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SPDE limit of weakly inhomogeneous ASEP
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Abstract

We study ASEP in a spatially inhomogeneous environment on a torus T(N) = Z/NZ

of N sites. A given inhomogeneity ã(x) ∈ (0,∞), x ∈ T(N), perturbs the overall
asymmetric jumping rates r < ` ∈ (0, 1) at bonds, so that particles jump from site x

to x + 1 with rate rã(x) and from x + 1 to x with rate `ã(x) (subject to the exclusion
rule in both cases). Under the limit N →∞, we suitably tune the asymmetry (`− r)

to zero like N−
1
2 and the inhomogeneity ã to unity, so that the two compete on equal

footing. At the level of the Gärtner (or microscopic Hopf–Cole) transform, we show
convergence to a new SPDE — the Stochastic Heat Equation with a mix of spatial
and spacetime multiplicative noise. Equivalently, at the level of the height function
we show convergence to the Kardar–Parisi–Zhang equation with a mix of spatial and
spacetime additive noise.

Our method applies to a general class of ã(x), which, in particular, includes i.i.d.,
fractional-Brownian-motion like, and periodic inhomogeneities. The key technical com-
ponent of our analysis consists of a host of estimates on the kernel of the semigroup
Q(t) := etH for a Hill-type operator H := 1

2
∂xx +A′(x), and its discrete analog, where

A (and its discrete analog) is a generic Hölder continuous function.
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1 Introduction

In this article we study the Asymmetric Simple Exclusion Process (ASEP) in a spatially
inhomogeneous environment where the inhomogeneity perturbs the rate of jumps across
bonds, while maintaining the asymmetry (i.e., the ratio of the left and right rates across
the bond). Quenching the inhomogeneity, we run the ASEP and study its resulting
Markov dynamics. Even without inhomogeneities, ASEP demonstrates an interesting
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Weakly inhomogeneous ASEP

scaling limit to the Kardar–Parisi–Zhang (KPZ) equation when the asymmetry is tuned
weakly [BG97].

It is ultimately interesting to determine how the inhomogeneous rates modify the
dynamics of such systems, and scaling limits thereof. In this work we tune the strengths
of the asymmetry and the inhomogeneity to compete on equal levels, and we find that
the latter introduces a new spatial noise into the limiting equation. At the level of the
Gärtner (or microscopic Hopf–Cole) transform (see (1.1)), we obtain a new equation of
Stochastic Heat Equation (SHE)-type, with a mix of spatial and spacetime multiplicative
noise. At the level of the height function, we obtain a new equation of KPZ-type, with a
mix of spatial and spacetime additive noise.

We now define the inhomogeneous ASEP. The process runs on a discrete N -site torus
T(N) := Z/NZ where we identify T(N) with {0, 1, . . . , N − 1}, and, for x, y ∈ T(N), under-
stand x+y to be mod N . To alleviate heavy notation, we will often omit dependence on N
and write T in place of T(N), and similarly for notation to come. For fixed homogeneous
jumping rates r < ` ∈ (0, 1) with r + ` = 1, and for fixed inhomogeneities ã(x) ∈ (0,∞),
x ∈ T, the inhomogeneous ASEP consists of particles performing continuous time random
walks on T. Jumping from x to x+1 occurs at rate ã(x)r, jumping from x+1 to x currents
at rate ã(x)`, and attempts to jump into occupied sites are forbidden. See Figure 1a.

(a) Inhomogeneous ASEP (b) The height function

Figure 1: Inhomogeneous ASEP on T and its height function. (a): The particle at x
jumps to x− 1 at rate ã(x− 1)` or to x+ 1 at rate ã(x)r; meanwhile the particle at 1 may
not jump to the occupied site 2. (b): The particle dynamics are coupled with a height
function as shown.

We will focus on the height function (also known as integrated current), denoted
h(t, x). To avoid technical difficulties, throughout this article we assume the particle
system to be half-filled so that N is even, and there are exactly N

2 particles. Under this
setup, letting

η(t, x) :=

{
1, if the site x if occupied at t,
0, if the site x if empty at t,

denote the occupation variables, we define the height function h : [0,∞) × T → R at
t = 0 to be

h(0, x) :=
∑

0<y≤x

(
2η(0, y)− 1

)
, x ∈ T.

Then, for t ≥ 0, each jump of a particle from x to x+ 1 decreases h(t, x) by 2, and each
jump of a particle from x+ 1 to x increases h(t, x) by 2, as depicted in Figure 1b.

We now provide two key definitions needed to state and prove our main results. The
Gärtner (or microscopic Hopf–Cole) transform of inhomogeneous ASEP is defined
to be

Z(t, x) := τ
1
2h(t,x)eνt, τ := r/`, ν := 1− 2

√
r`. (1.1)
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Weakly inhomogeneous ASEP

The other key definition is weak asymmetry scaling in which the system size N controls
the asymmetry and scaling of Z as

` = 1
2 (1 +N−

1
2 ), r = 1

2 (1−N− 1
2 ), ZN (t, x) := Z(tN2, xN). (1.2)

Remark 1.1. Even though the jumping rates vary in x ∈ T, in (1.1) we choose ν :=

1− 2
√
r` to be a constant. Such a feature is necessary for the Gärtner transform to work,

specifically for (2.5) in the following to hold. Put it differently, we choose the parameters
in (1.1) the same way as in the homogeneous case (i.e., ã(x) ≡ 1), and transfer the effect
of the inhomogeneity into the transformed equation; see (1.5) and (2.6).

Gärtner [Gär87] introduced his eponymous transform in the context of homogeneous
ASEP (i.e., ã(x) ≡ 1), where he observed that (1.1) linearizes the drift of the microscopic
equation, so that Z(t, x) solves a microscopic SHE:

dZ(t, x) =
√
r`∆Z(t, x) + dM(t, x), ∆Z(t, x) := Z(t, x+ 1) + Z(t, x− 1)− 2Z(t, x), (1.3)

where M(t, x) is an explicit martingale in t. Using Gärtner’s transform as a starting
point, Bertini and Giacomin [BG97] showed that a Stochastic Partial Differential Equation
(SPDE) arises under the weak asymmetry scaling. Namely, under the scaling (1.2), the
process ZN converges to the solution of the SHE:

∂tZ = 1
2∂xxZ + ξZ, (1.4)

where Z = Z(t, x), (t, x) ∈ [0,∞) ×R, and ξ = ξ(t, x) denotes the Gaussian spacetime
white noise (see, e.g., [Wal86]). In fact, the result of [BG97] is on the full-line Z, and in
that context ε→ 0 represents lattice spacing, which is identified with N−1 here. Also, the
work of [BG97] assumes near stationary initial conditions similar to the ones considered
here in (1.12). Other initial conditions were considered later in [ACQ11].

The first key observation of our present paper is that for inhomogeneities of the form
introduced above, Gärtner’s transform remains essentially valid. In particular, the Lapla-
cian term

√
r`∆ in the discrete SHE (1.3) is replaced by the spatially inhomogeneous

operator

H :=
√
r` ã(x)∆− ν

(
ã(x)− 1

)
, (1.5)

which involves a mixture of the Bouchaud trap model generator and a parabolic
Anderson model type potential (see the sketch of the proof later in this introduction for
further explanation and references for these terms). Besides this change, the martingale
is also modified.

Armed with the Gärtner transform, we investigate the effect of ã(x) at large scales in
the N →∞ limit. In doing so, we focus on the case where the effect of ã(x) is compatible
with the aforementioned SPDE limit. A prototype of our study is when

ã(x) = 1 + 1√
N
b(x), {b(x) : x ∈ T} i.i.d., bounded, with E[b(x)] = 0.

For this example of i.i.d. inhomogeneities, the N−
1
2 scaling is weak enough to have an

SPDE limit, while still strong enough to modify the nature of said limit.
To demonstrate the generality of our approach, we will actually consider a much

more general class of inhomogeneities. Let us first prepare some notation. For x, x′ ∈ T,
let [x, x′] ⊂ T denote the closed interval on T that goes counterclockwise (see Figure 1a
for the orientation) from x to x′, and similarly for open and half-open intervals. With |I|
denoting the cardinality of (i.e., number of points within) an interval I ⊂ T, we define
the geodesic distance

distT(x, x′) := |(x, x′]| ∧ |(x′, x]|.
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Weakly inhomogeneous ASEP

We will also be considering the continuum torus T := R/Z ' [0, 1), which is to be viewed
as the N →∞ limit of 1

N T.
Similarly for the continuum torus T , we let [x, x′] ⊂ T denote the interval going from

x to x′ counterclockwise, let |[x, x′]| denote the length of the interval, and let distT (x, x′),
x, x′ ∈ T denote the analogous geodesic distance on T . For u ∈ [0, 1], let Cu[0, 1] denote
the space of u-Hölder continuous functions f : [0, 1]→ R, equipped with the norm

‖f‖Cu[0,1] := ‖f‖L∞[0,1] + [f ]Cu(T ), (1.6)

[f ]Cu(T ) := sup
[x,x′]⊂T

( 1

|[x, x′]|u
∣∣∣ ∫

[x,x′]\{0}
df(y)

∣∣∣), (1.7)

where the integral is in the Riemann–Stieltjes sense. The integral excludes 0 so that the
possible jump of f there will not be picked up.

We now define the type of inhomogeneities to be studied. Throughout this article,
we will consider possibly random (ã(N)(x))x∈T that may depend on N . Set a(N)(x) :=

ã(N)(x)− 1, and put

A(N)(x, x′) := −1

2

∑
y∈(x,x′]

a(N)(y), x, x′ ∈ T. (1.8)

As announced previously, we will often write ã(N) = ã, a(N) = a, A(N) = A, etc., to simplify
notation. When x = 0, we will write A(x) := A(0, x). Consider also the scaled partial
sums AN (x, x′) := A(xN, x′N) and AN (x) := A(xN), which are linearly interpolated to be
functions on T 2 and [0, 1), respectively. For f : T2 → R, we define a seminorm that is
analogous to [·]Cu(T ) in (1.7):

[f ]u,N := sup
[x,x′]⊂T

( 1

(|(x, x′]|/N)u
|f(x, x′)|

)
. (1.9)

Throughout this article we assume {ã(x) : x ∈ T} satisfies:

Assumption 1.2.
(a) For some fixed constant c ∈ (0,∞), 1

c ≤ ã(x) ≤ c.
(b) For some uA > 0, the partial sum AN (x, x′) is uA-Hölder continuous:

lim
Λ→∞

lim inf
N→∞

P
[
[AN ]uA,N ≤ Λ

]
= 1.

(c) For the same uA > 0 as in (b) there exists a CuA [0, 1]-valued process A such that

sup
x∈[0,N−1

N )

|AN (x)−A(x)| −→P 0, as N →∞,

where→P denotes convergence in probability.

Remark 1.3.
(a) Assumption 1.2(a) ensures the rate ã(x) is always nonnegative so that the process

is well-defined.
(b) Note that we do not assume (a(0) + . . . a(N − 1)) = 0 or A(1) = 0.
(c) Under Assumption 1.2(c), the microscopic processes

{
A(N)

}
N

(and likewise{
a(N)

}
N

) and limiting process A are coupled on the same probability space.

Here we list a few examples that fit into our working assumption 1.2.

Example 1.4 (i.i.d. inhomogeneities). Consider a(N)(x) = 1√
N
b(x), where {b(x) : x ∈ T}

are i.i.d., bounded, with E[b(x)] = 0 and E[b(x)2] := σ2 > 0. Indeed, Assumptions 1.2(a)–
(b) are satisfied for any uA ∈ (0, 1

2 ) (and N large enough). The invariance principle
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Weakly inhomogeneous ASEP

asserts that A(N)(x/N) converges in distribution to 1
2σB(x) in C[0, 1], where B(x) denotes

a standard Brownian motion. By Skorokhod’s representation Theorem, after suitable
extension of the probability space, we can couple {A(N)}N and B together so that
Assumption 1.2(c) holds.

Example 1.5 (fractional Brownian motion). Let Bα(x), x ≥ 0, denote a fractional Brown-
ian motion of a fixed Hurst exponent α ∈ (0, 1). For x ∈ T(N), set â(N)(x) = B∗(x+1

N ) −
B∗( xN ), and a(N)(x) := â(N)(x)1{|â(N)(x)|<1/2}. To be clear, we define â(N)(N − 1) =

B∗(1)−B∗(N−1
N ). The indicator 1{|â(N)(x)|<1/2} forces Assumption 1.2(a) to hold. Since

each â(N)(x) is a mean-zero Gaussian of variance N−2α, we necessarily have that

P
[
a(N)(x) = â(N)(x), ∀x ∈ T

]
−→ 1, as N →∞.

Given this, it is standard to verify that Assumptions 1.2(b)–(c) hold for uA ∈ (0, α) and
A = − 1

2B
α.

Example 1.6 (Alternating). Fix any δ > 0 and let a(N)(x) = N−δ for x = 0, 2, 4, . . . , N − 2

and a(N)(x) = −N−δ for x = 1, 3, . . . , N − 1. It is readily verified that Assumptions 1.2(a)–
(c) hold for uA ∈ (0, δ] and A ≡ 0.

Roughly speaking, our main result asserts that, for inhomogeneous ASEP under
Assumption 1.2, ZN (t, x) (defined via (1.1) and (1.2)) converges in distribution to the
solution of the following SPDE:

∂tZ = HZ + ξZ, H := 1
2∂xx +A′(x). (1.10)

To state our result precisely, we first recall a result from [FN77] on the Schrödinger
operator with a rough potential. It is shown therein that, for any bounded Borel function
f : [0, 1]→ R, the expression 1

2∂xx + f ′(x) defines a self-adjoint operator on L2[0, 1] with
Dirichlet boundary conditions. This construction readily generalizes to T considered
here. In Section 4.1, for given A ∈ CuA [0, 1], we construct the semigroup Q(t) = etH by
giving an explicit formula for the kernel Q(t;x, x̃). We say that a C([0,∞), C(T ))-valued
process Z is a mild solution of (1.10) with initial condition Z ic ∈ C(T ), if

Z(t, x) =

∫
T
Q(t;x, x̃)Z ic(x̃)dx̃+

∫ t

0

∫
T
Q(t− s;x, x̃)Z(s, x̃)ξ(s, x̃)dsdx̃. (1.11)

Remark 1.7. In (1.11), Q(t;x, x̃) is taken to be independent of the driving noise ξ.
This being the case, throughout this article, for the analysis that involves the limiting
SPDE (1.10)–(1.11), we will assume without loss of generality that Q(t;x, x̃) is determin-
istic, and interpret the stochastic integral

∫
(. . .)ξ(s, x)dsdx in the Itô sense.

Using standard Picard iteration, we show in Proposition 4.7 that (1.11) admits at most
one solution for a given Z ic ∈ C(T ). Existence follows from our result Theorem 1.8 in
the following.

Fix uic > 0. Throughout this article we will also fix a sequence of deterministic initial
conditions for the ASEP height function

{
hic,(N)(·)}N , and let Z ic,(N)(x) be defined in

terms of hic,(N) via (1.1) and (1.2) at t = 0. We make the assumption that the initial
conditions are near stationary. This is easiest stated in terms of Z ic,(N) and posits that
there exists a finite constant c <∞ such that, with the shorthand notation Z ic := Z ic,(N),

Z ic(x) ≤ c, |Z ic(x)− Z ic(x′)| ≤ c
(distT(x,x′)

N

)uic
, ∀x, x′ ∈ T, N ∈ Z>0. (1.12)

Recall the scaled process ZN (t, x) from (1.2), and similarly scale Z ic
N (x) := Z ic,(N)(xN).

We linearly interpolate the process ZN (t, x) in x so that it is D([0,∞), C(T ))-valued. We
endow the space C(T ) with the uniform norm ‖ · ‖C(T ) (and hence uniform topology),
and, for each T <∞, endow the space D([0, T ], C(T )) with Skorohod’s J1-topology. We
use⇒ to denote weak convergence of probability laws. Our main result is the following:
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Weakly inhomogeneous ASEP

Theorem 1.8. Consider a half-filled inhomogeneous ASEP on T(N), with deterministic,
near stationary initial condition described as in the preceding. If, for some Z ic ∈ C(T ),

‖Z ic
N −Z ic‖C(T ) −→ 0, as N →∞,

then, under the scaling (1.2),

ZN =⇒ Z in D([0, T ], C(T )), as N →∞,

for each T <∞, where Z is the mild solution of (1.10) with initial condition Z ic.

Remark 1.9. Though we formulate all of our results at the level of SHE-type equations,
they can also be interpreted in terms of convergence of the ASEP height function (under
suitable centering and scaling) to a KPZ-type equation which formally is written as

∂tH(t, x) = 1
2∂xxH(t, x)− 1

2

(
∂xH(t, x)

)2
+ ξ(t, x)−A′(x). (1.13)

The solution to this equation should be (as in the case where A′(x) ≡ 0) defined via
H(t, x) = − logZ(t, x). One could also try to prove well-posedness of this inhomogeneous
KPZ equation directly, though this is outside the scope of our present investigation and
unnecessary for our aim.

Steps in the proof of Theorem 1.8

Given that Theorem 1.8 concerns convergence at the level of Z, our proof naturally
goes through the microscopic transform (1.1). As mentioned earlier, for homogeneous
ASEP, Z solves the microscopic SHE (1.3). On the other hand, with the presence of
inhomogeneities, it was not clear at all that Gärtner’s transform applies. As noted in
[BCS14, Remark 4.5], transforms of the type (1.1) are tied up with the Markov duality.
The inhomogeneous ASEP considered here lacks a certain type of Markov duality so that
one cannot infer a useful transform from Markov duality. For specifically, referring to
the notation in Remark 1.3 and [BCS14], the inhomogeneous ASEP does enjoy a Markov
duality for the observable Q̃(t, ~x) (which is essentially η(t, x)Z(t, x) in our notation), but
not for Q(t, ~x) (which is essentially Z(t, x) in our notation). The latter is crucial for
inferring a transform of the type (1.1).

The first step of the proof is to observe that, despite the (partial) lost of Markov
duality, Z still solves an SHE-type equation ((2.6) in the following), with two significant
changes compared to (1.3).

i) First the discrete Laplacian is now replaced by the generator of an inhomogeneous
random walk. Interestingly, this walk is exactly Bouchaud’s model [Bou92], which
is often studied with heavy-tail ã(x) (as opposed Assumption 1.2) in the context of
randomly trapped walks.

ii) Additionally, a potential term (the term νa(x)Z(t, x)dt in (2.6)) appears due to the
unevenness of quenched expected growth. For homogeneous ASEP with near
stationary initial condition, the height function grows at a constant expected
speed, and the term eνt in (1.1) is in place to balance such a constant growth.
Due to the presence of the inhomogeneity, in our case the quenched expected
growth is no longer a constant and varies among sites. This results in a fluctuating
potential that acts on Z(t, x).

The two terms in i)–ii) together make up an operator H (defined in (2.6)) of Hill-type
that governs the microscopic equation. Correspondingly, the semigroup Q(t) := etH

now plays the role of standard heat kernel in the case of homogeneous ASEP. We
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Weakly inhomogeneous ASEP

refer to Q(t) := etH and its continuum analog Q(t) as Parabolic Anderson Model (PAM)
semigroups.

Much of our analysis consists of estimating the kernels of Q(t) and Q(t). These
estimates are crucial in order to adapt and significantly extend the core argument
of [BG97]. To prepare for the analysis of Q(t), in Section 3, we establish bounds on
the transition kernel of Bouchaud’s walk, which was described in i), and show that
the kernel is well-approximated by that of the simple random walk. The transition
kernel of Bouchaud’s walk has been studied with heavy-tail inhomogeneities in the
context of trapping models — see the beginning of Section 3 for more discussions of this
literature. Here we consider bounded and vanishing homogeneity, which is technically
much simpler to deal with than heavy-tail ones. Given the vast literature (some of
which is surveyed at the beginning of Section 3) on heat kernel estimates, it is quite
possible that some of the bounds (Proposition 3.2(a)–(g)) obtained in this paper could
be derived from, or follow similarly from existing techniques. However, for the sake
of being self-contained, we provide with an elementary and short derivation via Picard
iteration of the heat kernel bounds we use.

Based on the bounds in Section 3 on the kernel of Bouchaud’s walk, in Section 4, we
express the PAM semigroup Q(t) using the Feynman–Kac formula, with Bouchaud’s walk
being the underlying measure. We then expand the Feynman–Kac formula, and develop
techniques to bound the resulting expansion to obtain estimates on the kernel of Q(t) and
its continuum analog. For the operator 1

2∆−V with a singular potential V , accessing the
corresponding semigroup has been a classic subject of study in mathematical physics.
In particular, semigroup kernels and the Feynman–Kac formulas have been studied in
[McK77, Sim82], and the expansion we use is similar to the one considered in [Sim79,
Section 14, Chapter V]. The major difference is that our potential A′ has negative
regularity, and hence is not function-valued.

Armed with the heat kernel bounds from Section 3 and the semigroup kernel expan-
sion from Section 4, the final two sections adapt the key ideas from the work of Bertini
and Giacomin [BG97] into the inhomogeneous setting to prove tightness (Section 5) and
identify the limiting SPDE (Section 6).

Further directions

There are a number of directions involving inhomogeneous ASEP which could warrant
further investigation. At a very basic level, in this article we limit our scope to half-filled
systems on the torus with near stationary initial conditions so as to simplify the analysis.
In particular, at half-filling, our height function is immediately periodic. With other filling
fractions this is easily resolved by introducing a height shift to make the height function
periodic. A much more significant concern is that with other filling fractions we need to
work in a moving frame. We expect to see KPZ-type fluctuations when viewed relative to
the characteristic velocity. Assuming half-filling and near stationary initial data ensures
that the characteristic velocity is 0, hence we do not need to work in a moving frame.
We do expect that it should be possible to relax both the half-filled condition and the
near stationarity, for instance to consider initial data where there are particles at sites 1

through aN and then holes elsewhere (here a ∈ (0, 1) is the filling fraction). Relaxing
the near stationary assumption should be doable as in [ACQ11] via a priori estimates
which show that after a short time the initial data looks near stationary. Working in
a moving frame is harder and the key self-averaging method used in [BG97] (see our
Proposition 6.3) has not been developed in the context of a moving frame. The duality
method from [CGST20] does work in a moving frame, but may not be readily applicable
here (see Remark 6.3). We believe that these questions warrant further investigation.
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Putting aside the weak asymmetry scaling, it is compelling to consider the nature of
the long-time hydrodynamic limit (i.e., functional law of large numbers) or fluctuations
(i.e., central limit type theorems) for inhomogeneous ASEP. For the homogeneous ASEP
the hydrodynamic limit is dictated by Hamilton-Jacobi PDEs and the fluctuations char-
acterized by the KPZ universality class — does any of this survive the introduction of
inhomogeneities? These questions are complicated by the lack of an explicit invariant
measure for our inhomogeneous ASEP, as well as a lack of any apparent exact solvability.

