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1. Introduction

The classification of braided fusion categories (BFCs) stands as a formidable, yet
enticing problem. There are many approaches to this problem with varying levels
of preciseness and corresponding degrees of difficulty. As examples, one might try
to classify by categorical dimension [11, (12, [14, 27, 39, [49], by Witt class [19, [20],
by dimension of a generating object [L, 23, [24], or by rank [43, [44]. Each of these
approaches has a different motivation and has seen some measure of success. For
example, classifying by categorical dimension is related to the problem of classifying
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groups by their orders, while classifying by the dimension of a generating object is
related to the classification of subfactors of finite index and depth. Classification by
rank can be motivated physically: for condensed matter systems (e.g. topological
phases of matter) modeled by braided fusion categories, the rank of the category
corresponds to the number of distinguishable indecomposable particle species [40].
In this paper, we will be interested in classification of unitary BFCs by (low) rank
as motivated by this physical interpretation.

Interestingly, the classification of low-rank fusion categories has not progressed
very far; it is an open question whether there are finitely many fusion categories of
each rank whereas with the braiding assumption rank-finiteness is known [15, [32].
The classification of pivotal fusion categories is complete up to rank 3 [42]. Adding
the braiding assumption allows one to go a bit further. For example, there is a
complete classification of pre-modular categories of rank at most 5 [9, [17]. One
reason is as follows, which also serves to motivate this paper more specifically: It
is well known [22] that if 55 is a braided fusion category and Rep(G) = B, C B is
the maximal Tannakian subcategory of the Miiger center B’ of B, then the G-de-
equivariantization Bg of B is either non-degenenerate (has trivial Miiger center) or
slightly degenerate (has Miiger center equivalent to sVec). For unitary BFCs this
produces either a unitary modular tensor category (in the non-degenerate case) or a
super-modular category (in the slightly degenerate case). Thus, if one is interested
in unitary braided fusion categories “modulo finite group representations” one is
led to study modular or super-modular categories.

Techniques for classifying modular categories are well-established ([16, [44]), and
the classification up to rank 6 is nearly complete [18, [31]. Those methods cannot
always be applied to general braided fusion categories. For example, a key approach
in [16] is to use the representation theory of the modular group SL(2, Z) to constrain
the (modular) S- and (twist) T-matrices, whereas a super-modular category does
not provide such representations as the S- matrix has determinant 0. On the other
hand, there is an important conjecture known as the minimal modular extension
(MME) conjecture [10, [19] that predicts that any super-modular category B can
be embedded in a modular category C with dim(C) = 2dim(B). Necessarily such
a C will be a spin modular category, i.e. a modular category with a distinguished
fermion f, and B = (f)’ is the Miiger centralizer of the category generated by f.

Some techniques for classifying super-modular categories have been developed
recently [10,[13], which lead to a complete classification up to rank 6. There are only
2 such categories: modulo trivial Deligne product constructions and up to fusion
rules there are only two examples with rank < 6, and both of them belong to the
a family of super-modular categories arising from quantum groups. A particularly
useful technique is to formally condense the fermion at the level of fusion rules and
modular data to obtain a fermionic quotient, which has naive fusion rules. These
can be studied using the concept of a sVec-enriched fusion category [35, [46], but we
will not pursue that here. In this paper, we make progress towards the classification
of rank 8 super-modular categories using a stratification by Galois group and some
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new techniques. We find many nontrivial examples in contrast to lower ranks, and
we were unable to give a definitively complete classification — that is, we expect
our list to be complete, but do not have an unconstrained proof.

For the following the (standard) notation is explained in Appendix A.

Theorem 1.1. (1) The following are constructions of prime rank 8 super-modular
categories as centralizers of a distinguished fermion in spin modular categories:

(a) PSU(2)14 = (f)’ C SU(2)14 where f is the unique fermion corresponding to
highest weight Ttwo.

(b) [PSU(2)s K PSU(2)6]z, = ((f,1)) C ([SU(2)6 K SU(2)6]z,)0 where the Zo-de-
equivariantization in both cases is with respect to the boson (f, f) where f has
highest weight 3w, and W is the image of (f,1) under de-equivariantization.

(¢) (f) € SO(12)2, where f is either of the fermions labeled by 2ws or 2we.

