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ABSTRACT: Land-use regression (LUR) models are frequently applied to
estimate spatial patterns of air pollution. Traditional LUR often relies on fixed-site
measurements and GIS-derived variables with limited spatial resolution. We
present an approach that leverages Google Street View (GSV) imagery to predict
street-level particulate air pollution (i.e., black carbon [BC] and particle number
[PN] concentrations). We developed empirical models based on mobile
monitoring data and features extracted from ∼52 500 GSV images using a deep
learning model. We tested theory- and data-driven feature selection methods as
well as models using images within varying buffer sizes (50−2000 m). Compared
to LUR models with traditional variables, our models achieved similar model
performance using the street-level predictors while also identifying additional potential hotspots. Adjusted R2 (10-fold CV R2) with
integrated feature selection was 0.57−0.64 (0.50−0.57) and 0.65−0.73 (0.61−0.66) for BC and PN models, respectively. Models
using only features near the measurement locations (i.e., GSV images within 250 m) explained ∼50% of air pollution variability,
indicating PN and BC are strongly affected by the street-level built environment. Our results suggest that GSV imagery, processed
with computer vision techniques, is a promising data source to develop LUR models with high spatial resolution and consistent
predictor variables across administrative boundaries.

1. INTRODUCTION
The negative impacts of air pollution exposure on human
health have been shown by many epidemiological studies.1−4

Since air pollutant concentrations can vary rapidly over short
distances,5,6 accurately estimating the spatial patterns of air
pollution is important for assessing human exposure and health
outcomes.7,8 Numerous studies use measurements from fixed-
site monitoring networks.9−12 However, stationary monitoring
is often cost-prohibitive, and thus sparsely distributed, which
may lead to undetected hotspots and poor characterization of
air quality at small spatial scales.13−16 Compared to fixed-site
monitoring, mobile monitoring offers an alternate approach to
capture the spatial variation of street-level air pollution.5,6 For
example, Apte et al.5 used Google Street View (GSV) cars to
map air pollution at a spatial precision 4−5 orders of
magnitude greater than that of routine monitoring stations.
Consequently, empirical models based on dense mobile
measurements may have the potential to better characterize
street-level variation of air pollution to better describe health
disparities at small spatial scales.
Land-use regression (LUR) is one type of empirical model

which has been frequently applied to predict ambient air
pollutant concentrations.17−20 Typically, LUR models use
measurements from fixed-site monitoring networks17 and
predictor variables derived from Geographic Information
Systems (GIS) including land-use types, traffic intensity, and
population density.21 While emerging studies use mobile
monitoring data to increase the spatial density of measure-

ments used in LUR models,22−25 other limitations arise when
using traditional GIS-derived predictor variables that do not
match the resolution of the mobile monitoring data. For
example, GIS-derived variables are often jurisdiction specific
since those data are usually collected to serve local
administrative purposes.26,27 Similarly, variables available at
larger geographic scales (e.g., national) often provide less
specific and spatially precise information. Since there are many
mobile monitoring efforts being conducted across the world
(which offer significant improvements in the spatial density of
measurements), additional work is needed to develop predictor
variables that (1) match the spatial scale of the measurements
being collected and (2) are able to be derived in a consistent
way across administrative and political boundaries. To address
these limitations, we propose an image-derived empirical
modeling approach that utilizes GSV imagery to extract street-
level features as predictor variables.
Since its launch in 2007, GSV has collected a massive

quantity of panoramic images across the world providing views
of streetscapes at the eye level.28 GSV imagery is becoming a
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reliable data source26,28,29 and a promising tool for research
studies owing to high spatial resolution, extensive coverage,
open access to the public, and data consistencyespecially
when combined with computer vision techniques.30−32

