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ABSTRACT
Extreme-scale cosmological simulations have been widely used by

today’s researchers and scientists on leadership supercomputers.

A new generation of error-bounded lossy compressors has been

used in workflows to reduce storage requirements and minimize

the impact of throughput limitations while saving large snapshots

of high-fidelity data for post-hoc analysis. In this paper, we pro-

pose to adaptively provide compression configurations to compute

partitions of cosmological simulations with newly designed post-

analysis aware rate-quality modeling. The contribution is fourfold:

(1) We propose a novel adaptive approach to select feasible er-

ror bounds for different partitions, showing the possibility and

efficiency of adaptively configuring lossy compression for each

partition individually. (2) We build models to estimate the overall

loss of post-analysis result due to lossy compression and to esti-

mate compression ratio, based on the property of each partition.

(3) We develop an efficient optimization guideline to determine

the best-fit configuration of error bounds combination in order to

maximize the compression ratio under acceptable post-analysis

quality loss. (4) Our approach introduces negligible overheads for

feature extraction and error-bound optimization for each partition,

enabling post-analysis-aware in situ lossy compression for cosmo-

logical simulations. Experiments show that our proposed models

are highly accurate and reliable. Our fine-grained adaptive configu-

ration approach improves the compression ratio of up to 73% on

the tested datasets with the same post-analysis distortion with only

1% performance overhead.
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1 INTRODUCTION
Large-scale scientific simulations running with leadership super-

computers are essential in many science and engineering domains

such as cosmology studies. Modern cosmological simulations are

used by researchers and scientists to investigate new fundamental

astrophysics ideas, develop and evaluate new cosmological probes,

assist large-scale cosmological surveys, and investigate system-

atic uncertainties [11, 18]. Historically such studies have required

large simulations that are highly computation and storage intensive,

which are run on leadership supercomputers. Today’s supercomput-

ers have evolved to heterogeneity with accelerator-based architec-

tures, in particular GPU-based high-performance computing (HPC)

systems, such as the Summit system [31] at Oak Ridge National

Laboratory. To adapt to this evolution, cosmological simulation

codes such as Nyx [1] (an adaptive mesh cosmological simulation

code) have been designed to take advantage of GPU-based HPC

systems and can be efficiently scaled to simulate trillions of par-

ticles on millions of cores [1]. These simulations often run on a

static number of ranks, usually for the same number of compute

partitions, and periodically huge amounts dump raw simulation

data to the storage for future post-hoc analysis.

With the increase in scale of such simulations, saving all the raw

data generated to disk becomes impractical due to: 1) limited storage

capacity, and 2) the I/O bandwidth required to save this data to disk

can create bottlenecks in the simulation [3, 37, 38] . For example,

one Nyx simulation with a resolution of 4096×4096×4096 cells can

generate up to 2.8 TB of data for a single snapshot; a total of 2.8 PB of

disk storage is needed assuming running the simulation 5 timeswith

200 snapshots dumped per simulation. One way to avoid this issue

is to limit the volume of data that needs to be written to disk. This

can be done by decimation, e.g. storing one snapshot at every other

timestep during the simulation. However, even with decimation, we

can still be left with a massive number of timesteps to store and the

amount of data to be stored for one timestep can still overwhelm

the storage capacity and I/O bandwidth of a supercomputer.

https://doi.org/10.1145/3431379.3460653
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Figure 1: Left: visualization of Baryon Density in Nyx simulation under resolution of 512×512×512. Right: two sample regions change through
timesteps. Areas with deeper color represent for areas of higher density. Visualization magnified to enhance low values colored in blue.

A better way to address this issue is to use data compression.

While lossless compression would have been ideal, it typically only

achieves a 2× compression ratio [30] for scientific data. On the

other hand, using the new generation of error-bounded lossy com-

pression techniques, such as SZ [8, 21, 33] and ZFP [22], we can

achieve much higher compression ratios with minimal distortion

of the data as demonstrated in many prior studies [3, 8, 15, 20–

22, 25, 27, 33, 34]. However, previous approaches of utilizing lossy

compression for scientific datasets have always applied the same

compression configuration to the entire dataset [20, 32]. Yet, if we

look at a visualization of baryon density in a Nyx simulation, shown

in Figure 1, we can see that not all partitions (regions) have the

same amount of information. Cosmologists are typically interested

in the dense regions as these would contain halos (clusters of par-

ticles) where galaxies would be formed. So, this means that the

sparse regions (top row of Figure 1) could be compressed more

aggressively than the dense ones (bottom row of Figure 1) and this

would not impact the analysis done by cosmologists.

Apart from fine-grained adaptive compression, we must also be

able to precisely control the compression error for domain-specific

post-hoc analysis. Research has shown that general-purpose data

distortion metrics, such as peak signal-to-noise ratio (PSNR), normal-
ized root-mean-square error, mean relative error (MRE), and mean
square error (MSE), on their own cannot satisfy the demand of

quality for cosmological simulation post-hoc analysis [15, 20]. For

example, PSNR does not tell us how the mass of a halo would be

impacted after compression. One approach to finding the optimal

compression configuration needed is to run a broad-spectrum anal-

ysis (try many different compression configurations and analyze

the result of each) as is done by Foresight [15]. However, such an

approach is entirely empirical and requires a long processing time.

A smarter way would be to be able to characterize each region

based on a number of metrics (e.g. running an FFT analysis) which

would then be used to decide which compression configuration

parameters to be applied.

In this paper, we show that adaptively compressing different

regions of a simulation, based on the amount of information that

they contain, allows us to maximize the compression ratio while

not impacting the quality needed for post-hoc analysis. In order

to determine the compression parameters to use for each region,

we develop: (1) a theoretical error estimation model for post-hoc

analysis, including both power spectrum and halo finder for cos-

mological simulation; (2) an estimation model of compression ratio

for lossy compression; and (3) a region-wise optimization approach

for error-bound combination based on the proposed models. To

demonstrate the effectiveness of our approach, we compare the

power spectrum and halo generated from adaptive compression to

traditional static compression method and show that we get similar

post-hoc analysis while getting compression ratio improvement by

up to 73%. To the best of our knowledge, this paper is the first work

that systematically study the possibility and efficacy of dividing

scientific simulation data in compute partitions (i.e., regions) and

applying adaptive lossy compression configurations.

