Adaptive Configuration of In Situ Lossy Compression for
Cosmology Simulations via Fine-Grained Rate-Quality Modeling

Sian Jin
Washington State University
Pullman, WA, USA
sian.jin@wsu.edu

Jiannan Tian
Washington State University
Pullman, WA, USA
jiannan.tian@wsu.edu

ABSTRACT

Extreme-scale cosmological simulations have been widely used by
today’s researchers and scientists on leadership supercomputers.
A new generation of error-bounded lossy compressors has been
used in workflows to reduce storage requirements and minimize
the impact of throughput limitations while saving large snapshots
of high-fidelity data for post-hoc analysis. In this paper, we pro-
pose to adaptively provide compression configurations to compute
partitions of cosmological simulations with newly designed post-
analysis aware rate-quality modeling. The contribution is fourfold:
(1) We propose a novel adaptive approach to select feasible er-
ror bounds for different partitions, showing the possibility and
efficiency of adaptively configuring lossy compression for each
partition individually. (2) We build models to estimate the overall
loss of post-analysis result due to lossy compression and to esti-
mate compression ratio, based on the property of each partition.
(3) We develop an efficient optimization guideline to determine
the best-fit configuration of error bounds combination in order to
maximize the compression ratio under acceptable post-analysis
quality loss. (4) Our approach introduces negligible overheads for
feature extraction and error-bound optimization for each partition,
enabling post-analysis-aware in situ lossy compression for cosmo-
logical simulations. Experiments show that our proposed models
are highly accurate and reliable. Our fine-grained adaptive configu-
ration approach improves the compression ratio of up to 73% on
the tested datasets with the same post-analysis distortion with only
1% performance overhead.
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1 INTRODUCTION

Large-scale scientific simulations running with leadership super-
computers are essential in many science and engineering domains
such as cosmology studies. Modern cosmological simulations are
used by researchers and scientists to investigate new fundamental
astrophysics ideas, develop and evaluate new cosmological probes,
assist large-scale cosmological surveys, and investigate system-
atic uncertainties [11, 18]. Historically such studies have required
large simulations that are highly computation and storage intensive,
which are run on leadership supercomputers. Today’s supercomput-
ers have evolved to heterogeneity with accelerator-based architec-
tures, in particular GPU-based high-performance computing (HPC)
systems, such as the Summit system [31] at Oak Ridge National
Laboratory. To adapt to this evolution, cosmological simulation
codes such as Nyx [1] (an adaptive mesh cosmological simulation
code) have been designed to take advantage of GPU-based HPC
systems and can be efficiently scaled to simulate trillions of par-
ticles on millions of cores [1]. These simulations often run on a
static number of ranks, usually for the same number of compute
partitions, and periodically huge amounts dump raw simulation
data to the storage for future post-hoc analysis.

With the increase in scale of such simulations, saving all the raw
data generated to disk becomes impractical due to: 1) limited storage
capacity, and 2) the I/O bandwidth required to save this data to disk
can create bottlenecks in the simulation [3, 37, 38] . For example,
one Nyx simulation with a resolution of 4096 x 4096 X 4096 cells can
generate up to 2.8 TB of data for a single snapshot; a total of 2.8 PB of
disk storage is needed assuming running the simulation 5 times with
200 snapshots dumped per simulation. One way to avoid this issue
is to limit the volume of data that needs to be written to disk. This
can be done by decimation, e.g. storing one snapshot at every other
timestep during the simulation. However, even with decimation, we
can still be left with a massive number of timesteps to store and the
amount of data to be stored for one timestep can still overwhelm
the storage capacity and I/O bandwidth of a supercomputer.


https://doi.org/10.1145/3431379.3460653
https://doi.org/10.1145/3431379.3460653

. .
<t <t <t
£ © © ©
f v ‘ |
: - _ J . | |
. N - =
«~ i
—
s} sy
) J y
B L1 3 3 Q 3 )
.~ 5 .
7 el Y [ - " ” . \ o "
< } e o ,.('. | a = | " BN SS—
. - as \
Timestep =

Figure 1: Left: visualization of Baryon Density in Nyx simulation under resolution of 512x512 x512. Right: two sample regions change through
timesteps. Areas with deeper color represent for areas of higher density. Visualization magnified to enhance low values colored in blue.

A better way to address this issue is to use data compression.
While lossless compression would have been ideal, it typically only
achieves a 2x compression ratio [30] for scientific data. On the
other hand, using the new generation of error-bounded lossy com-
pression techniques, such as SZ [8, 21, 33] and ZFP [22], we can
achieve much higher compression ratios with minimal distortion
of the data as demonstrated in many prior studies [3, 8, 15, 20—
22, 25, 27, 33, 34]. However, previous approaches of utilizing lossy
compression for scientific datasets have always applied the same
compression configuration to the entire dataset [20, 32]. Yet, if we
look at a visualization of baryon density in a Nyx simulation, shown
in Figure 1, we can see that not all partitions (regions) have the
same amount of information. Cosmologists are typically interested
in the dense regions as these would contain halos (clusters of par-
ticles) where galaxies would be formed. So, this means that the
sparse regions (top row of Figure 1) could be compressed more
aggressively than the dense ones (bottom row of Figure 1) and this
would not impact the analysis done by cosmologists.

Apart from fine-grained adaptive compression, we must also be
able to precisely control the compression error for domain-specific
post-hoc analysis. Research has shown that general-purpose data
distortion metrics, such as peak signal-to-noise ratio (PSNR), normal-
ized root-mean-square error, mean relative error (MRE), and mean
square error (MSE), on their own cannot satisfy the demand of
quality for cosmological simulation post-hoc analysis [15, 20]. For
example, PSNR does not tell us how the mass of a halo would be
impacted after compression. One approach to finding the optimal
compression configuration needed is to run a broad-spectrum anal-
ysis (try many different compression configurations and analyze
the result of each) as is done by Foresight [15]. However, such an
approach is entirely empirical and requires a long processing time.
A smarter way would be to be able to characterize each region
based on a number of metrics (e.g. running an FFT analysis) which
would then be used to decide which compression configuration
parameters to be applied.