Previous studies have used GSV images in various ways, for
example, estimating the demographic makeup of neighbor-
hoods,30 assessing urban vegetation and green space,33−35

auditing neighborhood built environments,26,36 automating
land-use classifications,37 or capturing changes in physical
urban envirionments.38 An emerging research area is using
GSV imagery in air pollution research39 to map hyperlocal air
quality or to identify emission sources.
In this study, we investigate the use of GSV imagery to

predict street-level particulate air pollution. In previous work,24

we used a bicycle mobile monitoring platform to measure black
carbon (BC) and particle number (PN) concentrations and
developed LUR models based on traditional predictor
variables. Based on the same air pollution measurements, we
present here a series of empirical models with a promising new
set of predictor variables: features extracted from GSV imagery
by a deep learning scene parsing technique.32 The models are
built solely with features from GSV images. Three different
feature selection methods (i.e., theory-driven, data-driven, and
integrated) are tested during model development to improve
model robustness and interpretability. Our results demonstrate
that the combination of mobile monitoring and street scene
images, assisted by computer vision techniques, constitutes a
promising modeling approach to estimate air pollution at the
street level.

2. MATERIALS AND METHODS

2.1. Mobile Monitoring Data. Mobile monitoring data
was collected in a previous study, and full details of the
monitoring campaign are described in Hankey et al.24 Briefly,
we conducted a bicycle mobile monitoring campaign to sample
daytime street-level particulate air pollution in a small rural
town (Blacksburg, VA) in 2016. We deployed micro-
aethalometers (AE51; AethLabs) on bicycles to measure BC
concentrations and condensation particle counters (CPC
3007; TSI, Inc.) to measure PN concentrations. Two mobile
monitoring routes, each ∼20 km in length, were repeatedly

sampled and ∼120 h of mobile monitoring data was collected.
We applied spatial aggregation at 100 m intervals along the
routes, and the median concentrations of observations were
tabulated for each aggregation location (n = 422 aggregation
locations). We tested different methods to adjust mobile
monitoring data for background concentrations in Hankey et
al.24 In this study, we used concentrations adjusted by the
multiplicative method, which aims to best approximate long-
term air pollution concentrations, for model development.
Briefly, the multiplicative background adjustment method
calculated adjustment factors based on the ratio of the daily
concentration to the hourly concentration at a central site used
to measure background concentrations. Then, the adjustment
factors were applied to all mobile monitoring observations
(based on the hour the mobile measurements were collected)
to correct for variations in background concentrations.

2.2. Street-Level Predictor Variables. Unlike traditional
LUR models, the predictor variables in this study were features
extracted from GSV imagery, which capture street-level
characteristics of the built and natural environment. GSV
images were sampled around each mobile monitoring
aggregation location including (1) central sampling, which
randomly retrieved six locations of GSV imagery within 50 m
of the aggregation locations and (2) buffer sampling where we
created a 100 m × 100 m grid within 2000 m of each
aggregation location and then repeated the central sampling
approach for the centroid of each grid cell (Figure 1). GSV
images within the 2000 m buffer were further stratified into
eight circular buffers with radii ranging from 250 to 2000 m.
Since GSV images are 360° photos, we retrieved four flat GSV
images (640 × 640 pixels) at 90° intervals for each GSV
sampling point. This procedure resulted in up to 24 images
around each monitoring location or grid cell centroid
depending on the availability of GSV images. To best match
the mobile monitoring campaign, we preferentially collected
GSV images photographed during the same year (2016).
Images from the next closest year were included when year
2016 images were not available.
We used the Pyramid Scene Parsing Network (PSPNet), a

deep learning model with state-of-the-art performance on
various data sets, to process GSV images.32 Feature extraction