There are other types of inhomogeneities which can be introduced into ASEP and it
is natural to consider whether different choices lead to similar long-time scaling limits
or demonstrate different behaviors. Our choice of inhomogeneities stemmed from the
fact that upon applying Gärtner’s transform, it results in an SHE-type equation. On the
other hand, our methods seem not to apply to site (instead of bond) inhomogeneities (so
out of x we have `ã(x) and rã(x) as rates). It also does not seem to extend to non-nearest
neighbor systems. A more direct approach (e.g. regularity structures [Hai13]; energy
solutions [GJ14, GP18]; paracontrolled distributions [GIP15, GP17]; or renormalization
group [Kup16]) at the level of the height function may eventually prove useful in dealing
with these generalizations. For the homogeneous non-nearest neighbor ASEP (or other
homogeneous generalizations which maintain a product invariant measure), the energy
solution method has proved quite useful for demonstrating KPZ equation limit results —
see, for example, [GJ14].

Another type of inhomogeneities would involve jump out of x given by rates ã(x) + b

to the left and ã(x) − b to the right. A special case of this type of inhomogeneities is
studied in [FGS16] where they consider a single slow bond (i.e., ã(x) ≡ ã∗ for x 6= 0

and ã(0) < ã∗). In that case, they show that the inhomogeneities preserves the product
Bernoulli invariant measure (note that the inhomogeneities we consider do not preserve
this property). (In fact, the argument in [FGS16] for this preservation of the invariant
measure may be generalized to more than just a single-site inhomogeneity.) Using energy
solution methods, [FGS16] shows that depending on the strength of the asymmetry and
the slow bond, one either obtains a Gaussian limit with a possible effect of the slow bond,
or the KPZ equation without the effect of the slow bond. It would be interesting to see
if this type of inhomogeneities (at every bond, not just restricted to a single site) could
lead to a similar sort of KPZ equation with inhomogeneous spatial noise such as derived
herein.

[CR97, RT08, Cal15] characterized the hydrodynamic limit for ASEP and TASEP
with inhomogeneities that varies at a macroscopic scale. Those methods do not seem
amenable to rough or rapidly varying parameters (such as the i.i.d. or other examples
considered herein) and it would be interesting to determine their effect. A special
case of spatial inhomogeneities is to have a slow bond at the origin. The slow bond
problem is traditionally considered for the TASEP, with particular interest in how the
strength of slow-down affects the hydrodynamic limit of the flux, see [JL92, BSS14]
and the reference therein. As mentioned previously, this problem has been further
considered in the context of weakly asymmetric ASEP in [FGS16]. There are other
studies of TASEP (or equivalently last passage percolation) with inhomogeneities in
[GTW02b, GTW02a, LS12, EJ17, Emr16, BP17]. The type of inhomogeneities in those
works are of a rather different nature than those considered here. In terms of TASEP,
their inhomogeneities mean that the ith jump of the jth particle occur at rate πi + π̂j
for the inhomogeneity parameters {πi} and {π̂j}. Such inhomogeneities do not seem
to result in a temporally constant (but spatially varying) noise in the limit. Thus, the
exact methods which are applicable in those works do not seem likely to grant access
to the fluctuations or phenomena surrounding our inhomogeneous process or limiting
equation.
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As mentioned previously, upon applying Gärtner’s transform we obtain an SHE-
type equation with the generator of Bouchaud’s walk. Our particular result involves
tuning the waiting time rate near unity, and under such scaling the inhomogeneous
walk approximates the standard random walk. On the other hand, Bouchaud’s model
(introduced in [Bou92] in relation to aging in disordered systems; see also [BAČ06,
BACČR15] for example) is often studied under the assumption of heavy-tailed waiting
parameters. In such a regime, one expects to see the effect of trapping, and in particular
the FIN diffusion [FIN99] is a scaling limit that exhibits the trapping effect. It would be
interesting to consider a scaling limit of inhomogeneous ASEP in which the FIN diffusion
arises. See the beginning of Section 3 for further discussion and references related to
Bouchaud’s model.

For the case A′(x) = B′(x) (spatial white noise), the operator H (in (1.10)) that goes
into the SPDE (1.10) is known as Hill’s operator. There has been much interest in the
spectral properties of this and similar random Schrödinger type operator. In particular,
[FL60, Hal65, FN77, McK94, CM99, CRR06] studied the ground state energy in great
depth, and recently, [DL17] proved results on the point process for lowest few energies,
as well as the localization of the eigenfunctions. On the other hand, the semigroup
Q(t) := etH is the solution operator of the (continuum) PAM (see [CM94, Kön16] and
the references therein for extensive discussion on the discrete and continuum PAM). A
compelling challenge is to understand how this spectral information translates into the
long-time behavior of our SPDE. For instance, what can be said about the intermittency
of this SPDE?

Outline

In Section 2, we derive the microscopic (SHE-type) equation for Z(t, x). As seen
therein, the equation is governed by a Hill-type operator H that involves the generator of
an (Bouchaud-type) inhomogeneous walk. Subsequently, in Sections 3 and 4 we develop
the necessary estimates on the transition kernel of the inhomogeneous walk and Hill-type
operator. Given these estimates, we proceed to prove Theorem 1.8 in two steps: by first
establishing tightness of {ZN}N and then characterizing its limit point. Tightness is
settled in Section 5 via moment bounds. To characterize the limit point, in Section 6,
we develop the corresponding martingale problem, and prove that the process ZN (t, x)

solves the martingale problem.
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Notation

We use c(u, v, . . .) ∈ (0,∞) to denote a generic, positive, finite, deterministic constant,
that may change from line to line (or even within a line), but depends only on the desig-
nated variables u, v, . . .. We use subscript N to denote scaled processes/spaces/functions,
e.g., ZN in (1.2). Intrinsic (not from scaling) dependence on N will be designated by
superscript (N), e.g., T(N), though, to alleviate heavy notation, we will often omit such
dependence, e.g., T := T(N). For processes/spaces/functions that have discrete and
continuum versions, we often use the same letter but in different fonts: math backboard
for the discrete and math calligraphy for the continuum, e.g., A(x) and A(x). We list
some of the reoccurring notation below for convenience of the readers. The left column
is for discrete notation and the right is for analogous continuum notion. Some notation
only occurs in one of the two contexts.

T = Z/NZ: discrete torus

distT(·, ·): geodesic distance on T

ã(x): the inhomogeneity

a(x) := ã(x)− 1

A(x, x′): partial sum of a(x), see (1.8).

A(x) := A(0, x)

Ea[ · ] := E[ · |a(x), x ∈ T]

p(t): random-walk semigroup on T

pa(t): inhomogeneous random-walk

semigroup on T

r(t) := pa(t)− p(t)

H: the discrete PAM operator

Q(t) := etH

R(t) := Q(t)− p(t)

Ra(t) := Q(t)− pa(t)

T := R/Z (continuum) torus

distT (·, ·): geodesic distance on T
C[0, 1], C(T ): conti. functions on [0, 1] and T
Cu[0, 1]: u-Hölder conti. functions on [0, 1]

Hk(T ): the k-th Sobolev space on T

A(x): limit of A(Nx), see Assumption 1.2(c).

P(t) := e
1
2 t∆, the heat semigroup on T

H := 1
2∂xx+A′(x), the continuum PAM operator

Q(t) := etH

R(t) := Q(t)− P(t)

2 Microscopic equation for Z(t, x)

In this section we derive the microscopic equation for Z(t, x). In doing so, we view
{ã(x) : x ∈ T} as being fixed (quenched), and consider only the randomness due to the
dynamics of our process. In deriving this equation for Z(t, x) we will also treat N as fixed
and hence drop it from the notation. The inhomogeneous ASEP can be constructed as a
continuous time Markov process with a finite state space {0, 1}T, where {0, 1} indicates
whether a given site is empty or occupied. Here we build the inhomogeneous ASEP
out of graphical construction (see [Lig12, Cor12, Section 2.1.1]). For each x ∈ T, let
{P→(t, x)}t≥0 and {P←(t, x)}t≥0 be independent Poisson processes of rates rã(x) and
`ã(x) respectively. A particle attempts a jump across the bond (x, x + 1) to the right
(resp. left) whenever P→(·, x) (resp. P←(·, x)) increases. The jump is executed if the
destination is empty, otherwise the particle stays put. Let

F (t) := σ(P←(s, x), P→(s, x), a(x) : s ≤ t, x ∈ T) (2.1)

denote the corresponding filtration.
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Recall from (1.1) that τ := r
` . Consider when a particle jumps from x to x+ 1. Such a

jump occurs only if η(t, x)(1− η(t, x+ 1)) = 1, and, with Z(t, x) defined in (1.1), such a
jump changes Z(t, x) by (τ−1 − 1)Z(t, x). Likewise, a jump from x+ 1 to x occurs only if
η(t, x+ 1)(1− η(t, x)) = 1, and changes Z(t, x) by (τ − 1)Z(t, x). Taking into account the
continuous growth due to the term eνt in (1.1), we have that

dZ(t, x) = η(t, x)(1− η(t, x+ 1))(τ−1 − 1)Z(t, x)dP→(t, x)

+ η(t, x+ 1)(1− η(t, x))(τ − 1)Z(t, x)dP←(t, x) + νZ(t, x)dt. (2.2)

The differential in dZ(t, x) acts on the t variable. We may extract the expected growth
ã(x)rt and ã(x)`t from the Poisson processes P→(·, x) and P←(·, x), so that the processes

Q→(t, x) := P→(t, x)− ã(x)rt, Q←(t, x) := P←(t, x)− ã(x)`t

are martingales. We then rewrite (2.2) as

dZ(t, x) =
(
ã(x)η(t, x)(1− η(t, x+ 1))(τ−1 − 1)r + ã(x)η(t, x+ 1)(1− η(t, x))(τ − 1)`+ ν

)
·Z(t, x)dt+ dM(t, x)

=
(
ã(x)(`− r)

(
η(t, x)− η(t, x+ 1)

)
+ ν
)
Z(t, x)dt+ dM(t, x), (2.3)

where M(t, x) is an F -martingale given by

M(t, x) :=

∫ t

0

Z(s, x)
(
η(s, x)(1− η(s, x+ 1))(τ−1 − 1)dQ→(s, x)

+ η(s, x+ 1)(1− η(s, x))(τ − 1)dQ←(s, x)
)
. (2.4)

Recall from (1.1) that ν := 1 − 2
√
`r. Let ∆f(x) := f(x + 1) + f(x − 1) − 2f(x) denote

the discrete Laplacian. By considering separately the four cases corresponding to
(η(x), η(x+ 1)) ∈ {0, 1} × {0, 1}, it is straightforward to verify that

(`− r)
(
η(t, x)− η(t, x+ 1)

)
Z(t, x) =

√
`r∆Z(t, x)− νZ(t, x). (2.5)

Inserting this identity into (2.3), we obtain the following Langevin equation for Z(t, x):

dZ(t, x) = HZ(t, x)dt+ dM(t, x), (2.6)

H :=
√
r` ã(x)∆− ν a(x). (2.7)

Recall that A(x) := A(x, 0). From (1.8) we have a(x) = −2 (A(x) − A(x − 1)), and, un-
der weak asymmetry scaling (1.2), we have ν = 1

2N + O(N−2). We hence expect (and
will justify) that H behaves like H = 1

2∂xx + A′(x). This explains why H appears in
the limiting equation (1.10). For (1.10) to be the limit of (2.6), the martingale incre-
ment dM(t, x) should behave like ξZ. To see why this should be true, let us calculate
the quadratic variation of M(t, x). The collection of compensated Poisson processes{
Q→(·, x), Q←(·, x)

}
x∈T

are all independent of each other. Thus, from (2.4), we have
that

d〈M(t, x),M(t, x̃)〉
= 1{x=x̃}Z

2(t, x)

·
(
η(t, x)(1− η(t, x+ 1))(τ−1 − 1)2ã(x)r + η(t, x+ 1)(1− η(t, x))(τ − 1)2ã(x)`

)
dt

= 1{x=x̃}Z
2(t, x)(r − `)2ã(x)

(
1
` η(t, x) + 1

rη(t, x+ 1)−
(

1
r + 1

`

)
η(t, x)η(t, x+ 1)

)
dt, (2.8)
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Weakly inhomogeneous ASEP

where 1A(·) denotes the indicator function of a given set A. Under the weak asymmetry
scaling (1.2), (r − `)2 = 1

N +O(N−2) acts as the relevant scaling factor for the quadratic
variation. In addition to this scaling factor, we should also consider the quantities that
involve η(t, x) and η(t, x + 1). Informally speaking, since the system is half-filled (i.e.,
having N/2 particles), we expect η(t, x) and η(t, x + 1) to self-average (in t) to 1

2 , and
expect η(t, x)η(t, x + 1) to self-average to 1

4 . With r, ` → 1
2 and ã(x) → 1, we expect

d〈M(t, x),M(t, x̃)〉 to behave like N−11{x=x̃}Z
2(t, x)dt, and hence dM(t, x) to behaves

like ξZ, as N →∞.
Equation (2.6) gives the microscopic equation in differential form. For subsequent

analysis, it is more convenient to work with the integrated equation. Consider the
semigroup Q(t) := etH, which is well-defined and has kernel Q(t;x, x̃) because H acts on
the space {f : T→ R} of finite dimensions. Using Duhamel’s principle in (2.6) gives

Z(t, x) =
∑
x̃∈T

Q(t;x, x̃)Zic(x̃) +

∫ t

0

∑
x̃∈T

Q(t− s;x, x̃)dM(s, x̃). (2.9)

More generally, initiating the process from time t∗ ≥ 0 instead of 0, we have

Z(t, x) =
∑
x̃∈T

Q(t− t∗;x, x̃)Z(t∗, x̃) +

∫ t

t∗

∑
x̃∈T

Q(t− s;x, x̃)dM(s, x̃), t ≥ t∗. (2.10)

The semigroup Q(t) admits an expression by the Feynman–Kac formula as(
Q(t)f

)
(s) = Ex

[
e
∫ t
0
νa(Xa(s))dsf(Xa(t))

]
. (2.11)

Hereafter Ex[ · ] (and similarly Px[ · ]) denotes expectation with respect to a reference
process starting at x. Here the reference process Xa(t) is a walk on T that attempts
jumps from Xa(t) to Xa(t)± 1 in continuous time (each) at rate

√
r` ã(Xa(t)).

Remark 2.1. It is natural to wonder whether it is possible to directly (without appealing
to the Gärtner transform and SHE-type equation) see convergence of the height function
to the KPZ-type equation (1.13). While a direct proof is certainly beyond the scope of
this paper, we will briefly explain at a very heuristic level where the structure of the
KPZ-type equation (1.13) arises from the microscopic evolution of the height function.

There are two changes that can occur for the ASEP height function h(t, x). Using
the notation ∇f(x) = f(x+ 1)− f(x), we have that h(t, x) can increase by 2 at rate `ã(x)

provided that ∇h(t, x) = 1 and ∇h(t, x − 1) = −1; and h(t, x) can decrease by 2 at rate
rã(x) provided that ∇h(t, x) = −1 and ∇h(t, x − 1) = 1. Since ∇h only takes values in
{−1, 1} we can encode the indicator functions as linear functions of ∇h. This gives rise
to the following evolution equation:

dh(t, x) =
(

2`ã(x)
1 +∇h(t, x)

2

1−∇h(t, x− 1)

2

− 2rã(x)
1−∇h(t, x)

2

1 +∇h(t, x− 1)

2

)
dt+ dM̃(t, x),

where M̃(t, x) is an explicit martingale. Recalling that ∆f(x) = ∇f(x)−∇f(x− 1), we
can rewrite the above in the suggestive form

dh(t, x) =
( (`+ r)ã(x)

2
∆h(t, x)− (`− r)ã(x)

2
∇h(t, x)∇h(t, x−1)+

(`− r)ã(x)

2

)
dt+dM̃(t, x).

While it is still highly non-trivial to prove convergence (with appropriate renormalization)
of these terms to those in (1.13), it is now apparent that the new spatial noise A′(x)

comes from the term (`−r)ã(x)
2 .
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3 Transition probability of the inhomogeneous walk Xa(t)

The focus of this section and Section 4 is to control the semigroup Q(t) and its
continuum counterpart Q(t). As the first step, in this section we establish estimates on
the transition kernel

pa(t;x, x̃) := Px
[
Xa(t) = x̃

]
(3.1)

of the inhomogeneous walk Xa(t). Note that Xa(t) and pa depend on N through a(x) =

a(N)(x) and through the underlying torus T = T(N), but we omit such dependence in the
notation.

The kernel pa has been studied with heavy-tailed a(x) in the context of trapped
models. For heavy-tailed a(x), [Čer06, Lemma 3.1] obtained bounds on pa(t;x, x), and
[Čer06, Lemma 3.2] and [Cab15] demonstrated stretched exponential tails in large
deviations of Xa(x), which confirmed a prediction [BB03] based on the trapping nature
of Bouchaud’s walk. Estimates on the analogous continuum kernel (i.e., for the FIN
diffusion) have been obtained [CHK19]. As mentioned previously, here we consider
bounded and vanishing a(x), which is technically much simpler than heavy-tailed a(x).
These bounds mentioned above essentially imply Proposition 3.2(a).

Due to the technical nature of how pa enters our subsequent analysis, we need
detailed bounds. Specifically, we will derive in Proposition 3.2 bounds on pa(t, ·), its
Hölder continuity, its gradients, and its difference between the homogeneous walk kernel.
Put in a broader context, the type of bounds we seek to obtain on pa(t, ·) and its Hölder
continuity go under the name of Nash–Aronson bounds [Nas58, Aro67] in elliptic PDEs
(we thank one of the anonymous referees for pointing us to this literature). These
type of bounds have since been pursued and generalized in various contexts such as
Riemannian manifolds, metric measure spaces, and fractals. We point to [Gri92, SC02]
and the references therein. On Riemannian manifolds, bounds on the gradient of heat
kernels have been derived in, for example, [CLY81, LY86]. Modern works in probability
have been investigating the analogous heat kernel in discrete settings. For the random
conductance model, heat kernel estimates have been derived at various generality:
for bounded below conductance in [BD10], and for general conductance with certain
integrability assumptions in [Fol11, ADS15, AN19]. It was shown in [BBHK08, Bis11]
that anomalies in heat-kernel decay may occur without integrability assumptions. The
works [DF19, DF20] consider layered random conductance models and establish kernel
estimates. For an overview on the random conductance model we point to [Bis11]. We
also point out that a gradient estimate on Green’s function of percolation clusters has
been obtained in [BDCKY15, Theorem 6].

The starting point of our analysis is the backward Kolmogorov equation

∂tp
a(t;x, x̃) =

√
r` ã(x)∆xp

a(t;x, x̃), pa(0;x, x̃) = 1{x̃}(x), (3.2)

where 1A(·) denotes the indicator function of a given set A. Under the scaling (1.2),
we have

√
r` → 1

2 as N → ∞. Indeed, the coefficient
√
r` can be scaled to 1

2 by a

change-of-variable t 7→ 2
√
`rt, so without loss of generality, we alter the coefficient

√
r`

in (3.2) and consider

∂tp
a(t;x, x̃) = 1

2 ã(x)∆xp
a(t;x, x̃), pa(0;x, x̃) = 1{x̃}(x). (3.2’)

As announced previously, we use c(u, v, . . .) ∈ (0,∞) to denote a generic, positive,
finite, deterministic constant, that may change from line to line (or even within a line),
but depends only on the designated variables u, v, . . ..

Recall that ã(x) = 1+a(x). Our strategy of analyzing pa is perturbative. We solve (3.2’)
iteratively, viewing a(x) as a perturbation. Such an iteration scheme begins with the
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unperturbed equation

∂tp(t;x, x̃) = 1
2∆xp(t;x, x̃), p(0;x, x̃) = 1{x̃}(x), (3.3)

which is solved by the transition probability p(t;x, x̃) = Px[X(t) = x̃] of the continuous
time symmetric simple random walk X(t) on T. Here, we record some useful bounds on
p. Let ∇f(x) := f(x+ 1)− f(x) denote the forward discrete gradient. When needed we
write ∇x or ∆x to highlight which variable the operator acts on. Given any u ∈ (0, 1] and
T <∞,

|p(t;x, x̃)| ≤ c(T )√
t+ 1

, (3.4a)

|p(t;x, x̃)− p(t, x′, x̃)| ≤ c(u, T )
distT(x, x′)u

(t+ 1)(1+u)/2
, (3.4b)∑

x̃∈T

|p(t;x, x̃)− p(t;x′, x̃)| ≤ c(u, T )
distT(x, x′)u

(t+ 1)u/2
, (3.4c)

∑
x̃∈T

|∆xp(t;x, x̃)| ≤ c(T )

t+ 1
, (3.4d)

∑
x∈T

|∆xp(t;x, x̃)| ≤ c(T )

t+ 1
, (3.4e)

|p(t;x, x̃)|distT(x, x̃)u ≤ c(T )(t+ 1)−(1−u)/2, (3.4f)∑
x̃∈T

|p(t;x, x̃)|distT(x, x̃)u ≤ c(T )(t+ 1)u/2, (3.4g)

∑
x̃∈T

|∇xp(t;x, x̃)|distT(x, x̃)u ≤ c(u, T )

(1 + t)(1−u)/2
, (3.4h)

∑
x̃∈T

|∇x̃p(t;x, x̃)|distT(x, x̃)u ≤ c(u, T )

(1 + t)(1−u)/2
, (3.4i)

for all x, x′, x̃ ∈ T and t ≤ N2T . The bounds (3.4a)–(3.4i) follow directly from known
results on the analogous kernel on Z. Indeed, with pZ(t;x− x̃) := Px[XZ(t) = x̃] denoting
the transition kernel of continuous time symmetric simple random walk XZ(t) on the
full-line Z, we have

p(t;x, x̃) =
∑
i∈Z

pZ(t;x− x̃+ iN), x, x̃ ∈ {0, . . . , N − 1}. (3.5)

The full-line kernel pZ can be analyzed by standard Fourier analysis, as in, e.g., [DT16,
Equation (A.11)-(A.14)]. Relating these known bounds on pZ to p gives (3.4a)–(3.4i).