Regarding the overhead for in situ implementing our approach to

cosmological simulation, it only requires collecting several parame-

ters (such as mean value and number of cells weighted in a certain

value range) from every region for identifying their feature density

and compressibility. This introduces a very little overhead of only

1% compared to compression itself since we efficiently reduce the

information required for optimization. Moreover, since the data is

already partitioned among MPI ranks for cosmological simulation,

our approach can be perfectly integrated in situ to optimize com-

pression configuration individually for each partition. Our work

can also be adopted to other large-scale scientific simulations that

require compression but are facing the challenge to understand the

impacts of lossy compression on their domain-specific metrics. The

contributions of this work are summarized as follows:

• We propose a novel adaptive approach to select feasible error-

bound combinations for different partitions of cosmological

simulation data, and show the possibility and efficiency of adap-

tively configuring lossy compression for each partition, instead

of statically setting empirical error bound for whole data set in

the beginning of the simulation.

• We build theoretical models to efficiently estimate (1) the overall

loss of cosmological post-analysis result caused by lossy com-

pression and (2) the compression ratio, all based on the property

of each partition by collecting several representative parameters.



• We develop an efficient optimization guideline to determine the

best-fit configuration of error-bound combinations that max-

imizes compression efficiency under user-defined acceptable

post-hoc analysis quality distortion.

• Experiments demonstrate that our approach can minimize the

overhead for feature extraction and error-bound optimization

for each partition while providing in situ post-analysis-aware

lossy compression for cosmological simulation. Our approach

improves the compression ratio by up to 73% with only about 1%

performance overhead compared to the original compression.

The rest of this paper is organized as follows. In Section 2, we

discuss the background and motivation of our research. In Section 3,

we describe our proposed modeling for cosmological simulation

data post-analysis error impact and modeling for compression ratio,

as well as our optimization strategy for fine-grained lossy com-

pression. In Section 4, we present the evaluation results of our

proposed approach to Nyx cosmological simulation data and com-

pare it with previous approaches. In Section 5, we conclude our

work and discuss our future work.

2 BACKGROUND AND MOTIVATION
In this section, we present the background information about cos-

mology simulation and some widely used post-hoc analysis meth-

ods, as well as advanced lossy compression for scientific data.

2.1 Cosmological Simulation and Analysis
Nyx is an adaptive mesh, hydrodynamics code designed to model

astrophysical reacting flows on HPC systems [1, 28]. This code mod-

els dark matter as discrete particles moving under the influence of

gravity. The fluid in gas-dynamics is modeled using a finite-volume

methodology on an adaptive set of 3-D Eulerian grids/mesh. The

mesh structure is used to evolve both the fluid quantities and the

particles via a particle-mesh method. For parallelization, Nyx uses

MPI for the long-range force calculation and architecture-specific

programming language for the short-range force algorithms, such

as OpenMP and CUDA. Nyx data uses multiple 3-D arrays to rep-

resent field information in grid structure. According to prior stud-

ies [16, 28], it can run up to millions of cores in the leadership

supercomputers in the United States, such as Summit [31]. In this

paper, we use Nyx simulation data that contains 6 fields: Baryon

Density, Dark matter density, Temperature, Velocity x, y, and z.

Asmentioned earlier, traditional evaluationmetrics (such asMSE,

PSNR) cannot inform us on the data quality needed for post-hoc

analysis [20]. So, we compute cosmology-specific evaluation met-

rics, such as Power Spectrum and halo characteristics, to determine

the data quality needed for post-hoc analysis.

Power Spectrum. Matter distribution in the Universe has evolved

to form astrophysical structures on different physical scales, from

planets to larger structures, such as superclusters, and galaxy fil-

aments. The two-point correlation function 𝜉 (𝑟 ), which gives the

excess probability of finding a galaxy at a certain distance 𝑟 from

another galaxy, statistically describes the amount of the Universe

at each physical scale. The Fourier transform of 𝜉 (𝑟 ) is called the

matter power spectrum 𝑃 (𝑘), where 𝑘 is the comoving wavenum-

ber. Therefore, the matter power spectrum describes how much

structure exists at the different physical scales. Observational data

from ongoing sky surveys have measured the power spectrum of

matter density fluctuations across several scales. These sky surveys,

along with large-scale simulations, are used to investigate problems

such as determining cosmological parameters [9]. In general, we

compared the 𝑃 ′(𝑘) of decompressed data to the original 𝑃 (𝑘) and
target for acceptable distortion ratio within 1 ± 0.01 for all 𝑘 < 10.

Dark Matter Halos. Dark matter halos play an important role

in the formation and evolution of galaxies and consequently cos-

mological simulations. Halos are over-densities in the dark matter

distribution and can be identified using different algorithms; in

this instance, we use the Friends-of-Friends algorithm [7]. That is,

we connect each particle to all “friends” within a distance, with a

group of particles in one chain considered as one halo. Another

concept of halo, such as Most Connected Particle, is defined as

the particle within a halo with the most friends. Then, there is

the Most Bound Particle, which is defined as the particle within

a halo with the lowest potential. For the Nyx simulation, which

is an Eulerian simulation instead of Lagrangian simulation, the

Halo Finding algorithm uses density data to identify halos [11]. For

decompressed data, some of the information can be distorted from

the original. Information such as the density of one cell can affect

the halo number detected, particularly for smaller halos. We use

three matrices to reflex the Halo Finder quality of decompressed

data: (1) the position of halos; (2) the halo number detected; and (3)

the halo mass change of each halo. Furthermore, we preferred to

preserve that information for middle and large halos over for small

halos.

2.2 Lossy Compression for Scientific Data
Floating-point data compression has been studied for decades.

There are two main categories: lossless compression and lossy

compression. Lossless compressors such as FPZIP [23] and FPC [2]

can only provide limited compression ratios (typically up to 2:1

for most scientific data) due to the significant randomness of the

ending mantissa bits [30]. Lossy compression, on the other hand,

can compress data with little information loss in the reconstructed

data. Compared to lossless compression, lossy compression can pro-

vide a much higher compression ratio while still maintaining useful

information for scientific discoveries. Different lossy compressors

can provide different compression modes, such as error-bounded

mode and fixed-rate mode. Error-bounded mode requires users to

set an error bound, such as absolute error bound or point-wise

relative error bound. The compressor ensures the differences be-

tween the original data and the reconstructed data do not exceed

the user-set error bound. Fixed-rate mode means that users can set

a target bitrate, and the compressor guarantees the actual bitrate

of the compressed data to be lower than the user-set value.

