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ABSTRACT

Various perimeter metering control strategies have been proposed for urban traffic networks that
rely on the existence of well-defined relationships between network productivity and accumulation,
known more commonly as network Macroscopic Fundamental Diagrams (MFD). Most existing
perimeter metering control strategies require accurate modeling of traffic dynamics with full
knowledge of the network MFD and dynamic equations to describe how vehicles move across
regions of the network. However, such information is generally difficult to obtain and subject to
error. Some model free perimeter metering control schemes have been recently proposed in the
literature. However, these existing approaches require estimates of network properties (e.g., the
critical accumulation associated with maximum network productivity) in the controller designs. In
this paper, a model free deep reinforcement learning perimeter control (MFDRLPC) scheme is
proposed for two-region urban networks that features agents with either continuous or discrete
action spaces. The proposed agents learn to select control actions through a reinforcement learning
process without assuming any information about environment dynamics. Results from extensive
numerical experiments demonstrate that the proposed agents: (a) can consistently learn perimeter
control strategies under various environment configurations; (b) are comparable in performance to
the state-of-the-art, model predictive control (MPC); and, (c) are highly transferable to a wide
range of traffic conditions and dynamics in the environment.

Keywords: Macroscopic Fundamental Diagram (MFD); model free deep reinforcement learning
(Deep-RL); perimeter control
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1. INTRODUCTION

Network Macroscopic Fundamental Diagrams (MFDs) provide a unimodal, low-scatter
relationship between the average productivity (e.g., network space-mean flow or trip completion
rate) and average use (e.g., network vehicle density or accumulation) for homogeneously loaded
urban networks. The proposition of the MFD was initially developed in (Godfrey, 1969) and later
studied in (Mahmassani et al., 1987, 1984), but its existence was not established until recent
theoretical and empirical findings (Daganzo, 2007; Geroliminis and Daganzo, 2008). Thereafter
extensive empirical and simulation investigations have been conducted for the existence and
properties of well-defined MFDs (Buisson and Ladier, 2009; Daganzo et al., 2011; Geroliminis
and Sun, 2011; Ji et al., 2010; Mazloumian et al., 2010).

MFDs can be used to model urban traffic networks with much less complexity by focusing
on the movement of vehicles across regions, and this paradigm can lead to the design of elegant
regional level traffic control strategies. Examples include pricing, street network design, and
multimodal street allocation (Daganzo and Lehe, 2015; Gayah et al., 2014; Zheng et al., 2012;
Zheng and Geroliminis, 2013). The most common application of MFDs for control purposes is
perimeter metering control, which is the manipulation of vehicle flows between neighboring
regions. Perimeter metering control strategies have been proposed for single-region networks in
(Daganzo, 2007; Haddad, 2017a; Haddad and Shraiber, 2014; Keyvan-Ekbatani et al., 2012,
2015a). For two-region urban networks, the perimeter control problem was first formulated in
(Haddad and Geroliminis, 2012) and subsequently solved in (Geroliminis et al., 2013), while
numerous extensions to multi-region networks can be found in (Aboudolas and Geroliminis, 2013;
Haddad et al., 2013; Hajiahmadi et al., 2015; Keyvan-Ekbatani et al., 2015b; Lei et al., 2019; Ren
et al., 2020; Sirmatel and Geroliminis, 2018).

Various methods have been proposed to solve MFD-based perimeter control problems. The
most promising and extensively used in the literature is model predictive control (MPC)
(Geroliminis et al., 2013; Haddad, 2017b; Haddad et al., 2013; Hajiahmadi et al., 2015; Ramezani
et al., 2015; Sirmatel and Geroliminis, 2018). However, the success of the MPC approach is
heavily dependent on the accuracy of the MFD prediction model. While the estimation of a
network’s MFD has been studied intensively (Ambiihl and Menendez, 2016; Du et al., 2016;
Gayah and Dixit, 2013; Nagle and Gayah, 2014; Saberi et al., 2014), the scarcity of empirically
observed MFDs in the literature demonstrates the practical difficulty of such MFD estimation
efforts. The MPC is a rolling horizon control scheme and may not generalize well to new plants
(reality) owing to its sensitivity to horizon parameters and modeling uncertainties (Prabhu and
George, 2014; Schrangl et al., 2018). Non-MPC methods for perimeter control have also been
proposed and shown to be promising. These include proportional-integral based control (Haddad
and Shraiber, 2014; Keyvan-Ekbatani et al., 2015b, 2015a, 2012), adaptive control (Haddad and
Mirkin, 2017, 2016), and linear quadratic regulator (Aboudolas and Geroliminis, 2013; Kouvelas
et al., 2017; Ni and Cassidy, 2020). However, all these methods are either model-based (i.e.,
assume full regional traffic dynamics to be known a priori) or require information about the
network’s MFD, which render them susceptible to the potential mismatch between the prediction
model and environment dynamics.

To overcome these challenges, data-driven model free schemes have been proposed for
perimeter control problems (Lei et al., 2019; Li and Hou, 2020; Ren et al., 2020, 2018). However,
these schemes require the estimation of network properties (e.g., the critical accumulation
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Zhou and Gayah 2

associated with maximum network productivity) that are embedded in the controller design. Thus,
they may be prone to estimation errors due to multivaluedness, instability, and hysteresis
phenomena that are common in real networks (Daganzo et al., 2011; Gayah and Daganzo, 2011,
Mahmassani et al., 2013; Mazloumian et al., 2010). Further, it remains uninvestigated whether
these methods could transfer to unencountered environment scenarios since the controllers learn
from scratch for each case study considered. It is therefore desirable to develop methods for
perimeter control that are completely model-free and do not build on pre-collected traffic data for
the estimation of MFDs.

Reinforcement learning (RL), which has long been studied for sequential decision-making
problems (Sutton and Barto, 2018), might be an appropriate technique for this task. In particular,
the authors are interested in the applicability of model-free control methods as they require little
to no detailed knowledge on the environment dynamics. Pioneering works in this vein include TD
learning (Sutton and Barto, 2018), SARSA (Rummery and Niranjan, 1994), and Q-learning
(Watkins and Dayan, 1992). However, these methods store value functions in a tabular form and
cannot scale to large, complex problems, such as perimeter control. To overcome this issue,
extensive efforts have been invested to integrate RL with deep learning (Lecun et al., 2015).
Nevertheless, when nonlinear function approximators such as neural networks are combined with
off-policy and bootstrapping, instability and divergence might occur (Tsitsiklis and Roy, 1997),
i.e., the deadly triad issue (Sutton and Barto, 2018). Deep Q-Networks (DQN) algorithm (Mnih et
al., 2015) was the first work that successfully addressed this using experience replay and target
networks. Following its seminal success, an increasing number of DQN variants have been
proposed (Hessel et al., 2017; Schaul et al., 2016; van Hasselt et al., 2015; Wang et al., 2015) and
deep reinforcement learning (Deep-RL) has attracted substantial research interests in the scientific
community.

Deep-RL has been applied by the transportation community for a variety of traffic control
purposes, most notably signalized intersection control (Genders and Razavi, 2016; Li et al., 2016;
Liang et al., 2018; Wei et al., 2019). An initial attempt to integrate RL into perimeter control
problems can be found in (N1 and Cassidy, 2019). However, the RL method in this study was only
utilized to redistribute metering rates derived from an MPC-based control framework along the
cordon perimeters. In a separate study (Ni and Cassidy, 2020), a model-based RL method was
incorporated in the MPC framework to solve the formulated open-loop optimization program as a
replacement for the direct sequential method used in (Geroliminis et al., 2013). More recently, a
neuro-dynamic programming approach was proposed in (Su et al., 2020) that integrates neural
network function approximators and policy iteration. However, these components are only utilized
to approximate the analytically found solution, which itself requires full system dynamics to obtain.
In addition, the policy iteration technique is heavily model based since it models the transition
function explicitly.

In this paper, a model free deep reinforcement learning perimeter control (MFDRLPC)
scheme is presented. The proposed scheme learns the long-term values (i.e., Q-values) of state-
action pairs iteratively through interactions with the environment, which allows the learning agents
to make more sensible future decisions. Specifically, two different agent designs are introduced
based on whether the control actions are discretized (referred to as D-RL) or treated as continuous
(C-RL). The D-RL agent takes greedy actions based on the learned Q-values, while the C-RL agent
features an actor to choose continuous control actions and a critic to evaluate the actions taken by
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the actor. Both agent designs do not build on any information about the environment, like the
functional form of the MFDs or impacts of vehicle routing decisions. Such strategy is called
“model-free”, a terminology widely adopted in the literature (Hou and Xiong, 2019; Lei et al.,
2019; Li and Hou, 2020; Ren et al., 2020, 2018) that refers exclusively to the agent designs. Note
that utilizing a simulation environment to train the agents—as done in this paper—would still
require a model of traffic dynamics. Practically speaking, however, the agents can be trained in
real life without this model information.