(2) Moreover, if we assume that the naive fusion rules {]{71’3 = N} + Nij;-k}l-,j,k
and the simple objects’ dimensions d; are each bounded by 14, then any prime

super-modular category of rank 8 has the same fusion rules as one of the above.

A more precise classification with less stringent bounds can be found in Sec. 3.

While we cannot claim this is a complete classification as we have placed bounds
in some cases on naive fusion rule multiplicities or dimensions, it is possible that
we have listed all possibilities. A counterexample would have large naive fusion
multiplicities/dimensions compared to the known examples: the largest naive fusion
multiplicity we find among fermionic quotients is 4 while the largest dimension of
a simple object is 3 + 2v/2 ~ 5.8. There is some precedent for these types of con-
straints: [30] gives a classification of low rank modular categories with bounded
fusion multiplicities and [48] uses numerical techniques to study low rank modu-
lar categories with constrained categorical dimension. Although our result is not
complete, we provide some new powerful methods for classifying super-modular
categories, and illustrate the utility of the existing techniques.

In this paper we assume that the reader is familiar with the notions and basic
properties of fusion, braided and modular tensor categories. For details, we refer
to [2,26]. We provide the most relevant details and derive some general results in
Sec. 2. In Sec. 3, we state our main results in detail and complete the first step
of our classification, which determine the naive fusion rules. In Sec. 4, we lift the
naive fusion rules to those of super-modular categories. In Appendix A, we explain
some of the notations and give S- and T-matrices for a realization of each prime
super-modular category of rank 8 that appear in our constrained classification.

2. Preliminaries

In this section, we first introduce the notion of super-modular categories and some
of its properties. Most of the results can be found in (|10, [13]) and the references
therein. Then we discuss the Galois symmetry for super-modular categories.
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2.1. Centralizers

One may always define an S-matrix for any ribbon fusion category B; however, it
may be degenerate. The failure of modularity is encoded in the Miiger center
B’, which is the subcategory of transparent objects. Here, an object X is called
transparent if all the double braidings with X are trivial: cy, xcx y = Idxgy for
all Y € B. In general, we have the following notion of the centralizer of the braiding.

Definition 2.1. The Miiger centralizer of a subcategory D of a pre-modular
category B is the full fusion subcategory

D = CB(D) = {X eB | Cy,XCy,x = ldxgy, VY € D}
The Miiger center of B is the centralizer B’ of B itself, that is, B’ = C(B).

While the notation D’ is slightly ambiguous as it is relative to an ambient
category, the context will always make it clear.

By a theorem of Bruguieres [8], the simple objects in B’ are those X with
S‘X’y = dxdy for all simple Y, where dy = dim(Y") = S’l,y is the categorical dimen-
sion of the object Y. The Miiger center is symmetric, that is, ¢y, xcxy = Idxgy
for all X,Y € B’. Symmetric fusion categories have been classified by Deligne in
terms of representations of supergroups [21]. In the case that B’ = Rep(G) (i.e. 5/
is Tannakian), the de-equivariantization procedure of Bruguieres [8] and Miiger
[36] yields a modular category Bg of dimension dim(B)/|G|. Otherwise, by taking
a maximal Tannakian subcategory Rep(G) C B’, the de-equivariantization B has
Miiger center (Bg) =2 sVec, the symmetric fusion category of super-vector spaces.
Generally, a braided fusion category B with B’ =2 sVec as symmetric fusion cate-
gories is called slightly degenerate [22], while if B’ 2 Vec, B is non-degenerate.

The symmetric fusion category sVec has a unique spherical structure compatible
with unitarity and has S- and T-matrices: Sgyvec = % G }) and Tyvee = ((1) _01>.

From this point on we will assume that all our categories are unitary, so that
sVec is a unitary spherical symmetric fusion category and all categorical dimensions
are equal to the largest eigenvalue of the corresponding fusion matrix, i.e. the
Frobenius—Perron dimension. In particular, for any simple object X, dx > 1.

2.2. Definition of a super-modular category

Definition 2.2. A unitary pre-modular category B is called super-modular if
B’ ~ sVec.