Now we will start to study the perturbations around the solution to (3.3). Let Γ(v)

denote the Gamma function, and let

Σn(t) :=
{

(s0, . . . , sn) ∈ (0,∞)n+1 : s0 + . . .+ sn = t
}
. (3.6)

In subsequent analysis, we will make frequent use of the Dirichlet formula∫
Σn(t)

n∏
i=0

svi−1
i dn~s = t(v0+...+vn)−1

∏n
i=0 Γ(vi)

Γ(v0 + . . .+ vn)
, v0, . . . , vn > 0. (3.7)

Note that the constraint in (3.6) reduces one dimension out the (n + 1)-dimensional
variable (s0, . . . , sn). In particular, the integration in (3.7) is n-dimension, and we adopt
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the notation

dn~s = (ds1 · · · dsn) = (ds0ds2 · · · dsn) = · · · =
∏

i∈{0,...,n}\{i0}

dsi, i0 ∈ {0, . . . , n}. (3.8)

In the following we view pa as a perturbation of p, and set

r(t;x, x̃) := pa(t;x, x̃)− p(t;x, x̃). (3.9)

Lemma 3.1. Given any u, v ∈ (0, 1] and T <∞,

(a) |r(t;x, x̃)| ≤ 1√
t+ 1

∞∑
n=1

(c(v, T )Nv‖a‖L∞)n

Γ(nv+1
2 )

,

(b)
∑
x̃∈T

|r(t;x, x̃)| ≤
∞∑
n=1

(
c(T )‖a‖L∞(T) log(N + 1)

)n
,

(c)
∑
x̃∈T

|r(t;x, x̃)− r(t;x′, x̃)| ≤ distT(x, x′)u

(t + 1)u/2

∞∑
n=1

(
(c(u, v, T )Nv‖a‖L∞)n

Γ( 2−u+nv
2 )

+ (c(u, v, T )‖a‖L∞)n
)
,

(d) |r(t;x, x̃)−r(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)(1+u)/2

( ∞∑
n=1

(c(u, v, T )Nv‖a‖L∞)n

Γ( 1−u+nv
2 )

+(c(u, v, T )‖a‖L∞)n
)

,

for all x, x′, x̃ ∈ T, t ∈ [0, N2T ].

Proof. The starting point of the proof is the backward Kolmogorov equation (3.2’). We
split the inhomogeneous Laplacian 1

2 ã(x)∆x into 1
2∆x + 1

2a(x)∆x, and rewrite (3.2’) as

pa(t;x, x̃) = p(t;x, x̃) +

∫
Σ1(t)

∑
x1∈T

p(s0;x, x1)
a(x1)

2
∆x1

pa(s1;x1, x̃)ds1. (3.10)

Through Picard iteration we obtain

r(t;x, x̃) =

∞∑
n=1

rn(t;x, x̃), (3.11)

where, under the convention x0 := x and xn+1 := x̃, and the notation (3.6) and (3.8),

rn(t;x, x̃) :=

∫
Σn(t)

∑
x1,...,xn∈T

p(s0;x0, x1)
n∏
i=1

a(xi)

2

(
∆xip(si;xi, xi+1)

)
dn~s. (3.12)

Indeed, the infinite series in (3.11) converges for fixed (t, x, x̃). To see this, in (3.12),
(crudely) bound

|rn(t;x, x̃)| ≤ Nn‖ 1
2a‖

n
L∞(T)

(
4‖p‖L∞([0,t]×T)

)n+1
∫

Σn(t)

dn~s ≤ c(N, a, t)n 1
(n+1)! .

Given the expression (3.11)–(3.12), we proceed to prove the bounds (a)–(d).

(a) In (3.12), use (3.4a) to bound p(s0;x0, x1) by c√
s0

, and then sum over x1, . . . , xn in
order, using (3.4e). This yields

|rn(t;x, x̃)| ≤
(
c‖a‖L∞(T)

)n ∫
Σn(t)

1
√
s0

n∏
i=1

dsi
si + 1

. (3.13)
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To bound the last expression, for the given v ∈ (0, 1), we write 1
si+1 ≤ c(v)s

v/2−1
i , and

apply the Dirichlet formula (3.7) with (v0, . . . , vn) = (1/2, v/2, . . . , v/2) to get

|rn(t;x, x̃)| ≤
(
c(v)‖a‖L∞(T)

)n ∫
Σn(t)

s
− 1

2
0

n∏
i=1

s
v/2−1
i dsi =

1√
t

(tv/2c(v)‖a‖L∞(T))
n

Γ(nv+1
2 )

. (3.14)

Referring back to (3.13), we see that |rn(t;x, x̃)| is bounded by (c‖a‖L∞(T))
n when t ≤ 1,

uniformly over x, x̃ ∈ T. This being the case, by making the constant c(v) larger in (3.14),
we replace the factor 1√

t
with 1√

t+1
. Since tv/2 ≤ (TN2)v/2 = c(v, T )Nv, summing over

n ≥ 1 yields the desired bound.
(b) Given the expansion (3.11), our goal is to bound

∑
x̃∈T |rn(t;x, x̃)|, for n = 1, 2, . . ..

To this end, sum both sides of (3.12) over x̃ ∈ T. Under the convention x0 := x and the
relabeling xn+1 = x̃, we bound∑

x̃∈T

|rn(t;x, x̃)| ≤ ‖ 1
2a‖

n
L∞(T)

∫
Σn(t)

∑
x1,...,xn+1∈T

p(s0;x0, x1)
n∏
i=1

∣∣∆xip(si;xi, xi+1)
∣∣dn~s.

(3.15)

In (3.15), sum over xn+1, . . . , x2, x1 in order, using the bound (3.4d) for the sum over
xn+1, . . . , x2 and using

∑
x1

p(s0;x0, x1) = 1 for the sum over x1. We then obtain

∑
x̃∈T

|rn(t;x, x̃)| ≤
(
c‖a‖L∞(T)

)n ∫
Σn(t)

n∏
i=1

dsi
si + 1

.

To bound the last integral, performing a change of variable s′i := si/t, we see that∑
x̃∈T

|rn(t;x, x̃)|

≤
(
c‖a‖L∞(T)

)n ∫
Σn(1)

n∏
i=1

dsi
si + t−1

≤
(
c‖a‖L∞(T)

)n ∫
Σn(1)

e1−s1−...−sn
n∏
i=1

dsi
si + t−1

≤ e
(
c‖a‖L∞(T)

)n n∏
i=1

∫ ∞
0

e−si

si + t−1
dsi ≤

(
c‖a‖L∞(T)

)n
(1 + (log t)+)n.

With t ≤ N2T , summing both sides over n ≥ 1 gives the desired result.
(c) Taking the difference of (3.12) for x = x and x = x′, under the relabeling xn+1 = x̃,

here we have∑
x̃∈T

|rn(t;x, x̃)− rn(t;x′, x̃)|

≤ ‖ 1
2a‖

n
L∞(T)

∫
Σn(t)

∑
x1,...,xn+1∈T

|p(s0;x, x1)− p(s0;x′, x1)|
n∏
i=1

∣∣∆xip(si;xi, xi+1)
∣∣dn~s.

Sum over xn+1, . . . , x2, x1 in order, using the bound (3.4d) for the sum over xn+1, . . . , x2,
and using the bound (3.4c) for the sum over x1. From this we obtain∑

x̃∈T

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤
(
c(u)‖a‖L∞(T)

)n ∫
Σn(t)

distT(x, x′)u

(s0 + 1)u/2

n∏
i=1

dsi
si + 1

. (3.16)

To bound the integral (3.16), we treat separately t ≤ 1 and t ≥ 1. For t ≤ 1, bounding
1

(s0+1)u/2 ≤ 1 and 1
1+si

≤ 1 on the r.h.s. of (3.16) gives∑
x̃∈T

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤ distT(x, x′)u
(
c(u)‖a‖L∞(T)

)n
, for all t ≤ 1. (3.17)
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Next, for the given v ∈ (0, 1), we write 1
(s0+1)u/2 ≤ s

−u/2
0 and 1

si+1 ≤ c(v)s
v/2−1
i in (3.16),

and apply the Dirichlet formula (3.7) with (v0, . . . , vn) = (1− u/2, v/2, . . . , v/2) to get∑
x̃∈T

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤ distT(x, x′)u
(
c(u, v)‖a‖L∞(T)

)n ∫
Σn(t)

s
−u/2
0

n∏
i=1

s
v/2−1
i dsi

= distT(x, x′)u
1

tu/2
(tv/2c(u, v)‖a‖L∞(T))

n

Γ( 2−u+nv
2 )

.

For t ∈ [1, N2T ], we have 1
tu/2 ≤ 2

(t+1)u/2 and tv/2 ≤ c(T )Nv. Hence

∑
x̃∈T

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)u/2
(Nvc(u, v, T )‖a‖L∞(T))

n

Γ( 2−u+nv
2 )

, for t ∈ [1, N2T ].

(3.18)

Now summing (3.17)–(3.18) over n ≥ 1 concludes the desired bound.
(d) Taking the difference of (3.12) for x = x and x = x′, here we have

|rn(t;x, x̃)− rn(t;x′, x̃)|

≤ ‖ 1
2a‖

n
L∞(T)

∫
Σn(t)

∑
x1,...,xn∈T

|p(s0;x, x1)− p(s0;x′, x1)|
n∏
i=1

∣∣∆xip(si;xi, xi+1)
∣∣dn~s.

Use (3.4b) to bound the expression |p(s0;x, x1) − p(s0, x
′, x1)| by c(u)distT(x, x′)u(s0 +

1)−
1+u

2 , and then sum over x1, . . . , xn using (3.4e). We then obtain

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤
(
c(u)‖a‖L∞(T)

)n ∫∑
n(t)

distT(x, x′)u

(s0 + 1)(1+u)/2

n∏
i=1

dsi
si + 1

. (3.19)

To bound the integral (3.19), we treat separately t ≤ 1 and t ≥ 1. For t ≤ 1, bounding
1

(s0+1)(1+u)/2 ≤ 1 and 1
1+si

≤ 1 on the r.h.s. of (3.19) gives

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤ distT(x, x′)u
(
c(u)‖a‖L∞(T)

)n
, for t ≤ 1. (3.20)

Next, for the given v ∈ (0, 1), we write 1
(s0+1)(1+u)/2 ≤ s

−(1+u)/2
0 and 1

si+1 ≤ c(v)sv−1
i

in (3.19), and apply the Dirichlet formula (3.7) with (v0, . . . , vn) = ((1−u)/2, v/2, . . . , v/2)

to get

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤ distT(x, x′)u
(
c(u, v)‖a‖L∞(T)

)n ∫
Σn(t)

s
−(1+u)/2
0

n∏
i=1

s
v/2−1
i dsi

=
distT(x, x′)v

t
1+u

2

(tv/2c(u, v))n

Γ( 1−u+nv
2 )

.

For t ∈ [1, N2T ], we have 1
t(1+u)/2 ≤ 2

(t+1)(1+u)/2 and tv/2 ≤ c(T )Nv. Hence

|rn(t;x, x̃)− rn(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)
1+u

2

(Nvc(u, v, T )‖a‖L∞(T))
n

Γ( 2−u+nv
2 )

, for t ∈ [1, N2T ]. (3.21)

Now summing (3.17)–(3.18) over n ≥ 1 concludes the desired bound.

We now incorporate Lemma 3.1 with the assumed properties of a(x) from Assump-
tion 1.2. To simplify notation, we will say that events {ΩΛ,N}Λ,N hold ‘with probability
→Λ,N 1’ if

lim
Λ→∞

lim inf
N→∞

P
[
ΩΛ,N

]
= 1. (3.22)
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Proposition 3.2. For given T < ∞, u ∈ (0, 1] and v ∈ (0, uA), the following hold with
probability→Λ,N 1: for all x, x′, x̃ ∈ T and t ∈ [0, N2T ],

(a) |pa(t;x, x̃)| ≤ 1√
t+ 1

Λ,

(b) |pa(t;x, x̃)− pa(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)(1+u)/2
Λ,

(c)
∑
x̃∈T

|pa(t;x, x̃)− pa(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)u/2
Λ,

(d) pa(t;x, x̃)distT(x, x̃)v ≤ (t+ 1)−(1−v)/2Λ,

(e)
∑
x̃∈T

pa(t;x, x̃)distT(x, x̃)v ≤ (t+ 1)v/2Λ,

(f)
∑
x̃∈T

|∇xpa(t;x, x̃)|
(distT(x, x̃)

N

)v
≤ Λ,

(g)
∑
x̃∈T

|∇x̃pa(t;x, x̃)|
(distT(x, x̃)

N

)v
≤ Λ,

(h) |r(t;x, x̃)| ≤ N−v√
t+ 1

Λ,

(i)
∑
x̃∈T

|r(t;x, x̃)| ≤ N−vΛ,

(j)
∑
x̃∈T

|r(t;x, x̃)− r(t;x′, x̃)| ≤ (distT(x, x′))u

(t+ 1)u/2
N−vΛ,

(k) |r(t;x, x̃)− r(t;x′, x̃)| ≤ (distT(x, x′))u

(t+ 1)(u+1)/2
N−vΛ.

Proof. Recall the definition of A(x, x′) from (1.8) and recall the seminorm [ · ]uA,N

from (1.9). With a(x) = A(0, x)− A(0, x− 1), we have

|a(x)| ≤ N−uA [AN ]uA,N . (3.23)

In particular, under Assumption 1.2(b), ‖a‖L∞(T) ≤ N−uAΛ with probability→Λ,N 1. Take
v′ = uA − v in Lemma 3.1, sum the results over n ≥ 1 therein, and use the fact that
supξ≥ξ0 Γ(ξ)−1 < ∞, for all ξ0 > 0. We see that events (h)–(k) hold with probability
→Λ,N 1.

With pa = p + r, (a)–(c) follow by combining the bounds (we just showed they hold
with probability→Λ,N 1) in (h), (j) and (k) with those in (3.4a)–(3.4c). As for (d)–(g), with

pa = p + r and distT(x,x′)
N ≤ 1, we write

pa(t;x, x̃)distT(x, x′)v ≤ p(t;x, x̃)distT(x, x′)v + |r(t;x, x̃)|Nv, (3.24)∑
x̃∈T

pa(t;x, x̃)distT(x, x′)v ≤
∑
x̃∈T

p(t;x, x̃)distT(x, x′)v +
∑
x̃∈T

|r(t;x, x̃)|Nv, (3.25)

and, for y = x, x̃,∑
x̃∈T

|∇ypa(t;x, x̃)|
(distT(x, x′)

N

)v
≤
∑
x̃∈T

|∇yp(t;x, x̃)|
(distT(x, x′)

N

)v
+
∑
x̃∈T

|∇yr(t;x, x̃)|

≤
∑
x̃∈T

|∇yp(t;x, x̃)|
(distT(x, x′)

N

)v
+
∑
x̃∈T

2|r(t;x, x̃)|.

(3.26)

Applying (3.4f)–(3.4i) as well as (h) and (i) (that we have already established in this
proposition), we can bound the corresponding terms in (3.24)–(3.26). From this and by
using (t+ 1)−1/2 ≤ (t+ 1)−(1−v)/2 we obtain the desired results for (d)–(g).
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4 The semigroups Q(t) and Q(t)

Our goal in this section is to establish the relevant properties of the semigroups
Q(t) = etH and Q(t) = etH. In particular, in Section 4.1, for any given potential A′, we will
construct Q(t) = etH and establish bounds using integration by parts techniques. Then,
in Section 4.2, we generalize these techniques to the microscopic setting to establish
bounds on Q(t).

As mentioned in the introduction, we will utilize an expansion of the Feynman–Kac
formula, which is similar to the expansion considered in [Sim79, Section 14, Chapter V]
for singular but function-valued potentials. With the potential A′(x) being non-function-
valued, we need to extract the smoothing effect of the heat semigroup to compensate
the roughness of A′(x). This is done by integration by parts in Lemmas 4.2 and 4.8.

4.1 Macroscopic

Recall that H = 1
2∂xx +A′(x). As previously explained in Remark 1.7, for the analysis

within this subsection (that pertains to the limiting SPDE), the randomness of A plays
no role, and we will assume without loss of generality A is a deterministic function in
CuA [0, 1].

We begin by recalling the classical construction of H from [FN77]. Note that, even
though [FN77] treatsH on the closed interval [0, 1] with Dirichlet boundary condition, the
(relevant) argument carries through for T as well. Write H1(T ) := {f ∈ T → R : f, f ′ ∈
L2(T )} for the Sobolev space, equipped with the norm ‖f‖2H1(T ) := ‖f‖2L2(T ) + ‖f ′‖2L2(T ).

For f, g ∈ L2(T ), write 〈f, g〉 = 〈f, g〉L2(T ) :=
∫
T fgdx for the inner product in L2(T ), and

similarly 〈f, g〉H1(T ) :=
∫
T (fg + f ′g′)dx. Consider the symmetric quadratic form

FA : H1(T )×H1(T )→ R, FA(f, g) := 1
2 〈f
′, g′〉 − f(1)g(1)A(1) +

∫ 1

0

(f ′g + fg′)(x)A(x)dx.

If A were smooth, integration by parts gives FA(f, g) = −〈f,Hg〉.
We now appeal to [Gru08, Definition 12.14] to define H to be the operator associated

to FA. More precisely, let

D(H) :=
{
f ∈ H1(T ) : there exists f̃ ∈ H1(T )

such that − 〈Hf̃ , g〉 = FA(f, g), for all g ∈ H1(T )
}
.

For each f ∈ D(H), the corresponding f̃ is unique, and we defineHf := f̃ . To summarize,

D(H) ⊂ H1(T ), −〈Hf, g〉 = FA(f, g), ∀(f, g) ∈ D(H)×H1(T ). (4.1)

On T we have the following elementary bound

‖ · ‖L∞(T ) ≤
√

2‖ · ‖H1(T ) (4.2)

To see this, for x, y ∈ T , write |f(x)| ≤ |f(y)|+
∫

[x,y]
|f ′(ỹ)|dỹ, and integrate in y ∈ T to

get |f(x)| ≤ ‖f‖L1(T ) + ‖f ′‖L1(T ) ≤
√

2‖f‖H1(T ). Now, with A being bounded, using (4.2)
it is readily checked (see [FN77, Lemma 1]) that

FA(f, g) + c〈f, g〉L2(T ) ≥ 1
c 〈f, g〉H1(T ), FA(f, g) ≤ c〈f, g〉H1(T ), f, g ∈ H1(T ),

for some constant c = c(A) depending only on A. Given these properties, and that FA
is symmetric, it then follows that (see [Gru08, Theorem 12.18, Corollary 12.19]) H is a
self-adjoint, closed operator, with D(H) being dense in L2(T ).
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Having constructed H, we now turn to the semigroup Q(t) = etH. Heuristically, the
semigroup should be given by the Feynman–Kac formula(

Q(t)f
)
(x)“ = ”Ex

[
e
∫ t
0
A′(B(s))dsf(B(t))

]
,

where B denotes a Brownian motion on T starting from x. The issue with this formula
is that, under our assumptions, A ∈ CuA [0, 1] is not necessarily differentiable, namely
the potential A′ may not be function-valued. As mentioned previously, for function-
valued potentials, such Feynman–Kac formula have been rigorously made sense in
[McK77, Sim79, Sim82]. Continuing, for the moment, with the informal Feynman–Kac
formula, we Taylor-expand the exponential function exp(

∫ t
0
A′(B(s))ds), and exchange

the expectation Ex[·] with the integrals. This yields

(Q(t)f)(x)“ = ”Ex

[ ∞∑
n=0

1

n!

∫
[0,t]n

( n∏
i=1

A′(B(ti))dti

)
f(B(t))

]
= Ex

[ ∞∑
n=0

∫
0<t1<...<tn<t

( n∏
i=1

A′(B(ti))dti

)
f(B(t))

]
“ = ”

∫
T
Q(t;x, x̃)f(x)dx,

where Q is defined as follows. With the notation Σn(t) from (3.6), dn~s from (3.8), the
convention x0 := x, x̃ := xn+1, and with

P(t;x, x̃) =
∑
i∈Z

1√
2πt

e−
|x−x̃+i|2

2t , x, x̃ ∈ [0, 1) (4.3)

denoting the standard heat kernel on T , we define

Q(t;x, x̃) := P(t;x, x̃) +
∞∑
n=1

Rn(t;x, x̃), (4.4)

Rn(t;x, x̃) :=

∫
Σn(t)

Kn(~s;x, x̃)dn~s, (4.5)

Kn(~s;x, x̃) = Kn(s0, . . . , sn;x, x̃) :=

∫
T n

n∏
i=0

P(si;xi, xi+1)

n∏
i=1

dA(xi). (4.6)

Note that, for each fixed (s0, . . . , sn) ∈ Σn(t), the function
∏n
i=0 P(si;xi, xi+1) is

C∞(T n+2) in (x0, . . . , xn+1), so (4.6) is actually a well-defined Riemann–Stieltjes integral.
Namely, despite the heuristic nature of the preceding calculations, the function Q(t;x, x̃)

in (4.4) is well-defined as long as the summations and integrals in (4.4)–(4.5) converge
absolutely. This construction will be carried out in Proposition 4.6: there we define Q(t)

via (4.4)–(4.6), check that the result defines a bounded operator for each t ∈ [0,∞), and
verify that the result is indeed the semigroup generated by H.

Remark 4.1. In the case when A is equal to a Brownian motion B, one can also consider
the chaos expansion of Q(t;x, x̃) (see, e.g., [Jan97]). That is, for each t, x, x̃, one views
Q(t;x, x̃) as a random variable (with randomness over B), and decompose it into terms
that belongs to n-th order Wiener chaoses of B. Such an expansion has been carried out
in [GH18] for PAM in two dimensions, and it is conceivable that their method carries
over in one dimension. We clarify here that our expansion (4.4)–(4.6) here is not the
chaos expansion. For example, it is readily checked that E[R1(t;x, x̃)R2(t;x, x̃)] 6= 0,
where the expectation is taken with respect to B.

To prepare for the construction in Proposition 4.6, in Lemma 4.8 we establish an
integration-by-parts identity, and, based on this identity, in Lemmas 4.4–4.5, we obtain
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bounds on the relevant integrals in (4.4)–(4.5). To state Lemma 4.2, we begin with
some notation. Recall that we write [x, x̃], x, x̃ ∈ T , for the interval on T that goes
counterclockwise from x to x̃. For given y1 6= y2 ∈ T , let Mid2(y, ỹ) ∈ [y1, y2] denote
the midpoint of the interval [y1, y2], and let Mid1(y1, y2) ∈ [y2, y1] denote the midpoint
of the interval [y2, y1]. Set T1(y1, y2) := [Mid1(y1, y2),Mid2(y1, y2)) ⊂ T and T2(y1, y2) :=

[Mid2(y1, y2),Mid1(y1, y2)) ⊂ T . Indeed, T1(y1, y2), T2(y1, y2) form a partition of T , with
the property

distT (yj , x) ≤ distT (yj+1, x), ∀x ∈ Tj(y1, y2), ∀j = 1, 2, where y3 := y1. (4.7)

See Figure 2 for an illustration.

Figure 2: The points Mid1(y1, y2),Mid2(y1, y2) are equidistant from y1 and y2; the inter-
vals T1(y1, y2), T2(y1, y2) are composed of all points closer to y1 and y2 respectively.