The remainder of this paper is outlined as follows. Section 2 formulates the control problem
for a two-region urban network with MFDs. Section 3 explains the proposed MFDRLPC scheme
in detail. Section 4 presents the experiment setups and results. A discussion on the implementation
prospect of the proposed scheme along with concluding remarks is provided in Section 5.

2. PROBLEM FORMULATION

This paper considers an urban network composed of two homogeneous sub-regions, R;,i = 1,2;
see Fig. 1(a). Traffic states are expressed by the accumulations n;;(t),i,j = 1,2, which represent
the number of vehicles within R; with destinations in R; at time t. Denote as f;(n;(t)) the MFD for
R; that defines the regional trip completion rate at accumulation n;(t) and note that n;(t) =
2jn;j(t). Provided that the trip lengths are similar for all trips within a region, the internal and
external trip completion rates for R; are then respectively calculated by M;;(t) = n;;(t)/n;(t) -
fi(ni(©), M;;(®) = n;;(©0)/n.(t) - f;(ni (1)), i # j, where M;;(t) stands for the regional exit flow and
M;;(t) the transfer flow. Like accumulations, traffic demands are denoted by q;;(t),i,j = 1,2. Note
that estimates of traffic demands can be conveniently obtained from historical observations and
are thus assumed to be known, but distinctions between these estimates and the ground truth
demands might exist, which will be systematically examined in Section 4.2.3.

= (=) oo

o

Trip completion rate (veh/s)

0 10000 20000 30000
(b) Accumulation (veh)

Fig. 1. Schematic diagrams of: (a) a two-region urban network; (b) two-region MFDs
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The perimeter controllers are presumed to operate on the boundary between neighboring
regions for the purpose of improving network throughput, i.e., the number of trips completed; see
also Fig. 1(a). The controllers are denoted by u;,(t) and u,;(t), which respectively define the
allowable portions of transfer flows M;,(t) and M, (t). Note that the perimeter controllers cannot
constrain internal flows M;4(t) and M,,(t). Further, it is assumed in this paper that the existence
of these controllers will not alter the environment dynamics. Relaxation of this assumption can be
found in (Haddad, 2017b; Ni and Cassidy, 2020).

Using this terminology, the two region perimeter control problem with MFDs is formulated
as follows (similar to (Haddad et al., 2012)):

t

f
LA f (0 + MOl )
subject to:
d
M0 4110 + 1 (6 My () — M 0 @
d
nzizt(t) = q12(8) — ugo(t) - M5 () 3)
d
‘rl;lt(t) = 21 () — Uz, () - M1 (1) 4)
d
njizt(t) = q22(t) + ug2(t) - My,(t) — My, (1) 5)
Mij (t) = :t:]((tt)) fi(ni(t))' l'] =12 (6)
n;j(£) = 0,i,j =12 (7)
0 <ny1(t) +n12(t) <Ny jgm (8)
0 < 11(t) +122(8) <My jam C)]
Umin < ulz(t) < Umax (10)
Umin < u21(t) < Umax (11)
n;j(to) = nyjo, i,j = 1,2 (12)

where ¢, is the start time and t; the final time, n;; ; are the known initial accumulations at ty, n; jgm
is the jam accumulation for R;, and u,;, and u.,., are the lower and upper bounds for control
actions, uq,(t) and u,,(t). Equation (1) provides the objective of the perimeter control problem,
which is to maximize the cumulative number of trips completed. This objective is also equivalent
to minimizing the total travel time in the system. Equation (2)-(6) describe the environment
dynamics, which will be internalized by the proposed method and are not known or required for
the controller design. Equation (7)-(9) and (10)-(11) are the boundary constraints for
accumulations in both regions and control actions, respectively.

3. METHODOLOGY

This section first introduces the formulation of the perimeter control problem in the RL context.
This is followed by a detailed explanation of the proposed MFDRLPC scheme that features two
RL agents, C-RL and D-RL, with continuous and discrete action spaces, respectively. Finally, this
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section provides an overview of the model predictive control method that is to be compared with
the proposed scheme.

3.1 RL formulation

The standard RL formulation involves an agent interacting with an environment at discrete time
intervals. At each time step t, the agent observes a numerical state of the environment s;, takes an
action a; according to a policy m, and receives a scalar reward r,,, from the environment. The
return is defined as the cumulative discounted future reward from time step t, which might be
stochastic. The goal of the RL agent is to learn a policy that maximizes the expected return from
the start time. Formally, the optimal perimeter control problem is modeled as a Markov decision
process characterized by a tuple < §, A, P, R, T,y >.

State space, 8. For the C-RL agent, the state consists of four accumulations n;;,i,j = 1,2
and four estimated traffic demands q;;,i,j = 1,2 averaged over the next time step. Each
element of the state is scaled to [0,1] through a division by its maximum value. For the D-
RL agent, the implemented controller values at the previous time step are also incorporated
in the state design.

Action space, A. For the C-RL agent, the action is comprised of two real values from the
allowable range [Umin , Umax ] fOr the perimeter controllers u,, and u,,. For the D-RL agent,
three actions are defined for each of the two perimeter controllers: 1) increase its value by
Au; 2) keep its value unchanged; or, 3) decrease its value by Au, where Au is a
predetermined amount indicating the allowable change in the perimeter controller values.
Changing controller values by a set amount allows for gradual change in control over time.
In total, the D-RL agent has 9 actions to choose from (three options for each of the two
controllers). After an action is chosen by the agents, it is implemented in the environment
for the duration of a time step, At.

Transition dynamics, . The environment receives an action from the agent and arrives
at a new state according to the transition dynamics P(s;;115¢, a¢): S X A = §. In this work,
the transition dynamics are expressed by the traffic dynamics described in Section 2 and
are not explicitly modeled.

Reward function, R. After taking an action, the agent receives an immediate reward from
the environment as an assessment of the action just taken, according to the reward function
r(se, ap):S X A = R. The reward is defined as (M;;(t) + M,,(t))/C, where C is a large
constant utilized to normalize the reward. In this paper, we purposefully normalize the
reward to [0, 1], as suggested by (Henderson et al., 2017). The agent is trained to maximize
the cumulative number of trips completed, which is identical to the objective function
presented in Section 2. Further, a large negative quantity is added to the reward to penalize
unreasonable control strategies that precipitate gridlock or invalid accumulations.

Policy, i, and discount factor, y. At each time step, the agent chooses an action based on
a policy that maps states to actions, i.e., m: S = A. The return G; measures the long-term
quality of the policy and is defined as the total discounted reward from time step ¢
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T
Ge= ) ¥ iy (13)
=t

where T is the total time steps of an episode and y € [0,1] is a discount factor utilized to
impose more values on immediate reward above delayed reward. Owing to the potential
stochasticity in the policy, the purpose of the RL agent is to maximize the expected value
of the return, E[G,], from the start time, which in this paper represents the expected total
number of trips completed from ¢,.

3.2 Algorithms

3.2.1 Discrete agent (D-RL)

Following the convention of model free control methods, the action value function Q(s, a) is used,
which implies the expected return after taking action a at state s and then following policy m. The
action value function follows the recursive relationship knowns as the Bellman Equation (Sutton
and Barto, 2018):

Q(sp, ap) = En[rt+1 + YQ(St+1'T[(St+1))] (14)
where 7 (+) represents the policy to be learnt.

Q-learning (Watkins and Dayan, 1992), a popular off-policy model free algorithm, uses the
greedy policy (i.e., m(s) = argmax Q(s,a)) and updates the action value function in a tabular
a

manner as per (14). However, this algorithm cannot be scaled up for complex problems with large
state and/or action spaces since explicit storage of all possible state-action pairs is likely
intractable. Therefore, function approximation has been proposed as a method for generalization
to directly map state-action pairs to action values (also known as Q-values). Nonlinear function
approximators have long been avoided due to the potential instability and divergence (Sutton and
Barto, 2018; Tsitsiklis and Roy, 1997). The Deep Q-Networks (DQN) algorithm (Mnih et al., 2015)
marks the first success to have achieved consistent convergence while using large neural networks
as function approximators. A schematic diagram of the DQN algorithm is presented in Fig. 2.
Particularly, two major components have contributed to its ability to consistently converge:
experience replay (Lin, 1992) and target network. The principal idea behind experience replay is
to store the collected experiences in a replay buffer and apply Q-learning update rule on sampled
batches of experiences. In this manner, the collected experiences could be used multiple times,
improving sample efficiency significantly. Further, the sampling of experiences helps reduce
correlations between the transitions utilized to update the Q-network, thus enhancing stability in
the learning process. The target network shares the same structure as the Q-network, but its weights
are periodically updated from the Q-network weights. Therefore, the learning targets are roughly
static throughout the training process. Adjusting the Q-network towards static learning targets
mimics supervised learning and has been shown to produce more stable learning processes.
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Replay buffer

2) Compute learning targets
¥y =7y +ymax Q(Ser1,a;67)

Store transitions

1) Sample a batch of transitions
(50,00, 11, Se41)

Agent
3) Update Q-network

€ —greedy

3

a;

SerTes1

Environment

Fig. 2. Schematic diagram of the DQN algorithm. Q(:,:; 8,) and Q(:,:; 6;) are the Q- and target networks,
respectively. € — greedy is the exploration strategy. n is the number of actions (n = 9 in this work).