Figure 1. Image sampling and feature extraction procedure. (A) Google Street View (GSV) images sampled around one air pollutant monitoring
aggregation location. (B) GSV images retrieved for four directions at one GSV sampling location. (C) Feature extraction using PSPNet scene
parsing. (D) Estimated feature percentage among the 150 segmented classes.
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was implemented at the pixel-wise level, i.e., each pixel in an
image was classified into a specific feature. A total of 150
features were segmented, including natural features (e.g., trees,
grass, plants), built environment features (e.g., roads, buildings,
houses), and transportation features (e.g., cars, buses, vans).
The percentage of each feature within an image was calculated
(Figure 1D). The mean percentage of features among all
images within a given buffer, representing the overall
characteristics of that area, were used as street-level predictor
variables for our empirical air quality models.
2.3. Modeling Approach. We developed GSV-only

empirical models with predictor variables solely extracted
from GSV images. To make direct comparisons with models
using traditional variables, we used the same air pollution
measurements and employed the same step-wise linear
regression approach used by Hankey et al.24 Briefly, the
model uses a forward selection procedure, adding the variable
which has the highest correlation with the dependent variable
and subsequently adding the variable which is most correlated
with model residuals. The process was repeated until the added
variable was either not statistically significant (p < 0.05) or the
model had unacceptably high multicollinearity (Variance
Inflation Factor VIF > 5). All BC and PN concentrations
were log transformed during model development and were
transformed back to original values for model prediction.
To fully explore the role of GSV imagery in estimating

street-level air pollution, we developed two types of GSV-only
models: buffer-feature models and central-feature models.
Buffer-feature models included both central features (i.e., the
mean percentage of features for images within 50 m of
aggregation locations) and buffer features at various spatial
scales (i.e., eight circular buffers from 250 to 2000 m). During
model development, each feature class was restricted to only
be selected at a single buffer size. We also built central-feature
models that only used features within 50 m of measurement
locations to assess the ability of using only images very near
measurement sites to explain air pollution variability. A
sensitivity analysis was developed to investigate how the
choice of spatial scale of the central features (i.e., by varying
the radius size that defines central features) impacts model
performance. Specifically, we collected features from GSV
images within 250, 500, 750, and 1000 m of the mobile
monitoring routes. Then, we compared central-feature models
for each fixed radius.
Adjusted R2 and root-mean-square error (RMSE) were used

as metrics to compare model performance. To evaluate model
robustness and generalizability, 10-fold cross validation was
conducted for each model. Specifically, the data was randomly
partitioned into 10 subsets. Then we held out each subset and
used the remaining nine subsets to build a model and predict
the data for the hold out subset. R2 was calculated after all
subsets were predicted. We repeated the 10-fold cross
validation 10 times. The mean R2 was reported as the final
10-fold cross-validation R2.
2.4. Feature Selection. We used a previously developed

algorithm (PSPNet) to classify pixels in GSV images.32 Upon
inspection of all 150 classes extracted from the images, we
found that many classes are irrelevant to air pollution;
furthermore, as expected, some pixels were misclassified during
scene parsing. Including irrelevant and spurious features in
empirical air quality models may cause overfitting and reduce
accuracy when applying the models. It also makes it difficult to
interpret the selected variables and their coefficients. One way

to mitigate these problems is to conduct feature selection
during the modeling process.40,41 In this study, we tested three
feature selection methods to develop GSV-derived predictor
data sets to offer to our empirical air quality models. To avoid
confusion, we refer to feature selection in this paper as the
procedure used to assemble a subset of the 150 features
extracted from the GSV imagery to offer to our empirical air
quality models; this process is independent of the variable
selection process used within the step-wise regression. The
three feature selection methods include: (1) theory-driven
feature selection, (2) data-driven feature selection, and (3)
integrated feature selection, which is the combination of the
first two approaches. In general, theory-driven feature selection
utilizes subjective background knowledge accumulated among
many studies, while data-driven feature selection solely relies
on statistical characteristics of the data itself.
We designed our theory-driven feature selection based on

our prior knowledge of air pollution. To illustrate this
approach, we developed three categories of predictor variables
derived from GSV images to offer to our air quality models:
(1) “All variables” which included all 150 features, (2)
“Theory-driven: Outdoor variables” which only included
features that are commonly outdoors (n = 57), and (3)
“Theory-driven: Air pollution-related variables” which only
included features that may influence air pollution concen-
trations (n = 31). A full list of variables in each category as well
as the reason for each variable being included or excluded from
each category is listed in Table S1.
As a contrast to theory-driven feature selection, we designed