Recall that [x1, x2] ⊂ T denotes the interval going from x1 to x2 counterclockwise.
We define the macroscopic analog of A(x1, x2) (see (1.8)) as

A(x1, x2) =

∫
[x1,x2]\{0}

dA(x) =

{
A(x2)−A(x1) , when x1 ≤ x2 ∈ [0, 1),

A(x2)−A(0) +A(1)−A(x1), when x2 < x1 ∈ [0, 1).
(4.8)

Note that the integral excludes 0 so that the possible jump of A(x) there will not be
picked up by A(x1, x2). Hereafter we adopt the standard notation f(x)|x=b

x=a := f(b)− f(a).
Lemma 4.2 gives an integration-by-parts formula.

Lemma 4.2. For y1 6= y2 ∈ T , set

U(s, s′; y1, y2) :=
2∑
j=1

(
P(s; y1, x)A(yj , x)P(s′;x, y2)

∣∣x=Midj+1(y1,y2)

x=Midj(y1,y2)

−
∫
Tj(y1,y2)

(∂xP(s; y1, x))A(yj , x)P(s′;x, y2)dx (4.9)

−
∫
Tj(y1,y2)

P(s; y1, x)A(yj , x)∂xP(s′;x, y2)dx

)
,

where, by convention, we set Mid3(ỹ, y) := Mid1(ỹ, y). Then we have

Kn(~s;x, x̃) =

∫
T n+1

P( s02 ;x, y1)dy1

( n∏
i=1

U( si−1

2 , si2 ; yi, yi+1)dyi+1

)
P( sn2 ; yn+1, x̃). (4.10)

Remark 4.3. The value of U(s, s′; y1, y2) at y = ỹ in (4.10) is irrelevant since the set has
zero Lebesgue measure.
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Proof. In (4.6), use the semigroup property P(si;xi, xi+1) =
∫
T P( si2 ;xi, yi)P( si2 ; yi, xi+1)dyi

to rewrite

Kn(~s;x, x̃) =

∫
T n+1

P( s02 ;x, y1)dy1

( n∏
i=1

Ũi(yi, si−1, yi+1, si)dyi+1

)
P( sn2 ; yn+1, x̃), (4.11)

Ũi(yi, si−1, yi+1, si) :=

∫
T
P( si−1

2 ; yi, x) dA(x)P( si2 ;x, yi+1). (4.12)

The integral in (4.12) is over x ∈ T in the Riemann–Stieltjes sense. Split the integral into
integrals over T1(yi, yi+1) and T2(yi, yi+1). This gives Ũi = Ũi,1 + Ũi,2,

Ũi,j(yi, si−1, yi+1, si) :=

∫
Tj(yi,yi+1)

P( si−1

2 ; yi, x) dA(x)P( si2 ;x, yi+1)

=

∫
Tj(yi,yi+1)

P( si−1

2 ; yi, x) dA(yi+j−1, x)P( si2 ;x, yi+1), (4.13)

where the equality in (4.13) follows since yi and yi+1 are fixed (the integral is in x). Then,
in (4.13), integrate by parts (in x), and add the results for j = 1, 2 together. This gives
Ũi = U( si−1

2 , si2 ; yi, yi+1). Inserting this back into (4.11) completes the proof.

Equation (4.10) expresses Kn in terms of U . We proceed to establish bounds on
the latter. Here we list a few bounds on P(t;x, x′) that will be used in the subsequent
analysis. They are readily checked from the explicit expression (4.3) of P (in the spirit
of (3.4)). Given any u ∈ (0, 1] and T <∞, for all x, x′, x̃ ∈ T and s ∈ [0, T ],∫

T
P(s;x, x̃)dx̃ = 1, (4.14a)∫

T
|∂x̃P(s;x, x̃)|distT (x, x̃)udx̃ ≤ c(u, T )s−

1−u
2 , (4.14b)∫

T
|∂xP(s;x, x̃)|distT (x, x̃)udx̃ ≤ c(u, T )s−

1−u
2 , (4.14c)∫

T
P(s;x, x̃)distT (x, x̃)udx̃ ≤ c(T )s−

u
2 , (4.14d)

P(s;x, x̃) ≤ c(T )s−
1
2 , (4.14e)

P(s;x, x̃)distT (x, x̃)u ≤ c(T )s−
1−u

2 , (4.14f)∫
T
|P(s;x, x̃)− P(s;x′, x̃)|dx̃ ≤ c(u, T )distT (x, x′)us−

u
2 , (4.14g)

|P(s;x, x̃)− P(s;x′, x̃)| ≤ c(u, T )s−
1+u

2 . (4.14h)

Lemma 4.4. Given any v ∈ (0, uA) and T <∞, for all s, s′ ∈ [0, T ],∫
T
|U(s, s′; y, y′)|dy′ ≤ c(v, T )‖A‖CuA [0,1]

(
s−(1−v)/2 + s′

−(1−v)/2)
.

Proof. Recall the definition of ‖·‖Cu[0,1] and [·]Cu(T ) from (1.6)–(1.7). From the expres-
sion (4.8) of A(x1, x2) and the property (4.7), it is straightforward to check that

|A(yj , x)| ≤ distT (yj , x)uA [A]CuA (T ) ≤ distT (yj , x)v ‖A‖CuA [0,1], ∀x ∈ Tj(y1, y2), j = 1, 2.
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Inserting this bound into (4.9) gives

|U(s, s′; y1, y2)| ≤‖A‖CuA [0,1]

2∑
j=1

( ∑
x∈{Midj(y1,y2)}2j=1

P(s; y1, x) distT (yj , x)v P(s′;x, y2) (4.15)

+

∫
Tj(y1,y2)

∣∣∂xP(s; y1, x)
∣∣distT (yj , x)v P(s′;x, y2)dx (4.16)

+

∫
Tj(y1,y2)

P(s; y1, x) distT (yj , x)v
∣∣∂xP(s; y2, x)

∣∣ dx). (4.17)

In (4.16) use (4.7) to bound distT (yj , x) by distT (y1, x), and in (4.17) use (4.7) to bound
distT (yj , x) by distT (y2, x). This way distT has the same y variable as ∂xP. We now have

|U(s, s′; y1, y2)| ≤ ‖A‖CuA [0,1]

(
2

∑
x∈{Midj(y1,y2)}2j=1

P(s; y1, x)distT (yj , x)vP(s′;x, y2)

+

∫
T

∣∣∂xP(s; y1, x)
∣∣distT (y1, x)v P(s′;x, y2)dx (4.18)

+

∫
T
P(s; y1, x) distT (y2, x)v

∣∣∂xP(s;x, y2)
∣∣ dx).

Integrate (4.18) over y2 ∈ T , use (4.14a), (4.14e)–(4.14f) to bound the terms in (4.18),
and use (4.14a)–(4.14c) to bound the terms in (4.18). We then conclude the desired
result∫
T
|U(s, s′; y1, y2)|dy2 ≤ c(v, T )‖A‖CuA [0,1]

(
s−(1−v)/2 + s′

−(1−v)/2
+ s−(1−v)/2 + s′

−(1−v)/2)
.

Based on Lemmas 4.2–4.4, we now establish bounds on Kn. Recall the notation Σn(t)

from (3.6) and dn~s from (3.8).

Lemma 4.5. Given any u ∈ (0, 1] and v ∈ (0, uA), we have, for all x, x′, x̃ ∈ T , t ∈ [0, T ],
and n ≥ 1,

(a)

∫
Σn(t)

∫
T
|Kn(~s;x, x̃)|dn~s dx̃ ≤ t

(1+v)n
2

(c(v, T )‖A‖CuA [0,1])
n

Γ( (1+v)n+2
2 )

,

(b)

∫
Σn(t)

∫
T
|Kn(~s;x, x̃)−Kn(~s;x′, x̃)|dn~s dx̃ ≤ distT (x, x′)ut

(1+v)n−u
2

(c(u, v, T )‖A‖CuA [0,1])
n

Γ( (1+v)n+2−u
2 )

,

(c)

∫
Σn(t)

|Kn(~s;x, x̃)|dn~s ≤ t
(1+v)n−1

2
(c(v, T )‖A‖CuA [0,1])

n

Γ( (1+v)n+1
2 )

,

(d)

∫
Σn(t)

|Kn(~s;x, x̃)−Kn(~s;x′, x̃)|dn~s ≤ distT (x, x′)ut
(1+v)n−1−u

2
(c(u, v, T )‖A‖CuA [0,1])

n

Γ( (1+v)n+1−u
2 )

.

Proof. The proof begins with the given expression (4.10) of Kn:

Kn(~s;x, x̃) =

∫
T n+1

P( s02 ;x, y1) dy1 U( s02 ,
s1
2 ; y1, y2) dy2 · · ·

dyn U( sn−1

2 , sn2 ; yn, yn+1) dyn+1 P( sn2 ; yn+1, x̃),

(4.19)

Kn(~s;x, x̃)−Kn(~s;x′, x̃) =

∫
T n+1

(
P( s02 ;x, y1)− P( s02 ;x′, y1)

)
dy1

·U( s02 ,
s1
2 ; y1, y2) dy2 · · · dyn U( sn−1

2 , sn2 ; yn, yn+1) dyn+1 P( sn2 ; yn+1, x̃).

(4.20)
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For (a)–(b), integrate (4.19)–(4.20) over x̃, yn+1, . . . , y1 ∈ T in order. Use (4.14a) for
the integral over x̃, use Lemma 4.4 subsequently for the integrals over yn, . . . , y2, and
use (4.14a) and (4.14g) for the integral over y1. We then obtain∫

T
|Kn(~s;x, x̃)|dx̃ ≤

(
c(v, T )‖A‖CuA [0,1]

)n n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
, (4.21a)∫

T
|Kn(~s;x, x̃)−Kn(~s;x′, x̃)|dx̃

≤ distT (x, x′)u
(
c(u, v, T )‖A‖CuA [0,1]

)n
s
−u2
0

n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
. (4.21b)

For (c)–(d), in (4.19)–(4.20), use (4.14e) to bound P( sn2 ; yn+1, x̃) by cs
−1/2
n , and then

integrate the result over yn+1, . . . , y1 ∈ T in order. Similarly to the preceding, we have

|Kn(~s;x, x̃)| ≤
(
c(u, T )‖A‖CuA [0,1]

)n n∏
i=1

(
s
−(1−u)/2
i−1 + s

−(1−u)/2
i

)
s
− 1

2
n , (4.21c)

|Kn(~s;x, x̃)−Kn(~s;x′, x̃)|

≤ distT (x, x′)u
(
c(u, v, T )‖A‖CuA [0,1]

)n
s
−u2
0

n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
s
− 1

2
n . (4.21d)

Next we will explain how to integrate the r.h.s. of (4.21a)–(4.21d) to establish the desired
bounds. We begin with (4.21a). Expand the n-fold product on the r.h.s. of (4.21a) into a
sum of size 2n:

n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
=
∑
~b

n∏
i=0

s
− 1−v

2 (1{bi−1/2=i}+1{bi+1/2=i})
i , (4.22)

where the sum goes over ~b = (b1/2, b3/2, . . . , bn−1/2) ∈ {0, 1} × {1, 2} × · · · × {n − 1, n},
with the convention that b−1/2 := −1 and bn+1/2 := n+ 1. Insert (4.22) into (4.21a), and
integrate both sides over ~s ∈ Σn(t). With the aid of the Dirichlet formula (3.7), we obtain∫

Σn(t)×T
|Kn(~s;x, x̃)|dn~sdx̃ ≤

(
c(v, T )‖A‖CuA [0,1]

)n∑
~b

t(1+v)n/2
∏n
i=0 Γ

(
1− 1−v

2 (1{bi−1/2 = i}+ 1{bi+1/2 = i})
)

Γ( 1+v
2 n+ 1)

.

Since Γ(x) is decreasing for x ∈ (0, 1], we have Γ(1− 1−v
2 (1{bi−1/2 = i}+1{bi+1/2 = i})) ≤

Γ(v). From this we conclude the desired result for (a):∫
Σn(t)×T

|Kn(~s;x, x̃)|dn~sdx̃ ≤
(
c(v, T )‖A‖CuA [0,1]

)n
2n
t(1+v)n/2Γ(v)n+1

Γ( 1+v
2 n+ 1)

≤ t
(1+v)n

2
(c(v, T )‖A‖CuA [0,1])

n

Γ( (1+v)n+2
2 )

.

As for (b)–(d), integrating (4.21b)–(4.21d) over ~s ∈ Σn(t), with the aid of the Dirichlet
formula (3.7), one obtains the desired results via the same procedure as in the preceding.
We do not repeat the argument.

Given Lemma 4.5, we now construct the semigroup Q(t), thereby verifying the
heuristic given earlier. Recall Rn from (4.5).
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Proposition 4.6. Fix u ∈ (0, 1] and T < ∞. The series R(t;x, x̃) :=
∑∞
n=1Rn(t;x, x̃)

converges uniformly over x, x̃ ∈ T and t ∈ [0, T ], and satisfies the bounds

(a)

∫
Σn(t)×T

|R(t;x, x̃)|dx̃ ≤ c(T ),

(b)

∫
Σn(t)×T

|R(t;x, x̃)−R(t;x′, x̃)|dx̃ ≤ distT (x, x′)uc(u, T ),

(c) |R(t;x, x̃)| ≤ c(T ),

(d) |R(t;x, x̃)−R(t;x′, x̃)| ≤ distT (x, x′)u

tu/2
c(u, T ),

for all x, x̃ ∈ T and t ∈ [0, T ]. Furthermore, with Q(t;x, x̃) := P(t;x, x̃) + R(t;x, x̃) (as
in (4.4)), (

Q(t)f
)
(x) :=

∫
T
Q(t;x, x̃)f(x̃)dx̃

defines an operator Q(t) : C(T ) → C(T ) for each t ∈ [0,∞), and Q(t) is, in fact, the
semigroup of H.

Proof. By assumption, ‖A‖CuA [0,1] < ∞. For given v ∈ (0, uA), δ > 0, and c < ∞,∑∞
n=1

cn

Γ(vn+δ) < ∞. From these two observations the claimed bounds (a)–(d) follow
straightforwardly from Lemma 4.5.

It remains to check that the so defined operators Q(t), t ≥ 0, form the semigroup
of H. Fixing t, s ∈ [0,∞), we begin by checking the semigroup property. Writing
R0(t;x, y) := P(t;x, y) to streamline notation, we have

(
Q(t)Q(s)

)
(x, x̃) :=

∫
T

( ∞∑
n=0

Rn(t;x, y)
)( ∞∑

n=0

Rn(s; y, x̃)
)
dy

=

∞∑
n=0

∑
n1+n2=n

∫
T
Rn1(t;x, y)Rn2(s; y, x̃)dy. (4.23)

Here we rearranged the product of two infinite sums into iterated sums, which is
permitted granted the bounds from Lemma 4.5.

Fix n ≥ 0, and consider generic n1, n2 ≥ 0 with n1 + n2 = n. From the given
expressions (4.5)–(4.6) of Rn, we have∫
T
Rn1

(t;x, y)Rn2
(s; y, x̃)dy

=

∫
T n+1×Σn1

(t)×Σn2
(s)

( n1∏
i=0

P(ti;xi, xi+1)

n1∏
i=1

dA(xi)
)
dy
( n2∏
i=0

P(si;x
′
i, x
′
i+1)

n2∏
i=1

dA(x′i)
)
dn1~t dn2~s,

with the convention x0 := x, xn1+1 := y, x′0 := y, and x′n2+1 := x̃. Integrate over y, using∫
T P(tn1 ;xn1 , y)P(s0; y, x′1)dy = P(tn1+s0;xn1 , x

′
1). Renaming variables as (x′1, . . . , x

′
n2

) :=

(xn1+1, . . . , xn) and (tn1 + s0, s1, . . . , sn2) := (tn1 , . . . , tn), we obtain∫
T
Rn1

(t;x, y)Rn2
(s; y, x̃)dy

=

∫
T n×Σn(t+s)

( n1+n2∏
i=0

P(ti;xi, xi+1)

n1+n2∏
i=1

dA(xi)
)
1Σ′n1,n2

(t,s)(~t ) dn~t, (4.24)
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where Σ′n1,n2
(t, s) := {t0 + . . .+ tn1−1 < t, tn1+1 + . . .+ tn1+n2

< s}. It is straightforward
to check that∑

n1+n2=n

1Σ′n1,n2
(t,s)(~t ) = 1Σn(t+s)(~t ), for Lebesgue almost every ~t ∈ (0,∞)n.

Given this property, we sum (4.24) over n1 + n2 = n to obtain∑
n1+n2=n

∫
T
Rn1

(t;x, y)Rn2
(s; y, x̃)dy

=

∫
T n×Σn(t+s)

( n1+n2∏
i=0

P(ti;xi, xi+1)

n1+n2∏
i=1

dA(xi)
)
dn~t = Rn(t+ s;x, x̃).

Inserting this back into (4.23) confirms the semigroup property: Q(t)Q(s) = Q(t+ s).
We now turn to showing that limt↓0

1
t (Q(t)g − g) = Hg, for all g ∈ D(H). Recall that

H satisfies (4.1). This being the case, it suffices to show

lim
t↓0

1
t

(
〈f,Q(t)g〉 − 〈f, g〉

)
= −FA(f, g) := − 1

2 〈f
′, g′〉+ f(1)g(1)A(1)−

∫ 1

0

(f ′g + fg′)(x)A(x)dx, (4.25)

for all f, g ∈ H1(T ). The operator Q(t), by definition, is given by the series (4.4). This
being the case, we consider separately the contribution from each term in the series.
First, for the heat kernel, with f, g ∈ H1(T ), it is standard to show that

lim
t↓0

1
t

(
〈f,P(t)g〉 − 〈f, g〉

)
= − 1

2 〈f
′, g′〉. (4.26)

Next we turn to the n = 1 term. Recall the given expressions (4.5)–(4.6) for R1. With
the notation φ(t;x) :=

∫
T P(t;x, y)φ(y)dy for a given function φ, we write

1

t
〈f,R1(t)g〉 =

1

t

∫ t

0

(∫
T
f(s;x)dA(x)g(t− s;x)

)
ds.

Integrate by parts in x gives

1

t
〈f,R1(t)g〉 =

1

t

∫ t

0

(
A(1)f(s; 1)g(t− s; 1)

−
∫ 1

0

(
(∂xf(s;x))g(t− s;x) + f(s;x)(∂xg(t− s;x))

)
A(x)dx

)
ds. (4.27)

For φ ∈ H1(T ), it is straightforward to check that ‖φ(t; ·)− φ(·)‖H1(T ) → 0 as t ↓ 0. Also,
with T having unit (and hence finite) Lebesgue measure, L2-norms and L∞-norms are
controlled by the H1-norms:

‖ψ‖L2(T ), ‖ψ‖L∞(T ) ≤ ‖ψ‖H1(T ),

so ‖φ(t; ·)− φ(·)‖L2(T ) → 0 and ‖φ(t; ·)− φ‖L∞(T ) → 0, as t ↓ 0. Using these properties
for φ = f, g in (4.27), together with A ∈ L∞[0, 1], we send t ↓ 0 to obtain

lim
t↓0

1
t 〈f,R1(t)g〉 = A(1)f(1)g(1)−

∫ 1

0

(
(f ′g + fg

)
(x)A(x)dx. (4.28)
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Finally we consider the n ≥ 2 terms. Given the expressions (4.5)–(4.6) for Rn, we
write

〈f,Rn(t)g〉 =

∫
T 2

f(x)
(∫

Σn(t)

Kn(~s;x, x̃)
)
g(x̃)dxdx̃. (4.29)

With f, g ∈ H1(T ), we have ‖f‖L∞(T ), ‖g‖L∞(T ) < ∞. Thus, in (4.29), bound f(x) and
g(x′) by their supremum, and use Lemma 4.5(a) for fixed v ∈ (0, uA). This gives

|〈f,Rn(t)g〉| ≤ ‖f‖L∞(T )‖g‖L∞(T )t
(1+v)n

2
(c(v, T )‖A‖CuA [0,1])

n

Γ( (1+v)n+2
2 )

.

Sum this inequality over n ≥ 2, and divide the result by t. This gives, for all t ≤ 1,

1

t

∑
n≥2

|〈f,Rn(t)g〉| ≤ c(f, g, uA)tv/2. (4.30)

The r.h.s. of (4.30) indeed converges to 0 as t ↓ 0.
Combining (4.26), (4.28), and (4.30) concludes the desired result (4.25).

We close this subsection by showing the uniqueness of mild solutions (1.11) of (1.10).
(Recall that existence follows from Theorem 1.8.) The argument follows standard
Picard iteration the same way as for the SHE, cf., [Kho09, Theorem 6.4] and [Qua11,
Section 2.4]. Given the bounds from Lemma (4.5), a similar Picard iteration scheme
should also apply to give the existence.

Proposition 4.7. For any given Z ic ∈ Cuic(T ) and a fixed A ∈ CuA [0, 1], there exists at
most one C([0,∞), C(R))-valued mild solution (1.11).

Proof. Let Z ∈ C([0,∞), C(T)) be a mild solution (1.11) solving (1.10). Iterating (1.11)
m-times gives

Z(t, x) =
m∑
n=0

Zn(t, x) +Wm(t, x),

where, with the notation [0, t]n< := {(t1, . . . , tn) ∈ (0,∞)n : 0 < t1 < . . . < tn < tn+1 := t},

Zn(t, x) :=

∫
[0,t]n<×T n+1

( n∏
i=1

Q(ti+1 − ti;xi+1, xi)ξ(ti, xi)dtidxi

)
Q(t1;x1, x0)Z ic(x0)dx0,

Wm(t, x) :=

∫
[0,t]m+1

< ×T m+1

(m+1∏
i=1

Q(ti+1 − ti;xi+1, xi)ξ(ti, xi)dtidxi

)
Z(t1, x1).

For given Λ <∞, let τΛ := inf{t ≥ 0 : supx∈T Z(t, x)2 > Λ} denote the first hitting of Z2

at Λ. Recall that Q(t) is deterministic since A is assumed to be deterministic (throughout
this section). Evaluating the second moment ofWm(t ∧ τΛ, x) gives

E
[
Wm(t ∧ τΛ, x)2

]
= E

[ ∫
[0,τΛ]m+1

< ×T m+1

(m+1∏
i=1

Q2(ti+1 − ti;xi+1, xi)dtidxi

)
Z2(t1, x1)

]
≤ Λ

∫
[0,t]m+1

< ×T m+1

m+1∏
i=1

Q2(ti+1 − ti;xi+1, xi)dtidxi.

