with newly collected 41 

experiences as the online adaptation is neither data nor computation intensive. In summary, the 42 

proposed scheme shows promising implementation prospect since it could be trained offline and 43 

applied (and trained) online with performance guarantees. Moreover, from a practical standpoint, 44 
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the proposed scheme does not need to be trained from scratch in real world as this may cause some 1 

underperformance in the early stage of training. 2 

Additionally, the proposed scheme may encounter hindrance from existing infrastructure. 3 

For example, the state designs of the proposed agents include detailed accumulations 𝑛𝑖𝑗, whose 4 

acquisition may be nontrivial. Fortunately, this can be accommodated with ease in practice. For 5 

one, 𝑛𝑖𝑗 can be estimated via large scale use of loop detectors and probe vehicles. The former can 6 

provide reasonable estimates of regional accumulations (i.e., 𝑛𝑖 ), while the latter can provide 7 

regional destination splits. This information can then be used to partition the regional 8 

accumulations into destination-specific ones (i.e., convert 𝑛𝑖  into 𝑛𝑖𝑗 ). The accuracy of these 9 

methods is a subject of open research, which is left as future work of this study. For another, as 10 

Section 4.2.2.3 shows, the proposed scheme could perform well even with only total regional 11 

accumulations 𝑛𝑖, which are easily attainable from the environment. Similarly, the reward design 12 

features the use of exit flows (i.e., trip completion rates), which might be difficult to obtain directly. 13 

However, exit flows have been shown to be linearly related to network average flows (Daganzo, 14 

2007; Geroliminis and Daganzo, 2008); thus, the latter could readily be adopted as surrogates for 15 

the reward.  16 

Finally, the environment is assumed to be fully observable, as widely done in the literature. 17 

Hence, data transmission is not restricted, and loss of information (such as states and rewards) is 18 

not considered. While this might be a moderately restricting assumption, it should not be an 19 

impediment to related research works. Moreover, this assumption will cease to be restricting with 20 

advances in the technological frontier, such as high penetration of connected automated vehicles.  21 

Considering the potential limitations above, possible future efforts are pointed out here that 22 

might enhance real-life applications of the proposed scheme. This includes training the agents in 23 

a more realistic environment (as opposed to the numerical simulations performed herein) and 24 

perhaps using field experience. To this end, one should consider collecting interactive traffic data 25 

in real-time to calibrate the simulation environment and train the proposed agents continuously 26 

during application, which would be necessary for real-world scenarios. In this manner, more 27 

information about the traffic dynamics might be internalized by the proposed agents such that the 28 

simulation environment can do away with explicit modeling using MFDs. Future work could also 29 

consider developing a general perimeter controller that learns how to control for a new network 30 

without retraining or how to improve convergence rate of the proposed agents (for example via 31 

more principled exploration or experience utilization).  32 
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