our data-driven feature selection simply based on quantitative
data filters without using any prior knowledge of air pollution.
We used two data-filtering criteria and applied them to the “All
variables” category. First, we filtered predictor variables based
on the variable mean value averaged among all model building
locations. The thresholds (i.e., 1 × 10−6, 1 × 10−5, and 1 ×
10−4) were determined by the statistical distribution shown in
Figure S1. Second, we filtered predictor variables based on the
nonzero percent of features among the aggregation locations.
The thresholds were set to be equally distributed: 0, 20, 40, 60,
and 80%. A total of 15 scenarios were then created based on
the combination of these criteria. Both criteria aim to remove
uncommon features in the study area from the model building
data set. More details are described in the SI.
Integrated theory- and data-driven feature selection was

applied to leverage the strengths of both approaches. These
models used the same data-filtering criteria by the data-driven
approach and applied them to the categories of predictor
variables created by the theory-driven approach. To simplify
model comparison, the best models among scenarios within
the data-driven or integrated feature selection approaches were
chosen based on the highest 10-fold CV R2.

3. RESULTS AND DISCUSSION
3.1. Spatial Distribution of Street-Level Predictor

Features. The mean concentrations of BC and PN were 1.08
μg/m3 and 6059 pt/cm3, respectively. The distribution of
mobile monitoring data is shown in Figure S2. Figure S3 shows
the spatial distribution of GSV images sampled around the
mobile monitoring routes. Approximately 52 500 GSV images
were collected for model development, including ∼8800 GSV
images collected within 50 m of the monitoring routes to
capture central features and ∼46 800 images within 2000 m to
generate variables at various buffer radii. Corresponding to the
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two sources of the GSV imagery, Google (i.e., collecting
images while GSV cars driving along roads) and Google users’
uploading photos, GSV images were mostly distributed along
the road network or locations with more human activities.
Since GSV images were predominantly on the road network,
portions of the mobile monitoring routes (e.g., off-street trails
far from major roads) did not have GSV images within 50 m
(11.6% of the mobile monitoring aggregation locations). Thus,
we excluded these monitoring locations from our model
building in this study.
A core advantage of GSV images is that they capture street-

level built and natural environment features. Among the 150
features segmented by scene parsing, the top 10 most frequent
features in Blacksburg were as follows: sky (average percent in
images: 28.1%), road (25.8%), tree (24.3%), grass (10.8%),
earth (2.7%), building (1.9%), plant (1.4%), sidewalk (1.3%),
car (0.8%), and house (0.7%). To illustrate the spatial
granularity of GSV features, road and tree (as indicators of
traffic and green space) are shown in Figure S3. The
distribution of roads matched well with the road network in
Blacksburg and had higher values along higher-order roads
(e.g., highways). The tree variable followed intuition and had
higher values where there were large tracts of tree canopy or
abundance of street trees. Tree cover was prone to systematic
bias due to the way GSV images are collected. For example,
large areas of tree cover exist in the NW corner of the study
area, but they were not captured because this area has few
roads and thus few GSV images. This bias is not the case for
traffic-related variables (e.g., roads, cars, sidewalks) that are
only located on the transportation network. Detailed
descriptive statistics of the extracted GSV features are listed
in Table S2.
3.2. Model Results. 3.2.1. Theory-Driven Models. Overall,

we found good model performance for the GSV-only empirical
models. As shown in Tables S3 and S4, the adjusted R2 (10-
fold CV R2) for the buffer-feature models using all variables
was 0.77 (0.42) and 0.77 (0.57) for BC and PN, respectively.
The decrease in R2 after 10-fold cross validation was large,
which can be explained by several factors. Stochastic effects
could be significant as GSV images were sampled with very
high spatial resolution and thus possibly reveal more landscape
heterogeneity. More importantly, the scene parsing algorithm
generates 150 features, which is likely unnecessary as many of
these features are irrelevant to air pollution. To reduce the
amount of spurious variables, we conducted theory-driven