In this paper, we show that adaptively compressing different
regions of a simulation, based on the amount of information that
they contain, allows us to maximize the compression ratio while
not impacting the quality needed for post-hoc analysis. In order

to determine the compression parameters to use for each region,
we develop: (1) a theoretical error estimation model for post-hoc
analysis, including both power spectrum and halo finder for cos-
mological simulation; (2) an estimation model of compression ratio
for lossy compression; and (3) a region-wise optimization approach
for error-bound combination based on the proposed models. To
demonstrate the effectiveness of our approach, we compare the
power spectrum and halo generated from adaptive compression to
traditional static compression method and show that we get similar
post-hoc analysis while getting compression ratio improvement by
up to 73%. To the best of our knowledge, this paper is the first work
that systematically study the possibility and efficacy of dividing
scientific simulation data in compute partitions (i.e., regions) and
applying adaptive lossy compression configurations.

Regarding the overhead for in situ implementing our approach to
cosmological simulation, it only requires collecting several parame-
ters (such as mean value and number of cells weighted in a certain
value range) from every region for identifying their feature density
and compressibility. This introduces a very little overhead of only
1% compared to compression itself since we efficiently reduce the
information required for optimization. Moreover, since the data is
already partitioned among MPI ranks for cosmological simulation,
our approach can be perfectly integrated in situ to optimize com-
pression configuration individually for each partition. Our work
can also be adopted to other large-scale scientific simulations that
require compression but are facing the challenge to understand the
impacts of lossy compression on their domain-specific metrics. The
contributions of this work are summarized as follows:

e We propose a novel adaptive approach to select feasible error-
bound combinations for different partitions of cosmological
simulation data, and show the possibility and efficiency of adap-
tively configuring lossy compression for each partition, instead
of statically setting empirical error bound for whole data set in
the beginning of the simulation.

o We build theoretical models to efficiently estimate (1) the overall
loss of cosmological post-analysis result caused by lossy com-
pression and (2) the compression ratio, all based on the property
of each partition by collecting several representative parameters.



o We develop an efficient optimization guideline to determine the
best-fit configuration of error-bound combinations that max-
imizes compression efficiency under user-defined acceptable
post-hoc analysis quality distortion.

o Experiments demonstrate that our approach can minimize the
overhead for feature extraction and error-bound optimization
for each partition while providing in situ post-analysis-aware
lossy compression for cosmological simulation. Our approach
improves the compression ratio by up to 73% with only about 1%
performance overhead compared to the original compression.

The rest of this paper is organized as follows. In Section 2, we
discuss the background and motivation of our research. In Section 3,
we describe our proposed modeling for cosmological simulation
data post-analysis error impact and modeling for compression ratio,
as well as our optimization strategy for fine-grained lossy com-
pression. In Section 4, we present the evaluation results of our
proposed approach to Nyx cosmological simulation data and com-
pare it with previous approaches. In Section 5, we conclude our
work and discuss our future work.

2 BACKGROUND AND MOTIVATION

In this section, we present the background information about cos-
mology simulation and some widely used post-hoc analysis meth-
ods, as well as advanced lossy compression for scientific data.

2.1 Cosmological Simulation and Analysis

Nyx is an adaptive mesh, hydrodynamics code designed to model
astrophysical reacting flows on HPC systems [1, 28]. This code mod-
els dark matter as discrete particles moving under the influence of
gravity. The fluid in gas-dynamics is modeled using a finite-volume
methodology on an adaptive set of 3-D Eulerian grids/mesh. The
mesh structure is used to evolve both the fluid quantities and the
particles via a particle-mesh method. For parallelization, Nyx uses
MPI for the long-range force calculation and architecture-specific
programming language for the short-range force algorithms, such
as OpenMP and CUDA. Nyx data uses multiple 3-D arrays to rep-
resent field information in grid structure. According to prior stud-
ies [16, 28], it can run up to millions of cores in the leadership
supercomputers in the United States, such as Summit [31]. In this
paper, we use Nyx simulation data that contains 6 fields: Baryon
Density, Dark matter density, Temperature, Velocity x, y, and z.

As mentioned earlier, traditional evaluation metrics (such as MSE,
PSNR) cannot inform us on the data quality needed for post-hoc
analysis [20]. So, we compute cosmology-specific evaluation met-
rics, such as Power Spectrum and halo characteristics, to determine
the data quality needed for post-hoc analysis.

Power Spectrum. Matter distribution in the Universe has evolved
to form astrophysical structures on different physical scales, from
planets to larger structures, such as superclusters, and galaxy fil-
aments. The two-point correlation function &(r), which gives the
excess probability of finding a galaxy at a certain distance r from
another galaxy, statistically describes the amount of the Universe
at each physical scale. The Fourier transform of £(r) is called the

matter power spectrum P(k), where k is the comoving wavenum-
ber. Therefore, the matter power spectrum describes how much
structure exists at the different physical scales. Observational data
from ongoing sky surveys have measured the power spectrum of
matter density fluctuations across several scales. These sky surveys,
along with large-scale simulations, are used to investigate problems
such as determining cosmological parameters [9]. In general, we
compared the P’ (k) of decompressed data to the original P(k) and
target for acceptable distortion ratio within 1 + 0.01 for all k < 10.

Dark Matter Halos. Dark matter halos play an important role
in the formation and evolution of galaxies and consequently cos-
mological simulations. Halos are over-densities in the dark matter
distribution and can be identified using different algorithms; in
this instance, we use the Friends-of-Friends algorithm [7]. That is,
we connect each particle to all “friends” within a distance, with a
group of particles in one chain considered as one halo. Another
concept of halo, such as Most Connected Particle, is defined as
the particle within a halo with the most friends. Then, there is
the Most Bound Particle, which is defined as the particle within
a halo with the lowest potential. For the Nyx simulation, which
is an Eulerian simulation instead of Lagrangian simulation, the
Halo Finding algorithm uses density data to identify halos [11]. For
decompressed data, some of the information can be distorted from
the original. Information such as the density of one cell can affect
the halo number detected, particularly for smaller halos. We use
three matrices to reflex the Halo Finder quality of decompressed
data: (1) the position of halos; (2) the halo number detected; and (3)
the halo mass change of each halo. Furthermore, we preferred to
preserve that information for middle and large halos over for small
halos.

