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Abstract
This is an expository note answering a question posed to us by Richard Stanley, in which we
prove a limit shape theorem for partitions of n which maximize the number of subpartitions.
The limit shape and the growth rate of the number of subpartitions are explicit. The key ideas
are to use large deviations estimates for random walks, together with convex analysis and
the Hardy–Ramanujan asymptotics. Our limit shape coincides with Vershik’s limit shape for
uniform random partitions.

Keywords Random partitions · Large deviations · Limit shape

1 Maximizing the Number of Subpartitions

Given a partition λ = (λ1 ≥, . . . ,≥ λk) of n, we can identify it with a 1-Lipschitz function
which is a finite perturbation of |x | by following the Russian convention for drawing it.
Specifically, start with the English convention for the Young diagram for λ (λ1 boxes on the
top row, then λ2 below it and so on, all justified to line up on the left) and rotate it by 135◦.
Then we place this rotated picture immediately adjacent to the graph of the function x �→ |x |
so that each box has unit length. This defines a 1-Lipschitz function gλ(x) with the property
that gλ(x) ≥ |x | and gλ(x) = |x | for large x . We also define a rescaled version of gλ as
fλ(x) := n−1/2gλ(n1/2x) so that each box has side length n−1/2 and area n−1 when depicted
beneath the graph of fλ. In particular

∫
R
( fλ(x) − |x |)dx = 1.

A subpartition of a partition λ = (λ1 ≥, . . . ,≥ λk) is a partition μ = (μ1 ≥, . . . ,≥ μ�)

such that � ≤ k and μi ≤ λi for all i ≤ �. Our main result is as follows.

Theorem 1.1 (Theorems 4.2 and 5.2) For each n, let λn denote a partition of n which max-
imizes the number of subpartitions among all other partitions of n. Then the number of
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subpartitions of λn grows as eπ
√
2n/3−o(

√
n) as n → ∞. Moreover fλn converges uniformly

as n → ∞ to the function f (x) = 2
√
3

π
log

(
2 cosh

(
π

2
√
3
x
))

.

The limit shape here is known as Vershik’s curve and was first described as the limit of
uniformly sampled partitions of n in [8]. Our result can be shown by using large-deviations
estimates for uniformly sampled partitions of n which were found in the follow-up paper
[2]. In particular, to prove Theorem 1.1, first note by the Hardy–Ramanujan asymptotics that
the number of subpartitions of any partition of n is bounded above (up to some constant
factor) by eπ

√
2n/3. We let μn be a partition of n which is closest to Vershik’s curve (after

normalization by
√
n), among all other partitions of n. Fixing ε > 0, it follows from [2,

Theorem 1] that for large enough n, “most” partitions of 	(1 − ε)n
 are going to be sub-
partitions of μn, which means that the number of subpartitions of μn is bounded below by
1
n e

π
√
2(1−ε)n/3−o(

√
n). Since ε can be made arbitrarily small, this gives tight bounds on the

exponential scale which can then be used (via elementary topological arguments) to show
that the maximizing partitions λn are very close to μn on the

√
n scale, so that the λn also

converge to Vershik’s curve.
The main purpose of this note is to exposit the power of large deviations theory in this

particular context of partition/subpartition problems. Specifically we are going to give a
proof of Theorem 1.1, which is essentially a more rigorous version of the sketch given in
the preceding paragraph. However, our exposition is more self-contained and based entirely
on foundational principles. Specifically we do not use [2] or any other previous work on
integer partitions, but instead rely on the seminal result of Mogulskii [6] which gives a large
deviations rate function for the full sample path of a random walk with i.i.d. increments, and
is arguably a central result of large deviations theory.

We also have the following similar result for k-chains of subpartitions, i.e., simply ordered
sets of k subpartitions. The ordering may be strict or unstrict; our results do not depend on
this convention.

Theorem 1.2 (Sect. 6) Let k ≥ 1, and let λn denote a partition of n which maximizes the
number of k-chains of subpartitions, among all other partitions of n. Then the number of
k-chains of subpartitions of λn grows as ekπ

√
2n/3−o(

√
n) as n → ∞. Furthermore fλn

converges uniformly to the same limit shape as in Theorem 1.1.

We close out this introduction by noting a few questions that may warrant further study.
In some cases, there are related results though we do not attempt to make a survey of them.

One natural question is to consider fluctuations around limit curves, as done in [4,11–13]
for instance. For the problem we have considered, this is a bit difficult to phrase since for
each n we expect only a few maximizing partitions. On the other hand, if we let s(λ) denote
the number of subpartitions of λ, then we may, for β ≥ 0 define a measure on partitions
of n with probability of λ proportional to s(λ)β . When β → ∞, this measure concentrates
on those λ which maximize s(λ), hence our problem. When β = 0, this measure reduces
to the uniform measure on partitions considered by Vershik. While we expect (in particular,
based on our arguments in this paper) that the limit shape does not depend on β, it would
be interesting to probe the dependence of β on the fluctuations around that shape. It might
also be interesting to obtain concentration and large deviations bounds for such measures, as
established in [2,10] for instance.

While there are many other types of measures on partitions, one of particular importance
is the Plancherel measure. This involves defining the dimension of λ to be the number of
standard Young Tableaux of that shape. In terms of subpartitions, this is the number of n-
chains of subpartitions where we restrict that a subpartition cannot equal the partition. The
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Limit Shape of Subpartition-Maximizing Partitions 599

Plancherel measure is then proportional to that dimension squared. For that measure, seminal
and independent works of Logan–Shepp [5] and Vershik–Kerov [9] established a limit shape
as n → ∞ now known as the Logan–Shepp–Vershik–Kerov (LSVK) curve. This limit curve
is not the same as Vershik’s curve. Hence, a natural question is to find a way to interpolate
the model so as to find limit shapes which likewise interpolate between these two curves.

Theorem 1.2 shows that taking k-chains for k fixed does not achieve this aim of crossing
over between the Vershik and LSVK curves. However, we speculate that taking k = k(n) =
cn1/2 may result in such a crossover. In fact, this problem can be reduced to a rhombus tiling
limit shape problem for which there are some methods which may be useful. Another natural
question involves increasing the dimension and considering higher dimensional partitions.
In three dimensions, these would correspond with plane partitions, which are also nicely
interpreted as rhombus tilings.