Further applying bounds from Proposition 4.6(a), (c) gives

E
[
Wm(t ∧ τΛ, x)2

]
≤ Λc(t)m+1

∫
[0,t]m+1

< ×T m+1

m+1∏
i=1

dtidxi = Λ
c(t)m+1

(m+ 1)!
.
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Sending m→∞ gives E[Wm(t∧ τΛ, x)2]→ 0. With Z being C([0,∞)×T ) by assumption,
we have P[τΛ > t]→ 1, as Λ→∞. Hence, after passing to a suitable sequence Λm →∞,
we concludeWm(t, x)→P 0, as m→∞, for each fixed (t, x). This gives

Z(t, x) = lim
m→∞

m∑
n=0

Zn(t, x),

for each (t, x). Since each Zn is a function of Z ic and ξ, uniqueness of Z(t, x) follows.

4.2 Microscopic

Our goal is to bound the kernel Q(t;x, x̃) of the microscopic semigroup. Recall the
operator H defined in (2.7) and the definition of ν from (1.1). Various operators and
parameters (e.g., H, ν) depends on N , but, to alleviate heavy notation, we often omit the
dependence in notation. Under weak asymmetry scaling (1.2),

ν = 1
2N +O( 1

N2 ). (4.31)

Set f = 1{x̃} in the Feynman–Kac formula (2.11) to get

Q(t;x, x̃) =
(
Q(t)1{x̃}

)
(x) = Ex

[
e
∫ t
0
νa(Xa(s))ds1{x̃}(X

a(t))
]
,

where Xa(t) denotes the inhomogeneous walk defined in Section 2. Taylor-expanding
the exponential function, and exchanging the expectation with the sums and integrals
yields

Q(t;x, x̃) = Ex
[
1{x̃}(X

a(t))
]

+
∞∑
n=1

∫
Σn(t)

Ex

[ n∏
i=1

ν a(Xa(s0 + . . .+ si−1))1{x̃}(X
a(t))

]
dn~s

= pa(t;x, x̃) +
∞∑
n=1

Rn(t;x, x̃), (4.32)

where we assume (and will show below that) the sum in (4.33) converges, and the term
Rn(t;x, x̃) is defined as

Rn(t;x, x̃) :=

∫
Σn(t)

Kn(~s;x, x̃)dn~s, (4.33)

Kn(~s;x, x̃) :=
∑

x1,...,xn∈T

n∏
i=0

pa(si;xi, xi+1)
n∏
i=1

νa(xi). (4.34)

Note that, unlike in the continuum case in Section 4.1, the expansions (4.32) here is
rigorous, provided that the sums and integrals in (4.33)–(4.34) converge.

We now proceed to establish bounds that will guarantee the convergence of the sums
and integrals. Our treatment here parallels Section 4.1, starting with a summation-by-
part formula.

Similarly to our treatment in Section 4.1, here we need to partition T into two pieces
according to a given pair y, ỹ ∈ T. For y, ỹ ∈ T we define

T1(y, ỹ) :=
{
x ∈ T : distT(x, y) ≤ distT(x, ỹ)

}
, T2(y, ỹ) :=

{
x ∈ T : distT(x, ỹ) < distT(x, y)

}
,

and for y = ỹ ∈ T we let

T1(y, ỹ) := [y − d(N − 1)/2e, y], T2(y, ỹ) := T \ T1(y, ỹ).
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The intervals T1(y, ỹ) and T2(y, ỹ) are the microscopic analog of T1(y, ỹ) and T2(ỹ, y),
respectively. In particular, T1(y, ỹ) and T2(y, ỹ) partition T into two pieces, with

distT(y1, x) ≤ distT(y2, x) + 1 ≤ 2distT(y2, x), ∀x ∈ T1(y1, y2),

distT(y2, x) ≤ distT(y1, x), ∀x ∈ T2(y1, y2).
(4.35)

Write mid1(y, ỹ),mid2(y, ỹ) ∈ T for the boundary points of T1(y, ỹ) and T2(y, ỹ). More
precisely, T1(y, ỹ) = [mid1(y, ỹ),mid2(y, ỹ)) and T2(y, ỹ) = [mid2(y, ỹ),mid1(y, ỹ)). Recall
the definition of A(y, x) from (1.8).

Lemma 4.8. Set

U(s, s′; y1, y2) :=
2∑
j=1

(
pa(s; y1, x) ν A(yj , x)pa(s′;x− 1, y2)

∣∣x=midj+1(y1,y2)

x=midj(y1,y2)

−
∑

x∈T1(y1,y2)

(
∇xpa(s; y1, x)

)
ν A(yj , x)pa(s′;x+ 1, y2)

−
∑

x∈T2(y1,y2)

pa(s; y1, x) ν A(yj , x)∇xpa(s′;x, y2)
)
,

(4.36)

where, by convention, we let mid3(y1, y2) := mid1(y1, y2). Then we have that

Kn(~s;x, x̃) =
∑

y1,...,yn+1∈T

pa( s02 ;x, y1)
( n∏
i=1

U( si−1

2 , si2 ; yi, yi+1)
)
pa( sn2 ; yn+1, x̃). (4.37)

Proof. Use the semigroup property pa(si;x, x̃) =
∑
yi∈T pa( si2 ;x, yi)pa( si2 ; yi, x̃) in (4.34)

to rewrite

Kn(~s;x, x̃)

=
∑

y1,...,yn+1∈T

pa( s02 ;x, y1) Ũ1(s0, y1, s1, y2) · · · Ũn(sn, yi, sn, yn+1)pa( sn2 ; yn+1, x̃), (4.38)

Ũi(si−1, yi, si, yi+1) :=
∑
x∈T

pa( si−1

2 ; yi, x) ν a(x)pa( si2 ;x, yi+1). (4.39)

In (4.39), divide the sum over T into sums over T1(yi, yi+1) and T2(yi, yi+1) to get Ũi =

Ũi,1 + Ũi,2, where

Ũi,j(si−1, yi, si, yi+1) :=
∑

x∈Tj(yi,yi+1)

pa( si−1

2 ; yi, x) ν a(x)pa( si2 ;x, yi+1)

=
∑

x∈Tj(yi,yi+1)

pa( si−1

2 ; yi, x) ν
(
∇xA(yi+j−1, x− 1)

)
pa( si2 ;x, yi+1).

Apply summation by parts∑
x∈[x1,x2)

f(x)∇g(x− 1) = −
∑

x∈[x1,x2)

(
∇f(x)

)
g(x) + f(x2)g(x2 − 1)− f(x1)g(x1 − 1),

with f(x) = pa( si−1

2 ; yi, x)pa( si2 ;x, yi+1), g(x) = A(yi+j−1, x), and [x1, x2) = Tj(yi, yi+1),

for j = 1, 2. Add the results for j = 1, 2 together. We then conclude Ũi(si−1, yi, si, yi+1) =

U( si−1

2 , si2 ; yi, yi+1). Inserting this back to (4.38) completes the proof.

Given the summation-by-parts formula (4.36), we proceed to establish bounds on U.
Unlike in the macroscopic case, where we assume A to be deterministic, the treatment
of microscopic semigroup needs to address the randomness of a. Recall the terminology
‘with probability→Λ,N 1’ from (3.22).
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Lemma 4.9. Given any v ∈ (0, uA) and T < ∞, the following holds with probability
→Λ,N 1:∑
y′∈T

|U(s, s′; y, y′)| ≤ Λ c(v, T )

N1+v

(
(1 + s)−(1−v)/2 + (1 + s′)−(1−v)/2

)
, ∀s, s′ ∈ [0, N2T ], y ∈ T.

Proof. Recall the definition of the seminorm [ · ]u,N from (1.9). With v ≤ uA, we have

|A(yj , x)| ≤ (
|(yj ,x]|
N )v[A]uA,N . Further, by (4.35), we have |(yj , x]| ≤ 2distT(y1, y2), for all

x ∈ Tj(y1, y2). Hence

|A(yj , x)| ≤ 2distT(yj , x)vN−v [AN ]uA , ∀x ∈ Tj(y1, y2).

Using this bound in (4.36), together with |ν| ≤ c
N (from (4.31)), we obtain

|U(s, s′; y1, y2)| ≤ [A]uA,N

N1+v

2∑
j=1

( ∑
x∈{midi(y1,y2)}2i=1

pa(s; y1, x) distT(yj , x)v pa(s′;x, y2)

(4.40)

+
∑

x∈T1(y1,y2)

∣∣∇xpa(s; y1, x)
∣∣distT(yj , x)v pa(s′;x+ 1, y2) (4.41)

+
∑

x∈T2(y1,y2)

pa(s; y1, x) distT(yj , x)v
∣∣∇xpa(s;x, y2)

∣∣). (4.42)

In (4.41), use (4.35) to bound distT(yj , x)v by 2distT(y1, x)v, and in (4.42), use (4.35) to
bound distT(yj , x)v by 2distT(y2, x)v. This gives

|U(s, s′; y1, y2)| ≤ [A]uA,N

N1+v

(
2

∑
x∈{midi(y1,y2)}2i=1

pa(s; y1, x) distT(yj , x)v pa(s′;x, y2)

+ 2
∑
x∈T

|∇xpa(s; y1, x)
∣∣distT(y1, x)v pa(s′;x+ 1, y2) (4.43)

+ 2
∑
x∈T

pa(s; y1, x) distT(y2, x)v
∣∣∇xpa(s;x, y2)

∣∣).
For the kernel p(t, x, x̃) of the homogeneous walk, we indeed have

∑
x̃∈T p(t, x, x̃) = 1.

Since pa = p + r, the preceding identity together with the bound from Proposition 3.2(i)
yields, with probability→Λ,N 1, ∑

x̃∈T

pa(t, x, x̃) ≤ 2. (4.44)

Now sum (4.43) over y2 ∈ T, and use (4.44) and Proposition 3.2(a), (d)–(g) to bound the
result. This gives∑

y2∈T

|U(s, s′; y1, y2)| ≤ c(v, T )[A]uA,N

N1+v

(
(s+ 1)−(1−v)/2 + (s′ + 1)−(1−v)/2

+ (s+ 1)−(1−v)/2 + (s′ + 1)−(1−v)/2
)
.

Recalling Assumption 1.2(b) on [A]uA,N , we conclude the desired result.

Based on Lemmas 4.8–4.9, we now establish bounds on Kn.

Lemma 4.10. Given any u ∈ (0, 1], v ∈ (0, uA), and T < ∞, the following hold with
probability→Λ,N 1:
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(a)
∑
x̃∈T

∫
Σn(t)

|Kn(~s;x, x̃)|dn~s ≤ (tN−2)
1+v

2
Λn

Γ( (1+v)n+2
2 )

, t ∈ [0, N2T ], ∀x ∈ T, n ∈

Z>0,

(b)
∑
x̃∈T

∫
Σn(t)

|Kn(~s;x, x̃)− Kn(~s;x′, x̃)|dn~s ≤ distT(x, x′)u

(t+ 1)u/2
(tN−2)

1+v
2

Λn

Γ( (1+v)n+2−u
2 )

,

t ∈ [0, N2T ], ∀x ∈ T, n ∈ Z>0,

(c)

∫
Σn(t)

|Kn(~s;x, x̃)|dn~s ≤ (tN−2)
1+v

2

(t+ 1)1/2

Λn

Γ( (1+v)n+1
2 )

, t ∈ [0, N2T ], ∀x ∈ T, n ∈ Z>0,

(d)

∫
Σn(t)

|Kn(~s;x, x̃)−Kn(~s;x′, x̃)|dn~s ≤ distT(x, x′)u

(t+ 1)(1+u)/2
(tN−2)

1+v
2

Λn

Γ( (1+v)n+1−u
2 )

, t ∈

[0, N2T ], ∀x ∈ T, n ∈ Z>0.

Proof. The proof follows by the same line of calculation as in the proof of Lemma 4.5,
with pa, U, Kn replacing P, U , K, and with sums replacing integrals accordingly. In
particular, in place of (4.21a)–(4.21d), here we have, with probability→Λ,N 1,

∑
x̃∈Z

|Kn(~s;x, x̃)| ≤
(
N−1−vΛ

)n n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
, (4.45a)

∑
x̃∈Z

|Kn(~s;x, x̃)− Kn(~s;x′, x̃)| ≤
(
N−1−vΛ

)n
distT(x, x′)us

−u2
0

n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
,

(4.45b)

|Kn(~s;x, x̃)| ≤
(
N−1−vΛ

)n n∏
i=1

(
s
−(1−u)/2
i−1 + s

−(1−u)/2
i

)
s
− 1

2
n , (4.45c)

|Kn(~s;x, x̃)− Kn(~s;x′, x̃)| ≤ distT(x, x′)u
(
N−1−vΛ

)n
s
−u2
0

n∏
i=1

(
s
−(1−v)/2
i−1 + s

−(1−v)/2
i

)
s
− 1

2
n .

(4.45d)

Given (4.45a)–(4.45d), the rest of the proof follows by applying the Dirichlet formula (3.7).
We omit repeating the argument.

We now proceed to establish bounds on R. In the following, we will often decompose
R into the sum of p, the kernel of the homogeneous walk on T, and a remainder term
R := Q − p. Recall from (3.9) that pa(t;x, x̃) = p(t;x, x̃) + r(t;x, x̃). Referring to (4.32),
we see that

R(t;x, x̃) := Q(t;x, x̃)− p(t;x, x̃) = r(t;x, x̃) +
∞∑
n=1

Rn(t;x, x̃).

Proposition 4.11. Fix u ∈ (0, 1], v ∈ (0, uA) and T < ∞. The following hold with
probability→Λ,N 1:

(a)
∑
x̃∈T

Q(t;x, x̃) ≤ Λ, t ∈ [0, N2T ], ∀x ∈ T,

(b) Q(t;x, x̃) ≤ Λ√
t+ 1

, t ∈ [0, N2T ], ∀x, x̃ ∈ T,

(c) |Q(t;x, x̃)− Q(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)(u+1)/2
Λ, t ∈ [0, N2T ], ∀x, x′, x̃ ∈ T,
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(d)
∑
x̃∈T

|Q(t;x, x̃)− Q(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)u/2
Λ, t ∈ [0, N2T ], ∀x, x′ ∈ T,

(e)
∑
x̃∈T

|R(t;x, x̃)| ≤ (tN−2)vΛ, t ∈ [0, N2T ], ∀x ∈ T,

(f)
∑
x̃∈T

|R(t;x, x̃)−R(t;x′, x̃)| ≤
(distT(x, x′)u

(1 + t)u/2
N−v +

(distT(x, x′)

N

)u)
Λ, t ∈ [0, N2T ],

∀x, x′ ∈ T,

(g) |R(t;x, x̃)− R(t;x′, x̃)| ≤
( distT(x, x′)u

(1 + t)(u+1)/2
N−v +

(distT(x, x′)/N)u

(1 + t)1/2

)
Λ, t ∈ [0, N2T ],

∀x, x′, x̃ ∈ T,

(h) sup
t′∈[t,t+1]

Q(t′;x, x̃) ≤ ΛQ(t+ 1;x, x̃), t ∈ [0, N2T ], ∀x, x̃ ∈ T.

Proof. Let R̃(t;x, x̃) :=
∑
n≥1 Rn(t;x, x̃). Summing the r.h.s. of Lemma 4.10(a)–(d) gives,

with probability→Λ,N 1,

(I)
∑
x̃∈T

|R̃(t;x, x̃)| ≤ (tN−2)
1+v

2 Λ,

(II)
∑
x̃∈T

|R̃(t;x, x̃)− R̃(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)u/2
(tN−2)

1+v
2 Λ,

(III) |R̃(t;x, x̃)| ≤ (tN−2)
1+v

2

(t+ 1)1/2
Λ,

(IV) |R̃(t;x, x̃)− R̃(t;x′, x̃)| ≤ distT(x, x′)u

(t+ 1)(1+u)/2
(tN−2)

1+v
2 Λ.

Given that Q(t) = pa(t) + R̃(t):

• (a) follows by combining
∑
x̃ p

a(t;x, x̃) = 1 and (I);
• (b) follows by combining Proposition 3.2(a) and (III);
• (c) follows by combining Proposition 3.2(b) and (IV);
• (d) follows by combining Proposition 3.2(c) and (II).

Given that R(t) = r(t) + R̃(t),

• (e) follows by combining Proposition 3.2(i) and (I) (note that (tN−2)(v+1)/2 ≤
c(T )(tN−2)v/2).

• With t ≤ N2T , we have 1
(t+1)u/2 (tN−2)

1+v
2 ≤ c(T )N−v. Hence, by (II), with proba-

bility→Λ,N 1, ∑
x̃∈T

|R(t;x, x̃)| ≤ distT(x, x′)u

Nu
Λ.

Combining this with Proposition 3.2(j) gives (f).
• Similarly to the preceding, by (IV), with probability→Λ,N 1,∑

x̃∈T

|R(t;x, x̃)− R(t;x′, x̃)| ≤ (distT(x, x′)/N)u

(1 + t)1/2
Λ.

Combining this with Proposition 3.2(k) gives (g).
• Finally, to show (h), we fix t′ ∈ [t, t+1], and set δ := t+1− t′ ≤ 1. With Q(t;x, y) ≥ 0,

we write

Q(t+ 1;x, x̃) =
∑
y∈T

Q(δ;x, y)Q(t′; y, x̃) ≥ Q(δ;x, x)Q(t′;x, x̃). (4.46)
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Given that δ ≤ 1, we indeed have p(δ;x, x) ≥ Px[X(s) = x, ∀s ∈ [0, 1]] ≥ 1
c . With

Q(δ) = p(δ) + r(δ) + R̃(δ), combining the preceding lower bound on p(δ;x, x) with
Proposition 3.2(h) and (III), we now have, with probability →Λ,N 1, Q(δ;x, x) ≥
1
c −N

−vΛ→ 1
c > 0. Inserting this back into (4.46) yields (h).

We conclude this section by establishing the convergence of the microscopic semi-
group Q(t) to its macroscopic counterpart Q(t). Recall from Assumption 1.2(c) that A
and A are coupled. The semigroups Q(t) and Q(t) being constructed from A and A, the
coupling in Assumption 1.2(c) induces a coupling of Q(t) and Q(t).

Proposition 4.12. Set QN (t;x, x̃) := NQ(tN2;Nx,Nx̃), and linearly interpolate in x and
x̃ so that QN (t;x, x̃) defines a kernel on T . Given any T < ∞, u > 0, and f ∈ C(T ), we
have that

sup
x∈T

sup
t∈[0,T ]

∣∣∣(Q(t)f − QN (t)f
)
(x)
∣∣∣ −→P 0.

Proof. Set pa
N (t;x, x̃) := Npa(N2t;Nx,Nx̃), pN (t;x, x̃) := Np(N2t;Nx,Nx̃), rN (t;x, x̃) :=

Nr(N2t;Nx,Nx̃), and Rn,N (t;x, x̃) := NRn(tN2;Nx,Nx̃), and linearly interpolate these
kernels in x and x̃. Recall from (4.4) and (4.32) that Q(t) and Q(t) are given in terms of
Rn(t) and P(t), and Rn(t) and pa, respectively. Finally, recall that pa(t) = p(t) + r(t). We
may write∣∣∣(Q(t)f − QN (t)f

)
(x)
∣∣∣ ≤∣∣∣ ∫

T

(
P(t;x, x̃)− pN (t, x, x̃)

)
f(x̃)dx̃

∣∣∣+ ‖f‖L∞(T )

∫
T
|rN (t;x, x̃)|dx̃

+ ‖f‖L∞(T )

∞∑
n=1

sup
x∈T

sup
t∈[0,T ]

∫
T
|Rn(t;x, x̃)− Rn,N (t;x, x̃)|dx̃.

Given that f ∈ C(T ), with the aid of Lemma 3.1, it is standard to check that:

sup
x∈T

∫
T

(
P(t;x, x̃)− pN (t;x, x̃)

)
f(x̃)dx̃ −→ 0, as N →∞.

By Proposition 3.2(i), we have

sup
x∈T

sup
t∈[0,T ]

∫
T
|rN (t;x, x̃)|dx̃ −→P 0, as N →∞.

Further, by Lemmas 4.5(a) and 4.10(a), we have, with probability→Λ,N 1,∑
n≥1

sup
x∈T

sup
t∈[0,T ]

∫
T
|Rn(t;x, x̃)|dx̃ < Λ, and

∑
n≥1

sup
x∈T

sup
t∈[0,N2T ]

∑
x̃∈T

|Rn,N (t;x, x̃)| < Λ.

Given this, it suffices to check, for each fixed n ≥ 1,

sup
x∈T

sup
t∈[0,T ]

∫
T

∣∣Rn(t;x, x̃)− Rn,N (t;x, x̃)
∣∣dx̃ −→P 0, as N →∞.

Such a statement is straightforwardly checked (though tedious) from the given expres-
sions (4.5)–(4.6), (4.10) and (4.33)–(4.34), (4.37) of Rn and Rn, together with the aid of
Lemmas 3.1, 4.5, and 4.10. We omit the details here.

5 Moment bounds and tightness

Recall that ZN (t, x) = Z(tN2, xN) denotes the scaled process in (1.1). The goal of this
section is to show the tightness of {ZN}N . For the case of homogeneous ASEP, tightness
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is shown by establishing moment bounds on ZN through iterating the microscopic
equation (analogous to (2.9)); see [BG97, Section 4] and also [CST18, Section 3]. Here
we proceed under the same general strategy. A major difference here is that the kernel
Q(t;x, x′) (that governs the microscopic equation (2.9)) is itself random. We hence
proceed by conditioning. For given u ∈ (0, 1], v ∈ (0, uA), Λ, T <∞, let

Ω(u, v,Λ, T,N) := {properties in Proposition 4.11 hold and [A]uA,N ≤ Λ}. (5.1)

Recall M(s, x) from (2.4).

Lemma 5.1. Fix k > 1. Write Ea[ · ] := E[ · |a(x), x ∈ T] for the conditional expectation
quenching the inhomogeneity, and write ‖ · ‖a,k := (Ea[ (·)k ])1/k for the corresponding
norm. Given any deterministic f : T→ R,∥∥∥ ∫ i′

i

∑
x∈T

f(s, x)dM(s, x)
∥∥∥2

a,k
≤ c(k)

N

∑
i≤j<i′

∑
x∈T

(
sup

s∈[j,j+1]

f2(s, x)
)
‖Z(j, x)‖2a,k,

for all i < i′ ∈ Z≥0.

Proof. The conditional expectation Ea[ · ] := E[ · |a(x), x ∈ T] amounts to fixing a real-
ization of {a(x)}x∈T that satisfies Assumption 1.2. In fact, only Assumption 1.2(a) will
be relevant toward the proof. With this in mind, throughout this proof we view a(x) as
deterministic functions satisfying Assumption 1.2(a).