2.2 Lossy Compression for Scientific Data

Floating-point data compression has been studied for decades.
There are two main categories: lossless compression and lossy
compression. Lossless compressors such as FPZIP [23] and FPC [2]
can only provide limited compression ratios (typically up to 2:1
for most scientific data) due to the significant randomness of the
ending mantissa bits [30]. Lossy compression, on the other hand,
can compress data with little information loss in the reconstructed
data. Compared to lossless compression, lossy compression can pro-
vide a much higher compression ratio while still maintaining useful
information for scientific discoveries. Different lossy compressors
can provide different compression modes, such as error-bounded
mode and fixed-rate mode. Error-bounded mode requires users to
set an error bound, such as absolute error bound or point-wise
relative error bound. The compressor ensures the differences be-
tween the original data and the reconstructed data do not exceed
the user-set error bound. Fixed-rate mode means that users can set
a target bitrate, and the compressor guarantees the actual bitrate
of the compressed data to be lower than the user-set value.

In recent years, a new generation of lossy compressors for sci-
entific data have been proposed and developed, such as SZ [38, 21,
33, 35] and ZFP [22]. SZ and ZFP were first developed for CPU
architectures, and both started rolling out their GPU-based lossy
compression recently. Both SZ and ZFP teams have released the
CUDA implementation of their compression [6, 35]. Compared to



lossy compression on CPUs, GPU-based lossy compression can
provide much higher throughput for both compression and decom-
pression [20]. Unlike traditional lossy compressors such as JPEG
[36] which are designed for images (in integers), SZ and ZFP are
designed to compress floating-point data and can provide a strict
error-controlling scheme based on user’s requirements. In this work,
we chose to use SZ instead of ZFP because the GPU version of SZ—
cuSZ [35]—provides a higher compression ratio than ZFP and offers
the absolute error-bound mode that ZFP does not support (but nec-
essary for our error control). Specifically, SZ is a prediction-based
error-bounded lossy compressor for scientific data. SZ has three
main steps: (1) predict each data point’s value by its neighboring
data points in a multidimensional space with an adaptive predictor
(using either a Lorenzo predictor [19] or linear regression [21]); (2)
perform an error-controlled linear-scaling quantize the difference
between the real value and predicted value based on the user-set
error bound, convert all floating-point values to an array of integer
numbers; and (3) apply a customized Huffman coding and lossless
compression to achieve a higher ratio.

Today’s lossy compression techniques have been used in many
HPC scientific applications for saving storage space and reducing
the I/O cost of saving data [13, 29, 39]. In this paper we focus on
utilizing SZ lossy compression for cosmological simulation with
consideration of specified analysis error control. We will build a
model for SZ lossy compression error and provide a theoretical sup-
port for error propagation in post-hoc analysis. Note that our study
can be also applied to other lossy compressors with modifications
on compression error modeling (more will be detailed in Section 3).

3 DESIGN METHODOLOGY

In this section, we introduce the concept of optimizing compres-
sion configuration for different partitions in a given dataset and
the necessary theoretical analysis as well as models needed. We
describe in detail our theoretical analysis based on our hypothesis
and provide an experimental evaluation to support our models on
post-hoc analysis error impact and compression ratio. Lastly, we
propose an in situ approach for cosmological simulation with an
adaptive compression configuration for each data partition based
on our analysis and model.

3.1 Adaptive Compression Configuration

Our main goal is to provide a higher compression ratio while main-
taining the same post-hoc analysis quality or provide a higher
post-hoc analysis quality while maintaining the same compression
ratio. We do so by applying our optimized compression config-
uration individually to each partition of a dataset, compared to
traditionally one configuration for the entire dataset.

To achieve this, we need to determine the relationship among
compression configurations, post-hoc analysis quality, and compres-
sion ratio. Thus, we introduce two types of model: (1) error-impact
modeling for cosmological post-hoc analysis based on compres-
sion configurations of different partitions, and (2) compression
ratio modeling based on compression configurations of different
partitions. Based on these two models, we can then create an op-
timization strategy. As shown in Figure 2, we target to balance
between post-hoc analysis quality and compression ratio, when
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Figure 2: Quality-ratio optimization by modeling error impact on
post-hoc analysis and compression ratio, based on error-bound com-
bination of all data partitions.
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Figure 3: Error distribution of temperature data in one Nyx dataset

compressed by SZ lossy compression with error bound of 10 and 100

bins in histogram.

providing corresponding compression configuration for each parti-
tion. This allows us to apply different compression configurations
to different partitions whereby we can improve the compression
efficiency of the entire dataset by both exchanging feature preser-
vation (e.g., preserve more feature for dense information areas)
and balancing compressibility characteristic (e.g., significantly im-
prove compression ratio by sacrificing little analysis quality for low
compressibility areas). Note that we can also significantly reduce
the complexity of finding the optimized solution compared to the
error-and-trail baseline method when different partitions vary sig-
nificantly in terms of either information density or compressibility.

As shown in Figure 1, different partitions in Nyx data have com-
pletely different feature density and compressibility. Moreover, we
can observe that a given partition can vary dramatically through dif-
ferent snapshots. Partitions with lower features (e.g., early timestep
of sample partition upper in Figure 1) can be almost blank in compar-
ison to regular visualization. This means the previous compression
solution of compressing all dataset with the same compression
configuration is far from optimal in terms of the balance between
post-hoc analysis quality and compression ratio. Note that Nyx
data is naturally partitioned due to its simulation with multiple
MPI ranks, which provides a suitable condition to applying an indi-
vidual configuration to each data partition. Based on our proposed
modeling and optimization, we adaptively adjust the compression
configuration for each partition in every snapshot.

3.2 Modeling Error Impact on Cosmology
post-hoc Analysis

Power spectra and halo finder are two main post-hoc analysis
metrics for Nyx cosmology simulation. We model the error impact
in terms of both metrics. Note that our theoretical analysis in this
section can be adopted to other post-hoc analysis with little effort.
For example, our analysis for power spectra can be adopted to other
FFT-based analysis.