Remark 1. In other terminology, we say B is super-modular if its Miiger center is
generated by a fermion, that is, an object f with f®? 2= 1 and 6y = —1. We restrict
to unitary categories both for mathematical convenience and for their physical
significance. On the other hand, there is a non-unitary version sVec™ of sVec: the
underlying (non-Tannakian) symmetric fusion category is the same, but with the
other possible spherical structure, which leads to negative categorical dimensions.
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We could define super-modular categories more generally as pre-modular categories
B with Miiger center equivalent to either of sVec or sVec™ . However, we do not know
of any examples B with B’ & sVec™ that are not simply of the form C X sVec™ for
some modular category C.

Super-modular categories (or slight variations) have been studied from several
perspectives, see [5, [7, [10, [13, [19, 20, [33, [49] for a few examples. An algebraic
motivation for studying these categories is the following: any unitary braided fusion
category is the equivariantization [22] of either a modular or super-modular category
(see [45, Theorem 2]). Physically, super-modular categories provide a framework
for studying fermionic topological phases of matter [10]. Topological motivations
include the study of spin 3-manifold invariants ([3,4,45]) and (34 1)-TQFTs ([47]).

A Dbraided fusion category is called prime if it contains no non-trivial non-
degenerate braided fusion subcategories. Indeed, if D C B with D non-degenerate
and B a braided fusion category then B 2 DX D’ as braided fusion categories [22,
Theorem 3.13] (see also [38]). As a special case of non-prime categories we say a
super-modular category C is split if C ~ sVec XD for some modular subcategory
D C C, and otherwise C is non-split.

2.3. Spin modular categories

A spin modular category C is a modular category with a distinguished fermion.
Let C be a spin modular category, with fermion f, (unnormalized) S-matrix S and
T-matrix T. Proposition I1.3 of [10] provides a number of useful symmetries of S
and T"

(1) S’f,a = €qdqa, where ¢, = £1 and ¢ = 1,
(2) 0o = —€aba,
(3) Sfa,p = €sSa,p-

Remark 2. We have a canonical Zs-grading Cy & C; with simple objects X € Cy
if ex =1 and X € C; when ex = —1. The trivial component Cy is a super-modular
category, since Cj = (f) = sVec.

Definition 2.3. Let B be a ribbon fusion category. A minimal modular exten-
sion MME of B is a modular category C such that B C C and FPdim(C) =
FPdim(B’) FPdim(B).

It is known that not every ribbon fusion category has a minimal modular exten-
sion [29]. Notice that if B is super-modular, a minimal modular extension of B
is a spin modular category (C, f), where the fermion f is transparent in B. It is
conjectured (see [10, [19]) that every super-modular category has an MME, and it
is known [10, B3] that if one exists there are precisely 16 inequivalent such exten-
sions. A complete classification of rank< 8 super-modular categories would include
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a classification of rank< 14 spin modular categories, whereas if the MME conjec-
ture is true a classification of spin modular categories of rank< 16 would imply a
classification of super-modular categories of rank< 8.

2.4. Fermionic quotient

One interesting feature of super-modular categories B is that their S and 7" matrices
have tensor decompositions:

Theorem 2.1. [10, Theorem 3.5] Let B be a super-modular category, then S =
G 1) ® S and T = ((1) 701> ® T, with S a symmetric invertible matrix and T a

diagonal matriz.

Recall that for the category sVec, we have gs\/'ec = G i) and Tyvee = ((1) _01).
Definition 2.4. S and T are called the S- and T-matrix of the fermionic
quotient.

By the following proposition, pointed super-modular categories always split.

Proposition 2.1 ([22, Corollary A.19.]). Let B be a pointed super-modular
category, then B ~ C X sVec, where C is a pointed modular category.

Let f be the transparent fermion in a super-modular category B with label set
I15. By the following lemma, we know that f ® — is fixed-point-free on IIz. We will
omit the ® symbol and denote f ® X simply as fX.

Lemma 2.1 (|37, Lemma 5.4]). Let B be a super-modular category with trans-
parent fermion f. Then fX 2 X for any X € llg.

As a direct consequence of the previous lemma, we have that super-modular
categories have even rank.

Lemma 2.2. Let B be a super-modular category with transparent fermion f. Then
fX 2 X" for any X € B.