Outline in Sect. 2 we will derive exponentially sharp upper bounds for the number of
nearest-neighbor paths which stay below a given barrier. In Sect. 3 we introduce a certain
functional which will describe the limit shape and the growth rate of the maximizing par-
titions; this functional appears naturally from the upper bounds of Sect. 2. In Sect. 4 we
prove the limit shape theorem abstractly (without identifying the limit shape explicitly),
by using nice convexity properties of the functional defined in Sect. 3. In Sect. 5 we use
Lagrange multipliers and Hardy–Ramanujan asymptotics to derive the limit shape explicitly
(thus completing the proof of Theorem 1.1). In Sect. 6 we prove Theorem 1.2.

2 Preliminary Upper Bounds

First we introduce some notation. Always I will denote a subinterval of Z or of R. The
specific type of interval will always be made clear from the context. For a (continuous)
function f : I → R, we define the lower convex envelope of f to be the supremum of all
convex functions which are less than or equal to f .Note that this is a convex function, which
is also the supremum of a countable number of linear functions which are equal (and in fact
tangent, if I = [0, 1]) to f at certain special points. We also define the decreasing lower
convex envelope to be the sup of all decreasing convex functions less than or equal to f ,
which is a (weakly) decreasing convex function.

Our first lemma is elementary (albeit tedious to state precisely) and says that the lower
convex envelope necessarily optimizes a certain type of convex functional over the set of
functions less than a given one.

Lemma 2.1 Let ψ : R → R ∪ {+∞} be a convex function. Let I be the discrete interval
{a, a + 1, . . . , b} ⊂ Z. We let C(I ) denote the space of all functions from I → R. Define a
functional J : C(I ) → R by the formula

J ( f ) :=
∑

i∈I\{a}
ψ

(
f (i) − f (i − 1)

)
.

Fix some f ∈ C(I ), and let K f := {g ∈ C(I ) : g ≤ f , g(a) = f (a), g(b) = f (b)}. Then
one has that infg∈K f J (g) = J (h), where h is the lower convex envelope of f . Similarly,
if K̄ f := {g ∈ C(I ) : g ≤ f , g(a) = f (a)}, and if we also assume that ψ achieves its
minimum at 0, then infg∈K̄ f

= J (h̄), where h̄ is the decreasing lower convex envelope of f .
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600 I. Corwin, S. Parekh

Proof We will work with K f rather than K̄ f , briefly indicating the necessary modifications
at the end of the proof. The argument is essentially a geometric one which proceeds in two
steps.

Step 1. Firstly, we show that J ( f ) ≥ J (h) whenever f (a) = h(a), f (b) = h(b), and h
is the lower convex envelope of f . Let C := {x ∈ I : f (x) = h(x)}. The complement of C
is the union of some finite collection of disjoint intervals

⋃N
n (an, bn) ∩ Z. On each interval

(ai , bi ) ∩ Z it is clear from the definition of the lower convex envelope that h is just a linear
function, i.e., h(x) = x−an

bn−an
f (bn) + bn−x

bn−an
f (an) for x ∈ [an, bn]. By Jensen’s inequality,

one sees that

bn∑

an+1

ψ( f (i) − f (i − 1)) ≥ (bn − an)ψ

(
f (bn) − f (an)

bn − an

)

=
bn∑

an+1

ψ(h(i) − h(i − 1)).

This is already enough to prove Step 1, since f coincides with h outside of the [an, bn].
Step 2. Secondly, we show that J (h) ≥ J (k) whenever h, k are both convex functions

with the property that h(a) = k(a), h(b) = k(b), and h ≤ k. To do this, we inductively
define a sequence {h j }bj=a of functions: ha = h, and

h j+1(x) = max{h j (x), (x − j + 1)k( j) + ( j − x)k( j − 1)}.
In more geometric terms, we are simply taking h j+1 to be the maximum of h j with the
“tangent line” to k at { j−1, j}. In particular each h j is convex, and it follows from convexity
of k that hb = k. Thus the claim will be proved if we can show that J (h j ) ≥ J (h j+1) for all
j ∈ {a, . . . , b−1}. But this is clear, because h j (x) agrees with h j+1(x) except for x in some
interval [u, v] where it equals x−u

v−u h j (v) + v−x
v−u h j (u). Hence the same argument from Step

1 (using Jensen’s inequality) applies to show J (h j ) ≥ J (h j+1). This completes the proof of
Step 2.

Steps 1 and 2 easily imply the claim because if g ≤ f with g(a) = f (a) and g(b) = f (b),
and if h ≤ k are their respective lower convex envelopes then we have that J (g) ≥ J (h) ≥
J (k), where the first inequality is from Step 1 and the second is from Step 2.

Now supposewe replace K f by K̄ f .Let c ∈ {a, . . . , b} be the point at which f achieves its
minimum value. Let h and h̄ denote the lower convex envelope and decreasing lower convex
envelope (respectively) of f . Note that h = h̄ on {a, . . . , c}, and h(c) = f (c), and therefore
if g ≤ f then the above argument gives

∑c
a+1 ψ(g(i)−g(i−1)) ≥ ∑c

a+1 ψ(h̄(i)−h̄(i−1)).
On the other hand, note that h̄(x) = f (c) for x ∈ {c, . . . , b}, and thus by assuming that
ψ achieves its minimum at 0, we get that

∑b
c+1 ψ(h̄(i) − h̄(i − 1)) = ∑b

c+1 ψ(0) ≤
∑b

c+1 ψ(g(i) − g(i − 1)), as desired. ��

Lemma 2.2 Let f : {0, . . . , n} → Rwith f (0) = 0.Let S denote a simple symmetric nearest-
neighbor random walk on Z. Also, let g denote the decreasing lower convex envelope of f .
We also let �∗ be the large deviation rate function associated with S, which means that �∗
is the Legendre transform of λ �→ logE[eλS1 ]. Then

P
(
Si ≤ f (i),∀i ≤ n

) ≤ e− ∑n
i=1 �∗(g(i)−g(i−1)). (1)

Proof The proof uses a standard method for obtaining LDP upper bounds [1]. Note that for
real numbers λ1, . . . , λn, and any Borel set C ⊂ R

n,

inf
x∈C e

∑n
1 λi (xi−xi−1)P(S ∈ C) ≤ E

[
e
∑n

1 λi (Si−Si−1)
]

= e
∑n

i=1 �(λi ),
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Limit Shape of Subpartition-Maximizing Partitions 601

where �(λ) = logE[eλS1 ] and we impose that x0 := 0 in the relevant sum. Rearranging this
gives us

P(S ∈ C) ≤ e− infx∈C
∑n

1 λi (xi−xi−1)−�(λi ).