feature selection and evaluated the change in model perform-
ance (Figure 2). As the selection criteria for including variables
became more stringent, we generally observed a slight decrease
in adjusted R2, but importantly, a larger increase in 10-fold CV
R2 which reduced the gap between the two metrics. For
example, the gap for the unconstrained BC (PN) models (i.e.,
using all variables) was 0.35 (0.20) as compared to 0.07 (0.07)
when using “Theory-driven: Air pollution-related variables.”
This finding indicates that the most stringent theory-driven
models reduced overfitting as well as improved model stability
and variable interpretability while maintaining satisfying model
fits. The adjusted R2 (10-fold CV R2) of the buffer-feature
models with only air pollution-related variables were 0.63
(0.57) and 0.73 (0.65) for BC and PN, respectively. As
expected, the model results show improved rationality in terms
of the selected variables for the theory-driven feature selection
as compared to the unconstrained models (Tables S3 and S4).
We observed a slight increase in RMSE as theory-driven
feature selection became stricter. For example, RMSE for the
BC models using all variables, only outdoor variables, and only
air pollution-related variables were 0.20, 0.22, and 0.26 μg/m3,
respectively. This trend could be explained by the reduced
overfitting for theory-driven models, which is consistent with
the finding that theory-driven models have lower adjusted R2

but higher 10-fold R2 compared to unconstrained models.
To investigate the correlation of street-level features within

the immediate vicinity of the mobile monitoring routes to
particulate concentrations, central-feature models were devel-
oped. As shown in Figure 2, the adjusted R2 (10-fold CV R2)
was 0.43 (0.16) for BC and 0.33 (0.13) for PN when using all
variables. Similar trends to the buffer-feature models among
different variable categories were also found for the central-
feature models (Figure 2). However, the decrease in model fit
before and after cross validation was more drastic for the
central-feature models, possibly owing to the fact that only a
limited number of images within 50 m of mobile monitoring
were used for generating central features. A sensitivity analysis
was further developed to explore the influence of radius size
used for defining central features. Figure S4 shows the
performance of central-feature models developed using the
air pollution-related variables at various spatial scales (i.e., from
250 to 1000 m). Both adjusted R2 and 10-fold CV R2 increased
when the central features were extracted from larger areas. For
example, when setting the central range to 250 m, the central-
feature models explained ∼50% of the variance. Adjusted R2

Figure 2. Comparison of model performance using theory-driven feature selection. Models developed with different categories of predictor
variables are shown by color. Solid columns represent model adjusted R2; hashed columns represent 10-fold cross-validation R2.
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(10-fold CV R2) increased to 0.51 (0.49) and 0.53 (0.48) for

the BC model and the PN model. Prediction of PN

concentrations was best using 250 m buffers and decreased

at larger distances; the BC models showed little variability

between 250 and 750 m. This finding suggests that these

pollutants were strongly affected by the immediate surrounding

environment at the magnitude of several hundred meters.

3.2.2. Data-Driven Models. Table S5 shows the number of
predictor variables offered to our models using different feature
selection methods. Although no prior knowledge of air
pollution was applied, the number of predictor variables
offered to the data-driven models among all scenarios (252−
659 variables) aligned well with that of theory-driven models
(279−513). Furthermore, we found a significant overlap of
variables chosen by the two feature selection methods. For

Figure 3.Model performance using integrated theory- and data-driven feature selection. Each box represents 15 scenarios for different categories of
predictor variables. Models developed with different categories of predictor variables are shown by color. Hollow boxes represent model adjusted
R2; hashed boxes represent 10-fold cross-validation R2.