As discussed in Section 2, SZ lossy compression is a prediction-
based lossy compressor using quantization for strict error control.
When Lorenzo predictor is used, SZ provides predicted values with



an origin-prediction error in units of user-defined error bound.
Such quantization causes evenly distributed error in both ABS mode
(i.e., absolute error bound) and PW_REL mode (power relative error
bound). More discussion in Section 3.5. Figure 4 shows the error
distribution of a sample Nyx dataset on the temperature field
with the absolute error bound of 10.0. Note that for both CPU-
SZ (quantization is performed after Lorenzo prediction) and GPU-
SZ (quantization is performed before Lorenzo prediction), their
error distributions are the same as of uniform distribution. We
also note that for some extreme cases where a high error bound is
used, SZ lossy compression will introduce errors that are slightly
different from the uniform distribution. We will discuss how we
revise the analysis accordingly in the following sections. We use
the uniform distribution as well as our revised uniform distribution
to model SZ’s error. Based on our evaluation, this approximation is
sufficiently accurate for our optimization.

3.3 FFT-based Power Spectrum

As mentioned in Section 2, power spectrum analysis for Nyx cosmo-
logical simulation is based on the 3-D Fast Fourier Transform (FFT).
Thus, we mainly build our error-impact model for power spectrum
based on the FFT algorithm. We provide theoretical analysis on
error propagation from compressor introduced error in dataset to
the FFT result in terms of error distribution. We also provide an
experimental evaluation to support our model.

FFT algorithm, such as Cooley-Tukey FFT algorithm [4], utilize
recursive addition and multiplication of discrete Fourier transform
(DFT) matrix decomposed sparse matrix divisor to accelerate the
process compared to DFT [17]. Moreover, FFT provides exactly
the same result as DFT with lower time complexity (O(NlogN)
compared to O(N?)). Since we introduce error to the data from
lossy compression before post-hoc analysis, we can use the DFT
equation instead of the more complex recursive FFT workflow to
model the error. We first start with 1-D FFT error modeling, and
DFT is defined by:

N-1
X(k) = DFT[x(m)] = Y x(me ¥ k=01, N-1, (1)

n=0

where x(n) is discrete input data, k is input frequency, and N is the
number of elements. And it can be further simplified as:

N-1
X(k) = Z x(n)WI:l,k where W = e_i%, )

n=0

As of the error distribution from SZ lossy compression, as men-
tioned in Section 3.1, is modeled by uniform distribution as follows:

eb ~ U[—eb, eb]

o —eb < <eb
where f(x):{Zeh’ eb < x < eb, ‘)

0, otherwise,

where eb is the user-defined error bound, eb is the error distribu-
tion, f(x) is probability density function. We consider this error as
injected error to dataset and thus we can have the error model of

DFT result as:

N-1 N-1
X(k) = Z x(n)! Wik = Z (x(n) + eb) Wik
n=0 n=0
N-1
= X (k) + Z eb Wik, 4)
n=0

Note here eb is not a value but a distribution function. We can get
the error distribution of DFT as:
N-1
EpFr ~ Z eb Wik ©)
n=0
In our use case, N is a relatively large number (no smaller than
512 X 512 X 512 in our experiments), we can use Central Limit
Theorem and know the above distribution should form into normal
distribution. Now we need to find corresponding p and o to define
our normal error distribution. For real axis of DFT result, we can
simplify Equation 5 to:

Re N . (2mnk
Eppr ~ Z eb X sin ~ | (6)

n=0

Then, we can get the average individual variance &;,4;yidual PY:

_ eb (. (2xnk 2
) N-1 f_eb(xsm(%)—o) dx 1
Oindividual = ZO: = = geb (7)

N 2eb

Note we transformed the equation with the fact that k is a large
number. Since the distribution of eb is central symmetric, the indi-
vidual expected value y;,gividual 1 zero. Also, for situations where
the error introduced by lossy compression is not evenly distributed,
we can still provide corresponding bar oy gividual accordingly. Based
on Central Limit Theorem, we can get the variance o and expected
value p of DFT error distribution are:

cr=ﬂ%eb, u=0, (8)

where N is the number of elements in given 1-D data. Similarly,
we can further expand our equation to 2-D DFT results by central
limit theorem, since each row in the new dimension would further
perform another 1-D DFT on values with error distribution shown
in Equation 9. And so on, we can get 3-D DFT error distribution
from SZ lossy compression is:

N3
o3p = ﬂ ?eb, m3p =0, 9)

where N is the data dimension. The same error distribution goes to
EID"}ET with similar analysis. As of applying various error bound to
different partitions, since the element number in each partition is
also considered a large number (e.g., 64> when cutting 5123 data

into 512 partitions), we can further derive our equation to:
Nil N3 eby,
o3p = —_—,
3D - 6 M

where M is the number of partitions. We observe that (1) the abso-
lute error impact on FFT analysis highly relies on data size: cosmo-
logical simulations running with higher resolution are less error-
tolerant regarding FFT-based post-hoc analysis; and (2) the FFT

H3p =0, (10)
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Figure 4: Comparison of real and estimated FFT error distribution
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error distribution does not rely on high “feature” density areas, in
other words, every value in original data has the same importance
and will impact on all FFT results from error introduced by lossy
compression.

As shown in Figure 4, we evaluate the accuracy of our model on
the temperature field in Nyx dataset by compress the data with
various compression per-partition error bound in and estimate the
final impact on FFT result. The average error bound here is 1.0, and
the reason for such large error in values is because we present the
error and estimation before FFT normalization, which is easy to
convert by simply multiply the normalization factor. Note here x
axis is normalized with error bound. Our model provides a highly
reliable estimation to error impact on FFT by given compression
configurations for all partitions. We also evaluate the precision of
our model along with different range of error bound by applying
various error bounds to partitions and collect real variance and
compared to our estimation, Shown in Figure 5. Note we no longer
provide error-bounded estimation on FFT error impact, but error-
bounded probability. For example, we provide a possibility of 95.45%
that one FFT value is within (-20, 20).

3.4 Halo Finder Analysis

Halo finder is another post-hoc analysis for cosmological simulation
such as Nyx to find halos and identify their locations and masses.
Similar to our proposed model for power spectrum, we also propose
amodel for halo finder in order to estimate the error impact based on
given compressor error in dataset, in terms of both error distribution
of halo locations and halo masses.