Proof. By the balancing equation (given in by the third equality), we have that
—Oxdx = exefdfdx
= 0x07Sr.x = N} ydyby
Y

=dsx0rx = dxbrx.
Therefore, 0yx = —0x. But since 0x- = 0, it follows that fX 2 X*. O

Thus there is a non-canonical partition of the label set Iz = IIg U fIIy. We can
arrange this partition such that 0 € Il and such that X* € Il if X € Ilj. For a
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rank 2r super-modular B, we have 0,...,7r—1 € Il and f = f0,..., f(r—1) € fIIy,
where fi is the label for fX;, ¢ =0,...,r — 1.

For i, j, k € I1y, we define the naive fusion rule

N} = dim Hom(X; ® X;, X3,) + dim Hom(X; ® X;, f ® X;,) = Nfi + N/,
and corresponding naive fusion matrices (]\Afz)kj = Nl-’fj. The semisimple com-

mutative algebra they generate will be denoted Us.

Proposition 2.2 ([13, Proposition 2.7]). Let B be a super-modular category,

then

(a) S is symmetric and 85 = DTzI.

(b) NZNJ = ]VJ]VZ fO’I’ any Z,j S Ho.

(c) Let{z;|i € Ily} denote the basis of the algebra Up. Then the functions ¢;(z;) ==
Sij/Soi for 0 < i <r —1 form a set of orthogonal characters of Ug. Thus S
simultaneously diagonalizes the matrices IN;.

(d) We have a Verlinde type formula in this context given by Nikj =

2 Si7nS'7n§ m
D2 ZmGHo d]m s

Corollary 2.1. Let B be a super-modular category and NZIE be its naive fusion rule,

where 1, j, k € Ily. We have the following symmetries

Tk _ Atk it n7k” 0 oo
Nij = Nji - Nik* = N; Nij - 51]*

[ ]

Proof. The first equation is a direct consequence of Proposition[2.21(d). The second
equation can be derived by combining (a) and (d) of Proposition 2.2 |

Remark 3. One can combine CorollaryR.1land [2, Eq. (2.4.3)] to get more relations
for the fusion coefficients. For example, we have Nij;k = Nij;]* . In fact, the result
follows from NZE = NZ@- + Nl-];k = ka + Nl-];k = ka + Nifk]: = szk

Mimicking the proof for modular categories (see, e.g. [25, Lemma 1.2]), one can
derive the following property of the dimensions for super-modular categories.

Corollary 2.2 ([49, Corollary 3.4]). Let B be a super-modular category, then
GES

Proof. By Proposition [2.2] we know that 85 = %21 , hence, we have
D? A

B) Z Sijg’jk = Z S’ijS’jk*.

Jj€llp j€lly

The second equation comes from the fact that for pre-modular categories, we have

Si; = Si;+ since we can embed them into their Drinfeld center. Therefore, we have

g. . - 2 . . . .
%S&—’f = Dd—g/Q. The result follows since the left-hand side is an algebraic
jemo 7 ‘
integer. O
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The following property of the second Frobenius—Schur indicator for self-dual
objects is useful in Sec. 3.2

Lemma 2.3 ([13, Lemma 2.8.]). Let B be a super-modular category and X; a
simple object such that X; = X} (z'.e. X; is self-dual), then

+1 = vy Zdedk<9)

7,k€elly
Corollary 2.3 (Balancing equation for super-modular categories). For a
super-modular category of rank 2r, we have
r—1
& k k
0:0;Si; = > _(Nf; — NI 0xdy,.
k=0

Proof. The balancing equation [2] for a pre-modular category gives us

2r—1
0,0;8;; = Y NEbrdy
k=0
— 2r—1
= Z i* Jekdk + Z Nik*jekdk
k=0
2r—1

dek + Z -Gfkdfk

<
i

(NE; = NL5)ody.
k=

o

2.5. Galois symmetries for super-modular categories

In this section, we discuss the Galois symmetry in the fermionic quotient of a super-
modular category, which is parallel to the modular setting. We extend results that
are well known for modular categories to this setting.

Let B be a super-modular category and S , T and N; defined as above. We have
the following relation for the entries of S and N; [13, Eq. (2.3)]:

S5 _
2R = N N Sim. (1)
SO,i melly
This means that S\ij = gﬂ are eigenvalues of the matrices N ; with eigenvectors
0j

(Sim)mer,- Defining the diagonal matrix (A;);, = §; , then Eq. (L) can be

written as ]\AQS’ = SA,; for all i € I,.