Table 1. Summary of Model Performance among All Model Types

pollutants model type
feature selection

method predictor variables
number of selected

variables
adjusted

R2
10-fold CV

R2 RMSE

BC (μg/m3) buffer-feature models none all variables 20 0.77 0.42 0.20
theory-driven outdoor variables 19 0.72 0.61 0.22
theory-driven air pollution-related variables 10 0.63 0.57 0.26
data-driven all variables 11−27 0.64−0.76 0.35−0.60 0.20−0.26
integrated outdoor variables 11−21 0.64−0.72 0.50−0.60 0.22−0.25
integrated air pollution-related variables 9−12 0.57−0.64 0.50−0.57 0.25−0.28

central-feature models none all variables 9 0.43 0.16 0.32
theory-driven outdoor variables 10 0.42 0.20 0.32
theory-driven air pollution-related variables 8 0.40 0.18 0.33
data-driven all variables 5−13 0.37−0.44 0.07−0.34 0.32−0.34
integrated outdoor variables 5−10 0.37−0.42 0.16−0.34 0.32−0.34
integrated air pollution-related variables 5−8 0.37−0.40 0.20−0.34 0.33−0.34

previous LUR
models24

none census data only; no GSV
data

8 0.62 0.57 0.26a

PN (pt/cm3) buffer-feature models none all variables 15 0.77 0.57 821
theory-driven outdoor variables 12 0.74 0.65 916
theory-driven air pollution-related variables 17 0.73 0.65 954
data-driven all variables 7−22 0.69−0.80 0.63−0.70 807−1050
integrated outdoor variables 12−24 0.68−0.79 0.61−0.69 857−1005
integrated air pollution-related variables 11−17 0.65−0.73 0.61−0.66 941−1030

central-feature models none all variables 12 0.33 0.13 1379
theory-driven outdoor variables 8 0.32 0.16 1391
theory-driven air pollution-related variables 7 0.31 0.19 1408
data-driven all variables 5−9 0.28−0.33 0.16−0.26 1379−

1461
integrated outdoor variables 5−8 0.28−0.32 0.18−0.25 1391−

1461
integrated air pollution-related variables 5−7 0.28−0.31 0.19−0.26 1408−

1461
previous LUR
models24

none census data only; no GSV
data

16 0.78 0.70 906a

aRMSE for previous LUR models was calculated based on data from Hankey et al.24
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example, 67−100% of “Theory driven: Air pollution-related
variables” were also selected among the 15 data-driven
scenarios. This demonstrates that even without background
information on air quality, data-driven feature selection can
achieve similar results to the theory-driven selection approach.
Similar to the theory-driven models, the data-driven selection
also showed the ability to enhance model robustness. Adjusted
R2 (10-fold CV R2) of buffer-feature models through data-
driven selection was 0.64−0.76 (0.35−0.60) for BC and 0.69−
0.80 (0.63−0.70) for PN (Figure S5). Compared to the
unconstrained models, the data-driven models improved 10-
fold CV R2 significantly while maintaining high adjusted R2. In
addition, the 10-fold CV R2 was always the lowest in the least
restrictive scenario, suggesting high multicollinearity when
using too many variables. These trends were exacerbated in the
central-feature models (Figure S6). For example, the 10-fold
CV R2 of the BC central-feature model of the least and most
restrictive scenarios were 0.07 and 0.33, respectively. Assuming
the best model had the highest 10-fold CV R2 among scenarios,
adjusted R2 (10-fold CV R2) of the best BC and PN buffer-
feature models were 0.72 (0.60) and 0.80 (0.70), respectively.
RMSE of the best BC and PN buffer-feature models were 0.22
μg/m3 and 807 pt/cm3, respectively. Full model parameters are
listed in Table S6. Although the model fits were improved by
data-driven variable selection, a few irrelevant variables were
still selected in the models, leading to reduced model
interpretability.
3.2.3. Integrated Feature Selection Models. As expected,

similar trends of improved model robustness and interpret-
ability when using the theory- and data-driven feature selection
methods were also observed using the integrated method
(Figure 3). The best integrated models always outperformed or
matched the corresponding theory-driven models showing the
utility of using both theory- and data-driven feature selection.
We also found that the buffer-feature models generally had
better model fits for PN while the central-feature models
showed better performance for BC. This finding suggests that

the effect of the street-level environment on BC was greater
than on PN. This is reasonable since the dominant sources of
BC are primary emissions related to combustion processes,42

while particles can be either emitted directly or generated from
secondary sources (e.g., precursors of photochemical reac-
tions43,44).