For fixed i ∈ Z≥0, consider the discrete-time martingale M̃(i′) :=
∑i′−1
j=i J(j), i′ =

i+ 1, i+ 2, . . ., with increment J(j) :=
∫ j+1

j

∑
x∈T f(s, x)dM(s, x). Write

F (i′) := σ(J(i), . . . , J(i′− 1)) for the canonical filtration. Burkholder’s inequality applied
to M̃ gives

‖M̃(i′)‖2a,k ≤ c(k)
∥∥∥ ∑
i≤j<i′

Ea
[
J(j)2

∣∣F (j)
]∥∥∥

a,k
. (5.2)

We may compute Ea[J(j)2|F (j)] = Ea[
∫ j+1

j

∑
x,x′ f(s, x)f(s, x′)d〈M(s, x),M(s, x′)〉|F (j)].

The quadratic variation 〈M(s, y),M(s, y′)〉 is calculated in (2.8). Under Assumption 1.2(a),
ã(x) is uniformly bounded, and weak asymmetry scaling (1.2) gives (τ−1)2, (τ−1−1)2 ≤ 1

N .
Using these properties in (2.8) gives

| ddt 〈M(t, x),M(t, x′)〉| ≤ c
N 1{x=x′}Z

2(t, x), (5.3)

whereby

Ea[J(j)2|F (j)] ≤ c

N

∑
x∈T

Ea
[ ∫ j+1

j

f(s, x)2Z(s, x)2ds
∣∣∣F (j)

]
. (5.4)

Fix x ∈ T. Assumption 1.2(a) asserts that the Poisson clocks P←(t, x) and P→(t, x)

that dictate jumps between x and x + 1 have bounded rates. Each jump changes
Z(t, x) by a factor of τ±1 (see (1.1)). Under the weak asymmetry scaling (1.2) we have
τ−1 ≤ exp(c/

√
N). This being the case, we have

Z(s, x) ≤ ec
X(j,x)√

N Z(j, x), s ∈ [j, j + 1), (5.5)

Z(s, x) ≥ e−c
X̃(j,x)√

N Z(j, x), s ∈ [j, j + 1), (5.6)

for some X(j, x), X̃(j, x) that are stochastically dominated by Poisson(c), and are inde-
pendent of the sigma algebra F (j) defined in (2.1). Now, use (5.5) in (5.4) to get

Ea[J(j)2|F (j)] ≤ c

N

∑
x∈T

(
sup

s∈[j,j+1]

f(s, x)2
)
Z(j, x)2.

Inserting this back into (5.2) concludes the desired result.
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Recall from (1.12) that uic > 0 is the Hölder exponent of Zic(·).
Proposition 5.2. Fixing u ∈ (0, 1), v ∈ (0, uA), k > 1, and Λ, T < ∞. Let Ea[ · ] be as in
Lemma 5.1, and further, write Ea∗[ · ] := Ea[( · )1Ω(u,v,Λ,T,N)] = Ea[ · ]1Ω(u,v,Λ,T,N), and let
‖ · ‖a∗,k := Ea∗[( · )k]1/k denote the corresponding norm. There exists c = c(u, v, k,Λ, T )

such that, for all x, x′ ∈ T and t, t′ ∈ [0, N2T ],

‖Z(t, x)‖a∗,k ≤ c, (5.7a)

‖Z(t, x)− Z(t, x′)‖a∗,k ≤ c
(distT(x, x′)

N

)u
2 ∧uic∧v

, (5.7b)

‖Z(t′, x)− Z(t, x)‖a∗,k ≤ c
( |t′ − t| ∨ 1

N2

)u
4 ∧

uic
2 ∧

v
2

, (5.7c)

Proof. Fixing u ∈ (0, 1], v ∈ (0, uA), k > 1, and Λ, T <∞, throughout this proof we write
c = c(u, v, k, T,Λ) to simplify notation. As declared previously, the value of the constant
may change from line to line. Following the same convention as in the proof of Lemma 5.1,
throughout this proof we view a(x) and Q(t;x, x̃) as deterministic functions and, (with
Ω(1, v,Λ, T ) as in (5.1) being conditioned) assume the properties in Proposition 4.11(a)–
(h) hold.

Let us begin by considering discrete time i ∈ Z ∩ [0, N2T ]. The starting point of
the proof is the microscopic, mild equation (2.9). Recall that Zic(x) is deterministic by
assumption. In (2.9), set t = i, take ‖ · ‖a∗,k on both sides, and square the result. We
have

‖Z(i, x)‖2a∗,k ≤ 2
(∑
x̃∈T

Q(i;x, x̃)Zic(x̃)
)2

+ 2
∥∥∥ ∫ i

0

∑
x̃∈T

Q(i− s;x, x̃)dM(s, x̃)
∥∥∥2

a∗,k
. (5.8)

To bound the last term in (5.8), apply Lemma 5.1 with (i, i′) 7→ (0, i) and f(s, x̃) =

Q(i − s;x, x̃) (recall that Q is deterministic here), and then use Proposition 4.11(h) to
bound sups∈[j,j+1] Q(i− s;x, x̃)2 by cQ(i− j;x, x̃)2. This gives

‖Z(i, x)‖2a∗,k ≤ 2
(∑
x̃∈T

Q(i;x, x̃)Zic(x̃)
)2

+
c

N

i−1∑
j=0

∑
x∈T

Q(i− j;x, x̃)2‖Z(i, x̃)‖2a∗,k. (5.9)

Using the assumption Zic(x) ≤ c from (1.12) and the bound from Proposition 4.11(a), we
have

∑
x̃∈T Q(i;x, x̃)Zic(x̃) ≤ c, and using the bound from Proposition 4.11(b), we write

Q(i− j;x, x̃)2 ≤ Q(i− j;x, x̃)c (i− j)−1/2. Inserting these bounds into (5.9), we arrive at

‖Z(i, x)‖2a∗,k ≤ c+ c
i−1∑
j=0

N−2√
N−2(i− j)

∑
x∈T

Q(i− j;x, x̃)‖Z(j, x̃)‖2a∗,k. (5.10)

Iterating (5.10) gives

‖Z(i, x)‖2a∗,k ≤ c+
∞∑
n=1

cn
∑

~̀∈σn(i)

n∏
j=0

N−2√
N−2`j

∑
x1,...,xn∈T

n∏
k=1

Q(`j ;xj−1, xj). (5.11)

Here, we adopt the convention that x0 := x, and σn(i) := {(`0, . . . , `n) ∈ Zn+1
>0 : `0 +

. . . + `n = i}. In (5.11), we sum over xn, . . . , x1 in order, and use the bound from
Proposition 4.11(a) at each step to bound the result by c. Then, approximating the sum
over ~̀ ∈ σn(t) by an integral, we have

‖Z(i, x)‖2a∗,k ≤ c+

∞∑
n=1

cn
∫

Σn(iN−2)

n∏
j=0

s
− 1

2
i · dn~s. (5.12)
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We now apply the Dirichlet integral formula (3.7) with v0 = . . . = vn = 1
2 . Given that

i ≤ TN2, upon summing the result over n = 1, 2, . . ., we obtain

‖Z(i, x)‖a∗,k ≤ c. (5.7a’)

This is exactly the first desired bound (5.7a) for t = i ∈ Z>0, and hence the label (5.7a’).
We will have similar labels for (5.7b)–(5.7c).

We now turn to the gradient moment estimates (5.7b). Set

I(x) :=
∑
x̃∈T

Q(i;x, x̃)Zic(x̃), (5.13)

J(x, x′) :=
1

N

i−1∑
j=0

∑
x̃∈T

|Q(i− j;x, x̃)− Q(i− j;x′, x̃)|2‖Z(j, x̃)‖2a∗,k. (5.14)

Following the same procedure leading to (5.9), but starting with Z(i, x)−Z(i, x′) instead
of Z(i, x), here we have

‖Z(i, x)− Z(i, x′)‖2a∗,k ≤ 2
(
I(x)− I(x′)

)2
+ c J(x, x′). (5.15)

To bound the term J(x, x′), in (5.14), use

|Q(i− j;x, x̃)− Q(i− j;x′, x̃)|2

≤
(

sup
x̃
|Q(i− j;x, x̃)− Q(i− j;x′, x̃)|

)(
Q(i− j;x, x̃) + Q(i− j;x′, x̃)

)
.

Then, sum over x̃ ∈ T, using the bound (5.7a’) on ‖Z(j, x̃)‖2a∗,k and the bounds from
Proposition 4.11(a) and (c) on Q. With i ≤ N2T , we have

J(x, x′) ≤ c

N

i−1∑
j=0

distT(x, x′)u

(i− j + 1)(u+1)/2
≤ c
(distT(x, x′)

N

)u
. (5.16)

We now proceed to bound I(x) − I(x′). Recall that Q(t) = p(t) + R(t). Decompose
I(x) = Ip(x) + IR(x) into the corresponding contributions of p(t) and Q(t): Ip(x) :=∑
x̃∈T p(i;x, x̃)Zic(x̃) and IR(x) :=

∑
x̃∈T R(i;x, x̃)Zic(x̃). For Ip, using translation invari-

ance of p (i.e., p(t;x, x̃) = p(t;x+i, x̃+i)), we have Ip(x)−Ip(x′) =
∑
x̃∈T p(t;x, x̃)(Zic(x̃)−

Zic(x̃ + (x′ − x))). Given this expression, together with the Hölder continuity of Zic(·)
from our assumption (1.12), we have∣∣Ip(x)− Ip(x′)

∣∣ ≤ (distT(x,x′)
N

)uic
c. (5.17)

As for IR, using the bound from Proposition 4.11(f) for u = v and the boundedness of
Zic(x) gives ∣∣IR(x)− IR(x′)

∣∣ ≤ (distT(x,x′)
N

)v
c. (5.18)

Combining (5.16)–(5.18) with (5.15) yields

‖Z(i, x)− Z(i, x′)‖a∗,k ≤
((distT(x,x′)

N

)u
+ (distT(x,x′)

N )2uic + (distT(x,x′)
N )2v

)1/2

c

≤
(distT(x,x′)

N

)u
2 ∧uic∧v

c. (5.7b’)

Finally we turn to the gradient moment estimate (5.7c). Fix i < i′ ∈ Z ∩ [0, N2T ],
x ∈ T, and set

Ĩ(i, i′, x) :=
∑
x̃∈T

Q(i′ − i;x, x̃)Z(j, x̃)− Z(i, x),

J̃(i, i′, x) :=
1

N

i′−1∑
j=i

∑
x̃∈T

Q(i′ − j;x, x̃)2‖Z(j, x̃)‖a∗,k.
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To alleviate heavy notation, hereafter we omit dependence on (i, i′, x) and write Ĩ and
J̃ in places of Ĩ(i, i′, x) and J̃(i, i′, x). Following the same procedure leading to (5.9),
starting from t = i instead of t = 0, here we have

‖Z(i′, x)− Z(i, x)‖2a∗,k ≤ 2‖Ĩ‖2a∗,k + cJ̃ . (5.19)

Using the bound (5.7a’) on ‖Z(i, x̃)‖a∗,k and the bounds from Proposition 4.11(a) and (b)
for u = 1 on Q, we have

J̃ ≤ c

N

i′∑
j=i

1√
i′ − j + 1

≤
( i′ − i
N2

) 1
2

c.

As for Ĩ, decompose it into Ĩ = Ĩp + ĨR, where

Ĩp :=
∑
x̃∈T

p(i′ − i;x, x̃)Z(i, x̃)− Z(i, x) =
∑
x̃∈T

p(i′ − i;x, x̃)
(
Z(i, x̃)− Z(i, x)

)
,

ĨR :=
∑
x̃∈T

R(i′ − i;x, x̃)Z(i, x̃).

Taking ‖ · ‖a∗,k of Ĩp, with the aid of (5.7b’), we have

‖Ĩp‖a∗,k ≤ c
∑
x̃∈T p(i′ − i;x, x̃)(distT(x, x̃)/N)

1
2∧uic . For p it is straightforward to show

that
∑
x̃∈T p(i′ − i;x, x̃)distT(x, x̃)u ≤ c(u)(i′ − i)u/2, so ‖Ĩp‖a∗,k ≤ ( i

′−i
N2 )

1
2∧uicc. As for ĨR,

taking ‖ · ‖a∗,k using (5.7a’) and the bound from Proposition 4.11(e) gives ‖Ĩp‖a∗,k ≤
( i
′−i
N2 )vc. Inserting the preceding bounds on J̃ , Ĩp, and ĨR into (5.19), we obtain

‖Z(i, y)− Z(i′, y)‖a∗,k ≤
((

i′−i
N2

) 1
2 +

(
i′−i
N2

) 1
2∧uic

c+
(
i′−i
N2

)v)1/2

c

≤
(
i′−i
N

)u
4 ∧

uic
2 ∧

v
2 c. (5.7c’)

So far we have obtained the relevant bounds (5.7a’)–(5.7c’) for integer time. To
go from integer to continuum, we consider generic btc ≤ t ∈ [0, N2T ], and estimate
‖Z(t, x)− Z(btc, x)‖a∗,k. To this end, recall we have the local (in time) bounds (5.5)–(5.6)

on the growth of Z(s, y), where X(j, x), X̃(j, x) that are stochastically dominated by
Poisson(c), and are independent of F (t) (defined in (2.1)). In (5.5)–(5.6), subtract Z(j, x)

from both sides, and take ‖ · ‖a∗,k on both sides to get∥∥∥ sup
t∈[j,j+1]

|Z(t, x)− Z(j, x)|
∥∥∥

a∗,k
≤
∥∥∥(e

X(j,x)√
N − 1)Z(j, x)

∥∥∥
a∗,k

+
∥∥∥(1− e−1

X̃(j,x)√
N )Z(j, x)

∥∥∥
a∗,k

=
∥∥∥(e

X(j,x)√
N − 1)

∥∥∥
a∗,k
‖Z(j, x)‖a∗,k +

∥∥∥(1− e−1
X̃(j,x)√

N )
∥∥∥

a∗,k
‖Z(j, x)‖a∗,k ≤ 1√

N
c. (5.20)

Since (distT(x,x′)
N )

u
2 ∧uic∧v, ( |t−t

′|∨1
N2 )

u
4 ∧

uic
2 ∧

v
2 ≥ 1√

N
for all x 6= x′ and t, t′ ≥ 0, we may

use (5.20) to approximate Z(btc, x) with Z(t, x), and hence infer (5.7a)–(5.7c) from (5.7a’)–
(5.7c’).

Recall that D([0, T ], C(T )) denotes the space of right-continuous-with-left-limits func-
tions [0, T ]→ C(R), equipped with Skorohod’s J1-topology.

Corollary 5.3. For any given T <∞, {ZN}N is tight in the space of D([0, T ], C(T )), and
its limits concentrate in C([0, T ], C(T )).

Proof. First, to avoid the jumps (in t) of ZN (t, x), consider the process Z̃N (t, x) :=

Z(t, x), for t ∈ 1
N2Z≥0, and linearly interpolate in t ∈ [0,∞). For fixed v,Λ, T as in
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Proposition 5.2, the moment bounds obtained in Proposition 5.2, together with the
Kolmogorov continuity theorem, implies that {Z̃N1Ω(1,v,Λ,T )}N is tight in C([0, T ]× T ) =

C([0, T ], C(T )). Further, Proposition 4.11 asserts that P[Ω(1, v,Λ, T )] → 1 under the
iterative limit (limΛ→∞ limN→∞ ·), so {Z̃N}N is tight in C([0, T ], C(T )).

To relate ZN to Z̃N , we proceed to bound the difference Z̃N − ZN . Fix u ∈ (0, 1),
v ∈ (0, uA) and set Ij := [ j

N2 ,
j+1
N2 ]. From (5.20), we have that

Ea∗[ ‖Z̃N − ZN‖kL∞(Ij×T )

]
:= E

[
‖Z̃N − ZN‖kL∞(Ij×T )1Ω(u,v,Λ,T,N)

∣∣∣a(x), x ∈ T
]
≤ c(u, v,Λ, k, T )N−k/2, (5.21)

j = 0, 1, . . . , dTN2e.

The r.h.s. of (5.21) is deterministic (i.e., not depending on a). This being the case,
take E[ · ] in (5.21), and apply Markov inequality P[|X|k > ε] ≤ ε−kE[|X|k] with X =

‖Z̃N − ZN‖L∞(Ij×T )1Ω(u,v,Λ,T,N). We obtain

P
[
‖Z̃N − ZN‖L∞(Ij×T )1Ω(u,v,Λ,T,N) > ε

]
≤ c(u, v,Λ, k, T )ε−kN−k/2, j = 0, 1, . . . , dTN2e.

Setting k = 5 and take union bounds over j = 0, 1, . . . , dTN2e yields

P
[
‖Z̃N − ZN‖L∞([0,T ]×T )1Ω(u,v,Λ,T,N) > ε

]
≤ c(u, v,Λ, T, ε)N2−5/2. (5.22)

By Proposition 4.11, for each n ∈ Z>0 there exists Λ(n) <∞ such that
limN→∞P[Ω(u, v,Λ(n), T,N)c] ≤ 1

n . For fixed n ∈ Z>0, if we set Λ = Λ(n) in (5.22), the
result converges to zero as N → ∞. Therefore, there exists N1 < N2 < . . . such that
c(u, v,Λ(n), T, ε)N

2−5/2
n ≤ 1

n . Set ΛN := Λ(max{n : Nn ≤ N}). Passing (5.22) to the
sequence Λ = ΛN gives

lim
N→∞

P
[
‖Z̃N − ZN‖L∞([0,T ]×T ) > ε

]
= 0.

From this, we conclude that ZN and Z̃N must have the same limit points inD([0, T ], C(T )).
Knowing that {Z̃N}N is tight in C([0, T ], C(T )), we thus conclude the desired result.

6 Proof of Theorem 1.8

Given Corollary 5.3, to prove Theorem 1.8, it suffices to identify limit points of {ZN}N .
We achieve this via a martingale problem.

6.1 Martingale problem

Recall that, even though H and its semigroup Q(t) := etH are possibly random, they
are independent of the driving noise ξ. This being the case, conditioning on a generic
realization of A, throughout this subsection, we assume Q(t) and H are deterministic,
(constructed from a deterministic A ∈ CuA [0, 1]).

It is shown in [FN77, Section 2] that, for bounded A, the self-adjoint operator
H = 1

2∂xx+A′(x) has a discrete spectrum. More explicitly,Hϕn = λnϕn, n = 1, 2, . . ., with
ϕn ∈ D(H) ⊂ H1(T ) and λ1 ≥ λ2 ≥ · · · → −∞, and with {ϕn}∞n=1 forming a Hilbert basis
(i.e., dense orthonormal set) of L2(T ). Let 〈{ϕn}〉 := {

∑m
i=1 αiϕi : m ∈ Z>0, α1, . . . , αm ∈

R} denote the linear span of eigenfunctions. Recall that 〈f, g〉 :=
∫
T f(x)g(x)dx denotes

the inner product on L2(T ).
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We say that a C([0,∞)×T )-valued process Z solves the martingale problem corre-
sponding to (1.10) if, for any f ∈ 〈{ϕn}〉,

M(t; f) := 〈f,Z(s)〉
∣∣∣s=t
s=0
−
∫ t

0

〈Hf,Z(s)〉ds, (6.1)

L(t; f) := (Mf (t))2 −
∫ t

0

〈f2,Z2(s)〉ds (6.2)

are local martingales in t, with respect the canonical filtration σ(Z(s) : s ≤ t). Equiv-
alently, consider a measure space (µ,C([0,∞) × T ),B), where B denotes the Borel
sigma algebra of C([0,∞)× T ). Let Z(s) denote the canonical process, and, for a given
f ∈ 〈{ϕn}〉, view (6.1)–(6.2) as functionals of the canonical process. We say the mea-
sure space solves the martingale problem if, for any f ∈ 〈{ϕn}〉, (6.1)–(6.2) are local
martingales in t, with respect the canonical filtration.

Proposition 6.1. A C([0,∞) × T )-valued process Z that solves the aforementioned
martingale problem has the same law as a mild solution (1.10) of the SPDE (1.10).

Proof. Fix Z ∈ C([0,∞) × T ) that solves the martingale problem. The first step is to
show that Z is a weak solution. That is, extending the probability space if necessary,
there exists a white noise measure ξ(t, x)dtdx such that, for any given f ∈ 〈{ϕn}〉,

M(t; f) = 〈f,Z(s)〉
∣∣s=t
s=0
−
∫ t

0

〈Hf,Z(s)〉ds =

∫ t

0

∫
T
f(x)Z(s, x)ξ(s, x)dx. (6.3)

With 〈{ϕn}〉 being dense in L2(T ), the statement is proven by the same argument of
[BG97, Proposition 4.11]. We do not repeat it here.

Next, for given n ≥ 1, consider the process F (t) := e−λnt〈ϕn,Z(t)〉. Using Itô calculus,
with the aid of (6.3) (for f = ϕn), we have

F (t)− F (0) =

∫ t

0

(
− λnF (s) + e−λns〈Hϕn,Z(s)〉

)
ds+

∫ t

0

∫
T
e−λnsϕn(x)Z(s, x)ξ(s, x)dxds.

With Hϕn = λnϕn, the first term on the r.h.s. is zero. This being the case, multiplying
both sides by eλnt gives

〈ϕn,Z(t)〉 − 〈etλnϕn,Z(0)〉 =

∫ t

0

∫
T
eλn(t−s)ϕn(x̃)Z(s, x̃)ξ(s, x̃)dx̃ds.

Further, write etλnϕn = Q(t)ϕn and eλn(t−s)ϕn(x̃) =
∫
T Q(t− s;x, x̃)ϕn(x)dx, and use the

fact that Q(t− s;x, x̃) = Q(t− s; x̃, x), we now have

〈f,Z(t)〉 − 〈Q(t)f,Z(0)〉 =
〈
f,

∫ t

0

∫
T
Q(t− s; ·, x̃)Z(s, x̃)ξ(s, x̃)dx̃ds

〉
, f = ϕ1, ϕ2, . . . .

(6.4)

Equation (6.4) being linear in f readily generalizes to all f ∈ 〈{ϕn}〉. With 〈{ϕn}〉 being
dense in L2(T ) and hence in C(T ), we conclude that Z satisfies (1.11).

For convenience of subsequent analysis, let us rewrite the martingale problem (6.1)–
(6.2) in a slightly different but equivalent form: for all n, n′ ≥ 1,

Mn(t) :=M(t;ϕn) = 〈ϕn,Z(s)〉
∣∣s=t
s=0
− λn

∫ t

0

〈ϕn,Z(s)〉ds, (6.1’)

Ln,n′(t) :=M(t;ϕn)M(t;ϕn′)−
∫ t

0

〈ϕnϕn′ ,Z2(s)〉ds (6.2’)

are local-martingales in t.
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As stated previously, to prove Theorem 1.8, it now suffices to identify limit points
of {ZN}N . This being the case, after passing to a subsequence, hereafter we assume
ZN ⇒ Z, for some C([0,∞), C(T))-valued process Z. By Skorokhod’s representation
theorem, extending the probability space if necessary, we further assume Z and ZN
inhabit the same probability space, with

‖ZN −Z‖L∞([0,T ]×T ) −→P 0, (6.5)

for each given T <∞. Our goal is to show that Z solves the martingale problem (6.1’)–
(6.2’). We further refer to (6.1’) and (6.2’) as the linear and quadratic martingale
problems, respectively.

