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ABSTRACT 1 

Network Macroscopic Fundamental Diagrams (MFDs) have recently been shown to exist in real-2 

world urban traffic networks. The existence of an MFD facilitates the modeling of urban traffic 3 

network dynamics at a regional level, which can be used to identify and refine large-scale network-4 

wide control strategies. To be useful, MFD-based modeling frameworks require an estimate of the 5 

functional form of a network’s MFD. Analytical methods have been proposed to estimate a 6 

network’s MFD by abstracting the network as a single ring-road or corridor and modeling the 7 

flow-density relationship on that simplified element. However, these existing methods cannot 8 

account for the impact of turning traffic since only a single corridor is considered. This paper 9 

proposes a method to estimate a network’s MFD when vehicles are allowed to turn into or out of 10 

a corridor. A two-ring abstraction is first used to analyze how turning will impact vehicle travel in 11 

a more general network, and then the model is further approximated using a single ring-road or 12 

corridor. This approximation is useful as it facilitates the application of existing variational theory-13 

based methods (the stochastic method of cuts) to estimate the flow-density relationship on the 14 

corridor, while accounting for the stochastic nature of turning. Results of the approximation 15 

compared with a simulation that includes more realistic features that cannot be captured using 16 

variational theory—such as internal origins and destinations—suggest that this approximation 17 

works at estimating a network’s MFD when turning traffic is present.  18 

  19 
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INTRODUCTION 1 

Relationships between traditional traffic flow metrics averaged across large spatial regions have 2 

been explored for decades (1–3). These were largely descriptive until a recent study proposed an 3 

analytical model that could leverage the existence of well-defined relationships between average 4 

network flow (𝑞 ) and average network density (𝑘 )—known more commonly as a network 5 

Macroscopic Fundamental Diagram (MFD)—to describe network-wide traffic dynamics (4). This 6 

analytical model has served as the building block for various frameworks that have been used to 7 

develop large-scale network-wide or regional traffic control strategies. A non-exhaustive list of 8 

these strategies includes perimeter flow control or gating (5–11), congestion pricing (12–17), 9 

urban road space allocation (18, 19), regional vehicle routing (20, 21) and area-wide signal control 10 

plans (22, 23).   11 

These frameworks require knowledge of and are sensitive to the functional form of the 12 

MFD. This is not a trivial task as a tremendous amount of data is generally needed for MFD 13 

estimation, and there are issues when estimating an MFD empirically using traditional data 14 

sources. For example, MFDs derived from loop detector data generally overestimate densities due 15 

to standing queues at intersections (24). Recent studies have examined how data from GPS-16 

equipped probe vehicles could be fused with traditional detector data to obtain a more accurate 17 

estimate of a network’s MFD (25–28). Due to difficulty in data collection, only a handful of studies 18 

have accurately estimated an urban network’s MFD using empirical data (29–32).   19 

Another approach is to estimate a network’s MFD based on its geometric features and 20 

traffic control strategies, such as average block length, cycle time, green ratio, free flow speed and 21 

link capacity. The original effort in this area applies variational theory (33, 34) to estimate the 22 

upper bound of the flow-density relationship of vehicles traveling along a ring-road using the same 23 

network parameters (35). This method has also been applied within a simulation framework to 24 

examine the impact of stochastic topological and signal characteristics (36) or bus operations (37). 25 

Later, extensions to the variational theory method were proposed to tighten the upper bound and 26 

better estimate the network’s MFD (38). Later studies developed additional variational theory-27 

based analytical methods to estimate the MFD of a corridor when the distribution of some network 28 

properties (such as link lengths and green times) are known using the stochastic method of cuts 29 

(39) or for the case in which buses are present (40).  30 

Unfortunately, these analytical methods focus on the behavior of vehicles traveling on a 31 

single ring-road or corridor and do not capture the impact of vehicles that turn into or out of the 32 

corridor at intersections. The existence of turning maneuvers complicates the problem since 33 

vehicles now “appear” or “disappear” as they turn into or out of the ring-road or corridor. This 34 

violates vehicle conservation along the corridor, and therefore precludes the application of existing 35 

kinematic wave theory- or variational theory-based methods for network MFD estimation. A 36 

handful of studies have examined the influence of turning maneuvers by abstracting a network by 37 

two interconnected ring-roads and used this two-ring system to identify unstable behavior that 38 

arises when a network becomes congested (41–45). However, these studies fail to provide a 39 

method to estimate the functional form of a network’s MFD when this turning behavior is included, 40 
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which is needed to model network dynamics at a regional level or identify/refine traffic control 1 

strategies.  2 

In light of the above, this paper proposes an analytical method to estimate the functional 3 

form of a network’s MFD when turning vehicles are present. As will be shown here, vehicles that 4 

turn into and out of a corridor will change the sequence in which vehicles interact with traffic 5 

signals, specifically the signal offsets. Although the turning maneuvers can be modeled using a 6 

two-ring system, a single ring-road approximation is proposed that allows the use of existing 7 

variational theory-based MFD estimation methods such as the stochastic method of cuts for MFD 8 

estimation. Extensions to the stochastic method of cuts are also provided to address the unique 9 

impacts of turning traffic.  10 

The remainder of this paper is organized as follows. First, we show how turning vehicles 11 

can potentially impact a network’s MFD via microscopic simulations. Second, we describe how a 12 

network can be abstracted into a system of two ring-roads that incorporates the impact of turning. 13 