In recent years, a new generation of lossy compressors for sci-

entific data have been proposed and developed, such as SZ [8, 21,

33, 35] and ZFP [22]. SZ and ZFP were first developed for CPU

architectures, and both started rolling out their GPU-based lossy

compression recently. Both SZ and ZFP teams have released the

CUDA implementation of their compression [6, 35]. Compared to



lossy compression on CPUs, GPU-based lossy compression can

provide much higher throughput for both compression and decom-

pression [20]. Unlike traditional lossy compressors such as JPEG

[36] which are designed for images (in integers), SZ and ZFP are

designed to compress floating-point data and can provide a strict

error-controlling scheme based on user’s requirements. In this work,

we chose to use SZ instead of ZFP because the GPU version of SZ—

cuSZ [35]—provides a higher compression ratio than ZFP and offers

the absolute error-bound mode that ZFP does not support (but nec-

essary for our error control). Specifically, SZ is a prediction-based

error-bounded lossy compressor for scientific data. SZ has three

main steps: (1) predict each data point’s value by its neighboring

data points in a multidimensional space with an adaptive predictor

(using either a Lorenzo predictor [19] or linear regression [21]); (2)

perform an error-controlled linear-scaling quantize the difference

between the real value and predicted value based on the user-set

error bound, convert all floating-point values to an array of integer

numbers; and (3) apply a customized Huffman coding and lossless

compression to achieve a higher ratio.

Today’s lossy compression techniques have been used in many

HPC scientific applications for saving storage space and reducing

the I/O cost of saving data [13, 29, 39]. In this paper we focus on

utilizing SZ lossy compression for cosmological simulation with

consideration of specified analysis error control. We will build a

model for SZ lossy compression error and provide a theoretical sup-

port for error propagation in post-hoc analysis. Note that our study

can be also applied to other lossy compressors with modifications

on compression error modeling (more will be detailed in Section 3).

3 DESIGN METHODOLOGY
In this section, we introduce the concept of optimizing compres-

sion configuration for different partitions in a given dataset and

the necessary theoretical analysis as well as models needed. We

describe in detail our theoretical analysis based on our hypothesis

and provide an experimental evaluation to support our models on

post-hoc analysis error impact and compression ratio. Lastly, we

propose an in situ approach for cosmological simulation with an

adaptive compression configuration for each data partition based

on our analysis and model.

3.1 Adaptive Compression Configuration
Our main goal is to provide a higher compression ratio while main-

taining the same post-hoc analysis quality or provide a higher

post-hoc analysis quality while maintaining the same compression

ratio. We do so by applying our optimized compression config-

uration individually to each partition of a dataset, compared to

traditionally one configuration for the entire dataset.

To achieve this, we need to determine the relationship among

compression configurations, post-hoc analysis quality, and compres-

sion ratio. Thus, we introduce two types of model: (1) error-impact

modeling for cosmological post-hoc analysis based on compres-

sion configurations of different partitions, and (2) compression

ratio modeling based on compression configurations of different

partitions. Based on these two models, we can then create an op-

timization strategy. As shown in Figure 2, we target to balance

between post-hoc analysis quality and compression ratio, when

Figure 2: Quality-ratio optimization by modeling error impact on
post-hoc analysis and compression ratio, based on error-bound com-
bination of all data partitions.

Figure 3: Error distribution of temperature data in one Nyx dataset
compressed by SZ lossy compressionwith error bound of 10 and 100
bins in histogram.

providing corresponding compression configuration for each parti-

tion. This allows us to apply different compression configurations

to different partitions whereby we can improve the compression

efficiency of the entire dataset by both exchanging feature preser-

vation (e.g., preserve more feature for dense information areas)

and balancing compressibility characteristic (e.g., significantly im-

prove compression ratio by sacrificing little analysis quality for low

compressibility areas). Note that we can also significantly reduce

the complexity of finding the optimized solution compared to the

error-and-trail baseline method when different partitions vary sig-

nificantly in terms of either information density or compressibility.

As shown in Figure 1, different partitions in Nyx data have com-

pletely different feature density and compressibility. Moreover, we

can observe that a given partition can vary dramatically through dif-

ferent snapshots. Partitions with lower features (e.g., early timestep

of sample partition upper in Figure 1) can be almost blank in compar-

ison to regular visualization. This means the previous compression

solution of compressing all dataset with the same compression

configuration is far from optimal in terms of the balance between

post-hoc analysis quality and compression ratio. Note that Nyx

data is naturally partitioned due to its simulation with multiple

MPI ranks, which provides a suitable condition to applying an indi-

vidual configuration to each data partition. Based on our proposed

modeling and optimization, we adaptively adjust the compression

configuration for each partition in every snapshot.

3.2 Modeling Error Impact on Cosmology
post-hoc Analysis

Power spectra and halo finder are two main post-hoc analysis

metrics for Nyx cosmology simulation. We model the error impact

in terms of both metrics. Note that our theoretical analysis in this

section can be adopted to other post-hoc analysis with little effort.

For example, our analysis for power spectra can be adopted to other

FFT-based analysis.

As discussed in Section 2, SZ lossy compression is a prediction-

based lossy compressor using quantization for strict error control.

When Lorenzo predictor is used, SZ provides predicted values with



an origin-prediction error in units of user-defined error bound.

Such quantization causes evenly distributed error in both ABSmode

(i.e., absolute error bound) and PW_REL mode (power relative error

bound). More discussion in Section 3.5. Figure 4 shows the error

distribution of a sample Nyx dataset on the temperature field
with the absolute error bound of 10.0. Note that for both CPU-

SZ (quantization is performed after Lorenzo prediction) and GPU-

SZ (quantization is performed before Lorenzo prediction), their

error distributions are the same as of uniform distribution. We

also note that for some extreme cases where a high error bound is

used, SZ lossy compression will introduce errors that are slightly

different from the uniform distribution. We will discuss how we

revise the analysis accordingly in the following sections. We use

the uniform distribution as well as our revised uniform distribution

to model SZ’s error. Based on our evaluation, this approximation is

sufficiently accurate for our optimization.

3.3 FFT-based Power Spectrum
As mentioned in Section 2, power spectrum analysis for Nyx cosmo-

logical simulation is based on the 3-D Fast Fourier Transform (FFT).

Thus, we mainly build our error-impact model for power spectrum

based on the FFT algorithm. We provide theoretical analysis on

error propagation from compressor introduced error in dataset to

the FFT result in terms of error distribution. We also provide an

experimental evaluation to support our model.