Different from power spectrum analysis, halo finder only applied
to density data field (more specifically, “Baryon Density”) instead of
all 6 fields in Nyx dataset. The main idea behind the halo finder algo-
rithm is to find the areas with density higher than a given threshold
thoundary and to build a tree structure across the candidates. Then,

(a) Original data

Figure 6: Candidate cells for halo finder with 64 x 64 X 64 partitions.
Areas with density higher than candidate threshold are marked in
black grid.
1000

(b) SZ compressed data
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Figure 7: Comparison of halo mass distribution with different error
bounds using Nyx’s baryon density field.

those groups that have the highest maximum larger than ty, are
identified as “halos”. Lastly, halo position (centroid of all grid points
belong to this halo) and halo mass (cell weighted sum of all grid
points belong to this halo) are recorded for each halo.

Figure 6 presents the halo candidates before and after lossy
(de)compression in a given 64 X 64 X 64 partition. We can observe
that after lossy compression, cell candidacy changes slightly on
edge areas, where some cells of existing halos are added or dropped.
For demonstration, we applied a relatively high error bound of 10.0
(normally we use error bound eb < 1.0), thus, more boundary cells
are false-detected, and the hollow background is illuminated with
reconstructed in-error-bound values visualized in blue.

After compression, we observe almost no number of found halos
changes, even with very high distortion from high error bound,
as is shown in Figure 7. Note that halo is further categorized into
many small halos and few large halos, only the former can be
false-detected under high error bound. In general, we intend to
concentrate and preserve information for large halos based on cos-
mological analysis [11]. In fact, we also observe almost no halo
position change under even extreme compression during our exper-
iment. This is reasonable since the only change we made to existing
halos is minor edge distortion from introduced error by bringing
edge cells up/down through the threshold. This is a very minor
change in weight, compared to the central density of halos.

Compared to almost non-changing position and count after lossy
compression, the mass change of halos is more suitable for error
control in Nyx simulation. As shown in Table 1, we analyze the
mass change characteristic based on a large halo. The number
of cells found for this halo increases along with the increment
of the introduced error to the data as expected. However, if we
target to mass difference per changed cell, we observe they fall into
similar values. More specifically, it is around 88.16, which is the set



Table 1: Mass difference per changed cell on a large halo.

Error Bound Cells Mass Mass Diff Diff per cell
original 6023 3.13E+6 - -

1E-2 6023 3.13E+6 0 -

1E-1 6011 3.13E+6 -9.8E+2 81.7
1E+0 6038 3.13E+6 1.21E+3 80.7
1E+1 6041 3.13E+6 1.66E+3 92.2

threshold for halo finder. It is because those edge cells are easier
to switch between in- and out-of-halos given lossy compression
introduced error, and they cause the mass value change of the entire
cell, which is significantly larger than value change merely by lossy
compression. This means most post-hoc analysis error (from lossy
compression) can be attributed to fault-detection of edge cells for
halo finder.

To further provide an estimation of mass changes given per-
partition error bound, we conduct fault cell detection estimation. To
start with, we divide our problem into finding fault mass detection
estimation of each partition and provide overall estimation with
their sum:

M-1
Mtault = thoundary Z em, (11)
0

where Mg, is sum of individual halo absolute mass changes,
thoundary 1S the threshold for halo finder, M is the number of parti-
tions, ey, is the error in each partition. The reason is that for existing
halos cell changes are addable even for halos across partitions, and
for fault-detected halos, they tend to be small halos and only appear
under rarely used very high error bound.

Different from FFT, which is based post-hoc analysis present in
the previous section, halo finder is highly related to density as a
feature of each partition for post-hoc analysis error estimation. In
this case, we define the feature needs to preserve for halo finder
in the given data been edge cell count around the threshold. By
analyzing the value histogram of density data from Nyx simulation,
we find that although histogram is not evenly distributed among the
entire data range, the histogram of local values can be considered
as evenly distributed. For example, if we consider error bound eb
as 0.1 and halo boundary threshold tpoundary as 88.16, in which
case only values within (88.06, 88.26) can affect number of cells
detected for halos, and the data histogram within the small value
range is considered as evenly distributed. Thus, we can conclude
the possibility of fault detection of given cell as:

1 / thoundary+eb x — thoundary d
— 4X

Pfault = 7 eb

= 25%. 12
: (12)

tboundary
Note here similar to what we discussed for FFT-based post-hoc
analysis, we can provide the corresponding pg,y); based on error
distribution from lossy compression other than uniform distribu-
tion. Then we can provide the number of fault detected cells in the
given partition by:

em = Npe/4, (13)

where m is number of partitions for Equation 11, np,. is boundary
cells with a value range of (fyoundary — €b: tboundary + €b) in the
given partition. Note here we discuss the number of cells estimated
been fault detected due to error introduced by lossy compression.
Fault detected cells can switch between both in- and out-of-halos
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Figure 8: Number of candidate cells changed with different error
bounds. Red line is the estimated cell count difference. Blue dots
are the real cell count difference.

and result in expected total number of cells being the same as
the original, while error forming into normal distribution similar
to what we discussed in Section 3.3. However, since we focus on
cell changes of individual halos and most are small halos with
little edge cells, the number of cell difference can be simplified to
Equation 14. For large halos, depending on their size, the estimated
error distribution of cell count can be given by central limit theorem
forms into normal distribution:

o=4/—, u=0. (14)

We evaluate our halo finder modeling with baryon density
data from 512 X 512 X 512 Nyx simulation. Figure 8 shows our esti-
mated cell difference count based on Equation 11 compared to the
result from applying multiple error bounds to different partitions.
Our modeling provides high accuracy compared to an experimental
result. Note here some of the larger differences between estimation
and experiment can be due to loss/increase of small halos as well
as cell difference count reduced for extremely large halos from
Equation 14.