We then propose a single-ring approximation of a two-ring system that can be used to analytically 14 

estimate the MFD when turning is present. The methodology of estimating network MFDs with 15 

turning is then discussed in the next section, followed by simulation results validating the 16 

analytical model. Finally, some discussion and concluding remarks are provided.  17 

 18 

IMPACT OF VEHICLE TURNING ON THE NETWORK MFD 19 

In this section, grid network is simulated using a cellular automata model (CAM) to study the 20 

impact of turning vehicles on a network’s observed flow-density relationship. The remainder of 21 

this section describes the detailed logic of the simulation and the resulting flow-density 22 

relationships. 23 

 24 

Simulation description 25 

The network simulated here consists of one-way streets arranged into a simple 6 x 6 square grid 26 

pattern. Each street has one travel lane on which traffic is assumed to obey a triangular fundamental 27 

diagram with a common free flow speed (40 mile/hour), capacity (2000 vehicle/hour) and jam 28 

density (250 vehicle/mile). All intersections are assumed to be signalized and share common signal 29 

timing properties (e.g., cycle lengths, green times and offsets).  30 

Vehicles on the network were simulated using the cellular automata model (CAM) 31 

proposed by Daganzo (46), which is consistent with kinematic wave theory (47–49). In this 32 

framework, each street is broken up into homogeneous discrete cells of length 0.004 miles (equal 33 

to average vehicle spacing at jam density) that allow only a single vehicle to occupy any cell at 34 

any time period. Vehicle locations are updated at consistent intervals of 0.36 seconds. Average 35 

flow and density across the entire network are computed using the generalized definitions proposed 36 

by Edie (50) at discrete intervals of 6 minutes.  37 
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The simulation starts with vehicles uniformly distributed across so that the average density 1 

on each link is approximately the same. To maintain a constant density throughout the simulation, 2 

periodic boundary conditions are maintained in which vehicles exiting the network at the 3 

downstream-most point of a given street are reinserted at the upstream-most point of that street. 4 

Vehicles travel through the network and turn randomly with some fixed probability 𝑝 at each 5 

intersection. To simulate internal traffic, vehicles also have a probability of completing their trip 6 

and exiting the network at the midpoint of each block. The average probability of completing 7 

inside the network is pre-determined in the simulation (all results shown in this paper are for an 8 

average value of 10%, but the observations are consistent across different exiting probabilities). 9 

However, the probability of a vehicle exiting on a specific link in the network is proportional to 10 

that link’s density. This was done to represent more realistic network behavior in which busier 11 

areas attract more trips than less busy areas. Since a constant density is maintained inside the 12 

network, vehicles that complete their trip are inserted elsewhere in the network to represent a new 13 

trip origin.  14 

 15 

Simulation results 16 

FIGURE 1 provides the observed flow-density relationship for the grid network obtained from the 17 

simulations with different turning probabilities at the intersections. FIGURE 1a provides observed 18 

flow-density pairs for a network with relatively short blocks, while FIGURE 1b provides observed 19 

flow-density pairs for a network with relatively long blocks. Settings for the short block network 20 

are individual block lengths of 0.48 mile, cycle lengths of 72 seconds, equal green time of 36 21 

seconds provided to both competing directions, and signal offsets equal to zero. Settings for the 22 

long block network are individual block lengths of 0.96 mile, cycle lengths of 90 seconds, equal 23 

green time of 45 seconds provided to both competing directions and signal offsets equal to zero. 24 

 25 



Xu, Yu and Gayah  5 

a)   

Entire range of densities Uncongested regime 

b)   

Entire range of densities Uncongested regime 

 

FIGURE 1 (a) MFD of a short-block network for various values of turning ratio, (b)MFD of a long-block 1 
network for various values of turning ratio. 2 

 3 

In both cases, the observed flow-density relationships are very well-defined in the 4 

uncongested and capacity states, but become scattered in congestion. This phenomenon occurs due 5 

to the tendency toward inhomogeneous vehicle distributions when the network is congested (42, 6 

51). In this congested regime, it is likely that the MFD is not reflective of the observed flow-density 7 

relationship but instead serves as an upper bound for the expected flow-density relationship.  8 

Therefore, we focus here on the more well-defined uncongested and capacity regimes of 9 

the observed flow-density relationship, which is more indicative of its MFD. Notice that the 10 

presence of turning does not impact the network’s capacity: in all cases, the same capacity of 1000 11 

vehicles/hour is maintained. However, observed flows in the free flow branch when turning is 12 

present (𝑝 > 0) differ from those when there is no turning (𝑝 = 0) and does so in different ways. 13 

For the settings used here, observed flows (and thus average speeds) increase with 𝑝 when blocks 14 

are short; however, observed flows (and thus average speeds) decrease with 𝑝 when blocks are 15 

long. Additionally, the lowest density for which the network reaches capacity changes when 16 

turning is present and again does so in different ways depending on if blocks are short or long. 17 
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Thus, we see that the presence and amount of turning impact the functional form of the MFD. 1 