FFT algorithm, such as Cooley-Tukey FFT algorithm [4], utilize

recursive addition and multiplication of discrete Fourier transform

(DFT) matrix decomposed sparse matrix divisor to accelerate the

process compared to DFT [17]. Moreover, FFT provides exactly

the same result as DFT with lower time complexity (𝑂 (𝑁𝑙𝑜𝑔𝑁 )
compared to 𝑂 (𝑁 2)). Since we introduce error to the data from

lossy compression before post-hoc analysis, we can use the DFT

equation instead of the more complex recursive FFT workflow to

model the error. We first start with 1-D FFT error modeling, and

DFT is defined by:

𝑋 (𝑘) = 𝐷𝐹𝑇 [𝑥 (𝑛)] =
𝑁−1∑
𝑛=0

𝑥 (𝑛)𝑒−𝑖
2𝜋
𝑁
𝑛𝑘 𝑘 = 0, 1, ..., 𝑁 − 1, (1)

where 𝑥 (𝑛) is discrete input data, 𝑘 is input frequency, and 𝑁 is the

number of elements. And it can be further simplified as:

𝑋 (𝑘) =
𝑁−1∑
𝑛=0

𝑥 (𝑛)𝑊 𝑛𝑘
𝑁 where𝑊 = 𝑒−𝑖

2𝜋
𝑁 . (2)

As of the error distribution from SZ lossy compression, as men-

tioned in Section 3.1, is modeled by uniform distribution as follows:

eb ∼ 𝑈 [−𝑒𝑏, 𝑒𝑏]

where 𝑓 (𝑥) =
{

1

2𝑒𝑏
, −𝑒𝑏 ≤ 𝑥 ≤ 𝑒𝑏,

0, otherwise,

(3)

where 𝑒𝑏 is the user-defined error bound, eb is the error distribu-
tion, 𝑓 (𝑥) is probability density function. We consider this error as

injected error to dataset and thus we can have the error model of

DFT result as:

𝑋 (𝑘)′ =
𝑁−1∑
𝑛=0

𝑥 (𝑛)′𝑊 𝑛𝑘
𝑁 =

𝑁−1∑
𝑛=0

(𝑥 (𝑛) + eb)𝑊 𝑛𝑘
𝑁

= 𝑋 (𝑘) +
𝑁−1∑
𝑛=0

eb𝑊 𝑛𝑘
𝑁 . (4)

Note here eb is not a value but a distribution function. We can get

the error distribution of DFT as:

E𝐷𝐹𝑇 ∼
𝑁−1∑
𝑛=0

eb𝑊 𝑛𝑘
𝑁 (5)

In our use case, 𝑁 is a relatively large number (no smaller than

512 × 512 × 512 in our experiments), we can use Central Limit

Theorem and know the above distribution should form into normal

distribution. Now we need to find corresponding 𝜇 and 𝜎 to define

our normal error distribution. For real axis of DFT result, we can

simplify Equation 5 to:

E𝑅𝑒𝐷𝐹𝑇 ∼
𝑁−1∑
𝑛=0

eb × sin

(
2𝜋𝑛𝑘

𝑁

)
. (6)

Then, we can get the average individual variance 𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 by:

𝜎
individual

=

𝑁−1∑
0

1

𝑁

√√√∫ 𝑒𝑏

−𝑒𝑏

(
𝑥 sin

(
2𝜋𝑛𝑘
𝑁

)
− 0

)
2

d𝑥

2𝑒𝑏
=

√
1

6

𝑒𝑏. (7)

Note we transformed the equation with the fact that 𝑘 is a large

number. Since the distribution of eb is central symmetric, the indi-

vidual expected value 𝜇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 is zero. Also, for situations where

the error introduced by lossy compression is not evenly distributed,

we can still provide corresponding 𝑏𝑎𝑟𝜎
individual

accordingly. Based

on Central Limit Theorem, we can get the variance 𝜎 and expected

value 𝜇 of DFT error distribution are:

𝜎 =

√
𝑁

6

𝑒𝑏, 𝜇 = 0, (8)

where 𝑁 is the number of elements in given 1-D data. Similarly,

we can further expand our equation to 2-D DFT results by central

limit theorem, since each row in the new dimension would further

perform another 1-D DFT on values with error distribution shown

in Equation 9. And so on, we can get 3-D DFT error distribution

from SZ lossy compression is:

𝜎3𝐷 =

√
𝑁 3

6

𝑒𝑏, 𝜇3𝐷 = 0, (9)

where 𝑁 is the data dimension. The same error distribution goes to

E𝐼𝑚
𝐷𝐹𝑇

with similar analysis. As of applying various error bound to

different partitions, since the element number in each partition is

also considered a large number (e.g., 64
3
when cutting 512

3
data

into 512 partitions), we can further derive our equation to:

𝜎3𝐷 =

𝑀−1∑
0

√
𝑁 3

6

𝑒𝑏𝑚

𝑀
, 𝜇3𝐷 = 0, (10)

where𝑀 is the number of partitions. We observe that (1) the abso-

lute error impact on FFT analysis highly relies on data size: cosmo-

logical simulations running with higher resolution are less error-

tolerant regarding FFT-based post-hoc analysis; and (2) the FFT



Figure 4: Comparison of real and estimated FFT error distribution
based on our model using Nyx’s temperature field.

Figure 5: Comparison of real and estimated variances of FFT error
based on our model using Nyx’s temperature field.

error distribution does not rely on high “feature” density areas, in

other words, every value in original data has the same importance

and will impact on all FFT results from error introduced by lossy

compression.

As shown in Figure 4, we evaluate the accuracy of our model on

the temperature field in Nyx dataset by compress the data with

various compression per-partition error bound in and estimate the

final impact on FFT result. The average error bound here is 1.0, and

the reason for such large error in values is because we present the

error and estimation before FFT normalization, which is easy to

convert by simply multiply the normalization factor. Note here x

axis is normalized with error bound. Our model provides a highly

reliable estimation to error impact on FFT by given compression

configurations for all partitions. We also evaluate the precision of

our model along with different range of error bound by applying

various error bounds to partitions and collect real variance and

compared to our estimation, Shown in Figure 5. Note we no longer

provide error-bounded estimation on FFT error impact, but error-

bounded probability. For example, we provide a possibility of 95.45%

that one FFT value is within (−2𝜎, 2𝜎).

3.4 Halo Finder Analysis
Halo finder is another post-hoc analysis for cosmological simulation

such as Nyx to find halos and identify their locations and masses.

Similar to our proposed model for power spectrum, we also propose

amodel for halo finder in order to estimate the error impact based on

given compressor error in dataset, in terms of both error distribution

of halo locations and halo masses.