6.2 Linear martingale problem

Here we show that Z solves the linear martingale problem (6.1’). Let〈
f, g
〉
N

:=
1

N

∑
x∈T

f( xN )g( xN )

denote the discrete analog of 〈f, g〉, ∆Nf(x) := N2(f(x+ 1
N ) + f(x− 1

N )− f(2x)) denote
the scaled discrete Laplacian, and HN := 1

2∆N +N2νa(Nx) denote the scaled operator.
Multiply both sides of (2.6) by ϕn(Nx), integrate over t ∈ [0, N2t] and sum over x ∈ T.
We have that

Mn(N2t) :=

∫ N2t

0

1

N

∑
x∈T

ϕn(Nx)dM(t, x) = 〈ϕn, ZN (s)〉N
∣∣∣s=t
s=0
−
∫ t

0

〈HNϕn, ZN (s)〉Nds

(6.6)

is a martingale.
Indeed, the r.h.s. of (6.6) resemble the r.h.s. of (6.1’), and one would hope to show con-

vergence of the former to the latter in order to establishMn(t) being a local martingale.
For the case of homogeneous ASEP, we have 1

2∆N in place of HN , and the eigenfunc-
tions ϕn are C2. In this case, using Taylor expansion it is straightforward to show that∫ t

0
〈 12∆Nϕn, ZN (s)〉Nds converges to its continuum counterpart

∫ t
0

∫
T 〈

1
2ϕ
′′
n,Z(s)〉ds. Here,

on the other hand, we only have ϕn ∈ H1(T ), and a(x) and ZN (t, x) lack differentiabil-
ity in x. Given the situation, a direct proof of

∫ t
0
〈HNϕn, ZN (s)〉Nds converging to its

continuum counterpart seems challenging.
To circumvent the aforementioned issue, we route through the integrated (i.e., mild)

equation (2.10). For a given t ≥ 0 and k ∈ Z>0, put ti := i
k t, set (t∗, t) = (N2ti−1, N

2ti)

in (2.10), and subtract Z(N2ti−1, x) from both sides. This gives

Z(s, x)
∣∣s=N2ti

s=N2ti−1
=
((

Q(N2 t
k )− Id

)
Z(N2ti−1)

)
(x) +

∑
x̃∈T

∫ N2ti

N2ti−1

Q(N2ti − s;x, x̃)dM(s, x̃),

where ‘Id’ denotes the identity operator. Multiply both sides by ϕn(Nx), and sum over
x ∈ T and i = 1, . . . , k. After appropriate scaling, we obtain〈

ϕn, ZN (s)
〉
N

∣∣s=t
s=0
−Gk,N (t)

−
k∑
i=1

∑
x,x̃∈T

∫ N2ti

N2ti−1

1

N

∑
x∈T

ϕn(Nx)Q(N2ti − s;x, x̃)dM(s, x̃) = 0, (6.7)

where, with (QN (t)f)(x) := 1
N

∑
x̃∈ 1

N TNQ(N2t;Nx,Nx̃)f(x) denoting the scaled semi-
group,

Gk,N (t) :=
k∑
i=1

〈
ϕn, (QN ( tk )− Id)ZN (ti−1)

〉
N
. (6.8)
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Further adding and subtracting Mn(t) on both sides of (6.7) gives

〈ϕn, ZN (s)〉N
∣∣s=t
s=0
−Gk,N (t)−Hk,N (t) = Mn(t), (6.9)

Hk,N (t) :=
k∑
i=1

∫ N2ti

N2ti−1

1

N

∑
x̃∈T

(∑
x∈T

ϕn(Nx)Q(N2ti − s;x, x̃)− ϕn(Nx̃)
)
dM(s, x̃). (6.10)

In the following we will invoke convergence to zero in probability under iterated
limits. For random variables Xk,N indexed by k,N , we write

lim
k→∞

lim
N→∞

Xk,N
P
= 0

if lim sup
k→∞

lim sup
N→∞

P[|Xk,N | > ε] = 0, for each ε > 0. Given (6.9), we proceed to show

Lemma 6.2. For any given T <∞,

(a) lim
N→∞

(
sup
t∈[0,T ]

∣∣〈ϕn, ZN (t)〉N − 〈ϕn,Z(t)〉
∣∣) P

= 0,

(b) lim
k→∞

lim
N→∞

sup
t∈[0,T ]

∣∣Gk,N (t)− λn
∫ t

0

〈ϕn,Z(s)〉ds
∣∣ P

= 0,

(c) lim
k→∞

lim
N→∞

sup
t∈[0,T ]

∣∣Hk,N (t)
∣∣ P

= 0.

Proof. (a) Given (6.5) and ϕn ∈ H1(T ) ⊂ C(T ), this follows straightforwardly.

(b) Given (6.5) and Proposition 4.12, we have, for each s, δ ∈ [0,∞),

lim
N→∞

‖
(
QN (δ)− Id)ZN (s)

)
−
(
Q(δ)− Id

)
Z(s)‖L∞(T )

P
= 0. (6.11)

Using (6.11) for s = tj−1 and δ = t
k , and plugging it into (6.8), together with ϕn ∈

H1(T ) ⊂ L1(T ), we have

lim
N→∞

sup
t∈[0,T ]

|Gk,N (t)− Gk(t, k)| P
= 0,

Gk(t) :=
k∑
i=1

〈
ϕn, (Q( tk )− Id)Z(ti−1)

〉
=

k∑
i=1

(e
t
kλn − 1)

〈
ϕn,Z(ti−1)

〉
.

Further taking the k →∞ limit using the continuity of Z(t) gives

lim
k→∞

sup
t∈[0,T ]

∣∣∣Gk(t)− λn
∫ t

0

〈
ϕn,Z(s)

〉
ds
∣∣∣ P

= 0.

This concludes the proof for (b).

(c) Given the moment bounds from Proposition 5.2, it is not hard to check that
{Hk,N (·)}k,N is tight in D[0, T ]. This being the case, it suffices to establish one point
convergence:

lim
k→∞

lim sup
N→∞

∣∣Hk,N (t)
∣∣ P

= 0. (6.12)

To this end, fix u ∈ (0, 1), v ∈ (0, uA), Λ, T < ∞, recall the definition of Ω =

Ω(u, v,Λ, T,N) from (5.1), and recall the notation Ea[ · ] := E[ · |a(x), x ∈ T]. Multi-
ply both sides of (6.10) by 1Ω1{λn<Λ}, and calculate the second moment (with respect to
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Ea[ · ]) of Hk,N (t). With the aid of (5.3) and the moment bounds from Proposition 5.2, we
have

Ea
[
Hk,N (t)2

]
1Ω1{λn<Λ} (6.13)

≤ c(u, v, T,Λ)
k∑
i=1

∫ N2ti

N2ti−1

1

N3

∑
x̃∈T

((∑
x∈T

ϕn(Nx)Q(N2ti − s;x, x̃)− ϕn(Nx̃)
)2

·Ea
[
Z(s, x̃)2

]
1Ω1{λn<Λ}

)
ds (6.14)

≤ c(u, v, T,Λ)

k∑
i=1

1

N2

∫ N2ti

N2ti−1

1

N

∑
x̃∈T

(∑
x∈T

ϕn(Nx)Q(N2ti − s;x, x̃)− ϕn(Nx̃)
)2

ds1{|λn|<Λ}. (6.15)

Let N →∞ in (6.15). Given that ϕn ∈ H1(T ) ⊂ L1(T ), with the aid of Proposition 4.12,
we have∑

x∈T

ϕn(Nx)Q(N2(ti − s);x,Nx̃)→
∫
T
ϕn(x)Q(ti − s;x, x̃)dx, uniformly in x̃ ∈ T .

Hence

lim sup
N→∞

(6.15) ≤ c(u, v, T,Λ)
k∑
i=1

∫ ti

ti−1

∫
T

(∫
T
ϕn(x)Q(ti − s;x, x̃)dx̃− ϕn(x̃)

)2

dx̃1{λn<Λ}

= c(u, v, T,Λ)
k∑
i=1

∫ ti

ti−1

∫
T

(
(e(ti−s)λn − 1)ϕn(x̃)

)2

dx̃1{λn<Λ}

= c(u, v, T,Λ)k

∫ t
k

0

(esλn − 1)2ds ≤ k−2(u, v, T,Λ). (6.16)

Now, combine (6.13)–(6.16), take E[ · ] of the result, and let k →∞. We arrive at

lim
k→∞

lim sup
N→∞

E
[
Hk,N (t)21Ω1{λn<Λ}

]
= 0. (6.17)

Indeed, P[{λn < Λ}]→ 1 as Λ→∞, and Proposition 4.11 asserts that
P[Ω] = P[Ω(u, v,Λ, T,N)]→ 1 under the iterative limit (limΛ→∞ limN→∞ ·). Combining
these properties with (6.17) yields the desired result (6.12).

Lemma (6.2) together with (6.9) gives

sup
t∈[0,T ]

|Mn(t)−Mn(t)| −→P 0. (6.18)

Knowing that Mn(t) is an F -martingale, we conclude thatMn(t) is a local martingale.

6.3 Quadratic martingale problem

Our goal here is to show that Z solves the quadratic martingale problem (6.2). With
Mn(t) given in (6.6), the first step is to calculate the cross variation of Mn(t)Mn′(t):

〈Mn,Mn′〉(N2t) =

∫ N2t

0

1

N2

∑
x,x′∈T

ϕn(Nx)ϕn′(Nx
′)d〈M(s, x),M(s, x′)〉. (6.19)
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Given (2.8), the r.h.s. of (6.19) permits an explicit expression in terms of η(s, x) and
Z(s, x). Relevant to our purpose here is an expansion of the expression that exposes the
N →∞ asymptotics. To this end, with Z(t, x) defined in (1.1), note that

η(t, x)Z(t, x) = τ1/2−1
τ1/2−τ1/2Z(t, x) + 1

τ1/2−τ1/2∇Z(t, x− 1), (6.20)

η(t, x+ 1)Z(t, x) = 1−τ−1/2

τ1/2−τ1/2Z(t, x) + 1
τ1/2−τ1/2∇Z(t, x). (6.21)

Recall the filtration F (t) from (2.1). In the following we use B(t, x) = B(N)(t, x) to denote
a generic F -adopted process that may change from line to line (or even within a line),
but is bounded uniformly in t, x,N . Set

W (t, x) := N(∇Z(t, x))(∇Z(t, x− 1)). (6.22)

Using the identities (6.20)–(6.21) in (2.8), together with r = 1−1/
√
N

2 , ` = 1+1/
√
N

2 ,
τ := r/` and |ã(x)| ≤ c (from (1.1), (1.2), and Assumption 1.2(a)), we have

d
ds 〈M(s, x),M(s, x′)〉

=(r − `)2ã(x)
(

1
` η(s, x) + 1

rη(s, x+ 1)−
(

1
r + 1

`

)
η(t, x)η(s, x+ 1))

)
Z(s, x)2

= ã(x)
N

((
Z2(s, x) +W (s, x))

)
+N−

1
2B(s, x)Z2(s, x)

)
. (6.23)

From (6.20)–(6.21), it is readily checked that

|W (t, x)| ≤ cZ2(t, x). (6.24)

In (6.23), write ã(x) = 1 + a(x), and use (6.24) to get
a(x)
N (Z2(s, x) + W (s, x)) = a(x)

N B(s, x)Z2(s, x). Also, since ã(x) is bounded (from As-

sumption 1.2(a)), we have ã(x)
N N−

1
2B(s, x)Z2(s, x) = 1

NN
− 1

2B(s, x)Z2(s, x). From these
discussions we obtain

d
ds 〈M(s, x),M(s, x′)〉 = 1

N

((
Z(s, x)2 +W (s, x)) + (a(x) +N−

1
2 )B(s, x)Z2(s, x)

)
. (6.25)

Inserting (6.25) into (6.19) gives

〈Mn,Mn′〉(N2t) =
1

N2

∫ N2t

0

1

N

∑
x∈T

ϕn(Nx)ϕn′(Nx
′)Z2(s, x)ds+ L1(t) + L2(t), (6.26a)

L1(t) :=
1

N2

∫ N2t

0

1

N

∑
x∈T

ϕn(Nx)ϕn′(Nx
′)(a(x) +N−

1
2 )B(s, x)Z2(s, x)ds, (6.26b)

L2(t) :=
1

N2

∫ N2t

0

1

N

∑
x∈T

ϕn(Nx)ϕn′(Nx)W (s, x)ds. (6.26c)

Indeed, the r.h.s. of (6.26a) is the discrete analog of
∫ t

0
〈ϕnϕn′ ,Z2(s)〉ds that appears

in (6.2’). By (3.23), ‖a‖L∞(T) ≤ N−uA with probability→Λ,N 1. With the aid of moment
bounds from Proposition 5.2, it is conceivable L1(t) converges in C[0, T ] to zero in
probability. On the other hand, W (s, x) does not converge to zero for fixed (s, x). In
order to show that L2(t) converges to zero, we capitalize on the spacetime averaging
in (6.26c). The main step toward showing such an averaging is a decorrelation estimate
on W (s, x), stated in Proposition 6.6.

To prove the decorrelation estimate, we follow the general strategy of [BG97]. The
idea here is to develop an integral equation for Ea∗[W (t+ s, x)|F (s)] and try to ‘close’
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the equation. Closing the equation means bounding terms on the r.h.s. of the integral
equation, so as to end up with an integral inequality for Ea∗[W (t+ s, x)|F (s)]. Crucial
to success under this strategy are certain nontrivial inequalities involving the kernel
Q(t;x, x̃), which we now establish. These are considerably more difficult to demonstrate
in the inhomogeneous case (versus the homogeneous case).

Remark 6.3. Self-averaging properties like Proposition 6.6 are often encountered in
the context of convergence of particle systems to SPDEs. In particular, in addition
to the approach of [BG97] that we are following, alternative approaches have been
developed in different contexts. This includes hydrodynamic replacement [Qua11] and
the Markov duality method [CGST20]. The last two approaches do not seem to apply
in the current context. For hydrodynamic replacement, one needs two-block estimates
to relate the fluctuation of h(t, x) to the quantity W (t, x). Inhomogeneous ASEP under
Assumption 1.2 sits beyond the scope of existing proofs of two-block estimates. As for the
duality method, it is known [BCS14] that inhomogeneous ASEP enjoys a duality via the
function Q̃(t, ~x) :=

∏n
i=1 η(t, xi)τ

h(t,xi). (Even though [BCS14] treats ASEP in the full-line
Z, duality being a local property, readily generalizes to T.) For the method in [CGST20]
to apply, however, one also needs a duality via the function Q(t, ~x) :=

∏n
i=1 τ

h(t,xi), which
is lacking for the inhomogeneous ASEP.

In what follow, for f, g ∈ [0,∞)× T2 → R, we write

Kf,g(t;x, x̃) := (∇xf(t;x, x̃))(∇xg(t;x− 1, x̃)), kf,g(t;x) :=
∑
x̃∈T

|Kf,g(t;x, x̃)|. (6.27)

Recall also that R(t) := Q(t)−p(t) denotes the difference of Q(t) = etH to p(t), the kernel
of the homogeneous walk.

Lemma 6.4. Fix u ∈ ( 1
2 , 1), v ∈ (0, uA), Λ, T <∞. We have, for all t ∈ [0, N2T ] and x ∈ T,

(a)

∫ N2T

0

kf,g(s;x)ds1Ω(u,v,Λ,T,N) ≤ c(u, v, T,Λ)N−(u∧v) log(N + 1)

when (f, g) = (p,R), (R,p), (R,R),

(b) kQ,Q(t;x)1Ω(u,v,Λ,T,N) ≤ c(u, v, T,Λ)(1 + t)−(u+ 1
2 ),

(c)
∣∣∣ ∫ t

0

∑
x̃∈T

Kp,p(s;x, x̃)ds
∣∣∣ ≤ c√

t+ 1
,

(d) There exists a universal β < 1 and N0 = N0(u, v, T,Λ) such that∫ N2T

0

kQ,Q(s;x)ds1Ω(u,v,Λ,T,N) ≤ β, for all N ≥ N0.

Proof. Throughout this proof we assume that s, t ≤ TN2, and, to simplify notation, write
c = c(u, v,Λ, T ) and Ω = Ω(u, v,Λ, T,N). At times below we will apply earlier lemmas or
propositions wherein variables were labeled x or u. We will not, however, always apply
them with the values of x and u specified in our proof (for instance, we may want to
apply a result with u = 1). In order to avoid confusion, when we specify the value · of x
or u (or other variables) used in that application of an earlier result we will write x 7→ ·
or u 7→ ·.

(a) Our first aim is to bound the expression
∑
x̃ |∇f(s;x, x̃)||∇g(s;x′, x̃)| when (f, g) =

(p,R), (R,p), (R,R). To this end, bound |∇f(s;x, x̃)| by it supremum over x̃ ∈ Z, and
use (3.4b) or Proposition 4.11(g) (with x′ 7→ x− 1 and u 7→ u), and for the remaining sum
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use (3.4c) or Proposition 4.11(f). This gives∑
x̃∈T

|∇f(s;x, x̃)∇g(s;x′, x̃)|1Ω

≤ c

(
1

s+ 1

(
N−v

(s+ 1)u/2
+N−u

)
+

(
N−v

(s+ 1)(u+1)/2
+

N−u√
s+ 1

)
1√
s+ 1

(6.28)

+

(
N−v

(s+ 1)(u+1)/2
+

N−u√
s+ 1

)(
N−v

(s+ 1)u/2
+N−u

))
, (6.29)

when (f, g) = (p,R), (R,p), (R,R). Expand the terms on the r.h.s. of (6.28), and (using
u < 1), bound N−v/(s + 1)1+u

2 ≤ N−v/(s + 1)u+ 1
2 . In (6.29), use u > 1

2 and s ≤ TN2 to
bound N−u/

√
s+ 1 ≤ c (s+ 1)−1. We then have, when (f, g) = (p,R), (R,p), (R,R),∑

x̃∈T

|∇f(s;x, x̃)∇g(s;x′, x̃)|1Ω ≤
cN−v

(s+ 1)u+ 1
2

+
cN−u

s+ 1
. (6.30)

Integrate (6.30) over s ∈ [0, t]. Given that u > 1
2 , we have

∫ t
0
N−v/(s + 1)u+ 1

2 ds ≤
cN−v; Given that t ≤ N2T , we have

∫ t
0
N−u/(s + 1)ds ≤ cN−u log(N + 1). From these

considerations we conclude the desired bound.
(b) Using (3.4b)–(3.4c) gives

∑
x̃∈T |∇p(t;x, x̃)∇p(t;x′, x̃)| ≤ c (t+ 1)−3/2. Combining

this with (6.30), and using N−u/(t+ 1) ≤ c (t+ 1)−(1+u
2 ), we conclude the desired result.

(c) Recall that p solves the lattice heat equation (3.3). Multiply both sides of (3.3) by
p(s;x′, x̃), sum over x ∈ T, and integrate over s ∈ [0,∞). We have∑

x̃∈T

∫ ∞
0

1
2∂s
(
p(s;x′, x̃)p(s;x, x̃)

)
ds

=

∫ ∞
0

∑
x̃∈T

1
4

(
p(s, x′, x̃)∆xp(s;x, x̃) + (∆x′p(s, x′, x̃))p(s;x, x̃)

)
ds

= −
∫ ∞

0

∑
x̃∈T

1
2∇x′p(s;x′, x̃)∇xp(s;x, x̃)ds.

With p(0;x, x̃) = 1{x=x̃} and p(∞;x, x̃) = 1
N , the l.h.s. is equal to 1

2 ( 1
N − 1{x=x′}). This

gives ∫ ∞
0

∑
x̃∈T

∇x′p(s, x′, x̃)∇xp(s;x, x̃)ds = 1{x=x′} −
1

N
.

Set x′ 7→ x− 1 gives
∫ t

0

∑
x̃∈T Kp,p(s;x, x̃)ds = 1

N −
∫∞
t

∑
x̃∈T Kp,p(s;x, x̃)ds. To bound the

last term, use (3.4b)–(3.4c) (with u 7→ 1) to get∣∣∣ ∫ t

0

∑
x̃∈T

Kp,p(s;x, x̃)ds
∣∣∣ ≤ 1

N
+
∣∣∣ ∫ ∞
t

∑
x̃∈T

Kp,p(s;x, x̃)ds
∣∣∣

≤ 1

N
+

∫ ∞
t

c

(s+ 1)3/2
ds ≤ 1

N
+

c√
t+ 1

.

This together with 1
N ≤

c√
t+1

completes the proof.

(d) Since Q = p+ R, we have kQ,Q(s, x) ≤ (kp,p + kR,Q + kQ,R + kR,R)(s, x). The bounds
established in part (a) of this lemma gives

sup
x∈T

∫ N2T

0

(
kR,Q + kQ,R + kR,R

)
(s, x)ds1Ω −→P 0.
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Granted this, it now suffices to show that there exists β′ < 1 and N0(u, v, T,Λ) such that∫ N2T

0

kp,p(s;x)ds :=

∫ N2T

0

∑
x̃∈T

|∇p(s;x, x̃)∇p(s;x− 1, x̃)|ds ≤ β′, (6.31)

for N ≥ N0(u, v, T,Λ),

for some universal constant β′ < 1. Recall that pZ(t;x) denotes the kernel p of the
homogeneous walk on Z, and that p is expressed in terms of pZ by (3.5). Let I :=

(−N2 ,
N
2 ] ∩ Z ⊂ Z denote an interval in Z of length N centered at 0. Under this setup we

have∑
x̃∈T

|∇p(s;x, x̃)∇p(s;x− 1, x̃)| =
∑
y∈I

∣∣∣∑
j∈Z

∇pZ(s; y + jN)
∑
j′∈Z

∇pZ(s; y − 1 + j′N)
∣∣∣

≤
∑
y∈I

∑
j,j′∈Z

∣∣∣∇pZ(s; y + jN)∇pZ(s; y − 1 + j′N)
∣∣∣. (6.32)

Within (6.32), the diagonal terms j = j′, after being summed over y ∈ I, jointly contribute
to

V (s) :=
∑
y∈Z

∣∣∇pZ(s; y)∇pZ(s; y − 1)
∣∣.