Possible explanations for this behavior are explored in the following section, which uses a two 2 

ring-road network abstraction to study this behavior. 3 

 4 

ABSTRACTING A GRID NETWORK TO MODEL TURNING TRAFFIC 5 

In this section, we propose a simple two ring-road network model that provides a possible 6 

explanation for simulation results observed in the previous section and then use this explanation 7 

to obtain a method for analytically approximating a network’s MFD when turning is present. For 8 

simplicity, this discussion will focus on the behavior of homogeneous networks in which: 1) all 9 

links share the same properties—i.e., blocks are of the same length so the grid is square; 2) the 10 

fundamental diagram relating traffic flow, and vehicular density is the same on each link; and, 3) 11 

signal offsets between adjacent intersections are zero. However, these assumptions are made for 12 

illustrative purposes and the logic can be extended to more general situations.  13 

 14 

Single and two ring abstractions of a grid network 15 

Existing analytical methods to estimate a network’s MFD abstract a traffic network into a single 16 

ring-road on which vehicles can travel continuously and estimate an upper-bound for the flow-17 

density relationship on that ring-road. To illustrate this abstracting, consider the left-hand side of 18 

FIGURE 2a, which shows a grid network made up of one-way streets with alternating directions. 19 

Under the conditions described above, the behavior of this simple grid network can be represented 20 

by a ring-road created by bending one of the links as shown on the right-hand side of FIGURE 2a. 21 

However, this simple, single-ring abstraction assumes that the traffic profile on each link in the 22 

grid network is the same and cannot accommodate vehicles turning into and out of the ring-road. 23 

For this reason, it does not accommodate turning maneuvers in the network.  24 

Vehicles turning at intersections of the grid network described above will change from one 25 

perpendicular direction (for example and without loss of generality, north-south) to another (e.g., 26 

east-west). Thus, in order to capture the impacts of turning traffic, the behavior of vehicles on 27 

north-south and east-west streets need to be considered separately. If we assume now that turns 28 

are perfectly correlated at each intersection (i.e., when a vehicle turns from a link traveling one 29 

perpendicular direction to another at an intersection, this same maneuver occurs at all other 30 

intersections simultaneously), then this grid network can be abstracted into a system of two ring-31 

roads that are connected by a traffic signal as in FIGUE 2b. This simple system mimics the 32 

behavior of the grid system but allows turning as vehicles are allowed to turn/switch between the 33 

rings at the point of tangency that reflects the intersection.  34 

Previous studies have used this simple two-ring network abstraction to unveil key features 35 

about urban transportation networks, including the presence of bifurcations in the MFD, network 36 

instability and the beneficial impact of adaptive driver routing and adaptive traffic signal control 37 

(41–43). However, the MFD of this two-ring system (or any corridor with turning traffic) is 38 
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difficult to estimate analytically since conservation is violated within each of the rings. 1 

Specifically, vehicles turning into or out of a link at the intersection will be “created” or 2 

“destroyed” at the intersection and these existing methods cannot explicitly account for this. One 3 

related study combined a kinematic wave model with a merge/diverge model to develop an 4 

analytical solution, but did not account for the presence of traffic signals (44). Another applied a 5 

link-queue model to study general features of the system with traffic signals but could not 6 

analytically estimate the network’s MFD (45).  7 

This paper proposes a way to approximate vehicle behavior in this two-ring system using 8 

a single ring-road that accurately portrays how vehicles would move through the two-ring network 9 

when turning is present. The benefit of this approximation is that existing analytical approaches, 10 

such as variational theory and the stochastic method of cuts, can then be applied to this 11 

approximately equivalent single ring network to estimate its MFD. The following section describes 12 

the details of this single-ring approximation.  13 

 14 
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(a) 

 

 
(b) 

 
(c) 

 

FIGURE 2. (a) Single ring-road abstraction of a grid network; (b) Two ring-road abstraction of a grid 1 
network; and, (c) Single-ring approximation of a grid network accounting for turning. 2 

 3 

Single-ring approximation of two-ring network 4 

The single ring approximation of the two-ring network works by noting that turning from one ring 5 

to another changes how a vehicle interacts with traffic signals. The left-hand side of FIGURE 3a 6 

shows a time-space diagram of the traffic signal patterns a vehicle encounters along one of the two 7 

rings, which represents travel on one of the two perpendicular directions in the grid network. The 8 

red bars show the time periods that the traffic signal is red for the direction of travel. Note that 9 
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these red periods also represent the time when the traffic signal is green for the conflicting 1 

direction. The dotted line represents the trajectory of the first vehicle discharged after the signal 2 

turns green. Notice that this vehicle only travels a single block before it arrives at the following 3 

intersection during its red phase and must stop.  4 

When a vehicle makes a turning maneuver and moves from one direction to the other, it 5 

will move from a link traveling in one direction to a link traveling in the other. This will then 6 

change the sequence in which the vehicle encounters (and interacts with) red signal phases at 7 

subsequent intersections. The left-hand side of FIGURE 3b represents the case where this vehicle 8 

turns at each intersection. After each turn is made, the red period that the vehicle encounters 9 

changes since the red period for one travel direction is equal to the green period for the other. This 10 

vehicle that turns at each intersection now travels five blocks before stopping. As a result, average 11 

travel speeds (and thus flow) increases because of the turns.  12 

Of course, the reverse may also be true. The right-hand side of FIGURE 3a and FIGURE 13 