Now we optimize over all λ1, . . . , λn . If we assume that C is compact and convex we can
use the minimax theorem for concave–convex functions [7] to interchange the sup over λ

with the inf over x, specifically

P(S ∈ C) ≤ e− supλ∈Rn infx∈C
∑n

1 λi (xi−xi−1)−�(λi )

= e− infx∈C supλ∈Rn
∑n

1 λi (xi−xi−1)−�(λi )

= e− infx∈C
∑n

1 supλ∈R
(
λ(xi−xi−1)−�(λ)

)

= e− infx∈C
∑n

1 �∗(xi−xi−1). (2)

Nowwe letC = {x ∈ R
n : −i ≤ xi ≤ f (i),∀i},which is clearly compact and convex. Note

that S ∈ C is equivalent to the left-hand side of (1) (owing to the fact that S only takes ±1
sized jumps). Applying (2) and using Lemma 2.1 to show that inf x∈C

∑n
1 �∗(xi − xi−1) =∑n

1 �∗(g(i) − g(i − 1)), we arrive at (1). ��
Corollary 2.3 Let f : {0, . . . , n} → R with f (0) = f (n) = 0, and let g denote
the lower convex envelope of f (not the decreasing one). Then the number of nearest
neighbor bridges which stay below f (i.e., functions γ : {0, . . . , n} → Z such that
γ (0) = γ (n) = 0, and |γ (i) − γ (i − 1)| = 1, and γ (i) ≤ f (i) for all i) is bounded
above by 2ne− ∑n

i=1 �∗(g(i)−g(i−1)).

Proof Let us pick a point k ∈ {0, . . . , n} at which g attains its minimum value. Note that
g(k) = f (k). Note by Lemma 2.2 the number of nearest neighbor paths of length k starting

from 0 and lying below f |{0,...,k} is less than or equal to 2ke− ∑k
1 �∗(g(i)−g(i−1)). Similarly the

number of nearest neighbor paths of length n−k starting from 0 and lying below f |{k+1,...,n}
is less than or equal to 2n−ke− ∑n

k+1 �∗(g(i)−g(i−1)). Note that the number of bridge paths of
length n lying below f is less than the number of pairs of paths (γ, γ ′) where γ is of the
former type and γ ′ is of the latter type. Thus the total number of such bridges is bounded
above by product of the two individual upper bounds, which equals 2ne− ∑n

1 �∗(g(i)−g(i−1)).

��
An important thing to keep in mind is that the bounds of Propositions 2.2 and 2.3 are

actually sharp up to some subexponential decay factor (see Sect. 4). At an intuitive level,
what this says is that if we condition a random walk to stay underneath a fixed barrier, then
the path which minimizes the energy of the random walk is none other than the lower convex
envelope of that barrier. Another thing to keep in mind is that the bounds of this section hold
uniformly over all partitions, which makes them a little bit stronger than ordinary LDP upper
bounds.

3 The Functional Describing the Limit Shape

For a partition λ, one recalls the definitions of fλ and gλ given at the beginning of Sect. 1.
A 1-Lipschitz function will always refer to a real-valued function f with the property that
| f (x) − f (y)| ≤ |x − y|, or equivalently f is absolutely continuous and | f ′| ≤ 1.

123



602 I. Corwin, S. Parekh

Let us now estimate (or at least upper bound) the number of subpartitions of a given par-
tition. Each subpartition of a given λ can be interpreted as a trajectory of a simple symmetric
randomwalk bridgewhich stays below the graph of gλ (or alternatively of fλ after rescaling).
By Corollary 2.3, the number of such bridges can be upper bounded quite easily. Specifically
let hλ denote the lower convex envelope of fλ, and let k denote a large enough integer so
that gλ(x) = |x | whenever |x | ≥ k. Then by Corollary 2.3 we know that the number of
subpartitions of λ [i.e., the number of unit-length random walk bridges which lie in between
the graphs of gλ(x) and |x |] is upper bounded by

22ke− ∑k
i=−k �∗(n1/2

[
hλ(n−1/2i)−hλ(n−1/2(i−1))

])

= e
∑k

−k

[
log 2−�∗(n1/2

[
hλ(n−1/2i)−hλ(n−1/2(i−1))

])]
= e

√
2n

∫
R

φ(h′
λ(x))dx , (3)

where in the final equality we are using the piece-wise linearity of hλ and defining φ(x) :=
log 2 − �∗(x). This function φ will be very important in the ensuing analysis. In particular,
note that φ(x) is a concave and even function defined on [−1, 1]which achieves its maximum
value of log 2 at x = 0, and its minimum of 0 at x = ±1. The explicit expression for φ is
given in Definition 4.1.

The functional f �→ ∫
R

φ ◦ f ′ appearing in (3) will describe the optimal rate of growth of
the number of subpartitions, aswewill show in the following section. Therefore the remainder
of this section will be devoted to analyzing this functional. To start, we make the following
important definition:

Definition 3.1 We define X to be the space of all 1-Lipschitz functions f : R → R such
that f (x) ≥ |x | and furthermore

∫
R
( f (x) − |x |)dx ≤ 1. We equip X with the topology of

uniform convergence on compact sets. Furthermore, we define the functional F : X → R+
by F(h) := ∫

R
φ ◦ h′, where

φ(x) := log 2 − (1

2
log(1 − x2) + x tanh−1 x

)
,

and h′ is the derivative of h.