Note that the greedy policy is adopted by DQN similarly to Q-learning. Hence, the same
value (i.e., max Q(s, a)) is used to both select an action and evaluate it (see the learning targets in
a

Fig. 2), which is likely to result in an overestimation of action values. This overestimation problem
was first observed in (Thrun and Schwartz, 1993) and later affirmatively studied in (van Hasselt
et al., 2015). In the latter reference, the authors proposed to decouple the max operation in the
greedy policy into action selection and evaluation. Combining Double Q-learning (van Hasselt,
2010) with advances of the DQN, a new algorithm named Double DQN was developed, where the
Q-network is used for action selection and the target network for evaluation. In mathematical term,
the learning target used by Double DQN is as follows

Y =141 +70Q (st+1,argmgx Q(St+1,a;0¢); et_) (15)

where Q(:,:;0,) and Q(:,:; 0;) stand for the parameterized Q- and target networks, respectively.
Substituting the learning targets in Fig. 2 with (15), one obtains the Double DQN algorithm, which
is adopted as the learning algorithm for the D-RL agent in the present paper.

Value-based methods such as DQN and Double DQN can only cope with discrete or low-
dimensional action spaces. Hence, the perimeter controller values are discretized for the D-RL
agent as described in Section 3.1. The € — greedy strategy is utilized for the D-RL agent to explore
the state and action spaces. Specifically, with predicted Q-values from the Q-network, the agent
takes the greedy action (i.e., arg max Q(s, a)) with probability 1 — € and takes a random action with

probability €. To achieve sublinear total opportunity loss during exploration, the € value is decayed
throughout the learning process. The specific decay schedule will be presented in due course. The
Q-network (hence the target network) is constructed as a multilayer perceptron that takes as input
the state and outputs a 9-dimensional vector representing the Q-values for each state-action pair
(the action space of the D-RL agent is 9-dimensional). More concretely, the Q-network has two
64-unit dense layers with ReLU activations. The outputs of these two layers are then connected to
a 9-unit dense linear layer. All dense layers initialize their weights based on a normal distribution
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with default parameters. The optimization algorithm employed is Adam (Kingma and Ba, 2015)
with epsilon set to 1078,

3.2.2 Continuous agent (C-RL)

While the discretization strategy provides a straightforward approach to handle continuous action
spaces, it still possesses numerous limitations, most notably the curse of dimensionality.
Specifically, the number of discrete actions increases considerably with the granularity of
discretization and finer grained control is likely intractable as the action space is too large to be
explored efficiently. Moreover, such discretization cannot be scaled up to multi-regions since the
dimension of the action space increases exponentially with the number of regions. In contrast,
continuous control schemes can more flexibly choose perimeter controller values, making fine
control possible. Note that, though perimeter controllers are typically implemented by traffic
signals with discrete timing plans, continuous action designs are still an unspoken convention in
the literature. In fact, continuous perimeter control actions render its implementation by traffic
signal more feasible as the signal timing plans do not need to be adjusted drastically across time
steps. Moreover, continuous control schemes are also scalable to multi-region networks, as shown
in (Lei et al., 2019; Ramezani et al., 2015; Ren et al., 2020; Sirmatel and Geroliminis, 2018). The
authors hence present the C-RL agent that assumes a continuous action space. Also note that the
proposed agent has the same number of control variables as any other continuous control method
and thus in theory can be applied to multi-region networks as well. However, showing so is beyond
the scope of the present work.

Unlike value-based methods that adopt a greedy policy based on Q-values, policy gradient
methods (Sutton et al., 2000) explicitly parameterize the policy so that continuous control actions
can be conveniently obtained. Optimization methods such as gradient ascent are then utilized to
directly optimize the policy to achieve higher long-term value (e.g., return). Specifically, a policy
objective function can be defined to evaluate the parameterized policy, my(a|s): S = P(A), which
represents a stochastic distribution over actions. Since the policy is dependent only on the
parameters 6, the policy objective function is expressed as a function of the parameters, denoted
as J(0). The parameters are then updated iteratively in the direction of the policy objective function
gradient V4] (0) to maximize J(0). The fundamental result behind these methods is the (stochastic)
policy gradient theorem (Sutton et al., 2000)

Vol (60) = Eny[Vglogmg(als) Q™ (s, a)] (16)
which states the policy gradient irrespective of the policy objective function used. However, the
estimation of the stochastic policy gradient involves an integral over both state and action spaces,

thus requiring a large number of samples. For this reason, (Silver et al., 2014) modeled the policy
as a deterministic decision a = ug(s) and proposed the deterministic policy gradient,

Vol (0) = Eyy[Voro(s)VaQ 0 (5, @)l a=py(s)] 17)
which is the expected gradient of the action value function with respect to parameters 6. Since the
deterministic policy gradient only integrates over the state space, it can be estimated much more
efficiently than its stochastic counterpart (16), especially with high-dimensional action spaces. To
enhance exploration of the state and action space, an off-policy deterministic actor-critic algorithm
was proposed in (Silver et al., 2014). This algorithm was subsequently extended in (Lillicrap et al.,
2016) where the actor and critic are modeled with neural networks. Integrating advances of the
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DQN, the latter paper proposed the model-free, off-policy actor-critic Deep Deterministic Policy
Gradient (DDPG) algorithm, which is the learning algorithm adopted for the C-RL agent in this
paper. The DDPG algorithm is schematically presented in Fig. 3.

—I Replay buffer

1) Sample a batch of transitions
2) Compute learning targets
Ye=Teer + ¥Q(Seer #(Ser1: 60 ):077)

Store transitions
(S, @741, Se41)

3) Update critic network

I Critic

1
(oo )= asuasoh J—(ot.a)

4) Update actor network with
Vou] = ]Esl [VuQ(S- a; B?)I{l:ﬂ(ﬂ) FH"“(S? 6;‘)]

a,
IS' r

St41: T
I Environment }

Fig. 3. Schematic diagram of the DDPG algorithm. pu(:; 64) and Q(:, :; 0?) are respectively the actor and
critic networks, while u(:; 847) and Q(:, :; 0?_) are the target actor and critic networks.

Actor-critic methods (Bhatnagar et al., 2009; Degris et al., 2012; Grondman et al., 2012)
combine the advantages of both value-based and policy gradient methods. These methods have an
actor to take actions (i.e., policy) and a critic to evaluate the actions taken by the actor (i.e., value
functions). Two sets of parameters are separately maintained for the actor and critic. The critic
parameters are updated in a similar manner to Q-learning (Watkins and Dayan, 1992) while the
actor parameters are updated in the direction suggested by the critic. Correspondingly, DDPG has
an actor, which maps states to actions, and a critic, which maps state-action pairs to Q-values. The
learning target for the critic is

Yy = 1es1 + ¥Q (St t(Se41; 057 ); 9?_) (18)
where u(:; 047) and Q(:, :; 9?‘) are target networks for the actor and critic, respectively. After

updating the critic parameters, the deterministic policy gradient is then computed (as per step 4)
in Fig. 3), which is utilized to update the actor parameters with gradient ascent.

It can be observed from the comparison between (15) and (18) that, the DDPG algorithm
directly parameterizes the policy whereas the Double DQN algorithm obtains its policy from
predicted Q-values. For problems with high-dimensional or even continuous action spaces, direct
parameterization will be particularly advantageous as the argmax operation in (15) becomes an
optimization problem that is too computationally expensive to solve at each time step.
Discretization of the action space could help alleviate some of the computational burden. However,
structure of the action space will be lost to some extent. Therefore, it can be expected that the C-
RL agent will significantly outperform the D-RL agent for the perimeter control problem under
study, which will be demonstrated in Section 4.
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For the C-RL agent, both the actor and critic networks are constructed as multilayer
perceptron, a structure commonly seen in DDPG-related studies (Horgan et al., 2018; Lillicrap et
al., 2016) that is suitable for low-dimensional input-output relationships considered in this work.
The actor network takes as input an 8-dimensional state vector that contains the set of four
accumulations and the averages of four estimated traffic demands. These inputs are then connected
to two 64-unit dense layers with ReLU activations. Outputs of these dense layers are projected to
a 2-dimensional space with a dense tanh layer. Finally, a Lambda layer is used to bound the outputs
between u,,;, and u,,4,, thus producing a 2-dimensional action vector containing the perimeter
controller values. Moreover, unbiased noise drawn from a normal distribution is directly injected
into the actions to facilitate exploration of the state and action spaces. The scale parameter of the
normal distribution is decayed in the learning process since less exploration is needed as the agent
gathers more information about the environment. The critic network receives the state and action
vector and passes these inputs through two 64-unit dense layers with ReLLU activations. Outputs
of these layers are subsequently connected to a dense linear layer that has only 1 unit representing
the Q-value for the input state-action pair. The weights of all dense layers are initialized from a
normal distribution with default parameters. Target networks share the same structure as the
corresponding actor and critic networks. Adam (Kingma and Ba, 2015) is utilized to optimize the
loss for the critic network with epsilon set to 1078,