3b represent the case in which this vehicle would have experience almost no delays at the 14 

intersections if it did not turn (FIGURE 3a), but now becomes periodically stopped by a red phase 15 

for a long time due to the turning maneuvers (FIGURE 3b). Under such circumstances, turning 16 

would cause travel speeds (and thus flow) to decrease.  17 

 18 

 19 
Short blocks Long blocks 

a)   

b)   

FIGURE 3. (a) Time-space diagram of an observer traveling on a single perpendicular direction on a grid 20 
network; (b) time-space diagram of an observer traveling on two perpendicular directions on a grid network. 21 

 22 

Thus, it appears that vehicular behavior when turning traffic is present can be approximated 23 

as travel along a single corridor by simply adjusting the signal timing patterns. This approximation 24 
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is graphically illustrated in FIGURE 2c. The single ring-road can be divided into unique alternative 1 

segments, each representing travel on one of the two ring-roads. These individual segments are 2 

separated by the intersections where a turning maneuver is performed. Signals on segments 3 

representing one set of perpendicular roads have a different offset compared to those on segments 4 

representing the other set of perpendicular roads. In general, the offsets in each segment would 5 

simply differ by half of the cycle length; for the assumptions made in this section, this represents 6 

an offset of zero for travel on one ring and one-half of the cycle length for travel on the other. 7 

Thus, the network with turning traffic can be modeled using a single ring-road by appropriately 8 

considering the lengths of each of these individual segments, as demonstrated in the next section.  9 

 10 

ANALYTICAL APPROXIMATION FOR MFD 11 

In this section, we propose an analytical method to estimate the network MFD when turning is 12 

present. Here, we assume that vehicles have a fixed probability 𝑝 of turning onto the perpendicular 13 

street when they pass through each intersection. Thus, any individual vehicle may travel a unique 14 

number of intersections before turning. In this scenario, the length of each segment on the single 15 

ring approximation (shown in FIGURE 1c) would be stochastic. One recently proposed method to 16 

overcome such a challenge is the stochastic method of cuts recently proposed in (39) to estimate 17 

the MFD of a single corridor traffic network when network features vary randomly. Unfortunately, 18 

this study only provides analytical formulas to estimate the MFD when red time, green time and 19 

block length are drawn randomly from a known distribution.  However, incorporating the impacts 20 

of turning traffic requires that signal offsets vary when moving from one segment of the corridor 21 

to another and these changes are not random within each segment: they only change when a vehicle 22 

performs a turning maneuver and would stay changed until another turning maneuver is performed. 23 

Thus, in this paper, we expand the stochastic method of cuts to accurately account for this situation.  24 

The stochastic method of cuts (39) relies on estimating the travel time (𝑌) of and number 25 

of vehicles passing (𝑋) a set of observers  as they travel through a corridor between departures at 26 

the start of a green signal period. Three types of observer travel strategies (𝑠) are considered: 27 

• 𝑠0: observer stays at the same intersection 28 

• 𝑠1: observer travels at speed 𝑣𝑓, stops at any red phase, and stays at that intersection until 29 

the beginning of the red.  30 

• 𝑠2: observer travels at speed 𝑣𝑓 but stops at every intersection.  31 

Note that we only describe the movement of observers traveling in the forward direction 32 

since the portion of the MFD obtained using backward-moving observers can be found similarly, 33 

as described in  (39). The flow-density relationship provided by any strategy 𝑠, 𝑞𝑆(𝑘), is normal 34 

with mean 𝜇𝑠 and variance 𝜎𝑠
2/𝑡: 35 

𝜇𝑠 =
𝜇𝑋

𝜇𝑌
 (1) 36 
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𝜎𝑠
2 =

𝑉𝑎𝑟[𝑋−𝜇𝑠𝑌]

𝜇𝑌
 (2) 1 

where:  2 

𝑉𝑎𝑟[𝑋 − 𝜇𝑠𝑌] = 𝜎𝑋
2 + 𝜇𝑠

2𝜎𝑌
2 − 2𝜇𝑠𝑐𝑜𝑟(𝑋, 𝑌). 𝜇𝑋𝜇𝑌  (3) 3 

𝑋 = 𝐿 × 𝑘 + 𝑄 × 𝐺  (4) 4 

𝑌 =
𝐿

𝑣𝑓
+ 𝐺 + 𝑅  (5) 5 

and 𝐿 is the total length traveled in one period between starting at green initiations, 𝑘 is the density 6 

at which the flow will be estimated, 𝑄 is the roadway capacity, 𝐺 is the time an observed is stopped 7 

during the green signal indication, and 𝑅 is the time an observer is stopped during the red signal 8 

indication.  9 

This information can be used to obtain the CDF of 𝑞𝑆(𝑘) for each strategy 𝑠, 𝐹𝑠,𝑘(𝑞). From 10 

this, the CDF of the overall flow-density relationship, 𝐹𝑞(𝑘)(𝑞), is provided from the CDF of the 11 

minimum of these strategies:  12 

𝐹𝑞(𝑘)(𝑞) = 1 − ∏ (1 − 𝐹𝑠,𝑘(𝑞)) (6)  13 

This CFD can be used to obtain various percentiles of the MFD. The remainder of this 14 

section provides details on how to estimate the parameters 𝜇𝑋, 𝜇𝑌, 𝜎𝑋
2, 𝜎𝑌

2 and 𝑐𝑜𝑟(𝑋, 𝑌) needed 15 

to obtain the MFD under each observer strategy. The remainder of this section describes how to 16 

compute these terms for each of the three strategies when applying the single-ring approximation 17 

for the two-ring system with turning.  18 

 19 

Strategy 𝑠0 20 

Under Strategy 𝑠0, an observer will always stay at the same intersection. Since the green time here 21 

is deterministically set to one-half of the cycle length at all intersections, the derivation of the 22 

parameters is relatively straightforward. For example, 𝐿  is always 0 and the observer always 23 

spends half of the cycle length stopped during the green and red signal indications; i.e., 𝐺 = 𝑅 =24 