3.3. Comparison among Models. Table 1 shows model
performance for all GSV-only models as well as the previously
published LUR models.24 In general, GSV-only models had a
comparable model performance to LUR models using
traditional GIS-derived variables. For buffer-feature models
with only air pollution-related variables (best for interpret-
ability), the 10-fold CV R2 after integrated feature selection
was as high as 0.57 for BC and 0.66 for PN. If pursuing the
best goodness-of-fit and neglecting the theoretical basis of
predictor variables, we can achieve better model fits. For
example, the best data-driven models showed higher adjusted
R2 (10-fold CV R2) and lower RMSE as compared to previous
LUR models using traditional predictors. Our models suggest
that features extracted from GSV images can be used to
successfully develop predictive models in a variety of ways
depending on the user’s purpose, e.g., either pursuing best
goodness-of-fit regardless of model interpretability or to be
consistent with theory as much as possible.
We chose a subset of buffer-feature models to estimate BC

and PN concentrations for the entire study area (∼63 000 GSV
images): (1) models based on all variables, (2) theory-driven
models based on air pollution-related variables, (3) the best
data-driven models, and (4) the best integrated theory- and
data-driven models based on air pollution-related variables.
Concentrations were mapped on a 100 m × 100 m grid in
Figure 4. Due to the limitation of GSV images mainly being
captured along roadways, we were only able to make
predictions for 39% of Blacksburg’s land area. Figure 4 also
includes scatterplots of predicted vs observed concentrations.
In general, all models showed good agreement between model
predictions and mobile monitoring data. The overall spatial

Figure 4. Estimated BC and PN concentrations using four types of GSV-only models. Only grid centroids with GSV images within 50 m are
displayed. The scatterplots in the lower-left corner show model predicted air pollutant concentrations vs mobile monitoring air pollutant
concentrations. The dashed red line is the best fit line; the dashed black line is the 1:1 line. Due to the highly right-skewed distributions of model
estimates (Figure S7), we adjusted the color bar scale to visualize the spatial patterns of the models. Specifically, for each air pollutant, we binned
the estimates among the four models and used the 95th percentile as the maximum for visualization.
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patterns of estimated concentrations were similar among
models, especially for areas where GSV images were more
densely distributed. A few inconsistencies were apparent, for
example, the SE corner of Blacksburg was estimated to have
extremely low concentrations by the unconstrained PN model
but was a hotspot using other models. Based on a review of
these models, we found that the low estimates resulted from
some portions of GSV images being misclassified into the class
“bed”a feature that is highly unlikely to appear frequently in
outdoor images. Given that this area is an intersection of
several major roads, it is expected to have elevated
concentrations in this area. This example illustrates the
importance of using feature selection to remove spurious
predictor variables prior to building empirical models. Similar
problems appeared in the NW corner of the map. In this case,
the inconsistent predictions for BC concentrations mainly
resulted from the sparsity of GSV images in that region along
with a few unusual GSV features. Considering both the
theoretical basis of input variables and model accuracy, we
suggest using models with integrated variable selection for
broader model applications.
Although the application of our models was limited by the

availability of GSV images, alternative models could be
constructed to mitigate this problem. For example, we
developed reduced buffer-feature models using only larger
buffer radii (full details are described in the SI), and the
models maintained good model performance (Table S7). For
example, adjusted R2 (10-fold CV R2) of the best models with
radii 500 m or greater were 0.60 (0.53) for BC and 0.62 (0.56)
for PN. Since 81% of the grid centroids for prediction had GSV
images within 250 m (94% when the radius was 500 m), we
applied the reduced buffer-feature models to a wider land area
of Blacksburg to generate air pollution estimates (Figure S8).
These models showed reasonably consistent spatial patterns to
the LUR models from our previous work.24 In general, the
hotspots identified by the LUR models with traditional GIS-
derived variables were mainly distributed along major roads.
While GSV-only models also revealed these hotspots, our
proposed models further identified other localized regions with
high BC or PN concentrations that the GIS-derived models
did not. For example, at the intersection of several major roads
in the SE corner of Blacksburg, both GSV-only models and the
previous LUR models estimated elevated PN concentrations in
this region, while only the GSV-only models identified it as a
BC hotspot as well. Future work may collect field observations
in these potential hotspots to evaluate our new modeling
approach.
3.4. Results of Spatial Autocorrelation Analysis and