3.2.3 Formalization of the MFDRLPC scheme

In this work, the proposed model free C-RL and D-RL agents learn entirely from interactions with
the environment and a significant amount of experiences are needed for efficient learning. For this
purpose, the distributed architecture Ape-X (Horgan et al., 2018) is combined with the learning
algorithms to collect more experiences. More specifically, the Ape-X architecture maintains
numerous experience generators and a single centralized learner. Each generator has its own
instance of the environment and is assigned different exploration strategies to expand the amount
of experiences they jointly encounter. These experiences are then stored in a fixed-size replay
buffer in a first in first out order, i.e., prioritization of experiences is performed based only on
recency as opposed to TD errors (Horgan et al., 2018; Schaul et al., 2016). In this manner, the
experiences where the agents are making more educated decisions are valued more than outdated
ones, which are removed from the buffer once the buffer size is exceeded by the amount of
collected experiences. The centralized learner uniformly samples experiences from the shared
buffer, which are utilized to update the neural networks of the agents. For the C-RL agent, all
generators assume unbiased Gaussian noise with decaying parameter for the normal distribution.
The sampled experiences are used to update the actor and critic networks. At convergence, the
learned policy is explicitly represented by the fully trained actor network. For the D-RL agent, all
generators use decaying e-greedy strategy for exploration and the sampled experiences are used to
update the Q-network. At convergence, the learned policy can be derived by taking greedy actions
with respect to the learned Q-values. The proposed C-RL and D-RL agents of the model free deep
reinforcement learning perimeter control (MFDRLPC) scheme are formalized in Algorithm 1 and
2, respectively.
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Algorithm 1. Model Free Deep Reinforcement Learning Perimeter Control: C-RL Agent

1: Randomly initialize actor network Og and critic network BOQ

Initialize target actor and critic networks 84~ = %, GOQ_ = 08
Initailize replay buffer B, buffer size M, sample size m, iteration number /, genetaor number G
for iter=1to I do
Initialize a normal distribution /N for action exploration with decayed scale parameter
for generator =1 to G do

2

3

4:

5: Load actor network 8% = @
6.

7

8

iter iter—1

So < Environment.Reset()
fort =1to Tdo

o1 = U(Se—1; 0l,) + Ney

9: (14, s¢) < Environment.Step(s¢_1, Qz_1)

10: B.add((st—-1,Qt—1,7¢ St))

11: end for

12: end for

13: if B.size() > M then

14: B.remove()

15: end if

16: Training samples < B.sample(m)

17: Periodically load target actor and critic networks Gﬁ;r = Gﬁ er—1 B?t;r = HiQter_l
18: B?t o < Update the critic network towards learning target (18)

19: Bﬁ o < Update the actor network using the sampled policy gradient (17)
20: end for




O 001NN B~ WK —

Zhou and Gayah 12

Algorithm 2: Model Free Deep Reinforcement Learning Perimeter Control: D-RL Agent
1: Randomly initialize Q-network @, and target Q-network 8y = @,
Initialize replay buffer B, buffer size M, sample size m, iteration number /, generator number G

2: for iter=1to I do

3: Decay the € value for € — greedy exploration

4: for generator =1 to G do

5: Load Q-network @;;or = 0ter—1

6: So < Environment.Reset()

7: fort =1to Tdo

8: as_q = arg mng(st_l, a; 0;;.,) with probability 1 — €
a random action with probability €

9: (11, s¢) < Environment.Step(s;—1, @r—1)

10: B.add((st—1,Qt—1,7¢ St))

11: end for

12: end for

13: if B.size() > M then

14: B.remove()

15: end if

16: Training sample « B.sample(m)

17: Periodically load target network 0;;., = jter_1

18: 0;:or < Update Q-network towards learning target (15)

19: end for

The list of important hyperparameters for the C-RL and D-RL agents is presented in Table
1. Note that, a systematic grid search of hyperparameter values is not conducted due to the high
computational burden. However, as will be shown, the proposed scheme is able to compete with
the state-of-the-art MPC method even with randomly chosen hyperparameters. This demonstrates
the significant potential of Deep-RL methods on MFD-based network traffic control. On the other
hand, with systematically tuned hyperparameters, the proposed agents will be trained in a more
specialized manner, which will increase performance but might be more prone to overfitting and
reduced transferability.



Zhou and Gayah 13

Table 1. List of hyperparameters and their values
Value Value

Hyperparameter C-RL D-RL Description

Iteration number (1) 250 250 The number of iterations to train the agents

Generator number (G) 32 32 The number of generators used to collect experiences

Replay buffer size (M) 10000 10000  Storage capacity of the replay buffer

Sample size (m) 1000 1000 The number of transitions sampled for network updates

Initial scale parameter 0.3 - Initial scale of normal distribution for action noise

Action Noise scale decay 0.001 - Linear exploration decay in each iteration

Final scale parameter 0.05 - Final scale of normal distribution for action noise

Initial € - 0.8 Initial value of € in € — greedy exploration

€ decay - 0.98 Exponential exploration decay factor in each iteration

Final € - 0.01 Final value of € in € — greedy exploration

Critic epoch 128 - Number of forward and backward pass for sampled transitions
Initial critic learning rate  0.001 - The initial learning rate used by Adam for the critic

Critic learning rate decay 0.98 - Exponential learning rate decay factor in each iteration

Actor epoch 2 - The times gradient ascent is executed for the actor

Initial actor learning rate  0.0025 - The initial learning rate used by gradient ascent for the actor
Actor learning rate decay 0.93 - Exponential learning rate decay factor in each iteration
Q-network epoch - 128 Number of forward and backward pass for sampled transitions
Initial learning rate - 0.001  The initial learning rate used by Adam for the Q-network
Learning rate decay - 0.95 Exponential learning rate decay factor in each iteration
Minimum learning rate 0.0001 0.0001 The minimum learning rate for the actor, critic, and Q-network
Batch size 256 128 The number of transitions to update the networks once
Discount factor 0.95 0.8 Discount factor y used to compute the learning targets

Target networks lifetime 5 5 The number of iterations to periodically update target networks
Early stopping patience 20 20 The number of epochs with no improvement to stop training

3.3 Model Predictive Control

The proposed scheme is compared against the state-of-the-art method, i.e., model predictive
control (MPC) (Geroliminis et al., 2013). MPC is an advanced model-based control method which
assumes sufficient knowledge of environment dynamics. Using a closed-loop framework, the MPC
can accommodate discrepancy between the prediction model and plant (reality). At each time step,
an open-loop of the control problem is formulated as a nonlinear program (NLP). Controller values
are obtained by solving the formulated NLP and only the first controller is implemented into the
plant. This procedure is iteratively carried out until termination of the control period.

To formulate the open-loop control problem into an NLP problem, a prediction horizon N,
and a control horizon N, are assumed. The MPC controller assumes piecewise constant controls
for each step in the prediction horizon. To reduce computational complexity, the perimeter
controllers are only allowed to change for N, steps and are kept fixed at the last control values
thereafter. Specifically, in the context of perimeter control, at each time step, the MPC controller
predicts the evolution of accumulations for the next N, steps based on the initial accumulations,
theorized MFDs prediction model, and control variables. An objective function is then constructed
to maximize the throughput of the network depending on how the accumulations change. The
objective function and corresponding constraints (e.g., path constraints, vehicle conservation) are
then transformed to the standard form of an NLP. The formulated NLP could be solved using
popular NLP solvers such as [IPOPT (Wéchter and Biegler, 2006). In the present work, the NLP is
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solved using the Sequential Least SQuares Programming (SLSQP) method (Kraft, 1988), a
wrapper of the Sequential Quadratic Programming method (Nocedal and Wright, 2006) that can
handle any combination of bounds, inequality, and equality constraints. The obtained solutions
provide values for the perimeter controllers and the first one is carried out in the plant. Note that,
the MFDs used in the prediction model are accurate while the MFDs in the plant might exhibit
uncertainty and scatter, especially as the network becomes more congested.

In this paper, the MPC is implemented according to (Geroliminis et al., 2013) without
adding smoothing control constraints to provide best-case performance for comparison. Both the
prediction and control horizons are set to 20. The selection of the prediction horizon is in line with
previous research studies that apply the MPC to perimeter control problems (Geroliminis et al.,
2013; Hajiahmadi et al., 2015; Ramezani et al., 2015). The control horizon is selected to maximize
the performance of the MPC.