A few remarks are in order about this definition. Firstly, note that X is a compact space.
Indeed, this is a consequence of Arzela Ascoli: equicontinuity is obvious, and pointwise
boundedness follows from the integral condition on elements of X combined with the 1-
Lipschitz property (in fact any f ∈ X is bounded above by x �→ √

x2 + 2, since this curve
is the locus of all points such that the rectangle which has one vertex at that point and another
one at the origin, and is also adjacent to the graph of |x |, has area exactly 1).

Secondly, we remark that even though we equipped X with the topology of uniform
convergence on compact sets, this convergence is actually equivalent to uniform convergence
on all ofR.This once again follows from the fact that for all f ∈ X one has that |x | ≤ f (x) ≤√
x2 + 2, and also because of the fact that

√
x2 + 2 − |x | → 0 as |x | → ∞. In particular it

is true that X is a complete metric space with respect to the uniform metric

d( f , g) = sup
x∈R

| f (x) − g(x)|.

The completeness is a consequence of Fatou’s Lemma (to ensure that the value of the integral
remains ≤ 1 after taking a limit). This metric will be used very briefly in the proof of a later
theorem (4.2).

Thirdly, it is not immediately clear that the integral defining the functional F( f ) actually
converges for every f ∈ X , but this will be taken care of by the following proposition which
also highlights the nicest and most important property of F, and will crucially be used later.
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Limit Shape of Subpartition-Maximizing Partitions 603

Proposition 3.2 The integral defining the functional F converges for every f ∈ X . Further-
more, F is upper semicontinuous on X .

Proof We will prove that if fn is a family of 1-Lipschitz functions such that fn → f
uniformly, then lim supn→∞ F( fn) ≤ F( f ) < ∞.The key difficulty here is that F is defined
on functions on the whole real line, which is not compact. The proof will therefore proceed in
two steps: first we replaceRwith a large compact interval and prove the upper semicontinuity
in this simpler case; second we prove a certain “tightness” property (5) for functions in X
which will simultaneously also show that the integral defining F( f ) necessarily converges
for all f ∈ X .

The first step is to show that for each fixed (large) A > 0 one has that

lim sup
n→∞

∫

[−A,A]
φ ◦ f ′

n ≤
∫

[−A,A]
φ ◦ f ′. (4)

The proof of this is quite standard, and purely topological (e.g., does not rely on properties
of the space X ). Nevertheless we include a proof of (4) for completeness.

For simplicity, let us replace the interval [−A, A] by [0, 1] (the same argument works in
the former case with some extra scaling factors). Let X [0, 1] denote the space of 1-Lipschitz
functions on [0, 1] equipped with the uniform topology. We will show that the functional
G( f ) := ∫ 1

0 φ ◦ f ′ is upper semicontinuous from X [0, 1] → R. To prove this it suffices to
write G as the infimum of some collection of continuous functionals. To do this, we consider
partitions P = (0 ≤ t1 ≤ · · · ≤ tn ≤ 1) of [0, 1], and we define GP ( f ) := ∑n

1(ti −
ti−1)φ

( f (ti )− f (ti−1)
ti−ti−1

)
. It is then clear that each GP is continuous from X [0, 1] → R. We

then claim that G = infP GP (where the infimum is taken over all partitions of [0, 1]) which
would prove upper semicontinuity. To prove this equality, first note by Jensen’s inequality and
concavity of φ that for all a < b and all f one has

∫ b
a φ ◦ f ′ ≤ (b − a)φ

( f (b)− f (a)
b−a

)
, which

proves that G ≤ infP GP . To prove the other direction, we define the partition Pn to be the
one consisting of dyadic intervals [k2−n, (k+1)2−n)with 0 ≤ k ≤ 2n −1. For a 1-Lipschitz
function f let fn denote the continuous function with fn(0) = 0 and whose derivative f ′

n(x)
takes the constant value 2n

(
f ((k+1)2−n)− f (k2−n)

)
for x ∈ [k2−n, (k+1)2−n).Note that

f ′
n forms a bounded martingale with respect to the dyadic filtration on the probability space

[0, 1] (i.e., the filtration associated with the nested family of partitions {Pn}n). Consequently
f ′
n converges to f ′ a.e., and thus φ ◦ f ′

n → φ ◦ f ′ a.e. Hence by the bounded convergence

theorem we conclude that GPn ( f ) = ∫ 1
0 φ ◦ f ′

n → ∫ 1
0 φ ◦ f ′ = G( f ). This shows that

G ≥ infP GP . This proves upper semicontinuity of G and in turn also proves (4).
Now given that (4) holds, we want to take A → ∞, but this involves a nontrivial inter-

change of limits and this is where noncompactness of the real line gets in the way. So now
we actually need to use special properties of the space X .

We will show that for every ε > 0, there exists some A = A(ε) > 0 (large) so that for all
f ∈ X one has that

∫

R\[−A,A]
φ ◦ f ′ < ε. (5)

Note that together with (4), this is enough to complete the proof that lim supn F( fn) ≤ F( f ).
The key here is, of course, that the bound of (5) is uniform over all functions f ∈ X . Note
that (5) also shows that F( f ) < ∞ for all f ∈ X .
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604 I. Corwin, S. Parekh

To prove (5), we first note that if f is 1-Lipschitz, then f (x) − x is necessarily (weakly)
decreasing for x ≥ 0, thus

1 − f (n) + f (n − 1) = (
f (n − 1) − (n − 1)

) − (
f (n) − n

) ≥ 0 for n ≥ 1. (6)

The condition that
∫
R
( f (x) − |x |)dx ≤ 1 shows that

∑
n≥0 f (n) − n ≤ 3 [e.g., via an

integral comparison test, since we know f (n) − n is decreasing and f (0) ≤ √
2 < 2]. Then

for all N ≥ 1 we find that

N∑

n=1

n(1 − f (n) + f (n − 1)) =
N∑

n=1

n∑

k=1

(1 − f (n) + f (n − 1))

=
N∑

k=1

N∑

n=k

(1 − f (n) + f (n − 1)) =
[ N∑

k=1

f (k − 1) − (k − 1)