3.5 Modeling Compression Ratio

In this section, we build a model to estimate the overall compression
ratio of the dataset based on given compression configurations of
different partitions. As discussed in Section 3.2, the error introduced
by SZ lossy compression can be modeled by a uniform distribu-
tion. However, in situations of much larger error bound, the error
distribution of SZ lossy compression forms into a combination of
uniform distribution and normal distribution. This is because under
high error bound settings, the Lorenzo predictor in SZ lossy com-
pressor predicts more data-point within the error bound against the
original, even without quantization. As mentioned in the previous
theoretical analysis for post-hoc analysis, we can easily adopt our
models based on revised o of none-even distributed error distribu-
tion. Because of this distortion of error distribution, it is extremely
hard to provide a model for estimate compression ratio from error-
bound combination purely with theoretical analysis. Thus, in this
section, we mainly contribute to the compression-ratio modeling
based on empirical analysis and provide a universal equation for
all fields of data from all snapshots.

Figure 9 shows the bit-rate to error-bound curve by SZ lossy
compression. Here bit rate represents how many bits are needed to
represent a value on average, when original data is 32-bits single-
precision float-point number. Two areas can be distinguished for
each curve of given partition: both form into power function but
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Figure 10: Accuracy on predicted C; (in Equation 15) and the consis-
tency of compression ratio using SZ lossy compression.

areas with bit rate higher than 2 features power values closer to
zero (flatter). This is because once the bit rate is lower than 2, a
high error bound causes Lorenzo predictor to predict values within
error bound (i.e. no quantization) and improves the Huffman coding
efficiency, thus encourages compressibility: curves converge faster
when bit rate across 2 on log scale. Based on our empirical studies
and previous work [20], we consider the case where bit rate is
always lower than 2, or compression ratio higher than 16X for Nyx
dataset (in £p32). Also, consider our optimization strategy is only
gently adjusting the error bound of different partitions, we assume
our adjustment is also located within the same curve area. For
partitions beyond this assumption, their impact is negligible due
to model consistency on edge situation and their low percentage.
Evaluation from Section 4 verified our assumption. Bit-rate to error-
bound equation can be given by:

M-1 b
B= 20: H’” bm = Cmeb®, (15)

where B is overall bit rate, M is the number of partitions, b, is
the estimated bit rate of each partition, C;; and ¢ are parameters
to define position and shape of this curve. Furthermore, we can
determine per-partition the basic bit-rate to error-bound power
function method based on trial and error. However, we avoid this
time-consuming process by performing a two-step procedure: (1)
we identify that different partitions across fields and snapshots
share the same power parameter c, thus we can select ¢ and keep
using it; and (2) we use a representative parameter from a given
data partition to determine Cp, of its bit-rate to error-bound curve,
or relative compressibility of the partition. We find the entropy of
partition is one of the parameters that are highly related to Cp,,

with higher entropy mapped to higher compressibility thus lower
curve in Figure 9. However, for reducing the overhead to compute
parameter, we instead choose mean value as our key parameter to
determine the relative compressibility of a partition. Figure 10(a)
shows that the estimated Cp, based on a logarithmic fitting and
partitions’ mean values are highly precise compared to the real Cp,.
Lastly, unlike transform-based compressors, SZ provides consistent
bit-rate to error-bound curves, as shown in Figure 10(b). Therefore,
we have high confidence to use the estimated bit rate.

3.6 Proposed Optimization Strategy

Until now we have built the models for error impact of post-hoc
analyses as well as the model for compression ratio. Then, we opti-
mize the compression configuration of different partitions to feature
different error bound so that we can maximize the compression
ratio while maintaining the estimated post-hoc analysis quality or
maximizing the post-hoc analysis quality with the same estimated
compression ratio.

First, we consider power spectrum post-hoc analysis quality to
compression ratio optimization. Since FFT-based post-hoc analysis
does not have a correlation with individual local partition feature,
meaning every value shares the same importance. The optimization
strategy relies on the difference in compressibility among data
partitions. Based on Equation 10, we expect a similar error impact
on FFT-based analysis under the condition when the average error
bound of all partitions remains the same. In this case, to improve the
overall compression ratio while guaranteeing the same FFT-based
post-hoc analysis quality, we utilize Equation 15 from the previous
section by estimating parameters based on the mean value of a given
partition. Additionally, we also extract the overall mean value of the
entire dataset by MPI_Allreduce after each partition computes
their own. We then optimize the per-partition error bound such
that their derivatives of bit-rate to error-bound curve are the same,
which are the minima for Equation 15, while keeping the average
error bound within the threshold request from Equation 10. These
minima can be given by:

ebm = ebayg - exp {M} , (16)
where eby, is the optimized error bound of partition m, ebayg is the
average acceptable error bound based on Equation 10, C, is the
Cpm, parameter based on the average of the mean values from Equa-
tion 15, C;, and c are each partition’s parameters in Equation 15.

For baryon density, we can apply both power spectrum and
halo finder post-hoc analyses. In this case, instead of building an
optimization strategy of high complexity with three models in mind:
power spectrum, halo finder, and compression ratio, we only opti-
mize based on two of the three. Those are power-spectrum-to-ratio
and halo-finder-to-ratio, from which we choose one as acceptable
condition for both. For example, once we determine the optimized
compression configuration of all partitions for power spectrum, we
then evaluate if the condition is also acceptable for the halo finder.
If acceptable, this combination of compression configurations is set;
if unacceptable, we further apply the optimization of halo finder
and ratio and then set the combination result as a boundary condi-
tion. The optimization between halo finder and compression ratio
is similar to the above FFT-based post-hoc analysis optimization,



Table 2: Details of Nyx Dataset Used in Experiments

Dimension Size Field Value Range
Baryon Density (0, 10°)

512X 512X 512 6.6 GB . 4
Dark Matter Density (0, 10%)

1024 X 1024 X 1024 52 GB 2 7
Temperature (10%, 107)

2048 x 2048 x 2048 352 GB . s 3
Velocity (-10°, 10°)

but it has to change the boundary condition with Equation 11. In
this case, we need each partition’s mean value for bit-rate curve
estimation as well as its number of cells with a weighted value
range of (thoundary — €b; thoundary + €b) for halo finder estimation.
However, both parameters and optimizations can be calculated with
little effort compared to the computationally intensive post-hoc
analysis and cosmological simulation, hence introducing a very low
overhead to the system with higher compression efficiency.