𝐶/2 . Thus, we find that: 25 

𝜇𝑋_𝑠0 = 0 × 𝑘 + 𝑄 ×
𝐶

2
=

𝑄𝐶

2
   (7) 26 

𝜎𝑋_𝑠0
2 = 0 (8) 27 

 𝜇𝑌_𝑠0 =
0

𝑣𝑓
+
𝐶

2
+
𝐶

2
= 𝐶 (9) 28 
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𝜎𝑌𝑠0
2 = 0 (10) 1 

Note that 𝑐𝑜𝑟(𝑋, 𝑌) is not needed since 𝜎𝑋_𝑠0
2 = 𝜎𝑌𝑠0

2 = 0. 2 

 3 

Strategy 𝑠1 4 

Under Strategy s1 , the observer never stops during a signal’s green indication; thus, 𝐺 = 0 . 5 

Further, since block lengths are assumed to be constant, the number of vehicles passing an observer 6 

can be written as a function of the average block length (𝑙) and the number of blocks an observer 7 

travels (𝑛):  8 

𝑋 =  𝑛 × 𝑙 × 𝑘 + 𝑄 × 0 = 𝑛𝑙𝑘 (11) 9 

From this: 10 

𝜇𝑋_𝑠1 = 𝜇𝑛𝑙 𝑘  (12) 11 

𝜎𝑋_𝑠1
2 = 𝜎𝑛

2. (𝑙. 𝑘)2 (13) 12 

We now propose a method to determine 𝜇𝑛 and 𝜎𝑛
2. This method starts by identifying the 13 

set of possible times that an observer may depart from an intersection during its green period or 14 

arrive to an intersection during its red period, 𝑀. This set is finite for cases in which the fraction 15 

of a cycle length it takes an observer to travel between two intersections, 𝐿/(𝑣𝑓 . 𝐶), and the ratio 16 

of offset to cycle length, 𝑂/𝐶 , are rational numbers. We can define each of these unique times 17 

𝑚 ∈ 𝑀 by amount of time deviation from the beginning of the most recent green initiation at that 18 

signal, expressed as a fraction of a cycle length. Denote this 𝑡𝑚 and note that 𝑡𝑚 ∈ [0,1). The left 19 

side of FIGURE 3 provides examples for the case in which 𝐿/(𝑣𝑓 . 𝐶) = 0.6 and O = 0. In Figure 20 

3a, the vehicle/observer leaves the signal at the beginning of the green signal, so 𝑡 = 0.0 at the 21 

first intersection. Since it takes the observer 0.6 cycle lengths to travel a block, the 𝑡  for 22 

intersection two is 0.6. However, since the observer stops at this intersection, the process repeats 23 

itself and 𝑡 = 0.6  at all subsequent intersections. In Figure 3b, again 𝑡 = 0.0  at the first 24 

intersection. However, the observer takes 0.6 cycle lengths to reach the next intersection whereas 25 

the red period at this intersection lasts for the 0.5 cycle lengths of this travel. Thus, 𝑡 = 0.6 −26 

0.5 = 0.1 at the second intersection. At the third intersection, 𝑡 = 0.2 since it takes the observer 27 

0.6 cycle lengths to travel the length of the block whereas the red period at this intersection lasts 28 

for the 0.5 cycle lengths of this travel.  29 

We now treat the movement of an observer through the corridor as a discrete Markovian 30 

Process in which the states are the set of times, 𝑀. If an observer arrives at an intersection during 31 

its green indication, we call this a transient state since the observer can keep moving towards the 32 

next intersection. These transient states occur if 𝑡𝑚 < 0.5 at that intersection, where 0.5 is the 33 

fraction of the cycle that gets a green indication. If an observer arrives to the signal during its red 34 
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indication, we call this an absorbing state because it must stop and wait until it can discharge again 1 

at 0, repeating its process of travel. These absorbing states occur if 𝑡𝑚 ≥ 0.5. 2 

We now write a transition matrix to describe how an observer changes between states as it 3 

moves along the corridor. If an observer is currently at a transient state 𝑚, the observer will move 4 

to a state associated with time 𝑡𝑚 + 𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶 with probability 1 − 𝑝 and will move to the 5 

state associated with 𝑡𝑚 + 𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶 + 0.5 with probability 𝑝. The former represents an 6 

observer not turning and thus the offset of the downstream signal not changing, while the latter 7 

represents the observer making a turning maneuver and thus experiencing the signal with a 8 

modified offset. If state 𝑚 is an absorbing state, we assume that the observer stays in that state 𝑚. 9 

An example of this matrix for the case in which 𝐿/(𝑣𝑓 . 𝐶) = 0.6 and 𝑂 = 0 is provided in TABLE 10 