]

− N ( f (N ) − N ),

where in the last line we used (6) so that the inner sum telescopes. Since N ( f (N ) − N ) ≥ 0
we can upper bound the last expression by

∑
k≥0( f (k) − k). Hence we can let N → ∞ in

the preceding expression and we see that
∑

n≥1

n(1 − f (n) + f (n − 1)) ≤
∑

k≥0

f (k) − k ≤ 3. (7)

Appealing to the definition of φ(x) we see that in (−1, 1), φ′(x) = − tanh−1 x which has
logarithmic singluarities at±1.Thus, it follows that φ asymptotically looks like x | log x | near
x = ±1, i.e., limx→±1

φ(x)
|x∓1| log |x∓1| will be a finite nonzero value. Since | log x | ≤ Cx−1/3

near x = 0, this implies that there exists some C > 0 such that φ(x) ≤ C(1− |x |)2/3 for all
x ∈ [−1, 1]. In particular, for all A ≥ 0 one has

∑

n≥A

φ
(
f (n) − f (n − 1)

) ≤ C
∑

n≥A

(
1 − f (n) + f (n − 1)

)2/3

≤ C

( ∑

n≥A

n−2
)1/3( ∑

n

n(1 − f (n) + f (n − 1))

)2/3

≤ C · A−1/3 · 32/3.
For the second inequality we use the fact that if an are nonnegative real numbers such that
∑

n nan < ∞, then by Holder’s inequality
∑

n≥A a
2/3
n ≤ ( ∑

n≥A nan
)2/3( ∑

n≥A n
−2

)1/3
.

The final inequality uses the bound derived in (7), as well as
∑

n≥A n
−2 ≤ A−1.

To close out our proof, observe that Jensen’s inequality and the concavity of φ show that∫
[n−1,n] φ ◦ f ′ ≤ φ( f (n) − f (n − 1)). This, together with the preceding arguments, then
shows that

∫ ∞

A
φ ◦ f ′ ≤

∞∑

n=A

φ
(
f (n) − f (n − 1)

)
� A−1/3,

independently of f , which finally proves (5). ��
At this point it is important to remark that Proposition 3.2 is not just some technical and

otherwise unimportant intermediate step. Really it is where the “meat” of the proof of the
limit shape (Theorem 1.1) really lies. Specifically, the important thing here is the second
half of the proof where we prove a type of “tightness” estimate (5) for functions in X . In
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Limit Shape of Subpartition-Maximizing Partitions 605

terms of partitions, what it really shows (in an equivalent formulation) is that the sequence
of partitions maximizing the number of subpartitions, stays bounded on the n1/2 scale, i.e.,
that the sequence fλn from Theorem 1.1 does not lose any mass in the limit [meaning that
any subsequential limit f of fλn satisfies

∫
( f (x) − |x |)dx = 1]. We remark that the bound

A−1/3 appearing at the end of the proof may actually be improved optimally to log A
A , but this

is slightly more difficult.
As a corollary of Proposition 3.2, we can combine it with compactness of the space X in

order to obtain the following key result.

Corollary 3.3 The functional F from Definition 3.1 admits a maximum M(F) on the space
X . There is a unique function f at which the maximum is attained and this maximizer f is a
convex and symmetric function (i.e. f (x) = f (−x)) and moreover

∫
R
( f (x) − |x |)dx = 1.

Proof Any upper semicontinuous function on a compact space achieves its maximum.
The uniqueness of the maximizer is a concavity property. Specifically we note that φ is

a strictly concave function, meaning φ((1 − t)a + tb) > (1 − t)φ(a) + tφ(b) whenever
t ∈ (0, 1) and a �= b. This then easily implies that F((1− t) f + tg) > (1− t)F( f )+ t F(g)
for t ∈ (0, 1) and f �= g. Clearly this rules out the existence of two distinct maxima.

Symmetry is another consequence of concavity. Specifically, if the maximizer f was not
symmetric, then we can define its reflection fs(x) := f (−x). Clearly F( fs) = F( f ) and
thus if f �= fs then as above we have that F

( 1
2 f + 1

2 fs
)

> 1
2 F( f ) + 1

2 F( fs) = F( f ),
which is a contradiction.

Let f be themaximizer. To prove that
∫
( f (x)−|x |)dx = 1, suppose that this integral took

some value α < 1. Then we let h(x) = α−1/2h(α1/2x). Clearly
∫
(h(x) − |x |)dx = 1, and

h is 1-Lipschitz. Moreover a simple substitution reveals that F(h) = α−1/2F( f ) > F( f )
which is a contradiction.

To prove convexity of f , suppose (for contradiction) that a, b are two points of R such
that there is a linear function � equal to f at both a and b, and such that � < f on (a, b). We
define h to be equal to f on R\[a, b], and equal to � on [a, b]. Then by Jensen’s inequality
one has that

∫ b
a φ ◦ f ′ < (b−a)φ

( f (b)− f (a)
b−a

) = ∫ b
a φ ◦h′, which means that F( f ) < F(h);

a contradiction. This completes the proof. ��

4 The Limit Shape Theorem

Note that in (3) we already proved that for any sequence λn of partitions of n, the number
of subpartitions is bounded above by e

√
2nM(F) where M(F) is the maximum value of the

functional F from above. A natural question is whether there exists a sequence of partitions
for which the number of subpartitions actually grows at this optimal rate. It turns out that the
answer is yes (up to some subexponential factor which is irrelevant), which retrospectively
justifies why we performed such an in-depth analysis of the functional F in the first place.

Proposition 4.1 There exists a sequence of partitions μn of n such that the number of sub-
partitions of μn actually grows as e

√
2nM(F)−o(

√
n) as n → ∞.

The key behind proving this proposition is Mogulskii’s theorem [6], which is really the
primary underlying idea behind this entire work. This result essentially says that the bound in
(3) (and also in Propositions 2.2 and 2.3) is actually sharp (again, up to some subexponential
factor which is not relevant to us). But before getting to the proof, let us first prove the
following important corollary.
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Theorem 4.2 (Limit shape theorem) Let λn and fλn be as in Theorem 1.1. As n → ∞, the
sequence fλn converges uniformly to the unique maximizer fmax of the functional F from
Definition 3.1.