Different from power spectrum analysis, halo finder only applied

to density data field (more specifically, “Baryon Density”) instead of

all 6 fields in Nyx dataset. The main idea behind the halo finder algo-

rithm is to find the areas with density higher than a given threshold

𝑡
boundary

and to build a tree structure across the candidates. Then,

(a) Original data (b) SZ compressed data

Figure 6: Candidate cells for halo finder with 64 × 64 × 64 partitions.
Areas with density higher than candidate threshold are marked in
black grid.

Figure 7: Comparison of halo mass distribution with different error
bounds using Nyx’s baryon density field.

those groups that have the highest maximum larger than 𝑡ℎ𝑎𝑙𝑜 are

identified as “halos”. Lastly, halo position (centroid of all grid points

belong to this halo) and halo mass (cell weighted sum of all grid

points belong to this halo) are recorded for each halo.

Figure 6 presents the halo candidates before and after lossy

(de)compression in a given 64 × 64 × 64 partition. We can observe

that after lossy compression, cell candidacy changes slightly on

edge areas, where some cells of existing halos are added or dropped.

For demonstration, we applied a relatively high error bound of 10.0

(normally we use error bound 𝑒𝑏 < 1.0), thus, more boundary cells

are false-detected, and the hollow background is illuminated with

reconstructed in-error-bound values visualized in blue.

After compression, we observe almost no number of found halos

changes, even with very high distortion from high error bound,

as is shown in Figure 7. Note that halo is further categorized into

many small halos and few large halos, only the former can be

false-detected under high error bound. In general, we intend to

concentrate and preserve information for large halos based on cos-

mological analysis [11]. In fact, we also observe almost no halo

position change under even extreme compression during our exper-

iment. This is reasonable since the only change we made to existing

halos is minor edge distortion from introduced error by bringing

edge cells up/down through the threshold. This is a very minor

change in weight, compared to the central density of halos.

Compared to almost non-changing position and count after lossy

compression, the mass change of halos is more suitable for error

control in Nyx simulation. As shown in Table 1, we analyze the

mass change characteristic based on a large halo. The number

of cells found for this halo increases along with the increment

of the introduced error to the data as expected. However, if we

target to mass difference per changed cell, we observe they fall into

similar values. More specifically, it is around 88.16, which is the set



Table 1: Mass difference per changed cell on a large halo.

Error Bound Cells Mass Mass Diff Diff per cell

original 6023 3.13E+6 - -
1E-2 6023 3.13E+6 0 -
1E-1 6011 3.13E+6 -9.8E+2 81.7
1E+0 6038 3.13E+6 1.21E+3 80.7
1E+1 6041 3.13E+6 1.66E+3 92.2

threshold for halo finder. It is because those edge cells are easier

to switch between in- and out-of-halos given lossy compression

introduced error, and they cause the mass value change of the entire

cell, which is significantly larger than value change merely by lossy

compression. This means most post-hoc analysis error (from lossy

compression) can be attributed to fault-detection of edge cells for

halo finder.

To further provide an estimation of mass changes given per-

partition error bound, we conduct fault cell detection estimation. To

start with, we divide our problem into finding fault mass detection

estimation of each partition and provide overall estimation with

their sum:

𝑀
fault

= 𝑡
boundary

𝑀−1∑
0

𝑒𝑚, (11)

where 𝑀
fault

is sum of individual halo absolute mass changes,

𝑡
boundary

is the threshold for halo finder,𝑀 is the number of parti-

tions, 𝑒𝑚 is the error in each partition. The reason is that for existing

halos cell changes are addable even for halos across partitions, and

for fault-detected halos, they tend to be small halos and only appear

under rarely used very high error bound.

Different from FFT, which is based post-hoc analysis present in

the previous section, halo finder is highly related to density as a

feature of each partition for post-hoc analysis error estimation. In

this case, we define the feature needs to preserve for halo finder

in the given data been edge cell count around the threshold. By

analyzing the value histogram of density data from Nyx simulation,

we find that although histogram is not evenly distributed among the

entire data range, the histogram of local values can be considered

as evenly distributed. For example, if we consider error bound 𝑒𝑏

as 0.1 and halo boundary threshold 𝑡
boundary

as 88.16, in which

case only values within (88.06, 88.26) can affect number of cells

detected for halos, and the data histogram within the small value

range is considered as evenly distributed. Thus, we can conclude

the possibility of fault detection of given cell as:

𝑝
fault

=
1

2

∫ 𝑡boundary+𝑒𝑏

𝑡boundary

𝑥 − 𝑡
boundary

𝑒𝑏
d𝑥 = 25%. (12)

Note here similar to what we discussed for FFT-based post-hoc

analysis, we can provide the corresponding 𝑝
fault

based on error

distribution from lossy compression other than uniform distribu-

tion. Then we can provide the number of fault detected cells in the

given partition by:

𝑒𝑚 = 𝑛𝑏𝑐/4, (13)

where𝑚 is number of partitions for Equation 11, 𝑛𝑏𝑐 is boundary

cells with a value range of (𝑡
boundary

− 𝑒𝑏, 𝑡
boundary

+ 𝑒𝑏) in the

given partition. Note here we discuss the number of cells estimated

been fault detected due to error introduced by lossy compression.

Fault detected cells can switch between both in- and out-of-halos

Figure 8: Number of candidate cells changed with different error
bounds. Red line is the estimated cell count difference. Blue dots
are the real cell count difference.

and result in expected total number of cells being the same as

the original, while error forming into normal distribution similar

to what we discussed in Section 3.3. However, since we focus on

cell changes of individual halos and most are small halos with

little edge cells, the number of cell difference can be simplified to

Equation 14. For large halos, depending on their size, the estimated

error distribution of cell count can be given by central limit theorem

forms into normal distribution:

𝜎 =

√
𝑛𝑏𝑐

3

, 𝜇 = 0. (14)

We evaluate our halo finder modeling with baryon density
data from 512 × 512 × 512 Nyx simulation. Figure 8 shows our esti-

mated cell difference count based on Equation 11 compared to the

result from applying multiple error bounds to different partitions.

Our modeling provides high accuracy compared to an experimental

result. Note here some of the larger differences between estimation

and experiment can be due to loss/increase of small halos as well

as cell difference count reduced for extremely large halos from

Equation 14.

3.5 Modeling Compression Ratio
In this section, we build a model to estimate the overall compression

ratio of the dataset based on given compression configurations of

different partitions. As discussed in Section 3.2, the error introduced

by SZ lossy compression can be modeled by a uniform distribu-

tion. However, in situations of much larger error bound, the error

distribution of SZ lossy compression forms into a combination of

uniform distribution and normal distribution. This is because under

high error bound settings, the Lorenzo predictor in SZ lossy com-

pressor predicts more data-point within the error bound against the

original, even without quantization. As mentioned in the previous

theoretical analysis for post-hoc analysis, we can easily adopt our

models based on revised 𝜎 of none-even distributed error distribu-

tion. Because of this distortion of error distribution, it is extremely

hard to provide a model for estimate compression ratio from error-

bound combination purely with theoretical analysis. Thus, in this

section, we mainly contribute to the compression-ratio modeling

based on empirical analysis and provide a universal equation for

all fields of data from all snapshots.