1. 11 

 12 
TABLE 1. Example of Markov Chain transition matrix for strategy 𝐬𝟏 13 

  Next 𝒕𝒎 value 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C
u

rr
e
n

t 
𝒕 𝒎

 v
a

lu
e 

𝟎. 𝟎 0 𝑝 0 0 0 0 1 − 𝑝 0 0 0 

𝟎. 𝟏 0 0 𝑝 0 0 0 0 1 − 𝑝 0 0 

𝟎. 𝟐 0 0 0 𝑝 0 0 0 0 1 − 𝑝 0 

𝟎. 𝟑 0 0 0 0 𝑝 0 0 0 0 1 − 𝑝 

𝟎. 𝟒 1 − 𝑝 0 0 0 0 𝑝 0 0 0 0 

𝟎. 𝟓 0 0 0 0 0 1 0 0 0 0 

𝟎. 𝟔 0 0 0 0 0 0 1 0 0 0 

𝟎. 𝟕 0 0 0 0 0 0 0 1 0 0 

𝟎. 𝟖 0 0 0 0 0 0 0 0 1 0 

𝟎. 𝟗 0 0 0 0 0 0 0 0 0 1 

 14 

 Transition matrices of this form can be re-written using their canonical form as follows: 15 

𝑃 = [
𝐼 𝑂
𝑅 𝑄

] (14) 16 

where 𝐼  is the identity matrix, 𝑂 is a submatrix that consists entirely of 0’s, 𝑅 is the submatrix that 17 

deals with the transition from a transient state to an absorbing state and 𝑄  is a submatrix that deals 18 

with only transient states. The element in the 𝑖𝑡ℎ  row and the 𝑗𝑡ℎ  column of 𝑄𝑘  (𝑘 = 0,1,2…) 19 

provides the probability of moving between state 𝑖 to state 𝑗 after 𝑘 step (i.e., traveling 𝑘 blocks). 20 

It can also be considered as the expected number of times an observer ends up at state 𝑗 after 21 

traveling 𝑘 blocks when starting from state 𝑖. The elements of ∑ 𝑄𝑘∞
𝑘=0  provides the expected 22 

number of times an observer visits state 𝑗 before being absorbed if starting from state 𝑖. From (52), 23 

we find that: 24 

𝜏 = 𝐸({𝑛𝑖}  ) =  (𝐼 − 𝑄)
−1. 𝜁  (15) 25 
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where 𝜏 is column vector showing the mean number of steps before being absorbed if starting from 1 

each state, 𝜁  is a column vectors composed of all 1’s and 𝑛𝑖 is the number of states visiting (i.e., 2 

blocks traveled) before entering and absorbing state when starting from state 𝑖 and is used to obtain 3 

𝜇𝑛. Finally, from 𝜎𝑛
2 is determined using the following (52):  4 

𝑣𝑎𝑟({𝑛𝑖}) = (2((𝐼 − 𝑄)
−1) − 𝐼)𝜏 − 𝜏𝑠𝑞    (16) 5 

where 𝜏𝑠𝑞 is a vector obtained from squaring all the element in 𝜏.  6 

To determine 𝜇𝑌_𝑠1and 𝜎𝑌_𝑠1
2 , we first split up an observer’s travel time into two parts: the 7 

time spent moving, 𝑌𝑚, and the time spent stopped, 𝑌𝑠 ,. The time spent moving can be easily 8 

calculated as: 9 

𝑌𝑚 =
𝑛.𝑙

𝑣𝑓
  (17) 10 

where 𝑛 is the number of blocks traveled, 𝑙 is the length of one block, 𝑣 is the speed of the observer 11 

(either 𝑣𝑓  or 𝑤 ). Since we already have derived  𝜇𝑛  and 𝜎𝑛
2  in section 3.2.1, we can use the 12 

previous results to obtain: 13 

𝜇𝑌𝑚  =
𝜇𝑛.𝑙

𝑣𝑓
 (18) 14 

𝜎𝑌𝑚
2 =

𝜎𝑛
2.𝑙2

𝑣𝑓
2  (19) 15 

The time spent stopping is simply the remaining part of a cycle when an observer stops at the red. 16 

For any absorbing state 𝑚, the time spent stopped, 𝑌𝑠𝑚 , is equal to the 1 − 𝑡𝑚. Let 𝑝𝑚 represent 17 

the probability that an observer ends up in absorbing state 𝑚. Then: 18 

𝜇𝑌𝑠 = ∑ 𝑝𝑚(𝑌𝑠𝑚)𝑚   (20) 19 

𝜎𝑌𝑠
2 = ∑ 𝑝𝑚(𝑌𝑠𝑚 − 𝜇𝑌𝑠)𝑚

2
 (21) 20 

Finally: 21 

𝜇𝑌_𝑠1 = 𝜇𝑌𝑚 + 𝜇𝑌𝑠 (22) 22 

𝜎𝑌_𝑠1
2 = 𝜎𝑌𝑚

2 + 𝜎𝑌𝑠
2 + 2𝑐𝑜𝑟(𝑌𝑚, 𝑌𝑠)𝜎𝑌𝑚𝜎𝑌𝑠  (23) 23 

In general, the time spent moving and the time spent stopping should not necessarily be 24 

correlated. Therefore, we assume that 𝑐𝑜𝑟(𝑌𝑚, 𝑌𝑠) = 0  for simplicity of calculation. This 25 

assumption was tested using numerous simulations and found to be appropriate in most cases. 26 