4. EXPERIMENTS

In this section, the proposed MFDRLPC scheme is compared with the MPC to perform perimeter
control in a two-region urban network as in Fig. 1(a). Note that the major benefit of the proposed
method is that it does not build on any information about the environment dynamics, whereas the
MPC assumes full knowledge of regional traffic dynamics. Comparison between the C-RL and D-
RL agents is also provided, which aims to verify the advantage of continuous control scheme over
discretization of actions in high-dimensional control problems. The discretization is conducted by
setting the predetermined allowable change in perimeter controller values to Au = 0.1. In addition,
the no control (NC) strategy is also included for comparison. Under the NC strategy, transfer flows
will not be restricted and the perimeter controllers are set to their maximum values for the whole
control period, i.e., u;, = uy; = Upay. Lhis strategy provides a baseline for other methods whose
performances can be expressed as relative improvements over it.

4.1 Experiment setup

For the two-region network considered in this paper, the MFD for R; is the same as the one
observed in Yokohama, Japan' (Gao and Gayah, 2018; Geroliminis and Daganzo, 2008), whereas
a scaled-down version of it is adopted for R, that corresponds to a smaller region (e.g., a city
center); see Fig. 1(b). The critical accumulations associated with maximum productivity are
ny o = 8241 vehand n, o, = 4120 veh for R; and R,, respectively. Note that the MFDs do not need
to be exact and the impact of modeling errors in the MFDs will be explicitly examined in Section
4.2.3.

The estimated traffic demand profile is illustrated in Fig. 4(a), which exhibits higher
demand to R, (the simulated city center) than to Ry (the periphery of a city) during the 1-hour
period. The demand profile presented here represents traffic conditions during morning peak. In

! The functional form of the MFD selected here is piecewise: a third-order polynomial when the region is not
extremely congested and linear for extreme congestion. Tests using strictly third-order polynomial for the entire range
of densities reveal that this choice does not negatively impact the performance of the MPC method. The piecewise
MFD is adopted since it more accurately represents macroscopic traffic dynamics.
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subsequent experiments, more extreme demand patterns will be considered as well. The initial
traffic states in R; and R, are respectively assumed to be uncongested and congested with n,(t,) =
6000 veh and n,(t,) = 5000 veh.

led
gy : .- :’11.1
3.0 1.2 :g
225 L0 ==
¥ ]
Z Z
< 2.0 5 0.8
215 506
= g
S
1.0 204
=
0.2 " TTr—e—
os 7z .~ e N T ~.
0 ==
0 1000 2000 3000 0 1000 2000 3000
(a) Time (sec) (b) Time (sec)

Fig. 4. (a) estimated traffic demands; (b) accumulations under the NC strategy

Perimeter controllers are often implemented by signalized intersections along the perimeter
borders. Due to the loss time of signal timing plans, transfer flows may not be fully accommodated
by the controllers, hence the maximum controller value is fixed at u,,x = 0.9. On the other hand,
a complete prohibition of transfer flows can hardly be enforced in a realistic manner, thus the
minimum control value is set to u,;, = 0.1. Further, the signalized intersections are assumed to
have a uniform cycle length of 60s, so the duration of a time step is At = 60s.

With these settings, the evolution of accumulations under the NC strategy is presented in
Fig. 4(b), which shows a steadily decreasing accumulation in R; and increasing accumulation in
R,. Note that R, is initially uncongested. Thus, reduced accumulation decreases its regional
production. On the other hand, R, is initially congested and the increasing accumulation leads to
consistently reduced production. As a consequence, the network throughput is relatively low under
the NC strategy. In subsequent sections, it will be shown how the network throughput can be
effectively improved by properly implementing perimeter control in the system to mitigate the
unbalanced traffic condition.

The simulation environment used in the present paper is a realistic two-region MFDs plant
with potential uncertainty in the MFDs and/or traffic demand, as described in (Geroliminis et al.,
2013). Specifically, the MFDs and traffic demands in the environment are expressed by

fi(n(@®) = fi(n:(®) + ¢(®) - (), i = 1,2 (19)

gij(t) = max (q;;(t) - (1 +&(2)),0),i,j = 1,2 (20)

where ¢(t)~U(—a, a) and &(t)~N(0,02). The predefined parameters a and o are separately the
level of uncertainty in the MFDs and traffic demands. Under this definition, the uncertainty in the
MFDs is proportional to current accumulations. As a region becomes more congested, the errors
between the expected and realized trip completion rates grow, which is consistent with empirical
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and analytical findings (Buisson and Ladier, 2009; Daganzo et al., 2011). The uncertainty in traffic
demands represents temporal fluctuations and is proportional to the estimated traffic demands. For
the same value of ¢, the magnitude of potential errors in demand would increase with the estimated
traffic demands. The level of uncertainty in the environment with ¢ = 0.1, @ = 0.1 is illustrated in
Fig. 5(a) and (b) for traffic demands and MFDs, respectively. The simulation environment is then
obtained by replacing MFDs and demand values in Equation (2)-(6) with terms (19)-(20). The
proposed C-RL and D-RL agents learn the long-term values (i.e., Q-values) for various actions
taken at each state via interaction with the simulation environment. The agents also internalize the
environment dynamics via this interaction. Specifically, the agents receive states and rewards from
the environment while the environment implements actions taken by the agents.
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Fig. 5. Environment uncertainty: (a) estimated traffic demands; (b) two-region MFDs

It is worth reiterating that, while the agent designs of the proposed MFDRLPC scheme are
model free, the environment still involves a model, i.e., the MFD-based traffic dynamics. However,
the use of the MFD model to construct the simulation environment or I/O data generator is not
atypical when applying model free methods for perimeter control; for example, see (Lei et al.,
2019; Li and Hou, 2020; Ren et al., 2020, 2018).

The objective of perimeter control is to improve network production, i.e., cumulative trip
completion (CTC), which equivalently is to minimize the total travel time (TTT) in the system.
Therefore, these two quantities, CTC and TTT, are used to evaluate the performances of the four
perimeter control strategies: NC, MPC, and the proposed C-RL and D-RL agents. All strategies
are applied for perimeter control under various environment configurations. The environment
configurations considered in this paper are arranged according to the level of environment
uncertainty, with more details provided in Table 2. Note that while the initial accumulations are
the same among different environment configurations, their impacts will be thoroughly
investigated in Section 4.2.3.
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Table 2. Environment configurations under consideration
Env.No. o a Description

0 0 Deterministic scenario as a benchmark

0.1 0 Medium uncertainty in traffic demands

02 0 High uncertainty in traffic demands

0 0.1 Medium uncertainty in MFDs

0.1 0.1 Medium uncertainty in traffic demands and MFDs

0.2 0.1 High uncertainty in traffic demands and medium uncertainty in MFDs
0 0.2 High uncertainty in MFDs

0.1 0.2 Medium uncertainty in traffic demands and high uncertainty in MFDs
0.2 0.2 High uncertainty in traffic demands and MFDs

o 0 N N N AW N -

4.2 Experiment results

4.2.1 Convergence consistency of the MEDRLPC scheme

Performance curves of the four methods under all environment configurations are presented in Fig.
6. Each curve provides the evolution of CTC across consecutive training iterations. The C-RL and
D-RL agents were trained with numerous random seeds to fully gauge their ability to consistently
converge, as suggested in (Henderson et al., 2017). The darker line in Fig. 6 represents the median
training performance over random seeds while the shaded areas are obtained by plotting the two
extreme values in each iteration and filling the areas in between. Reporting the mean results does
not affect the conclusions to be presented. However, since the mean is more sensitive to extreme
values than the median, they are not included. Results for the NC and MPC in Fig. 6 are obtained
by running both strategies multiple times and reporting the median and extreme values. The NC
and MPC are not learning-based methods, hence their performances are relatively fixed across
different runs and environments, as indicated by the flat darker line and narrow shaded band.

The shaded areas in Fig. 6 are neither representative of the level of uncertainty in the
environment nor the fluctuations in the training process. Instead, they represent the randomness
experienced by the agents. As an example, suppose the agents collected disastrous experiences in
the deterministic environment (i.e., Env. No. 1), then their performance curves are likely to exhibit
a rather poor lower bound. Contrarily, if the agents happen to follow a large quantity of desirable
trajectories while exploring in the high uncertainty environment (i.e., Env. No. 9), then they will
likely achieve decent lower-bound performances. This would occur even though the level of
uncertainty in the deterministic environment is the lower. In general, training fluctuations are better
captured by the median curves as they are illustrative of the normalized performances and are
comparable across different environments. The seemingly fluctuating median performance curves
are not atypical; for example, see (Horgan et al., 2018; Lillicrap et al., 2016). As shown in Fig. 6,
the median performance curves of the proposed C-RL and D-RL agents appear to be noisier with
increasing uncertainty in the traffic demands (column-wise comparison) but remain relatively
invariant to uncertainty in the MFDs (row-wise comparison). This is reasonable since the
magnitude of uncertainty in the demands, which is proportional to flows, is much larger than that
of uncertainty in the MFDs, which is proportional to accumulations. Comparing across the median
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performance curves of the proposed agents, one could observe that the training processes of the C-
RL agent exhibit greater fluctuations than the D-RL agent before convergence.
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Fig. 6. Performance curves of the four methods under all environment configurations.
Blue: C-RL; ; ; Gray: NC?