Figure 9 shows the bit-rate to error-bound curve by SZ lossy

compression. Here bit rate represents how many bits are needed to

represent a value on average, when original data is 32-bits single-

precision float-point number. Two areas can be distinguished for

each curve of given partition: both form into power function but



Figure 9: Bit rate with different error bounds using SZ lossy com-
pression. Different lines represent for different partitions. 16 parti-
tions are sampled for demonstration purpose.

(a) Relative𝐶1 Estimation (b) Compression Ratio Consistency

Figure 10: Accuracy on predicted𝐶1 (in Equation 15) and the consis-
tency of compression ratio using SZ lossy compression.

areas with bit rate higher than 2 features power values closer to

zero (flatter). This is because once the bit rate is lower than 2, a

high error bound causes Lorenzo predictor to predict values within

error bound (i.e. no quantization) and improves the Huffman coding

efficiency, thus encourages compressibility: curves converge faster

when bit rate across 2 on log scale. Based on our empirical studies

and previous work [20], we consider the case where bit rate is

always lower than 2, or compression ratio higher than 16× for Nyx

dataset (in fp32). Also, consider our optimization strategy is only

gently adjusting the error bound of different partitions, we assume

our adjustment is also located within the same curve area. For

partitions beyond this assumption, their impact is negligible due

to model consistency on edge situation and their low percentage.

Evaluation from Section 4 verified our assumption. Bit-rate to error-

bound equation can be given by:

𝐵 =

𝑀−1∑
0

𝑏𝑚

𝑀
, 𝑏𝑚 = 𝐶𝑚𝑒𝑏𝑐 , (15)

where 𝐵 is overall bit rate, 𝑀 is the number of partitions, 𝑏𝑚 is

the estimated bit rate of each partition, 𝐶𝑚 and 𝑐 are parameters

to define position and shape of this curve. Furthermore, we can

determine per-partition the basic bit-rate to error-bound power

function method based on trial and error. However, we avoid this

time-consuming process by performing a two-step procedure: (1)

we identify that different partitions across fields and snapshots

share the same power parameter 𝑐 , thus we can select 𝑐 and keep

using it; and (2) we use a representative parameter from a given

data partition to determine 𝐶𝑚 of its bit-rate to error-bound curve,

or relative compressibility of the partition. We find the entropy of

partition is one of the parameters that are highly related to 𝐶𝑚 ,

with higher entropy mapped to higher compressibility thus lower

curve in Figure 9. However, for reducing the overhead to compute

parameter, we instead choose mean value as our key parameter to

determine the relative compressibility of a partition. Figure 10(a)

shows that the estimated 𝐶𝑚 based on a logarithmic fitting and

partitions’ mean values are highly precise compared to the real𝐶𝑚 .

Lastly, unlike transform-based compressors, SZ provides consistent

bit-rate to error-bound curves, as shown in Figure 10(b). Therefore,

we have high confidence to use the estimated bit rate.

3.6 Proposed Optimization Strategy
Until now we have built the models for error impact of post-hoc

analyses as well as the model for compression ratio. Then, we opti-

mize the compression configuration of different partitions to feature

different error bound so that we can maximize the compression

ratio while maintaining the estimated post-hoc analysis quality or

maximizing the post-hoc analysis quality with the same estimated

compression ratio.

First, we consider power spectrum post-hoc analysis quality to

compression ratio optimization. Since FFT-based post-hoc analysis

does not have a correlation with individual local partition feature,

meaning every value shares the same importance. The optimization

strategy relies on the difference in compressibility among data

partitions. Based on Equation 10, we expect a similar error impact

on FFT-based analysis under the condition when the average error

bound of all partitions remains the same. In this case, to improve the

overall compression ratio while guaranteeing the same FFT-based

post-hoc analysis quality, we utilize Equation 15 from the previous

section by estimating parameters based on themean value of a given

partition. Additionally, we also extract the overall mean value of the

entire dataset by MPI_Allreduce after each partition computes

their own. We then optimize the per-partition error bound such

that their derivatives of bit-rate to error-bound curve are the same,

which are the minima for Equation 15, while keeping the average

error bound within the threshold request from Equation 10. These

minima can be given by:

𝑒𝑏𝑚 = 𝑒𝑏avg · exp
{
ln(𝐶𝑚/𝐶𝑎)

𝑐

}
, (16)

where 𝑒𝑏𝑚 is the optimized error bound of partition𝑚, 𝑒𝑏avg is the

average acceptable error bound based on Equation 10, 𝐶𝑎 is the

𝐶𝑚 parameter based on the average of the mean values from Equa-

tion 15, 𝐶𝑚 and 𝑐 are each partition’s parameters in Equation 15.

For baryon density, we can apply both power spectrum and

halo finder post-hoc analyses. In this case, instead of building an

optimization strategy of high complexity with three models in mind:

power spectrum, halo finder, and compression ratio, we only opti-

mize based on two of the three. Those are power-spectrum-to-ratio

and halo-finder-to-ratio, from which we choose one as acceptable

condition for both. For example, once we determine the optimized

compression configuration of all partitions for power spectrum, we

then evaluate if the condition is also acceptable for the halo finder.

If acceptable, this combination of compression configurations is set;

if unacceptable, we further apply the optimization of halo finder

and ratio and then set the combination result as a boundary condi-

tion. The optimization between halo finder and compression ratio

is similar to the above FFT-based post-hoc analysis optimization,



Table 2: Details of Nyx Dataset Used in Experiments

Dimension Size Field Value Range

512 × 512 × 512

1024 × 1024 × 1024

2048 × 2048 × 2048

6.6 GB

52 GB

352 GB

Baryon Density (0, 10
5)

Dark Matter Density (0, 10
4)

Temperature (102 , 10
7)

Velocity (−108 , 10
8)

but it has to change the boundary condition with Equation 11. In

this case, we need each partition’s mean value for bit-rate curve

estimation as well as its number of cells with a weighted value

range of (𝑡
boundary

− 𝑒𝑏, 𝑡
boundary

+ 𝑒𝑏) for halo finder estimation.