Model Uncertainty. To compare among our models, we
assessed spatial autocorrelation of model residuals and model
uncertainty (full details are described in the SI). Briefly, our
model residuals demonstrate at least some spatial autocorre-
lation, partly due to the fine spatial resolution of the mobile
monitoring data and GSV images (Table S8 and Figure S9).
Compared with the previous LUR models using traditional
predictors, GSV-only models show slightly higher standard
error (Figures S10 and S11). A useful direction for future
research is to use more advanced modeling approaches to
account for spatial autocorrelation issues and reduce model
uncertainty.

4. LIMITATIONS AND IMPLICATIONS

The usefulness of GSV-only models depends on the availability
and quality of GSV images for any given region. In less
developed or rural regions, this approach may miss large tracts
of land where there is no road access and thus no GSV
imagery. In addition, GSV images are static and in many areas
are not updated at the same rate as urban development.
Although we prioritized sampling GSV images from the same
year of air quality monitoring, only 12% of GSV images
retrieved were photographed in 2016. The impact of this
temporal mismatch could be large or small depending on the
rate of change of the built environment. Future work could
apply our approach in urban areas where larger amounts of
GSV images are available and updated more frequently. Given
the continually growing repositories of public streetscape
imagery,33 this limitation is expected to be mitigated in the
future.
Introducing better temporal resolution is another important

goal for accurate exposure assessment.24,45,46 While finer
spatial resolution can be achieved using GSV imagery,
improving temporal resolution is a challenge in the short
run. Multiple studies have used satellite imagery to map air
pollution with high spatial-temporal resolution.47−49 A possible
solution is to use both GSV images and satellite imagery for
model development. By combining remote sensing imagery
(which can achieve daily updates) and ground-level imagery,
both model accuracy and spatiotemporal precision may be
leveraged as multiview aspects of the built environment could
be used.50,51 Another limitation is that the performance of the
image processing technique (in this case PSPNet) for feature
extraction also determines the performance of the image-based
air quality models. Our results show that feature selection can
successfully reduce the number of spurious variables, which
reduced issues caused by overcomplicated semantic segmenta-
tion or misclassification. Given the rapid development in
computer vision and deep learning,52,53 future work may also
explore improved algorithms to reduce misclassification during
scene parsing.
Our study suggests that GSV imagery alone, and thus likely

any other large street scene imagery data set with high
resolution and broad coverage, may provide sufficient
information to characterize air pollution patterns. Imagery
based data sources offer potentially three major advantages:
(1) finer spatial (i.e., street-level) resolution, (2) the ability to
apply consistent data collection and processing protocols
across large geographies and political boundaries, and (3)
flexibility in method of data reduction for model development
and application. The development of low-cost and portable
sensors in conjunction with increased efforts to explore mobile
monitoring provides an opportunity to characterize the spatial
variability of air pollution at the street level.54,55 Our proposed
modeling approach leverages the strengths of mobile
monitoring and GSV images in characterizing street-level
gradients of air pollution. Our model results also highlight the
impact of street-level factors (e.g., built environment, local
emission sources) on air quality, which suggests highly
localized interventions may yield reductions in exposure. As
low-cost air quality sensors and street scene images become
more ubiquitous, the combination of mobile monitoring and
automated street-level image analysis could become a scalable
framework that could be applied nearly anywhere in the world
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as a tool to track air pollution exposure and disparities at small
spatial scales.
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