Proof Let s(λn) denote the number of subpartitions of λn, and let hλn denote the lower
convex envelopes of fλn . By Proposition 4.1 and Eq. (3) we have that

e
√
2nM(F)−o(

√
n) ≤ s(λn) ≤ e

√
2nF(hλn ) ≤ e

√
2nM(F), as n → ∞,

which means that M(F) − o(1) ≤ F(hλn ) ≤ M(F) as n → ∞.

Thus we see that F(hλn ) → M(F) as n → ∞. This is already enough to imply that
hλn → fmax uniformly on compact sets as n → ∞. Indeed it is true that for every ε > 0
there exists δ > 0 such that (for all f ∈ X ) F( f ) > M(F) − δ implies that d( f , g) < ε

(here d denotes the metric on X which was specified following Definition 3.1). If this was
not the case then we can choose an ε > 0 such that supd( fmax,g)≥ε F(g) = M(F). But the
space A of 1-Lipschitz functions g such that d( fmax, g) ≥ ε is again a compact subset of
X (being a closed subset of X ). Furthermore F is still an upper semicontinuous function on
A, hence it achieves its maximum value which we already know is M(F). Then there exists
some gmax ∈ A such that F(gmax) = M(F), which clearly contradicts uniqueness of the
maximizer since d( fmax, gmax) ≥ ε by construction.

So we have proved that the convex envelopes hλn (though not necessarily the functions
fλn themselves) converge uniformly to fmax. Note that since fλ ≥ hλ (by definition of the
convex envelope) we have

∫

R

| fλn − hλn | =
∫

R

( fλn (x) − hλn (x))dx

=
∫

R

(
( fλn (x) − |x |) − (hλn (x) − |x |))dx

= 1 −
∫

R

(hλn (x) − |x |)dx .

Now hλn converges to fmax and by Corollary 3.3 we know that
∫
( fmax(x) − |x |)dx = 1,

therefore by applying the preceding calculation and then Fatou’s Lemma, we see that

lim sup
n

∫

R

| fλn − hλn | = 1 − lim inf
n

∫

R

(hλn (x) − |x |)dx ≤ 1 −
∫

( fmax(x) − |x |)dx = 0.

Therefore ‖ fλn −hλn‖L1(R) → 0, and since all functions are 1-Lipschitz, this L1 convergence
also implies uniform convergence. ��

Although this abstractly proves convergence to some limit shape, we still do not know
anything about what the limit shape looks like geometrically. For instance is it bounded, and
if so, is it a triangular shape or something more complicated? This question will be addressed
in the following section.

Let us now start to get to the proof of Proposition 4.1. As mentioned before, the key is the
following result, which essentially gives matching lower bounds to the upper bounds which
we gave in Sect. 2. A proof may be found in [1, Theorem 5.1.2] or in the original paper [6].

Theorem 4.3 (Mogulskii 1992) Let μn denote the law on C0[0, 1] of
( 1
n Snt

)
t∈[0,1] where S

is any i.i.d. random walk (whose increment distribution has exponential moments), and the
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values of S at non-integer points are understood to be linearly interpolated from the two
nearest integer points. Then μn satisfies an LDP with rate n and good rate function

I ( f ) =
∫ 1

0
�∗ ◦ f ′,

where �∗ denotes the Legendre transform of λ �→ logE[eλS1 ], and the integral is meant to
be understood as +∞ if f is not absolutely continuous.

It should be noted that Mogulskii’s result is a vast strengthening of Cramer’s theorem
(from just the endpoint of an i.i.d. sample path to its entire history), in the same way that
Donsker’s invariance principle for i.i.d. random walks is a strengthening of the classical
central limit theorem. Finally we are ready to prove Proposition 4.1.

Proof of Proposition 4.1 Let fmax be themaximizer fromCorollary 3.3.We choose a sequence
μn of partitions of n such that fμn converges uniformly to fmax. This can be done as follows.
First we construct an intermediate partition μ̃n by putting boxes of side length n−1/2 beneath
the graph of of fmax until no more boxes can be put in such a way that the graph of fμ̃n

remains below that of f . Since fμ̃n ≤ f , one notices that μ̃n will not actually be a partition
of n but rather of some number k(n) ≤ n. However, it is true that | fμ̃n − fmax| ≤ Cn−1/2

for some constant independent of n (otherwise more boxes could be added to μ̃n without
eclipsing the graph of fmax). Now we can define μn to be equal to μ̃n but with the remaining
n − k(n) boxes added to the first column of μ̃n . This will not change the limiting function
fmax.

We define fδ(x) := max{|x |, fmax(x) − δ}, and we define the support of fδ to be the set
of x where fδ(x) > |x | (this is an interval centered at 0, by convexity and symmetry of fmax).
Note that for large enough values of n, the δ/2 neighborhood of fδ lies strictly below fμn

on the support of fδ (this is because fμn → fmax uniformly). We are now going to consider
nearest-neighbor (random walk) paths of grid-size n−1/2 which lie in between the graphs of
fδ/2 and f3δ/2.Such apathwill be called (δ, n)-admissible. Let k = k(n, δ)denote the positive
integer such that n−1/2k = argminy∈ 1√

n
Z
|y−a|where a = a(δ) := inf{x > 0 : fδ(x) = x}.

Note by Mogulskii’s Theorem that the number of (δ, n)-admissible paths terminating
on the vertical axis (i.e., nearest-neighbor functions γ : n−1/2

Z≤0 → n−1/2
Z where

Z≤0 denotes non-positive integers) is greater or equal to 2ke−√
2n

∫ 0
−n−1/2k

�∗◦ f ′
δ−o(

√
n) =

e
√
2n

∫ 0
−∞ φ◦ f ′

δ−o(
√
n), as n → ∞ (with δ fixed).