As shown in Fig. 6, performances of the MFDRLPC scheme (the C-RL and D-RL agents)
steadily improve as training proceeds and become stable after some time under all environment
configurations. This demonstrates the ability to consistently learn and converge regardless of
experiment scenarios. Both agents outperform the NC strategy well before convergence, with the
C-RL agent taking around 5 iterations while D-RL agent around 100 iterations. In addition, at the
end of the training process, all three perimeter control methods achieve much higher CTC than the
NC, indicating that the congestion can be effectively mitigated and network throughput increased
using perimeter control. A further comparison between the C-RL and D-RL agents reveals the
significantly superior convergence property of the former. On one hand, the C-RL agent can learn
much more efficiently than the D-RL agent. Specifically, it takes the C-RL agent around 3
iterations to exceed the D-RL agent though it underperforms the latter initially. Additionally, the
C-RL agent achieves its best performance within 100 iterations for all environment configurations.
In contrast, the D-RL agent is just about to conduct effective learning after 100 iteration. The C-
RL agent also realizes much better asymptotic performances than the D-RL agent. For one,
performance curves of the C-RL agent exhibit variations of CTC that are far smaller than the D-
RL agent towards the end of the training process. For another, the final achieved CTC of the C-
RL agent are always better than the D-RL agent. These observations demonstrate the advantage of

2 The figures here adopt colors to differentiate between control methods and the reader is encouraged to refer
to the electronic version of the figures when possible.
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continuous control scheme over discretized control strategy in high-dimensional problems, as
expected.

More importantly, the performance of the C-RL agent is comparable with and may even
exceed the MPC method for all scenarios considered. In cases where there is relatively large
uncertainty in the environment (Env. No. 3, 5-9), the performance of the D-RL agent also
approaches the MPC, though consistently inferior. These results showcase the considerable
potential of Deep-RL on MFD-based network traffic control. However, they are not surprising. In
fact, it has been shown in the literature that model free methods have the potential to achieve
comparable or even better performances to the MPC; see (Lei et al., 2019; Ren et al., 2020) for
example. The reasons are twofold. For one, the MPC relies heavily on an accurate prediction model.
When there is discrepancy in the traffic dynamics between the prediction model and plant, the
performance of the MPC might deteriorate as it receives wrong information from the environment.
On the contrary, the proposed agents internalize such dynamics via interaction with the
environment. Consequently, the agents become roughly as knowledgeable about the environment
as the MPC. For another, the MPC is sensitive to horizon parameters (Prabhu and George, 2014;
Schrangl et al., 2018). While the MPC considers only part of future conditions (i.e., the prediction
horizon), the proposed agents consider the entire simulation period with discount. In addition,
careful tuning of the horizon parameters is nontrivial yet time consuming, and it is uncertain
whether a particular parameter setting works consistently well across different environments.
These two reasons also justify the development of model free methods for perimeter control.

4.2.2 Effectiveness of the MFDRLPC scheme

The effectiveness of the proposed scheme is examined by visualizing its control outcomes and
comparing those with the MPC approach. The deterministic environment (i.e., Env. No. 1) is
considered here for illustration. Similar considerations can be conducted for other environments,
but the conclusions are the same. The evolution of accumulations and controller values for u;, in
the 1-hour period are provided in Fig. 7 and Fig. 8, respectively. Note that the demand profile
adopted in this paper exhibits a smaller overall demand to R;, which has a larger production
function (i.e., a larger MFD). Transfer flows to R; are thus not constrained by any control strategy
during the whole study period, i.e., uy; = upyax - This is excluded from the control actions in Fig.
8 for clarity of presentation.
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The evolution of accumulations for the NC strategy shown in Fig. 7 corresponds to that in
Fig. 4(b). The total accumulation in R, keeps increasing as a consequence of the high demand to
R,. Note that n,, first decreases as initially the demand g, is rather small. Later, as g,; increases
and R, becomes sufficiently congested, the accumulation n,; increases even though no limitation
is imposed on the transfer flow M, (t). Contrarily, accumulations in R, steadily decrease since
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internal flows are not restricted while the inter-region traffic demand is offset by the transfer flow.
When perimeter control is applied, a fraction of transfer vehicles to R, are blocked and instead
remain within Ry, resulting in an initial increase of n,,. Approaching the end of the 1-hour period,
n,, decreases following the reduction of transfer demand q;, and relaxed controller u,,. Owing to
perimeter control, accumulations in R; end up higher than realized by the NC strategy. However,
R, is still uncongested and a higher regional production can be achieved. Unlike the NC method
that allows n, to increase in an unconstrained manner, perimeter control strategies effectively
maintain n, around the critical value such that throughput in R, is improved as well. Overall, the
progression of accumulations depicted in Fig. 7 clearly illustrates how the unbalanced traffic
condition by the NC approach can be productively mitigated by perimeter control and how network
throughput can be increased.

A closer examination of Fig. 7 reveals that the accumulations realized by the proposed C-
RL and D-RL agents are similar to those by the MPC, mostly due to the resemblance of control
actions between them, as shown in Fig. 8. At the beginning of the study period, all three perimeter
control methods tend to allow more transfer flows by increasing u,,, with the MPC having the
sharpest increase. Around the same time when the MPC begins to decrease u,, in response to the
high transfer demand g ,, the C-RL agent also starts to impose stricter controls, whereas the D-RL
agent keeps the control inputs static. For the D-RL agent that takes discrete actions with fixed
jumps, this is a sensible decision since adjusting the control downwards or upwards might result
in drastic changes in the accumulations and hurt the trip completion. However, a better decision
could be readily obtained. For example, the D-RL agent could increase u;, by 0.1 and maintain
the value until decreasing it around 1000s. The D-RL agent fails to learn such strategy, which
explains why its realized trip completion is lower than the C-RL agent or the MPC. Later, as overall
demand to R, reaches its maximum, the MPC enforces even stricter control. When internal
demand q,, decreases and traffic conditions in the two regions become slightly unbalanced, the
MPC lessens its restriction on the transfer flow. During this period, however, both proposed agents
apply a roughly constant control value for u,,. Finally, as all traffic demands diminish at the end
of the 1-hour period and no severe congestion is present in the system, all three perimeter control
methods are inclined to increase u,, so that more transfers can be made and more trips completed.
Note that, the C-RL agent generally selects smaller controller values for u,, than the MPC in the
early period (before 1000s). However, such smaller values are compensated by its looser control
in the later period (around 1000~3000s), which explains its competitiveness to the MPC method.
In addition, the control policy learned by the C-RL agent is more implementable than the MPC
since its actions change more smoothly. Such smoothness is built in the design of the actor network,
which uses the tanh activation for action outputs. Given that perimeter control is typically
implemented by traffic signals in practice, a smooth control policy could thus avoid the need to
adjust the signal timing plans abruptly across consecutive time steps. In summary, these results
indicate that the proposed scheme, especially the C-RL agent, is capable of deriving similar control
policies to the MPC while in the meantime preserving the easiness of practical implementations.

To more comprehensively demonstrate the effectiveness of the proposed scheme, three
more tests are conducted: (1) the environment exhibits atypical traffic demand patterns; (2) the
network becomes empty at the end of an extended control period; and (3) the agent only has limited
access to accumulations in the environment. Specifications of these tests will be provided shortly.
Note that, since the C-RL agent has been shown much superior to the D-RL agent, the latter is not
considered in the following experiments.
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4.2.2.1 Atypical traffic demand profiles in the environment

For all experiments presented above, the environment assumes approximately realistic traffic
demand profiles that simulate traffic conditions during morning peaks. The objective of this test is
thus to investigate whether the proposed C-RL agent could still learn reasonable control strategies
with atypical demand profiles in the environment. The deterministic environment is considered in
this test for illustration.