For both power spectrum and halo finder post-hoc analysis op-
timizations, we also introduce thresholds for error-bound control.
This is because there may be a few partitions that may not fit our
models well and produce highly unreasonable error-bound options,
which can be harmful to the efficiency of our strategy. Thus, we
set the highest and lowest error-bound thresholds to 4eb and 5/ 4,
respectively, where eb is the average error bound over all partitions.

4 EXPERIMENTAL EVALUATION

We present the evaluation results of our framework for a fine-
grained adaptive lossy compression based on our rate-quality mod-
eling. We compare our results based on the de facto static configura-
tion that is normally applied to datasets at the start of simulations in
terms of both snapshots and multiple simulation scales. Finally, we
evaluate and discuss the performance of our solution for improved
compression quality.

4.1 Experimental Setup and Dataset

We conduct our evaluation with Foresight [15], an open-source
toolkit used to evaluate, analyze, and visualize lossy compressors
for extreme-scale cosmological simulations . We modified the toolkit
so that we can gather necessary parameters for our framework to
deploy adaptive lossy compression configuration to various data
partitions in Nyx cosmological simulation. The details of the Nyx
datasets used for evaluation are shown in Table 2. The 512x512X512
Nyx dataset is provided by the Nyx development team at Lawrence
Berkeley National Laboratory [26]. It is a single-level grid structure
without adaptive mesh refinement (AMR) and does not include
particle data. It contains six 3-D arrays, include baryon density (pp,),
dark matter density (pgm), temperature (T), and velocity in three
directions (vy, vy, vz). The dataset is in the HDFS5 file format [10].
Our experiment platforms include the Cori system [5] at NERSC
and the Frontera system [12] and its subsystem Longhorn system
[24] at TACC, of which each GPU node is equipped with 4 Nvidia
Tesla V100 GPUs [14] per node.

4.2 Quality-Ratio Evaluation

We first experimentally demonstrate the effectiveness of our pro-
posed solution. Figure 11 shows the visualization of error-bound of
all partitions by adaptive optimization to the tested dataset. data par-
titions have been assigned with various error-bound, instead of the
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Figure 11: Fine-grained lossy compression control for different data
partitions. Left: visualization of temperature field in 512 X 512 X 512.
Right: error-bound configurations for all 512 data partitions based
on oursproposed method.
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Figure 12: Comparison of bit-quality ratios using traditional and
our methods on all partitions of 512 X 512 X 512 Nyx’s temperature
field with 512 data partition. Y-axis is normalized to average bit-
quality ratio after our optimization.

traditional method that compresses the entire dataset with a single
error-bound configuration. Moreover, the presented temperature
data only serve for power spectrum as post-hoc analysis, thus
quality-ratio of partitions are effectively traded based on their com-
pressibility since no features are expected to be preserved for power
spectrum based on our previous analysis in Section 3.

In Figure 12, we present the optimization efficiency of our opti-
mization solution, where the bit-quality ratio is the derivative of
the bit-quality curve. Traditionally, we compress every data par-
tition with the same error-bound which results in a disorganized
bit-quality ratio. This indicates the potential compression efficiency
improvement by exchanging compression ratio and post-hoc analy-
sis data quality between partitions for a higher overall compression
ratio and better overall data quality. By doing so, we can signifi-
cantly improve the bit-quality ratio difference of every partition,
at which point every partition shares a similar balance between
compression ratio and data quality as optimized.

When considering power spectrum as post-hoc analysis, which
is the case for all data fields other than baryon density in our
tested dataset, we generally require P(k) ratio of reconstructed
data to original data to keep within a +1% for k < 10, so that
the simulation results can be compared and verified by our cos-
mological observation capability. Figure 13 demonstrates a power
spectrum analysis with baryon density from a Nyx dataset. Note
that one data point from data compressed by the traditional method
has exceeded the acceptable error range. Our strategy, however,
successfully bounds the analysis error within the acceptable error
range without expensive trial-and-error. Note that in our experi-
ment we choose 20 from Equation 10 mapped to an acceptable error
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Figure 14: Histogram of effective cell count from all 512 data parti-
tions of 1024 X 1024 X 1024 baryon density data.

range. Based on our model, this can provide a 95.4% of confidence
for no escaping error. In practice, this decision can be changed by
potentially lower overall compression ratio for higher post-hoc
analysis error control.

For the baryon density field, not only does it use power spec-
trum as post-hoc analysis, halo finder is also used in this field as
an important workflow. From our proposed model in Section 3, we
extract the number of cells with a value range between (tpoundary —
eb, thoundary * €b) in each partition as features, since their values
need to be preserved for halo finder. Figure 14 shows the number of
such effective cells varies greatly for given partition, consider x-axis
is log scaled for information demonstration. A dispersed histogram
means a high potential of preserving features for some partitions
while sacrificing features from others to achieve high compres-
sion efficiency. Note that here we do not need to re-determine this
number every time we select a new error bound for the partition,
because in small ranges the value distribution can be considered as
evenly distributed as discussed in Section 3. We only need to extract
this number once with eb = 1.0 (a fairly high error-bound setting)
and get eb-cell function ny. = nXxeb, where n is the number of effec-
tive cells found with eb = 1.0. We also note that such effective cells
also have a correlation to mean value, usually get more np,. from
partitions with higher mean values. This illustrates a competition
between selecting error bound based on compressibility or based
on feature density. However, in our evaluation, when optimizing
based on the quality-ratio modeling for FFT-based analysis, halo
finder result can also be satisfied so that the RMSE of alternated
halo mass and original halo mass remains 1 + 0.01. Unless a higher
accuracy is needed by halo finder, we use the optimization strategy
discussed in Section 3, which can provide 29.8% higher accuracy in
terms of halo mass error, compared to the traditional method.