Remark 4. Let Q(S) be the smallest field containing all elements of the S-
matrix. Similarly to the modular setting, Q(S) is Galois over Q . Define Gal(B) =
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Gal(Q(S5)/Q). Then Gal(B) is an abelian subgroup of &,, where 2r is the rank
of the corresponding super modular category and &, is the symmetric group on
r letters. We will use o for both the element of the Galois group Gal(B) and its
associated element in &,.. Indeed, since o ( ?k
2.2), the following defines o (k) for k € Ip:

A' Szcr Sicr
oSk = Jie®) _ Do) (2)
Sok SoU(k) do (k)

) is a character of U (see Proposition

Lemma 2.4. Let S be as above for a super-modular category B.
(i) Let o € Gal(B). Then o(k)* = o(k*) for all k € I,.

(ii) The algebmz'c mtegers S’k,o'(O) are real numbers.

(iii) We have | j‘z((;) =1 for all k,o.

Proof. Let 7 € Gal(Q/Q) be complex conjugation. Now, since Eij = i we have

Sk

g (Sj/dr)

= 7(Sjs/dr) = Sj v/ dr (k-

Thus 7 sends the normalized kth column to the 7(k)th column which is also the
k*th column. Since Gal(B) is abelian, we have o(k)* = 1o (k) = o7(k) = o(k*).
The second result now follows from the following computation:

Sk,o’(O) = Sk,U(O)* = S’k,a'(O*) = gk,(O)'
For the third result, we compute
o(D?) =2 Z o(d;)? =2 Z o(d;)o(ds)
Jj€lo j€llp
Sjo0) Sj*.0(0)
= ds0)  do(0)
D2
85,00 (Sj0(0)" =
3 S 7

0(0) j€EIly

On the other hand, we have

D2 _22 ]kS]k* _22 ]716*)

Jj€lo j€lly
= ( 8ot Sk.o0) ) <5j,a<k*>5k*,a<o>)
= do0)do(k) do(0)do (k)
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S’k U(O)Sk:* o(0) A A
=—————2 )  Siok)Sak)
d(zy—(o)dd(k‘)dd(k‘*) jezno J J

S’k,o'(O) Sk:* ,0(0) D2
d2 0y Ao () Ao (k)

Since dg () = dgr)y- = do(ry and S’k*,g(o) = gk,a(o) = Sk,a(o), the result follows
because D2/d§(0) is nonzero. O

We can also derive a result parallel to [16, Eq. (2.12)] for the S-matrix of the
fermionic quotient.

Corollary 2.4. Let o € Gal(B) and j, k the indices of simple objects in Ily. Then

N S,
U(Sj,k) = :I:_j’ ((()]:) .

Moreover, we have the following symmetries:
Sk = 8501 () (3)
Proof. By Eq. ([2), we have
7(Sik) = Sj.o(m o (dr) /doghy,
o(dk) = Sk.o(0)/do(0)-
In particular,
()00 = LT,

So it suffices to show that S;’—‘(’;” = +1 which follows from Lemma[2.4] For Eq. (3),

we use the symmetry of the S-matrix and apply 0 o 0! to the first equation. O

Let (C, f) be a spin modular category, recall that the fermion f gives a grading
Co®Cs.

Lemma 2.5. Let (C, f) be spin modular with (unnormalized) S-matriz S, and S
the S-matrixz for the fermionic quotient. Then [Q(S) : Q(S)] = 2", for some n.

Proof. Denote by $(:0) 501 — [SOLOT and ST the 2 x 2 blocks of the S-
matrix S relative to the grading Co @ C;. Suppose that X,, X; € C; so that Sy q is
an entry in S(1) . Then, since the normalized ith column Si.a/dg is a character of
the Grothendieck ring Ko(C) for each i, we see that (S, ,)? = d? > Ng)aSj@/da.
Since Ng,a = 0if X; € C; we find that (Sp,)? lies in the field generated by the
entries of SO, In particular, [Q(S™Y) : Q(S(©V)] = 2% for some k, since every
entry of S(I1) satisfies a polynomial equation of degree < 2 over S,

2140017-10
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Now, let Sp . be an entry of SO = [T e X, € C; and X, € Cp. A
similar argument shows that (S .)? lies in the field generated by 500 5o that
[Q(S©OV) . Q(S©)] = 2¢. Since Q(S) = Q(S©), the result follows. O

Example 2.1. Consider the Ising modular category with label set {1,0,4}. It is
a spin modular category with fermion . Its S-matrix is

1 V2 1
Slva oo v
1 =2 1

The subcategory generated by 1 and v is sVec, and we have [Q(S) : Q(Ssvec)] = 2.