The demand profile in Fig. 9(a) is scaled down from that in Fig. 4(a) with a coefficient of
0.3, which simulates extremely low traffic demands in the environment. In Fig. 9(b), internal
demand in R, is increased drastically while the demands to R, are kept unchanged to simulate a
busy city center. Intuitively, when traffic demands are extremely low in the environment (first
demand profile), congestion should rarely exist and little to no perimeter control should be
implemented, i.e., u;; = 0.9,u,; = 0.9. On the contrary, when one region is always congested due
to high internal demand and the other barely congested (second demand profile), perimeter
controllers should be activated to allow as many outbound vehicles as possible and as few inbound
vehicles as possible for the congested region, i.e., u;, = 0.1,u,; = 0.9. This intuition is confirmed
by solutions to the control problem using the MPC; see Fig. 10.
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Similarly, control actions chosen by the C-RL agent are presented in Fig. 11, which are
also consistent with the above intuition. The control actions by the MPC and the C-RL agent are
not exactly identical, thus resulting in slightly different performance curves, as reflected in Fig. 12.
As can be observed from Fig. 12, the C-RL agent can learn the optimal policy fairly quickly (within
50 iteration) and achieve comparable performances with the MPC. Note that since the policies for
these extreme scenarios are adequately simple to learn, only one performance curve is presented
for each case, but the C-RL agent was tested using numerous random seeds.
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4.2.2.2 Extended control period with network being empty in the end

The demand profile in Fig. 4(a) simulates a morning peak. At the end of the simulated morning
peak, the two regions both operate around their respective critical value under perimeter control;
see Fig. 7. However, it remains uncertain whether subsequent operations of the two regions would
alter the conclusions presented above. Hence, this test considers an experiment scenario where the
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network becomes nearly empty at the end of the control period. To do so, the control period is
extended to 3 hours with a demand profile shown in Fig. 13(a). The extended portion from Fig.
4(a) represents the traffic situations after the morning peak with a constant small value for all four
demands. Again, the deterministic environment is considered here as an illustration. The evolution
of accumulations under the NC strategy is presented in Fig. 13(b). As can be observed, the network
becomes close to empty at the end of the simulation even when no perimeter control is applied.
Therefore, a reasonable comparison could be established between the C-RL agent and the MPC as
the accumulation trajectories beyond the control period will not affect the comparison.
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Fig. 13. (a) 3-hour demand profile; (b) accumulations under the NC strategy

To compare with the MPC, a combined control strategy is presented. Specifically, during
the first hour of the simulation, the C-RL agent is utilized for perimeter control. For the subsequent
control period, the NC strategy is adopted. Reasons for choosing such a combination of control
methods are twofold. For one, as demonstrated in the test above with atypical demand profiles, no
control should be implemented with extremely low traffic demands in the environment. Though
nontrivial accumulations are present in the network, they are near the critical values and do not
cause congestion. In practice, it is natural to lift any restriction on transfer flows after the morning
peak. For another, when the traffic demands are close to zero, four input signals to the C-RL agent
will be close to zero, which hurts its training process.

The evolution of trip completion over time is provided in Fig. 14 for the NC, the MPC, and
the proposed control method (i.e., C-RL + NC). Note that, all control methods should have the
same trip completion when the network becomes empty, which is consistent with Fig. 14. As can
be observed, the performance of the proposed control strategy is almost identical to the MPC,
which is indicative of an extremely high level of comparability between the two methods. In
addition, the proposed method and the MPC realize trip completions much more efficiently than
the NC, resulting in a substantial area between the completion curves. This area represents the
saved total travel time (TTT) from the NC strategy, a term to be revisited shortly. This observation
again indicates the notable advantage of perimeter control over the NC method.
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4.2.2.3 Limited access to environment accumulations for the agent

As described in Section 3.1, the proposed C-RL agent receives accumulations and demands from
the environment as its state and acts based on this information. While estimates of traffic demands
can be readily obtained from historical observations, the acquisition of accumulations n;; might
not be straightforward, though they can be estimated using loop detectors and probe vehicles.
Therefore, this test investigates whether the proposed agent works in the absence of such detailed
accumulation when it only has access to total regional accumulations n;,i = 1,2. The evolution of
trip completion in the deterministic environment is presented in Fig. 15, where the original C-RL
agent trained with accumulations n;; is denoted by C-RL (7j) while the one trained with n; by C-
RL (i). As can be observed, training the C-RL agent with total regional accumulations n; is almost
identical to training with detailed accumulations n;;, which indicates that the proposed agent works
with only regional accumulations n;. This result also manifests the implementation potential of the
proposed agent since total regional accumulations are comparatively easy to obtain.
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To sum up, the results presented in this section suggest that the proposed method can
effectively learn sensible perimeter control strategies to maximize the number of trips completed.
For realistic experiment scenarios, the proposed scheme (the C-RL agent in particular) obtains
similar but more implementable control policies to the MPC. The proposed scheme could also
learn the optimal control policy with relative ease for scenarios with irregular traffic demands.
Additionally, the proposed scheme is highly comparable to the MPC when the network becomes
nearly empty towards the end of the control period. Moreover, the proposed scheme works even
without detailed accumulations n;; from the environment. These results have fully demonstrated
the effectiveness of the proposed scheme and imply that it might be applicable on all types of
traffic conditions in the environment. Finally, these results also show the promising application
prospect of Deep-RL methods on MFD-based traffic control.

4.2.3 Transferability of the MFDRLPC scheme

The transferability of the proposed scheme is examined in this section by applying the pretrained
C-RL agents on a variety of unseen environments. To the best of our knowledge, this is the first
examination of whether perimeter control methods can generalize to unencountered environments.
For all case studies reported in (Ren et al., 2020), it is uninvestigated whether the learned controller
for one case could transfer to another without performing the learning process all over again. The
model based MPC formulates an optimization problem at each time step for each environment and
it remains in question whether a particular parameter setting could work in another environment.
Note that the term “transferability” is employed here instead of “robustness” as the latter has a
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broader meaning which does not fit in well with the context. Moreover, since the proposed C-RL
agent has clear advantages over the D-RL agent, the latter is excluded from following experiments.

The performances of the C-RL agent are compared with the MPC and NC strategies in
terms of total travel time (TTT) in the system. The new environments considered here have
different traffic conditions (i.e., initial accumulations and traffic demands) and traffic dynamics
(i.e., MFDs) from those used to train the agents. The initial accumulations and traffic demands in
the unseen environments are obtained by:

Ninew = Njo* (1 + ¢) (21)
Gij(t) = q;j(t) - (1 +mn) (22)
where ¢, n denote the level of variation. Values of ¢, n considered here range from -0.10 to 0.10.
Thus, higher values indicate higher initial accumulations or traffic demands in the environment
than originally seen by the C-RL agent. Note that, the MPC has full knowledge of the new traffic
conditions. The MFDs in the unseen environment are defined as:
fi(@(®) = fi(7(0) + ¢ - 7,(D) (23)
where ¢ stands for the MFD modeling errors. Negative values of ¢ are indicative of over-
representation of environment dynamics and the new environment is not as productive as perceived
by the C-RL agent or the MPC. On the contrary, positive values of ¢ suggest underestimation of
environment production. Values of ¢ considered here range from -0.50 to 0.50. The experiments
in this section are conducted on a large number of different environments, and only a subset of the
results is presented here for brevity.

The first set of experiments test the transferability of the proposed method with respect to
different initial accumulations in the environment. Thus, the traffic demands and MFDs are kept
constant. Intuitively, higher initial accumulations will aggravate the unbalanced traffic condition
under the NC strategy, making perimeter control increasingly necessary. Contrarily, perimeter
control might not be needed if the initial accumulations are low enough such that congestion rarely
exists. The achieved TTT of three control methods with respect to the initial accumulations is
presented in Fig. 16, where each subplot represents a C-RL agent trained in the corresponding
environment (see Table 2). Heights of the green shaded areas represent saved TTT by the C-RL
agent from the NC strategy. Similarly, heights of the pink shaded areas represent the saved TTT
by the MPC from the C-RL agent. The new environments considered here assume n = 0, = 0 for
illustration. Note that, performances of C-RL agent trained on individual environments are less
informative due to randomness, hence more analytical focus is placed on the general trend.
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Fig. 16. TTT achieved by three methods with respect to initial accumulations.
Blue: C-RL; 5 Gray: NC

As can be observed from Fig. 16, the saved TTT from the NC increase monotonically with
initial accumulations, which suggests a higher level of necessity to implement perimeter control
as the network becomes more congested initially. It can also be inferred that, if the network starts
with extremely small initial accumulations (¢ = —0.3, for example), the NC might be the optimal
control strategy. More importantly, Fig. 16 shows that the realized TTT of the C-RL agent is about
the same as the MPC when initial accumulations are moderately larger than those perceived by the
agents during training (i.e., 0 < ¢ < 0.10). This suggests the C-RL agent is highly transferable to
environments with larger initial accumulations, even more so considering that the MPC has full
access of the new initial accumulations and system dynamics whereas the C-RL agent has never
encountered these test environments. When the initial accumulations are smaller than perceived
by the C-RL agent, it fails to compete with the MPC, which might result from its strict control
policy as more relaxed controls are favorable in an environment that is less congested. Additionally,
Fig. 16 reveals that the C-RL agent performs approximately similarly when transferring to unseen
environments regardless of the environment it was trained on. This might suggest the C-RL agent
has decent generic property, i.e., it can cope with any traffic condition in the environment.