Now we notice that two independent such random walks which are started from
(−n−1/2k, n−1/2k) and conditioned to stay between fδ/2 and f3δ/2 have probability at least
1

δ
√
n
of terminating at the same point. Indeed, this is because there are at most δ

√
n possible

points {xi }δ
√
n

i=1 at which such a walk can terminate (because the grid size is n−1/2), and
if pi is the probability of terminating at point xi , then by Cauchy–Schwarz one finds that

1 = ∑δ
√
n

1 pi ≤ (∑
i p

2
i

)1/2
(δ

√
n)1/2, and because the probability of two independent such

walks terminating at the same point equals
∑

i p
2
i .

Now, a random walk bridge of grid size n−1/2 which lies between fδ/2 and f3δ/2 (which
defines a subpartition of μn for large enough n) can be viewed as the concatenation of a pair
of these random walk paths started from (−n−1/2k, n−1/2k) terminating at the same point
on the vertical axis [note here that we are using the property that fδ(x) = fδ(−x)]. By the
observations of the preceding two paragraphs, the number of such pairs is bounded below by
2

δ
√
n

(
e
√
2n

∫ 0
−∞ φ◦ f ′

δ−o(
√
n)

)2
. The prefactor 2

δ
√
n
may be absorbed into the o(

√
n) term in the
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exponent, giving a lower bound of e
√
2nF( fδ)−o(

√
n). The o(

√
n) term may depend on δ but

this is not a problem.
Since this lower bound holds true for arbitrary δ > 0, the claim now follows if we

can show that F( fδ) → F( fmax) as δ → 0. To do this, note that f ′
δ → f ′

max pointwise
(trivially by the definition of fδ). Thus by Fatou’s Lemma and maximality of F( fmax) it is
true that F( fmax) ≤ lim infδ→0 F( fδ) ≤ lim supδ F( fn) ≤ maxg F(g) = F( fmax), which
completes the argument. ��

5 Characterizing the Limit Shape

So far, many of our methods could have been used for more general types of models than
the simple symmetric random walk (replacing φ with a more general concave function). We
now move onto trying to find the limit shape fmax exactly, which will involve working with
specific details of the function φ, and thus most of the subsequent arguments and analysis
will be specialized just to the case of the simple random walk. In particular we will show that
fmax has, up to scaling and centering, the shape of the curve x �→ log cosh x . In particular it
is not just the triangular function x �→ max{1, |x |}, nor is it the Vershik–Kerov curve. It is,
in fact, the Vershik curve which is the limit shape of uniformly sampled partitions of n [8].

Since fmax is an even convex function there exists a maximal interval (−amax , amax )

(which we will henceforth refer to as the support of fmax) on which f (x) > |x |. This
interval is the interior of the largest closed interval containing the support (in the usual sense)
of the second distributional derivative f ′′

max (which is a nonnegative Borel measure since fmax

is convex). Note that it is possible that amax = +∞, and in a moment we will show that this
is indeed the case.

Letψ be a smooth function with support contained in (−amax , amax ), such that
∫
R

ψ = 0.
Then we claim

∫

R

(φ′ ◦ f ′
max) · ψ ′ = 0. (8)

Indeed, one easily checks that limε→0 ε−1
(
F( fmax + εψ)− F( fmax)

) = ∫
R
(φ′ ◦ f ′

max) ·ψ ′.
However, since

∫
ψ = 0 and since the support of ψ is contained in the support of fmax, it

follows that for ε in a small enoughneighborhoodof zero, the function fmax+εψ is an element
of X , and thus F( fmax + εψ) ≤ F( fmax). Hence if limε→0 ε−1

(
F( fmax + εψ) − F( fmax)

)

exists then it must equal zero, proving (8).
Now if h : [−a, a] → R is any measurable function such that

∫
h · ψ ′ = 0 for every

function ψ ∈ C∞
c with

∫
ψ = 0, then this precisely means that the distributional derivative

of h is orthogonal (with respect to the L2 pairing) to all except the constant functions. In
particular it means that h′ is itself a constant function. Applying this principle to h :=
φ′ ◦ f ′

max, we see that φ
′( f ′

max(x)) = βx + C for some β,C ∈ R. But φ and fmax are even
functions, so φ′ ◦ f ′

max is and odd function, and thus C = 0. Now recall that φ = log 2− �∗
where �∗ is the Legendre transform of �(x) = log cosh x . This implies that �′ ◦ φ′ is the
negative of the identity function on [−1, 1]. In particular φ′( f ′

max(x)) = βx implies that
− f ′

max(x) = �′(βx), which in turn implies that fmax(x) = − 1
β
log cosh(βx) + D for all

x in the support of fmax. Here D is some constant of integration. Of course, we know that
fmax is convex, which implies β ≤ 0. Thus, by renaming β to be −β we have proved the
following.
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Proposition 5.1 There exists some βmax ≥ 0 and some Dmax > 0 such that for every
x ∈ (−amax , amax ) one has that fmax(x) = 1

βmax
log cosh(βmax x) + Dmax .

In the possibility where βmax = 0, the statement of the above Proposition is of course
nonsensical, but [because the condition

∫
( fmax(x) − |x |)dx = 1 determines Dmax uniquely

from βmax ] it is meant to be interpreted in the sense that fmax(x) = Dmax on its support,
meaning that the limit shape would be the triangular function x �→ max{1, |x |}. We will rule
out this possibility shortly.

Our next goal is to find out whether or not amax < +∞, i.e., whether the limit shape is
something compact or not. The next theorem tells us that the answer is no.

Theorem 5.2 In the notations of Proposition 5.1, amax = +∞, βmax = π

2
√
3
, Dmax =

1
βmax

log 2, and F( fmax) = π/
√
3. In particular, fmax(x) = 2

√
3

π
log

(
2 cosh

(
π

2
√
3
x
) )

.

Proof The key will be to use the Hardy–Ramanujan asymptotics together with the identity
∫ ∞

0
log(1 + e−2x )dx =

∫ ∞

0

∑

n≥1

(−1)n+1 e
−2nx

n
dx =

∑

n≥1

(−1)n+1

2n2
= π2

24
. (9)

Here we Taylor expanded the logarithm and then used the identity
∑

n≥1 n
−2 = π2

6 and its

corollaries:
∑

n even n
−2 = π2

24 and
∑

n odd n
−2 = 3π2

24 .