Figure 15 shows the compression ratio improvement of our fine-
grained adaptive lossy compression solution over the traditional
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Figure 15: Compression ratio comparison between our and tradi-
tional methods on all 6 Nyx fields. All the reconstructed data satisfy
the quality requirement of post-hoc analysis.
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Figure 16: Compression ratio comparison between our and tradi-

tional methods on multiple redshifts’ data using baryon density
field. Compression ratio is normalized to our optimized ratio.

method on the tested dataset while satisfying the data quality re-
quirement for post-hoc analysis. Considering all 6 fields in the tested
Nyx dataset, our solution provides an improvement of compression
ratio by 56.0% on average. The main advantage of our proposed
technique is a more precise error-bound control for every partitions.
On the other hand, our solution also requires no trial-and-error
effort thanks to our specifically designed post-hoc analysis error
modeling, which can provide a NEAR-OPTIMAL solution with little
optimization overhead imposed. The traditional method traverses
all possible error bounds for a given dataset and can only pro-
vide a sub-optimal solution to maintain the high post-hoc analysis
quality. For example, velocity data in Nyx simulation are highly
random [20, 32], thus simply deploying different error bounds to
different partitions will not provide a very high compression ef-
ficiency. The improvement on velocity data shown in Figure 15
mainly because of the highly accurate error-bound estimation. In
fact, in order to guarantee the unpredictable post-hoc analysis error
within acceptable for multiple snapshots, simulation users usually
choose a relatively lower error-bound for lossy compressor based
on empirical studies [20] compared to the optimized solution.

In Figure 16, we show the performance of our solution with
various redshifts evolved to reduce over time (i.e., from 54 to 42
in our tested data). The static implementation of our solution (in
yellow) is to optimize the error bounds for all partitions once at the
early stage of simulation when the redshift is lower and keep using
them for all following snapshots. We observe that the static imple-
mentation impacts the compression ratio to some extent, since the
simulation data evolve to a different state and require an adjustment
of error-bound combination for the highest compression efficiency.

Figure 17 illustrates the difference of error-bound configura-
tions optimized by the early-stage dataset and by the redshift-42
dataset. Most of the data partitions in the early stage with larger
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Figure 17: Comparison of our optimized error bounds on the data
with larger redshift (left, early in simulation) and the data with
lower redshift (right, late in simulation).
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sizes (compared to traditional method).

Region Dimension

redshift are smooth and close to each other, resulting in similar
optimized error bounds for all partitions. Compared to the tradi-
tional method, our solution can provide a consistent improvement
on multiple snapshots. Note the improvement increases slightly
as the redshift decreases. This is because cosmological simulation
evolves to sparser formation, which increases the feature density or
compressibility difference between partitions and can thus benefits
from our proposed solution.

We also evaluate our solution with different partition sizes and
show the result in Figure 18. We can observe that the overall com-
pression ratio improvement increases as the partition size decreases,
from 27.1% to 56.0% for partition dimension from 512 to 64, re-
spectively. This is because larger partition size averages out the
quality-ratio difference between partitions, which leads to a lower
gain of compression efficiency from separately configuring error
bounds to partitions, but it relies on a more accurate estimation of
optimized error bounds. We suggest lowering the size of partition
for higher utilization of our solution. Lastly, we evaluate our so-
lution on the Nyx dataset with different simulation scales, shown
in Figure 19. It illustrates that our solution provides a consistent
improvement over the traditional method on different simulation
scales. More specifically, it provides average compression ratio im-
provement compared to the traditional method by 56.0% and 51.9%
for simulation scale of 512 and 1024, respectively.

4.3 Performance Evaluation and Discussion

Traditional methods find desirable error bounds for a given dataset
by traversing all possible candidates. With a smooth curve of ratio
to error-bound for SZ lossy compression, a statically optimized error
bound for the entire dataset can be always found by the trial-and-
error process if there is no time limit. However, this is challenging
for scientific datasets where quick-to-compute general distortion
metrics cannot represent data quality for post-hoc analysis pur-
poses [20], and each trail requires compression, decompression,
and post-hoc analysis. Thus, this method is not scalable and cannot
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Figure 19: Compression efficiency improvement with different data

sizes. Simulation scale is one dimension size of snapshot.

be applied to extreme-scale simulations. Not to mention if pursuing
higher compression efficiency by varying configuration for indi-
vidual partition, the traditional trial-and-error method is simply
infeasible considering the combination possibility of different par-
titions (e.g., 512). In comparison, our solution only requires a very
low overhead for the error-bound combination optimization with
our theoretical models. As a result, our solution can be adapted
to all snapshots regardless of the simulation scale. For FFT-based
distortion metrics used for other scientific simulations, we have
provided solutions in Section 3. For other types of post-hoc analysis,
we propose to study the information necessary and build a specific
model based on it for feature preserving, similar to our modeling
methodology for halo finder.

In terms of the in situ overhead of our proposed solution, it only
requires the mean value of each partition and the overall mean
value of the dataset as parameters for all data fields. To compute
the mean value of each partition, it only takes about 1~1.5% of
the compression time overhead using our tested CPUs, while it
takes almost no overhead on the tested GPUs. The overall mean
value can be gathered by MPI_Allreduce after each partition gen-
erates its own mean value, which is almost negligible compared to
compression throughput (e.g., 31.6 GB/s on a V100 GPU with cuSZ
[35]), not to mention both baryon density (p;) and dark matter
density (pgm) that require no MPI_Allreduce operation due to
their fixed overall mean value set by the simulation. Moreover, we
also need the number of effective cells as an extra parameter for
baryon density. This process takes an extra time overhead of
up to 5% of compression time in our experiment. Overall, all the
overheads introduced by our optimization are negligible comparing
to the time of cosmological simulation or compression. Therefore,
our solution introduces very little overhead and provides a high
compression efficiency improvement.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose to adaptively configure lossy compression
in data partitions for cosmological simulation with newly designed
rate-quality models for post-hoc analysis. We first propose an accu-
rate model to estimate the post-analysis result considering lossy
compression error, as well as a compression-ratio model based on
theoretical analysis and experimental evaluation. We then further
develop an adaptive optimization solution based on our models to
dynamically determine the optimal compression parameters for
different partitions instead of static selection, maximizing compres-
sion efficiency while offering an error control to post-hoc analysis.



Our proposed fine-grained approach further improves the compres-
sion ratio by up to 73% on the tested dataset compared to existing
methods, making the compression ratio reach to 27.6~82.8x, with
a very low time overhead of only 1%. Our future work is to fur-
ther apply our approach to other HPC applications and post-hoc
analysis metrics such as climate simulation with SSIM.
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