Thus, 27 
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𝜎𝑌_𝑠1
2 = 𝜎𝑌𝑚

2 + 𝜎𝑌𝑠
2  (24) 1 

Finally, 𝑐𝑜𝑟(𝑋, 𝑌) is assumed to be 1 as numerical simulation experiments  indicate that 2 

this quantity is between 0.99 and 1 for all cases tested.  3 

 4 

Strategy 𝑠2 5 

Under Strategy 2, an observer will travel at speed 𝑣𝑓  between intersections but stop at every 6 

intersection and stay there until the beginning of the red. Thus, the distance travelled between each 7 

starts 𝐿 should be fixed to the block length 𝑙 and 𝑋 is determined only by the remaining portion of 8 

the green, 𝐺:  9 

𝑋𝑠2 =  𝑙. 𝑘 + 𝑄. 𝐺 (25) 10 

Since 𝐺 is the only variable and is linear with respect to 𝑋, the mean of 𝑋 can be calculated 11 

as: 12 

𝜇𝑋_𝑠2 = 𝑙. 𝑘 + 𝑄. 𝜇𝐺  (26) 13 

Since the offset experienced at the next intersection is 0 with probability 1 − 𝑝 (no turn) 14 

and 0.5 with probability 𝑝  (turn), 𝐺  follows a Bernoulli distribution. We now consider the 15 

following two cases with two conditions: 16 

• If 𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1) < 0.5, then an observer that does not turn (probability 1 − 𝑝) 17 

will experience 𝐺 = (0.5 − 𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1)) × 𝐶  whereas an observer than 18 

does turn (probability 𝑝) will experience 𝐺 = 0. 19 

• If 𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1) ≥ 0.5, then an observer that does not turn (probability 1 − 𝑝) 20 

will experience 𝐺 = 0 whereas an observer than does turn (probability 𝑝) will experience 21 

𝐺 = (1 −𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1)) × 𝐶. 22 

Therefore 𝑋 can be derived from a Bernoulli distribution as follows: 23 

𝜇𝐺 =24 

{
(1 − 𝑝) × ((0.5 − 𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1)) × 𝐶) + 𝑝 × 0 mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) < 0.5

(1 − 𝑝) × 0 + 𝑝 × ((1 −𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1)) × 𝐶) mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) ≥ 0.5
25 

 (27) 26 
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𝜎𝐺
2 =1 

{
 
 

 
 (1 − 𝑝) × ((0.5 − 𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1)) × 𝐶 − 𝜇𝐺)

2

+𝑝 × (0 − 𝜇𝐺)
2

mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) < 0.5

𝑝 × ((1 − 𝑚𝑜𝑑(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶, 1)) × 𝐶 − 𝜇𝐺)
2

+(1 − 𝑝) × (0 − 𝜇𝐺)
2

mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) ≥ 0.5

2 

 (28) 3 

Since 𝐺 is linear with respect to 𝑋, we have: 4 

𝜇𝑋_𝑠2 = 𝑙. 𝑘 + 𝑄. 𝜇𝐺  (29) 5 

𝜎𝑋_𝑠2
2 = 𝑄2. 𝜎𝐺

2 (30) 6 

Likewise, 𝑌 also follows a Bernoulli distribution with parameter equals to the turning ratio 𝑝. The 7 

derivation has been omitted for simplicity but follows the same logic as above. The result is: 8 

𝜇𝑌 =

{
 
 

 
 

(1 − 𝑝) × (𝐶 × 𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂)

+𝑝 × (𝐶 × (𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂 − 0.5))
mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) < 0.5

(1 − 𝑝) × (𝐶 × 𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂)

+𝑝 × (𝐶 × (𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂 + 0.5))
 mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) ≥ 0.5

(31) 9 

𝜎𝑌
2 =

{
 
 

 
 (1 − 𝑝)(𝐶 × 𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂 − 𝜇𝑌)

2

+𝑝(𝐶 × (𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂 − 0.5 − 𝜇𝑌)
2 mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) < 0.5

(1 − 𝑝)(𝐶 × 𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶) − 𝑂/𝐶) + 𝑂 − 𝜇𝑌)
2

+𝑝(𝐶 × (𝑐𝑒𝑖𝑙(𝐿/(𝑣𝑓 . 𝐶)) − 0.5) + 𝑂 + 0.5 − 𝜇𝑌)
2  mod (𝐿/(𝑣𝑓𝐶) − 𝑂/𝐶, 1) ≥ 0.5

10 

 (32) 11 

Finally, 𝑉𝑎𝑟[𝑋_𝑠2 − 𝜇𝑠2𝑌_𝑠2]  can be directly computed in a similar way so that the 12 