We now recall the Hardy–Ramanujan asymptotics [3] for the partition numbers. Specifi-
cally, if p(n) denotes the number of partitions of n, then p(n) = eπ

√
2n/3−o(

√
n) as n → ∞.

Notice that p is an increasing function of n, and every subpartition of a partition of n is a
partition of some integer i ≤ n. Thus the number of subpartitions of any given partition λ of
n is upper bounded by

∑n
i=0 p(i) ≤ (n + 1)p(n) = (n + 1)eπ

√
2n/3−o(

√
n). The prefactor

(n + 1) may be absorbed into the o(
√
n) term in the exponent, and thus by Proposition 4.1

we conclude that F( fmax) ≤ π/
√
3.

Now, let f (x) := α−1/2 log(2 cosh(α1/2x)), where α := ∫ ∞
−∞(log(2 cosh x) − |x |)dx =

2
∫ ∞
0 log(1 + e−2x )dx = π2

12 by (9). Note that f is 1-Lipschitz [because it has derivative
given by tanh(α1/2x)which is bounded in absolute value by 1], and also note (by substituting
u = α1/2x) that

∫
R
( f (u) − |u|)dx = 1 so that f ∈ X . Now we claim that F( f ) =

π/
√
3 = 2α1/2, which would indeed prove that f = fmax. To prove this, note that F( f ) =

α−1/2
∫
R

φ(tanh u)du, so that proving that F( f ) = 2α1/2 now amounts to showing that∫
R

φ(tanh u)du = 2α. In other words, we want to show
∫ ∞

0
φ(tanh u)du = 2

∫ ∞

0
log(1 + e−2u)du. (10)

One readily checks that φ(tanh u) = log(eu + e−u) − u tanh u, from which proving (10)
amounts to checking that

∫ ∞
0

(
log(eu + e−u) − 2u + u tanh u

)
du = 0. But the integrand

here has an explicit antiderivative given by u log(eu + e−u) − u2, which is readily seen to
evaluate to zero at both u = 0 and as u → ∞. This proves (10), which finally shows that
f = fmax. ��
A further direction of study is to try to gain more precise asymptotics on the exact number

of subpartitions of the maximizing sequence. Specifically we would like to find precise
asymptotics on the o(

√
n) term in the optimal growth rate eπ

√
2n/3−o(

√
n), and we believe

this can be done using more precise large deviations estimates. A similarly difficult “local”
asymptotic problem would be to find the rate at which the side lengths go to ∞ (note that
Theorem 5.2 merely proves that they grow faster than

√
n).
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6 Extension to k-Chains of Subpartitions

We now extend the limit shape theorem to the case of partitions which maximize the number
of k-chains of subpartitions,whichwill proveTheorem1.2. Since the proof is not significantly
more complicated, we briefly indicate the changes which need to be made at each stage of
the argument.

First we address the necessary modifications in Sect. 2. In the notation of Corollary 2.3,
consider k-chains γk ≤ · · · ≤ γ2 ≤ γ1 ≤ f of nearest-neighbor bridges which stay below
f . Then (by viewing the chain as just a k-tuple of paths and disregarding the ordering) the
same corollary says that the number of these k-chains is bounded above by

(

2ne−∑n
1 �∗(g(i)−g(i−1))

)k

.

Then, in Eq. (3) at the beginning of Sect. 3, this bound will tell us that for a given partition λ

of n, the number of k-chains of subpartitions of λ [i.e., k-chains of random walk bridges of
grid size n−1/2 which are nestled in between the graphs of fλ(x) and |x |] is upper-bounded
by

ek
√
2nF(h′

λ), (11)

where as usual hλ is the lower convex envelope of fλ, and F is the functional ofDefinition 3.1.
Hence, all that is left to do is to show that the upper bound (11) is actually sharp up to the

exponential scale [after replacing F(h′
λ)with M(F) = π/

√
3 there]. The way to do this is by

modifying the proof of Proposition 4.1 to lower bound the number of ensembles of k distinct
paths staying below the graph of fmax. In the notation of that proof, we consider ensembles
(implicitly depending on n) of nearest neighbor bridges (γ i )ki=1 from n−1/2

Z → n−1/2
Z,

with the property that fiδ ≤ γi ≤ f(i+1)δ for each 1 ≤ i ≤ k. Clearly each such ensemble
defines a k-chain of subpartitions of μn . Moreover the number of such k-chains is merely
the product over i ∈ {1, . . . , k}, of the individual number of paths lying between the graphs
of fiδ and f(i+1)δ, and we already know a good individual lower bound from the proof of
Proposition 4.1. Specifically, we can lower bound this number of k-chains by

k∏

i=1

⎛

⎝e

√
2nF

(

f(
i+ 1

2

)
δ

)

−o(
√
n)

⎞

⎠ = e

√
2n

∑k
i=1 F

(

f(
i+ 1

2

)
δ

)

−o(
√
n)

.

As we already showed in the proof of Proposition 4.1, F( fη) → 0 as η → 0, which means
(by making δ close to 0) that we can actually lower bound the maximal number of k-chains of
subpartitions by ek

√
2nM(F)−o(

√
n), as n → ∞. This already proves Theorem 1.2. We remark

here that the proof does not rely on whether or not the k-chains are strictly ordered or not,
so the statement of Theorem 1.2 does not depend on this interpretation.

Unfortunately our proof makes it clear that we cannot easily generalize to the case of
k(n)-chains, i.e., where k grows to +∞ with n. As stated in the introduction, we actually
expect that if k(n) grows slowly enough [at a rate of o(n1/2)] then one has the same limit
shape. One the other hand if n1/2 = o(k(n)), then we expect the limit to be the LSVK curve
[5,9]. We expect a nontrivial crossover when k(n) ∼ αn1/2, because this is precisely the
minimal growth rate at which the typical ensemble of sub-paths no longer has a tendency to
just concentrate near the boundary of the partition, but actually distributes itself throughout
the bulk of the partition according to some density (as can be shown via a random matrix
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argument, or alternatively using variational principles for domino tilings). This may or may
not be pursued in a future work, but we believe that a similar overall approach will work.
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