We set the contribution of off-diagonal terms to be

S(s) :=
∑
y∈I

∑
j 6=j′∈Z

∣∣∇pZ(s; y + jN)∇pZ(s; y − 1 + j′N)
∣∣. (6.33)

Integrating (6.32) over s ∈ [0, N2T ] then gives∫ N2T

0

∑
x̃∈T

|∇p(s;x, x̃)∇p(s;x− 1, x̃)|ds ≤
∫ N2T

0

V (s)ds+

∫ N2T

0

S(s)ds. (6.34)

For the first term on the r.h.s. of (6.34), it is known [BG97, Lemma A.3] that∫ N2T

0

V (s)ds =

∫ ∞
0

∑
y∈Z

|∇pZ(s; y)∇pZ(s; y − 1)|ds =: β′′ < 1. (6.35)

To bound the last term in (6.34), we use the bound from [DT16, Eq (A.13)], which in our

notation reads |∇pZ(s; y + iN)| ≤ 1
s+1e

− |y+iN|√
s+1 . Further, for all y ∈ I we have |y| ≤ N

2 ,

which gives |y + iN | ≥ 1
c (|y| + |i|N), and hence |∇pZ(s; y + iN)| ≤ 1

s+1e
− |y|+|i|N

c
√
s+1 , for all

y ∈ I. Using this bound on the r.h.s. of (6.33) gives

S(s) ≤ c
( ∑
j 6=j′∈Z

e
− (|j|+|j′|)N√

s+1

)(∑
y∈Z

e
− |y|
c
√
s+1

(s+ 1)2

)
≤ c e−

N
c
√
s+1 (s+ 1)−3/2.

Integrating this inequality over s ∈ [0, N2T ], and combining the result with (6.34)–(6.35)
yields ∫ N2T

0

∑
x̃∈T

|∇p(s;x, x̃)∇p(s;x− 1, x̃)|ds ≤ β′′ + c

∫ N2T

0

e
− N
c
√
s+1 (s+ 1)−3/2ds.

Fix α ∈ (0, 1) and divide the last integral into integrals over s ∈ [0, N−α] and s ∈
[N−α, N2T ]. We see that

∫ N2T

0
exp(− N

c
√
s+1

)(s+1)−3/2ds ≤ (exp(− 1
cN
−1+α)+N−α/2)c→

0. Hence we conclude (6.31) for β′ = β′′+1
2 < 1.
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Given Lemma 6.4, we now proceed to establish an integral inequality of the condi-
tional expectation of W (t+ s, x).

Lemma 6.5. Fix u ∈ ( 1
2 , 1), v ∈ (0, uA), Λ, T <∞. Let Ω′ := Ω(u, v, T,Λ, N)∩Ω(1, v, T,Λ, N)

and Ea∗[ · ] := E[ · |a(x), x ∈ T]1Ω′ . We have, for all s, t ∈ [0, N2T ] and x ∈ T,

Ea∗
[ ∣∣Ea∗[W (t+ s, x)

∣∣F (s)
]∣∣ ] ≤ c(u, v,Λ, T )

(
N−(u2 ∧uic∧v) log(N + 1) + 1√

t+1
+ N

t+1

)
+

∫ t

0

∑
x̃∈T

KQ,Q(t′;x, x̃)Ea∗
[ ∣∣Ea∗[W (t′ + s, x)

∣∣F (s)
]∣∣ ]dt′. (6.36)

Proof. Throughout this proof we assume s, t ≤ TN2, and, to simplify notation, we write
c = c(u, v,Λ, T ). Recall from (6.22) that W (t+ s, x) involves x-gradients of Z. The idea is
to derive equations for ∇xZ(t, x). To this end, set (t∗, t) 7→ (s, s + t) in (2.10) and take
∇x on both sides to get

∇xZ(t+ s, x) = D(x) + F (x), (6.37)

D(x) :=
∑
x̃∈T

∇xQ(s;x, x̃)Z(s, x̃), F (x) :=

∫ t+s

s

∑
x̃∈T

∇xQ(t− τ ;x, x̃)dM(τ, x̃). (6.38)

Note that we have omitted dependence on s, t in the notation D(x), F (x). Similar
convention is practiced in the sequel. Use (6.37) twice with x 7→ x and x 7→ x − 1 to
express W in terms of D and F . Since F (x) is a martingale integral and since D(x) is
F (s)-measurable, upon taking Ea∗[ · |F (s)], we have

Ea∗[W (t+ s, x)|F (s)] = ND(x)D(x− 1) +NEa∗[F (x)F (x+ 1)|F (s)]. (6.39)

To evaluate the last term in (6.39), recall that B(t, x) denotes a generic F -adopted
uniformly bounded process, and note that, from (3.23), we have |a(x)| ≤ ΛN−uA under Ω.
Recall the notation Kf,g, kf,g from (6.27). Using (6.25) we write

NEa∗[F (x)F (x+ 1)|F (s)] = F1(x) + F2(x) + F3(x),

where

F1(x) :=

∫ s+t

s

∑
x̃∈T

KQ,Q(t− t′;x, x̃)Ea∗[Z2(s+ t′, x̃)|F (s)]dt′, (6.40)

F2(x) :=

∫ t

0

∑
x̃∈T

KQ,Q(t− t′;x, x̃)Ea∗[W (s+ t′, x̃)|F (s)]dt′,

F3(x) := N−( 1
2∧uA)

∫ s+t

s

∑
x̃∈T

KQ,Q(t− t′;x, x̃)Ea∗[B(t′, x̃)Z2(s+ t′, x̃)|F (s)]dt′. (6.41)

Note that F2(x) is expressed in terms of Ea∗[W (t+ s, x)|F (s)], t ≥ 0. Insert (6.40)–(6.41)
into the last term in (6.39), and take Ea∗[ |·| ] on both sides. We now obtain

Ea∗[ ∣∣Ea∗[W (t+ s, x)|F (s)]
∣∣ ] ≤ NEa∗[ |D(x)D(x− 1)|

]
+ Ea∗[ |F1(x)|

]
+

∫ t

0

∑
x̃∈T

KQ,Q(t− t′;x, x̃)Ea∗[ |Ea∗[W (s+ t′, x̃)|F (s)]|
]
dt′ + Ea∗[ |F3(x)|

]
.

(6.42)

To proceed, we bound the residual terms in (6.42) that involves D, F1, and F3.
We begin with the term NEa∗[ |D(x)D(x− 1)| ]. Using the expression (6.38) for D(x),

we take ‖ · ‖a∗,2 on both sides, and write Q(t) = p(t) + R(t). With the aid of the moment
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bound on ‖Z(s, x̃)‖a∗,2 from Proposition 5.2, we obtain

‖D(x)‖a∗,2 ≤
∑
x̃∈T

|∇xQ(t;x, x̃)| ‖Z(s, x̃)‖a∗,2 ≤ c
∑
x̃∈T

|∇xp(t;x, x̃)|+ c
∑
x̃∈T

|∇xR(t;x, x̃)|.

(6.43)

Further using (3.4c) (with x′ 7→ x − 1 and u 7→ 1) and using the bound from Proposi-
tion 4.11(f) (with u 7→ 1 and v 7→ v) gives ‖D(x)‖a∗,2 ≤ ( 1√

t+1
+ N−1)c ≤ c√

t+1
, where,

in the last inequality, we used t ≤ TN2. We were able to take u 7→ 1 in our application
of (3.4c) because we are on the event Ω′ := Ω(u, v, T,Λ, N) ∩ Ω(1, v, T,Λ, N). Given this
bound, applying Cauchy–Schwarz inequality we have

NEa∗[ |D(x)D(x− 1)|
]
≤ N‖D(x)‖a∗,2‖D(x− 1)‖a∗,2 ≤ cN

t+1 . (6.44)

Next we turn to bounding Ea∗[ |F1(x)| ]. First, given the decomposition K = Kp,p +

Kp,R + KR,p + KR,R, we write F1(x) = F11(x) + F12(x), where

F11(x) =

∫ t

0

∑
x̃∈T

(
Kp,R + KR,p + KR,R

)
(t− t′;x, x̃)Ea∗[Z2(s+ t′, x̃)|F (s)]dt′,

F12(x) =

∫ t

0

∑
x̃∈T

Kp,p(t− t′;x, x̃)Ea∗[Z2(s+ t′, x̃)|F (s)]dt′.

For F11(x), we use bounds from Lemma 6.4(a) and moment bounds from Proposition 5.2
to get Ea∗[ |F11(x)| ] ≤ cN−(u∧v) log(N+1). As for F12(x), we further decompose F12(x) =

F121(x) + F122(x), where

F121(x) = Ea∗[Z2(s+ t, x)|F (s)]

∫ t

0

∑
x̃∈T

Kp,p(t− t′;x, x̃)dt′,

F122(x) =

∫ t

0

∑
x̃∈T

Kp,p(t− t′;x, x̃)Ea∗[Z2(s+ t′, x̃)− Z2(s+ t, x)|F (s)]dt′.

For F121(x), taking Ea∗[ | · | ] and using the moment bound on ‖Z(s + t, x̃)‖a∗,2 from
Proposition 5.2, followed by using Lemma 6.4(c), we have Ea∗[ |F121(x)| ] ≤ c√

t+1
. As for

F122(x), write

|Z2(s+ t′, x̃)− Z2(s+ t, x)|
≤
(
Z(s+ t′, x̃) + Z(s+ t, x)

)(
|Z(s+ t′, x̃)− Z(s+ t, x̃)|+ |Z(s+ t, x̃)− Z(s+ t, x)|

)
.

Set α = u
2 ∧ uic ∧ v to simplify notation. Using the moment bounds from Proposition 5.2,

here we have

Ea∗[ |F122(x)|
]
≤ c

∫ t

0

∑
x̃∈T

|Kp,p(t− t′;x, x̃)|
((distT(x, x̃)

N

)α
+
( |t− t′| ∨ 1

N2

)α
2
)
dt′.

Further using the bounds (3.4b)–(3.4c) (with x′ 7→ x − 1 and u 7→ 1) and (3.4h) (with
u 7→ α) gives

Ea∗[ |F122(x)|
]
≤ c

∫ t

0

1

(t− t′ + 1)

N−α

(t− t′ + 1)(1−α)/2
dt′ ≤ cN−α = cN−(u2 ∧uic∧v).

Collecting the preceding bounds on the F ’s, we conclude

Ea∗[ |F1(x)|
]
≤ c√

t+ 1
+ cN−(u2 ∧uic∧v) log(N + 1). (6.45)
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As for F3(x). Recall that B(t, x) denotes a (generic) uniformly bounded process.
Taking Ea∗[ | · | ] in (6.41) and using the moment bounds from Proposition 5.2 and using
Lemma 6.4(d), we have

Ea∗[ |F3(x)|
]
≤ cN−( 1

2∧uA). (6.46)

Inserting (6.44)–(6.46) into (6.42) completes the proof.

We now establish the required decorrelation estimate on W .

Proposition 6.6. Let u, v,Λ, T,Ω′, Ea∗[ · ] be as in Lemma 6.5. There exists c = c(u, v,Λ, T )

such that, for all s, t ∈ [0, N2T ] and x ∈ T,

Ea∗
[ ∣∣Ea∗[W (t+ s, x)

∣∣F (s)
]∣∣ ] ≤ c(N−(u2 ∧uic∧v) log(N + 1) + 1√

t+1
+ N

t+1

)
. (6.47)

Proof. Through the proof, we write c = c(u, v, T,Λ) to simplify notation, and assume
t ∈ [0, N2T ]. For fixed s ∈ [0, N2T ], set w(t) := supx∈T Ea∗[ |Ea∗[W (t+s, x)

∣∣F (s)]| ], which
is the quantity we aim to bound, and consider also w(t, x) := Ea∗[ |Ea∗[W (t+s, x)

∣∣F (s)]| ].
Taking supremum over x ∈ T in (6.36) gives

w(t, x) ≤ c
(
N−(u2 ∧uic∧v) log(N + 1) + 1√

t+1
+ N

t+1

)
+

∫ t

0

kQ,Q(t− t′;x)w(t′)dt′.

Iterating this inequality gives

w(t, x) ≤ c
(
N−(u2 ∧uic∧v) + 1√

t+1
+ N

t+1

)
+
∞∑
n=1

(
w1,n(t, x) + w2,n(t, x) + w3,n(t, x)

)
,

(6.48)

where, with the notation Σn(t) from (3.6) and dn~s from (3.8), we have

wi,n(t, x) :=

∫
Σn(t)

( n∏
i=1

kQ,Q(si;x)
)
·


N−(u2 ∧uic∧v) log(N + 1), for i = 1

1√
s0+1

, for i = 2
N

s0+1 , for i = 3

 · dn~s.
Let β := supx∈T

∫ N2T

0
kQ,Q(t, x)dt, which, by Lemma 6.4(d), is strictly less than 1 (uni-

formly in N ). For w1,n(t, x), noting that the integral does not involve the variable s0, we
bound

∞∑
n=1

w1,n(t, x) ≤ N−(u2 ∧uic∧v) log(N + 1)
∞∑
n=1

∫
[0,N2T ]n

n∏
i=1

kQ,Q(si;x)dsi

= N−(u2 ∧uic∧v) log(N + 1) β
1−β = cN−(u2 ∧uic∧v) log(N + 1).

(6.49)

To bound w2,n and w3,n, we invoke the argument from [Lab17, Proof of Proposi-
tion 3.8]. We begin with w2,n. Split w2,n(t, x) into integrals over Σn(t) ∩ {s0 >

t
n+1} and

over Σn(t) ∩ {s0 ≤ t
n+1}, i.e., w2,n(t, x) = w′2,n(t, x) + w′′2,n(t, x), where

w′2,n(t, x) :=

∫
Σn(t)∩{s0> t

n+1}

( n∏
i=1

kQ,Q(si;x)
)
· 1√

s0 + 1
dn~s,

w′′2,n(t, x) :=

∫
Σn(t)∩{s0≤ t

n+1}

( n∏
i=1

kQ,Q(si;x)
)
· 1√

s0 + 1
· dn~s.
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For w′2,n, we bound 1√
s0+1

by c(n+1
t+1 )1/2. Doing so releases the s0 variable from the

integration, yielding

w′2,n(t, x) ≤ c
(n+ 1

t+ 1

)1/2
∫

[0,N2T ]n

( n∏
i=1

kQ,Q(s1;x)
)
dn~s = cnβn

(n+ 1

t+ 1

)1/2

. (6.50)

As for w′′2,n, we note that the integration domain is necessarily a subset of Σn(t) ∪ni=1

{si > t
n+1}. At each encounter of si >

t
n+1 , we invoke the bound from Lemma 6.4(b).

This gives

w′′2,n(t, x) ≤ c
n∑
i=1

(n+ 1

t+ 1

)u+ 1
2

∫
Σn(t)

( ∏
i′∈{1,...,n}\{i}

kQ,Q(si′ ;x)
) 1√

s0 + 1
dn~s. (6.51)

For each i = 1, . . . , n, the integral in (6.51) does not involve the variable si. We then
bound

w′′2,n(t, x) ≤ c
n∑
i=1

(n+ 1

t+ 1

)u+ 1
2

∫
[0,t]n

( ∏
i′∈{1,...,n}\{i}

kQ,Q(si′ ;x)dsi

) 1√
s0 + 1

ds0

≤ c(n+ 1)u+ 1
2 βn−1

(t+ 1)u
. (6.52)

Combine (6.50) and (6.52), and sum the result over n ≥ 1. With β < 1 and u > 1
2 , we

conclude

∞∑
n=1

w2,n(t, x) ≤ c√
t+ 1

. (6.53)

As for w3,n(t), the same calculations as in the preceding gives

w3,n(t, x) ≤ cN ·
(
nβn

n+ 1

t+ 1
+
c(n+ 1)u+ 1

2 βn−1

(t+ 1)u+ 1
2

log(t+ 2)
)
≤ cN · (n+ 1)u+ 1

2 βn−1

t+ 1
,

where the factor log(t+2) arises from integrating 1
s0+1 , and the second inequality follows

since u > 1
2 . Summing over n ≥ 1, with β < 1, we have

∞∑
n=1

w3,n(t, x) ≤ cN

t+ 1
. (6.54)

Inserting (6.49), (6.53)–(6.54) into (6.48) completes the proof.

Having established the decorrelation estimate in Proposition 6.6, we continue to
prove that Z solves the quadratic martingale problem (6.2’). Recall the definition of
Mn(t) from (6.6). Consider the discrete analog Ln,n′(t) of Ln,n′(t) (defined in (6.2’)):

Ln,n′(t) := Mn(t)Mn′(t)−
∫ t

0

〈ϕnϕn′ , Z2
N (s)〉Nds.

Recall from (6.18) that Mn converges in C[0, T ] toMn in probability. Also, from (6.5),∫ t
0
〈ϕnϕn′ , Z2

N (s)〉Nds converges in C[0, T ] to its continuum counterpart
∫ t

0
〈ϕnϕn′ ,Z2(s)〉ds

in probability. Consequently, Ln,n′ converges in C[0, T ] to Ln,n′ in probability.
On the other hand, we know that L′n,n′(t) := Mn(t)Mn′(t)− 〈Mn,Mn′〉(t) is a martin-

gale, and, given the expansion (6.26), we have Ln,n′(t)− L′n,n′(t) = L1(t) + L2(t). In the
following we will show that L1 and L2 converge in C[0, T ] to zero in probability. Given
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this, (6.18), and the fact that L′n,n′(t) is a martingale, it then follows that (6.2’) is a local
martingale.

It now remains only to show that L1 and L2 converge in C[0, T ] to zero in probability.
Given the moment bounds Proposition 5.2, it is not hard to check that L1, L2 is tight in
C[0, T ]. This being the case, it suffices to establish one point convergence:

Lemma 6.7. For a fixed t ∈ R≥0, we have that L1(t), L2(t)→P 0.

Proof. Fixing u ∈ (0, 1), v ∈ (0, uic), t ∈ [0, T ], Λ < ∞, throughout this proof we write
Ω = Ω(u, v,Λ, T,N), Ω′ = Ω(u, v,Λ, T,N) ∩ Ω(1, v,Λ, T,N), c = c(u, v, T,Λ), and Ea[ · ] :=

E[ · |a(x), x ∈ T].
We begin with L1. Recall that B denotes a generic uniformly bounded process.

By (3.23), ‖a‖L∞(T) ≤ N−uA . Given this, taking Ea[| ·1Ω |] in (6.26b) using the moment
bound on Z(t, x) from Proposition 5.2 and using ‖ϕn‖L∞(T ) ≤ c‖ϕn‖H1(T ) (from (4.2)),
we have

Ea[|L1(t)1Ω|] := E
[
|L1(t)|1Ω

∣∣a(x)
]
≤ cN−( 1

2∧uA) ‖ϕn‖H1(T )‖ϕn′‖H1(T ).

Set Γ = Γ(n, n′,Λ) := { ‖ϕn‖H1(T )‖ϕn′‖H1(T ) ≤ Λ}. Multiply both sides by 1Γ, and take

E[ · ] on both sides to get E[ |L1(t)|1Ω1Γ ] ≤ cN−( 1
2∧uA). This gives |L1(t)|1Ω1Γ →P 0 as

N →∞. More explicitly, writing L1(t) = L1(t;N), Ω = Ω(u, v, T,Λ, N), and Γ = Γ(Λ), we
have, for each fixed ε > 0,

lim
N→∞

P
[
{|L1(t;N)| > ε} ∩ Ω(u, v, T,Λ, N) ∩ Γ(Λ)

]
= 0. (6.55)

Indeed, with n, n′ being fixed, we have

lim
Λ→∞

P[ Γ(Λ)c ] = P[ ‖ϕn‖H1(T )‖ϕn′‖H1(T ) > Λ ] = 0. (6.56)

Also, Proposition 4.11 asserts that

lim sup
Λ→∞

lim sup
N→∞

P[Ω(u, v, T,Λ, N)c] = 0. (6.57)

Use the union bound to write

P
[
|L1(t;N)| > ε

]
≤ P

[
{|L1(t;N)| > ε} ∩ Ω(u, v, T,Λ, N) ∩ Γ(Λ)

]
+ P[Ω(u, v, T,Λ, N)c] + P[ Γ(Λ)c ],

and send N →∞ and Λ→∞ in order on both sides. With the aid of (6.55)–(6.57), we
conclude that
limN→∞P[|L1(t;N)| > ε] = 0, for each ε > 0. That is, L1(t;N)→P 0, as N →∞.

Turning to L2, in (6.26c), we take Ea∗[( · )21Ω′ ] on both sides to get

Ea[(L2(t))21Ω′ ]

≤
(
‖ϕn‖H1(T )‖ϕn′‖H1(T )

)2 2

N4

∫
s1<s2∈[0,N2t]2

1

N2

∑
x1,x2∈T

|Ea[W (s2, x2)W (s1, x1)1Ω′ ]|ds1ds2.

Multiplying both sides by 1Γ, we replace (‖ϕn‖H1(T )‖ϕn′‖H1(T ))
2 with Λ2 = c on the r.h.s.

to get

Ea[(L2(t))21Ω′1Γ]

≤ c

N4

∫
s1<s2∈[0,N2t]

1

N2

∑
x1,x2∈T

|Ea[W (s2, x2)W (s1, x1)1Ω′ ]|ds1ds2. (6.58)
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To bound the expectation on the r.h.s. of (6.58), we fix a threshold κ > 0, and split
the expectation into Ea[W (s2, x2)W (s1, x1)1Ω′ ] = f1 + f2, where

f1 := Ea[W (s2, x2)W (s1, x1)1Ω′1|W (s1,x1)|≤κ],

f2 := Ea[W (s2, x2)W (s1, x1)1Ω′1W (s1,x1)>κ].

For f1, insert the conditional expectation E[ · |F (s1)], and then use Proposition 6.6 to
show

|f1| ≤ κEa
∣∣Ea
[
W (s2, x2)1Ω′

∣∣F (s1)
]∣∣ ≤ cκ(N−(u2 ∧uic∧v) log(N + 1) + 1√

s2−s1+1
+ N

s2−s1+1

)
.

As for f2, apply Markov’s inequality followed by using (6.24) to get

|f2| ≤ cκ−1 sup
s∈[0,N2T ]

sup
x∈T

Ea[Z4(s, x)1Ω′ ] ≤ cκ−1,

where the last inequality follows from the moment bound on Z(s, x) from Proposition 5.2.
Inserting the bounds on |f1| and |f2| into (6.58) now gives

Ea[(L2(t))21Ω′1Γ] ≤ c

N4

∫
s1<s2∈[0,N2t](

κ
(
N−(u2 ∧uic∧v) log(N + 1) +

1√
s2 − s1 + 1

+
N

s2 − s1 + 1

)
+ κ−1

)
ds1ds2

≤ cκN−(u2 ∧uic∧v) log(N + 1) + cκ−1. (6.59)

Now, choose κ = N−(u4 ∧
uic
2 ∧

v
2 ), and take E[ · ] on both sides of (6.59). This gives

E[(L2(t))21Ω′1Γ] ≤ cN−(u4 ∧
uic
2 ∧

v
2 ) log(N + 1)→ 0.

Given this, similarly to the preceding, after passing Λ to a suitable subsequent ΛN →∞
in (6.55), we conclude that L2(t)→P 0.
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