The second set of experiments test the transferability of the proposed method to different
demands patterns, so initial accumulations and the MFDs are held constant. The performance of
the C-RL agent with respect to traffic demands is presented in Fig. 17, where all new environments
assume ¢ = 0, ¢ = 0. As can be observed, the pretrained C-RL agent is remarkably comparable to
the MPC when applied to environments with different levels of traffic demands, irrespective of its
training environments. In particular, the C-RL agent appears notably transferable to large demand
patterns. On the other hand, as traffic demands in the environment become much smaller than
those known to the agent, the MPC is more advantageous, which is also likely the result of the
stricter controls of the C-RL agent. Overall these two sets of tests suggest that the proposed method
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is resilient to slightly more congested traffic conditions but might be insufficient if the test
environment is much less congested than perceived by the pretrained agents.
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Fig. 17. TTT achieved by three methods with respect to traffic demands.
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The transferability of the proposed scheme with respect to the MFD modeling errors is
investigated in this final set of experiments. Intuitively, when large distinctions of traffic dynamics
exist between the training environments and the new environments, the pretrained agents may
cease to achieve consistently satisfactory performances. Assume for example that the proposed
method is trained to control a relatively small urban network; the learnt policy should not be
expected to perform well on a much larger urban network as the dynamics of the small network
would likely not be representative of the larger one.

The performance of the C-RL agent with respect to MFD modeling errors is shown in Fig.
18, where the new environments assume ¢ = 0,1 = 0. Initially when the environment dynamics
are severely over-represented (¢ < —0.4), perimeter control methods significantly outperform the
NC. This is reasonable as when the environment is not as productive as perceived, more serious
congestion is likely to arise under the NC strategy. As the environment dynamics becomes less
overrated or even slightly underestimated (—0.3 < ¢ < 0.1), the advantage of perimeter control
diminishes, but the C-RL agent is still comparable to the MPC. However, when the environment
production is highly underestimated (¢ = 0.3), both perimeter control methods fail to compete
with the NC, suggesting that vehicle movements should not be restricted. This again is sensible
since congestion might not exist with higher production in the environment and the NC can allow
more vehicles to complete their trips, thus reducing the TTT in the system.
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To conclude, the experiment results presented in this section have demonstrated that the
proposed C-RL agent is comparable to the MPC when applied to test environments with slightly
more congested traffic conditions even though the MPC has full knowledge of the traffic dynamics
in the test environments. In addition, the C-RL agent has been shown transferable to environments
with moderate MFD modeling errors. Results also suggest the proposed scheme and the MPC may
not adapt well to environments with considerably underestimated traffic dynamics. However, this
should not be an issue in practice. The reasons are twofold. First, one could train a C-RL agent for
each network to be controlled. This pretrained agent will then be resilient to changeable traffic
conditions as shown above. Second, traffic dynamics in a network are roughly reproducible
(Geroliminis and Daganzo, 2008) with the upper bounds largely confined by the network topology.
Therefore, the pretrained agent is unlikely to severely underestimate the environment production
and thus could consistently work for the network. Additionally, as with the convention of applying
pretrained RL agents, the test scenario should not be greatly different from the training ones.

5. DISCUSSION AND CONCLUDING REMARKS

In summary, this paper proposes a novel Deep-RL based scheme (i.e., the MFDRLPC) for the
canonical two-region perimeter control problems. The proposed scheme features two agents that
respectively assume continuous and discrete action spaces. The distributed Ape-X architecture is
combined with the learning algorithms of the agents to facilitate efficient learning. Extensive
numerical experiments have been conducted to assess the convergence consistency of the proposed
approach and to compare its performance against the state-of-the-art MPC method. Results show
that the proposed scheme could consistently converge under a wide range of environments even
with significant uncertainty in realized traffic demands and network MFDs. Moreover, the
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proposed agents are highly comparable to the MPC method when applied to the environments that
they were specifically trained in, even with atypical demand profiles in the environment, extended
control period, or limited access to accumulation information. In addition, the proposed scheme
demonstrates a high level of transferability in application to new unseen environments, which
indicates great potential for practical implementations. Concretely, the agents generally achieve
comparable performances to the MPC approach when applied to environments with slightly more
congested traffic conditions and moderate MFD modeling errors.

The proposed MFDRLPC scheme has some clear advantages over existing model based or
model free perimeter control methods (Geroliminis et al., 2013; Lei et al., 2019; Ren et al., 2020,
2018; Sirmatel and Geroliminis, 2018; Su et al., 2020). The principal benefit is that the proposed
scheme does not build on any information about environment dynamics, thus avoiding the need to
estimate the MFD or critical accumulation. In addition, the proposed scheme does not require pre-
collected external traffic data but instead learns control strategies entirely from direct interaction
with the environment. Though the learning process could potentially benefit from additional
network-wide data (such as the critical accumulation, maximum trip completion rate or even the
entire region’s MFD), the results show that the latter are not needed since the proposed scheme
learns from the overall network outcomes. In this manner, the proposed scheme can internalize the
traffic dynamics and achieve comparable performances to the state-of-the-art MPC approach.
There are, however, potential obstacles that may hinder its real-life application.

First, the proposed scheme could be data intensive and computationally expensive,
particularly in the learning portion. In this paper, it takes around 43 to 52 minutes to train the C-
RL and D-RL agents respectively whereas the computation time of the MPC is negligible in
comparison. However, such straightforward comparison of computational time does not fairly
assess the two methods. Model free Deep-RL methods require numerous samples to produce a
reasonable control policy as the samples are utilized to learn the environment dynamics. On the
contrary, the MPC requires that such dynamics be known and incorporated into the framework.
Therefore, though the MPC appears computationally cheap, it is considerably data intensive as it
depends on detailed traffic dynamics and the MFD, which are generally difficult to obtain. Thus,
by nature of the model free design, the proposed scheme will take longer computation time to train
than the MPC. However, while it does take more time to train the agents from scratch, the time
required to implement the pretrained Deep-RL agents is negligible. In fact, the proposed scheme
is much less computationally intensive in the application process than the MPC as the latter always
formulates and solves a high-dimensional nonlinear program every time it is implemented. In
addition to this benefit, the proposed scheme exhibits decent potential for real-life application. For
one, the proposed scheme could be trained offline in simulation and then applied to a more realistic
environment. As the transferability tests indicate, the proposed scheme could generalize to
environments with slightly more congested traffic conditions and moderate MFD modeling errors.
Hence, the agent could first be trained with slightly uncongested traffic condition and high
environment production such that it can achieve promising performances at the time of adaptation.
For another, the offline pretrained agent could keep on training at the time of application, thus
improving its control outcomes. This process could be conducted in real time with newly collected
experiences as the online adaptation is neither data nor computation intensive. In summary, the
proposed scheme shows promising implementation prospect since it could be trained offline and
applied (and trained) online with performance guarantees. Moreover, from a practical standpoint,
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the proposed scheme does not need to be trained from scratch in real world as this may cause some
underperformance in the early stage of training.

Additionally, the proposed scheme may encounter hindrance from existing infrastructure.
For example, the state designs of the proposed agents include detailed accumulations n;;, whose
acquisition may be nontrivial. Fortunately, this can be accommodated with ease in practice. For
one, n;; can be estimated via large scale use of loop detectors and probe vehicles. The former can
provide reasonable estimates of regional accumulations (i.e., n;), while the latter can provide
regional destination splits. This information can then be used to partition the regional
accumulations into destination-specific ones (i.e., convert n; into n;;). The accuracy of these
methods is a subject of open research, which is left as future work of this study. For another, as
Section 4.2.2.3 shows, the proposed scheme could perform well even with only total regional
accumulations n;, which are easily attainable from the environment. Similarly, the reward design
features the use of exit flows (i.e., trip completion rates), which might be difficult to obtain directly.
However, exit flows have been shown to be linearly related to network average flows (Daganzo,
2007; Geroliminis and Daganzo, 2008); thus, the latter could readily be adopted as surrogates for
the reward.

Finally, the environment is assumed to be fully observable, as widely done in the literature.
Hence, data transmission is not restricted, and loss of information (such as states and rewards) is
not considered. While this might be a moderately restricting assumption, it should not be an
impediment to related research works. Moreover, this assumption will cease to be restricting with
advances in the technological frontier, such as high penetration of connected automated vehicles.

Considering the potential limitations above, possible future efforts are pointed out here that
might enhance real-life applications of the proposed scheme. This includes training the agents in
a more realistic environment (as opposed to the numerical simulations performed herein) and
perhaps using field experience. To this end, one should consider collecting interactive traffic data
in real-time to calibrate the simulation environment and train the proposed agents continuously
during application, which would be necessary for real-world scenarios. In this manner, more
information about the traffic dynamics might be internalized by the proposed agents such that the
simulation environment can do away with explicit modeling using MFDs. Future work could also
consider developing a general perimeter controller that learns how to control for a new network
without retraining or how to improve convergence rate of the proposed agents (for example via
more principled exploration or experience utilization).
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