𝑐𝑜𝑟(𝑋, 𝑌) does not have to be calculated.  13 

 14 

VALIDATION OF ANALYTICAL MODEL 15 

In this section, the MFD derived from the analytical method proposed in the previous section is 16 

compared with the observed flow-density relationship from the CAM simulation of a grid network 17 

described above. FIGURE 4 illustrates the analytically obtained MFDs and the simulated flow-18 

density relationships for the short block case (FIGURE 4a) and long block case (FIGURE 4b) for 19 

various turning probabilities. In each figure, the 10th, 50th and 90th percentile values of the 20 

analytically derived MFD are compared to the observed flow-density relationship obtained from 21 

the CAM simulation. The results show a remarkable consistency between the analytically obtained 22 
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and simulated flow-density relationship in the uncongested and capacity regimes in which the 1 

network behavior is stable. In all cases shown and tested, the observed flow-density pairs fall 2 

between the 10th and 90th percent confidence interval values. The relative errors between the 50th
 3 

percentile flows obtained from the analytical approximation and the average simulated flow as a 4 

function of density for the MFDs provided in FIGURE 4 were also computed for the uncongested 5 

and capacity regimes. These errors were very small and generally fall within 5%, which indicates 6 

good consistency between the analytical model and simulation results. This is true even for cases 7 

in which offsets are non-zero. The analytical model also predicts the overall trend of increasing 8 

flow in the uncongested regime with turning probability for the short block case and decreasing 9 

flow in the uncongested regime with turning probability for the long block case.  10 

When it comes to the congested branch, the analytical results no longer match the observed 11 

relationships so closely. The observed flow-density relationship generally falls below the upper 12 

bound provided by the derived MFD due to inhomogeneous congestion distributions. It appears 13 

that the results of these inhomogeneous distributions—which are generally expected in large grid 14 

networks like the one simulated here (42)—are stronger than the impacts due to how turning 15 

vehicles interact with signals in congested networks. While the MFD provides an upper-bound for 16 

the flow-density relationship of the network, the actual network performance is usually below the 17 

MFD in congested states due to its inhomogeneity. However, as described in (39), observed flow-18 

density pairs on the congested branch can be obtained from those in uncongested branch by 19 

leveraging symmetry. Since the analytical estimate for the network’s MFD match the simulation 20 

results in the uncongested branch, it follows that the same would be true when the network operates 21 

in congestion provided that behavior is stable.  22 
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(b) 2 

FIGURE 4. Comparison of analytical MFDs and observed flow-density relationship for different values of 𝒑 3 
in (a) short-block scenario; and, (b) long block scenario. 4 
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DISCUSSION AND CONCLUDING REMARKS 1 

This paper provides an analytical method to estimate the impact of turning maneuvers on the 2 

functional form of a network’s Macroscopic Fundamental Diagram. This analytical method relies 3 

on abstracting the network as a single ring-road or corridor and applying the stochastic method of 4 

cuts to estimate its MFD. The single ring-road differs from previous works as it explicitly considers 5 

how vehicles would interact with traffic signals while traveling in a network and turning between 6 

two sets of perpendicular streets. New extensions to the stochastic method of cuts were proposed 7 

to accommodate this situation by modeling a vehicle’s movement through the network as a 8 

Markovian process. MFD estimates obtained from the proposed analytical methods are compared 9 

with the observed flow-density relationship obtained from a microscopic simulation of a grid 10 

network under more realistic conditions. The impact of trip entrances and exits cannot be captured 11 

using existing analytical variational theory methods since they violate vehicle conservation, which 12 

serves as a significant limitation to variational theory-based methods.  13 

The simulation results unveil that the presence of turning, even in small amounts, can 14 

impact the functional form of the observed flow-density of a network. Specifically, both average 15 

speeds (and observed flows for a given density) in the uncongested regime and the density 16 

associated with capacity may change when turning maneuvers are present, and both can do so in 17 

different ways depending on the network structure. The simulation results also confirm that the 18 

proposed method can provide accurate estimates of a networks’ observed flow-density 19 

relationships when turning is present for the uncongested and capacity regimes. In these two 20 

regions, vehicle distributions remain fairly homogeneous in the network and thus the observed 21 

relationship is close to the upper bound relationship provided by the MFD. However, the analytical 22 

approximation differs from the observed relationship when the network is congested due to the 23 

network’s tendency towards inhomogeneous congestion distributions and non-MFD producing 24 

states. Nevertheless, the proposed analytical method still provides an upper bound on this observed 25 

flow-density relationship as would be expected from a network’s MFD.  26 

The proposed methods require an estimate of the turning ratio at each intersection, in 27 

addition to a general knowledge of network properties (e.g., block lengths, signal timings and 28 

fundamental diagram on each link). The former can be reasonably estimated using floating car 29 

data by either tracking trajectories in a network to determine how many times a turn is made along 30 

a trip or examining trajectories (either using floating car data or with local observations) at 31 

individual locations. Such data are becoming more readily available to the research community 32 

(53). Note also that although it was assumed here that the latter properties were constant, the 33 

existing stochastic method of cuts can readily accommodate changes in these properties. Thus, 34 

combining the existing methods to apply the stochastic method of cuts with the extension to 35 

accommodate random offsets experienced by turning vehicles can provide MFDs for more general 36 

networks.  37 

Overall, this paper contributes to the growing research literature on relationships between 38 

traffic variables aggregated spatially across traffic networks and how these relationships are 39 

influenced by network features. Future work should continue to develop analytical methods to 40 

understand how network features will influence these relationships. For example, additional work 41 
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should be performed to extend the methods proposed here to accommodate cases in which turning 1 

occurs during dedicated signal periods, as opposed to occurring with through movements as 2 

assumed here. The movement of conflicting turns, which are often only allowed to move either 3 

before or after through vehicles or have to yield to opposing through vehicles, also needs to be 4 

examined. Additional work is also needed to understand how these relationships might change 5 

when dedicated turning lanes are present. 6 
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