However, both parameters and optimizations can be calculated with

little effort compared to the computationally intensive post-hoc

analysis and cosmological simulation, hence introducing a very low

overhead to the system with higher compression efficiency.

For both power spectrum and halo finder post-hoc analysis op-

timizations, we also introduce thresholds for error-bound control.

This is because there may be a few partitions that may not fit our

models well and produce highly unreasonable error-bound options,

which can be harmful to the efficiency of our strategy. Thus, we

set the highest and lowest error-bound thresholds to 4𝑒𝑏 and 𝑒𝑏/4,
respectively, where 𝑒𝑏 is the average error bound over all partitions.

4 EXPERIMENTAL EVALUATION
We present the evaluation results of our framework for a fine-

grained adaptive lossy compression based on our rate-quality mod-

eling. We compare our results based on the de facto static configura-

tion that is normally applied to datasets at the start of simulations in

terms of both snapshots and multiple simulation scales. Finally, we

evaluate and discuss the performance of our solution for improved

compression quality.

4.1 Experimental Setup and Dataset
We conduct our evaluation with Foresight [15], an open-source

toolkit used to evaluate, analyze, and visualize lossy compressors

for extreme-scale cosmological simulations .Wemodified the toolkit

so that we can gather necessary parameters for our framework to

deploy adaptive lossy compression configuration to various data

partitions in Nyx cosmological simulation. The details of the Nyx

datasets used for evaluation are shown in Table 2. The 512×512×512
Nyx dataset is provided by the Nyx development team at Lawrence

Berkeley National Laboratory [26]. It is a single-level grid structure

without adaptive mesh refinement (AMR) and does not include

particle data. It contains six 3-D arrays, include baryon density (𝜌𝑏 ),
dark matter density (𝜌𝑑𝑚), temperature (𝑇 ), and velocity in three

directions (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧). The dataset is in the HDF5 file format [10].

Our experiment platforms include the Cori system [5] at NERSC

and the Frontera system [12] and its subsystem Longhorn system

[24] at TACC, of which each GPU node is equipped with 4 Nvidia

Tesla V100 GPUs [14] per node.

4.2 Quality-Ratio Evaluation
We first experimentally demonstrate the effectiveness of our pro-

posed solution. Figure 11 shows the visualization of error-bound of

all partitions by adaptive optimization to the tested dataset. data par-

titions have been assigned with various error-bound, instead of the

Figure 11: Fine-grained lossy compression control for different data
partitions. Left: visualization of temperature field in 512× 512× 512.
Right: error-bound configurations for all 512 data partitions based
on our proposed method.

Figure 12: Comparison of bit-quality ratios using traditional and
our methods on all partitions of 512 × 512 × 512 Nyx’s temperature
field with 512 data partition. Y-axis is normalized to average bit-
quality ratio after our optimization.

traditional method that compresses the entire dataset with a single

error-bound configuration. Moreover, the presented temperature
data only serve for power spectrum as post-hoc analysis, thus

quality-ratio of partitions are effectively traded based on their com-

pressibility since no features are expected to be preserved for power

spectrum based on our previous analysis in Section 3.

In Figure 12, we present the optimization efficiency of our opti-

mization solution, where the bit-quality ratio is the derivative of

the bit-quality curve. Traditionally, we compress every data par-

tition with the same error-bound which results in a disorganized

bit-quality ratio. This indicates the potential compression efficiency

improvement by exchanging compression ratio and post-hoc analy-

sis data quality between partitions for a higher overall compression

ratio and better overall data quality. By doing so, we can signifi-

cantly improve the bit-quality ratio difference of every partition,

at which point every partition shares a similar balance between

compression ratio and data quality as optimized.

When considering power spectrum as post-hoc analysis, which

is the case for all data fields other than baryon density in our

tested dataset, we generally require 𝑃 (𝑘) ratio of reconstructed

data to original data to keep within a ±1% for 𝑘 < 10, so that

the simulation results can be compared and verified by our cos-

mological observation capability. Figure 13 demonstrates a power

spectrum analysis with baryon density from a Nyx dataset. Note

that one data point from data compressed by the traditional method

has exceeded the acceptable error range. Our strategy, however,

successfully bounds the analysis error within the acceptable error

range without expensive trial-and-error. Note that in our experi-

ment we choose 2𝜎 from Equation 10 mapped to an acceptable error



Figure 13: Power spectrum analysis on Nyx’s baryon density field.
Black solid line is the power spectrum on the original data for ref-
erence. Orange dashed line is the upper limit of acceptable power
spectrum on the reconstructed data.

Figure 14: Histogram of effective cell count from all 512 data parti-
tions of 1024 × 1024 × 1024 baryon density data.

range. Based on our model, this can provide a 95.4% of confidence

for no escaping error. In practice, this decision can be changed by

potentially lower overall compression ratio for higher post-hoc

analysis error control.

For the baryon density field, not only does it use power spec-

trum as post-hoc analysis, halo finder is also used in this field as

an important workflow. From our proposed model in Section 3, we

extract the number of cells with a value range between (𝑡
boundary

−
𝑒𝑏, 𝑡

boundary
+ 𝑒𝑏) in each partition as features, since their values

need to be preserved for halo finder. Figure 14 shows the number of

such effective cells varies greatly for given partition, consider x-axis

is log scaled for information demonstration. A dispersed histogram

means a high potential of preserving features for some partitions

while sacrificing features from others to achieve high compres-

sion efficiency. Note that here we do not need to re-determine this

number every time we select a new error bound for the partition,

because in small ranges the value distribution can be considered as

evenly distributed as discussed in Section 3. We only need to extract

this number once with 𝑒𝑏 = 1.0 (a fairly high error-bound setting)

and get eb-cell function 𝑛𝑏𝑐 = 𝑛×𝑒𝑏, where 𝑛 is the number of effec-

tive cells found with 𝑒𝑏 = 1.0. We also note that such effective cells

also have a correlation to mean value, usually get more 𝑛𝑏𝑐 from

partitions with higher mean values. This illustrates a competition

between selecting error bound based on compressibility or based

on feature density. However, in our evaluation, when optimizing

based on the quality-ratio modeling for FFT-based analysis, halo

finder result can also be satisfied so that the RMSE of alternated

halo mass and original halo mass remains 1 ± 0.01. Unless a higher

accuracy is needed by halo finder, we use the optimization strategy

discussed in Section 3, which can provide 29.8% higher accuracy in

terms of halo mass error, compared to the traditional method.

Figure 15 shows the compression ratio improvement of our fine-

grained adaptive lossy compression solution over the traditional

Figure 15: Compression ratio comparison between our and tradi-
tionalmethods on all 6 Nyx fields. All the reconstructed data satisfy
the quality requirement of post-hoc analysis.

Figure 16: Compression ratio comparison between our and tradi-
tional methods on multiple redshifts’ data using baryon density
field. Compression ratio is normalized to our optimized ratio.

method on the tested dataset while satisfying the data quality re-

quirement for post-hoc analysis. Considering all 6 fields in the tested

Nyx dataset, our solution provides an improvement of compression

ratio by 56.0% on average. The main advantage of our proposed

technique is a more precise error-bound control for every partitions.

On the other hand, our solution also requires no trial-and-error

effort thanks to our specifically designed post-hoc analysis error

modeling, which can provide a near-optimal solution with little

optimization overhead imposed. The traditional method traverses

all possible error bounds for a given dataset and can only pro-

vide a sub-optimal solution to maintain the high post-hoc analysis

quality. For example, velocity data in Nyx simulation are highly

random [20, 32], thus simply deploying different error bounds to

different partitions will not provide a very high compression ef-

ficiency. The improvement on velocity data shown in Figure 15

mainly because of the highly accurate error-bound estimation. In

fact, in order to guarantee the unpredictable post-hoc analysis error

within acceptable for multiple snapshots, simulation users usually

choose a relatively lower error-bound for lossy compressor based

on empirical studies [20] compared to the optimized solution.

In Figure 16, we show the performance of our solution with

various redshifts evolved to reduce over time (i.e., from 54 to 42

in our tested data). The static implementation of our solution (in

yellow) is to optimize the error bounds for all partitions once at the

early stage of simulation when the redshift is lower and keep using

them for all following snapshots. We observe that the static imple-

mentation impacts the compression ratio to some extent, since the

simulation data evolve to a different state and require an adjustment

of error-bound combination for the highest compression efficiency.

Figure 17 illustrates the difference of error-bound configura-

tions optimized by the early-stage dataset and by the redshift-42

dataset. Most of the data partitions in the early stage with larger



Figure 17: Comparison of our optimized error bounds on the data
with larger redshift (left, early in simulation) and the data with
lower redshift (right, late in simulation).

Figure 18: Compression ratio improvement with different partition
sizes (compared to traditional method).

redshift are smooth and close to each other, resulting in similar

optimized error bounds for all partitions. Compared to the tradi-

tional method, our solution can provide a consistent improvement

on multiple snapshots. Note the improvement increases slightly

as the redshift decreases. This is because cosmological simulation

evolves to sparser formation, which increases the feature density or

compressibility difference between partitions and can thus benefits

from our proposed solution.

We also evaluate our solution with different partition sizes and

show the result in Figure 18. We can observe that the overall com-

pression ratio improvement increases as the partition size decreases,

from 27.1% to 56.0% for partition dimension from 512 to 64, re-

spectively. This is because larger partition size averages out the

quality-ratio difference between partitions, which leads to a lower

gain of compression efficiency from separately configuring error

bounds to partitions, but it relies on a more accurate estimation of

optimized error bounds. We suggest lowering the size of partition

for higher utilization of our solution. Lastly, we evaluate our so-

lution on the Nyx dataset with different simulation scales, shown

in Figure 19. It illustrates that our solution provides a consistent

improvement over the traditional method on different simulation

scales. More specifically, it provides average compression ratio im-

provement compared to the traditional method by 56.0% and 51.9%

for simulation scale of 512 and 1024, respectively.

4.3 Performance Evaluation and Discussion
Traditional methods find desirable error bounds for a given dataset

by traversing all possible candidates. With a smooth curve of ratio

to error-bound for SZ lossy compression, a statically optimized error

bound for the entire dataset can be always found by the trial-and-

error process if there is no time limit. However, this is challenging

for scientific datasets where quick-to-compute general distortion

metrics cannot represent data quality for post-hoc analysis pur-

poses [20], and each trail requires compression, decompression,

and post-hoc analysis. Thus, this method is not scalable and cannot

Figure 19: Compression efficiency improvement with different data
sizes. Simulation scale is one dimension size of snapshot.

be applied to extreme-scale simulations. Not to mention if pursuing

higher compression efficiency by varying configuration for indi-

vidual partition, the traditional trial-and-error method is simply

infeasible considering the combination possibility of different par-

titions (e.g., 512). In comparison, our solution only requires a very

low overhead for the error-bound combination optimization with

our theoretical models. As a result, our solution can be adapted

to all snapshots regardless of the simulation scale. For FFT-based

distortion metrics used for other scientific simulations, we have

provided solutions in Section 3. For other types of post-hoc analysis,

we propose to study the information necessary and build a specific

model based on it for feature preserving, similar to our modeling

methodology for halo finder.

In terms of the in situ overhead of our proposed solution, it only

requires the mean value of each partition and the overall mean

value of the dataset as parameters for all data fields. To compute

the mean value of each partition, it only takes about 1∼1.5% of

the compression time overhead using our tested CPUs, while it

takes almost no overhead on the tested GPUs. The overall mean

value can be gathered by MPI_Allreduce after each partition gen-

erates its own mean value, which is almost negligible compared to

compression throughput (e.g., 31.6 GB/s on a V100 GPU with cuSZ

[35]), not to mention both baryon density (𝜌𝑏 ) and dark matter

density (𝜌𝑑𝑚) that require no MPI_Allreduce operation due to

their fixed overall mean value set by the simulation. Moreover, we

also need the number of effective cells as an extra parameter for

baryon density. This process takes an extra time overhead of

up to 5% of compression time in our experiment. Overall, all the

overheads introduced by our optimization are negligible comparing

to the time of cosmological simulation or compression. Therefore,

our solution introduces very little overhead and provides a high

compression efficiency improvement.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose to adaptively configure lossy compression

in data partitions for cosmological simulation with newly designed

rate-quality models for post-hoc analysis. We first propose an accu-

rate model to estimate the post-analysis result considering lossy

compression error, as well as a compression-ratio model based on

theoretical analysis and experimental evaluation. We then further

develop an adaptive optimization solution based on our models to

dynamically determine the optimal compression parameters for

different partitions instead of static selection, maximizing compres-

sion efficiency while offering an error control to post-hoc analysis.



Our proposed fine-grained approach further improves the compres-

sion ratio by up to 73% on the tested dataset compared to existing

methods, making the compression ratio reach to 27.6∼82.8×, with
a very low time overhead of only 1%. Our future work is to fur-

ther apply our approach to other HPC applications and post-hoc

analysis metrics such as climate simulation with SSIM.
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