Question 1. Is there a relationship between the Galois group of the S-matrix of
a braided fusion category B and that of its Drinfeld center Z(5)?

The following lemma can probably be generalized to non-self-dual categories,
but we will only use it in the self-dual case:

Lemma 2.6. Suppose that B is a self-dual super-modular category and z is a label
in the fermionic quotient such thatd, =1 and S, . # 1. Then B contains a modular
pointed subcategory equivalent to C(Z2, Q) (i.e. Sem or Sem).

Proof. The hypothesis immediately implies that B contains an invertible, self-dual
simple object Z. Since Sz z = 5., # 1, the object Z is not self-centralizing, hence
generates a modular subcategory of dimension 2. O

Question 2. Can we drop the self-duality condition in the above, with the same
conclusion?

2.6. Rank finiteness

The rank-finiteness property can be extended to categories that do not necessarily
admit a spherical structure. It was recently proved that rank-finiteness holds for
G-crossed braided fusion categories.

Theorem 2.2 ([32], Corollary 4.7.]). There are finitely many equivalence classes
of G-crossed braided fusion categories of any given rank.

This motives us to pursue a classification of low-rank super-modular categories
parallel to [16, 44]. A classification of super-modular categories of rank < 6 is given
in [13]. Tt is shown, for example, that the fusion rules of any non-split super-modular
category of rank < 6 are the same as PSU(2) 4542 for £ = 0,1 and 2.
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3. Classification of Super-modular Categories by Rank
3.1. Main results

Similarly to modular categories, the Galois group Gal(B) of a super-modular cate-
gory B defined in Sec.[2.5lis an abelian subgroup of the symmetric group &,., where
2r is the rank of B (see Remark [4).

In this section, we consider the problem of classifying rank 2r = 8 super-modular
categories. If B is non-self dual, we can denote the four simple objects in Il as
1,Y, X, X*. The naive fusion rules satisfy the relations in Corollary 2.1] and the
argument in [44, Appendix A.2] works for this case. Therefore, we sometimes assume
the super-modular categories are self-dual, in which case S has real entries.

The abelian subgroups (up to relabeling, but with 0 distinguished) G of &4 are
listed in the following table.

In this section, we determine the possible S-matrices for super-modular cate-
gories, and then derive the fusion rules in Sec. [£. We summarize our results into
the following.

Theorem 3.1. Suppose B is a rank 8 self-dual super-modular category and G is
its Galois group as in Table[L then:

o If G =((23)), ((01),(23)) or ((123)), then B does not exist.

o If G = ((0)), then B is pointed, i.c. of the form C(Zs X Za, Q) X sVec.

o If G =((01)), then B is prime and weakly integral with the same fusion rules
as the centralizer of either fermion in SO(12)s.

o [f G ={((01)(23),(02)(13)), then B has the same fusion as FibKPSU(2)s.

o If G = ((0123)) and ]{7113 < 14, then B is prime and has the same fusion rules
as PSU(2)14.

o IfG =((012)) and NZ < 21, then B has the same fusion rules as PSU(2)7XsVec.

o If G = ((01)(23)) and d; < 14 for all i, then the fusion rules of B are the same
as [PSU(2) K PSU(2)¢]z, and is prime, Fib K Fib X sVec, Sem K Fib K sVec or
Sem X PSU(2)6.

In several cases the proofs in [44] for the classification of rank 4 modular use
techniques and results that apply to super-modular categories as well, so we do not
repeat the proof here. For many computations the Grébner basis software in Maple
is useful — we used Maple 2018 for our calculations.

Table 1. Abelian subgroups of &g4.
1) (0))
Zo ((01)), ((23)), ((01)(23))

Ly x Ly | ((01)(23), (02)(13)), ((01), (23))
Z3 ((012)), ((123))
Z4 ((0123))
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3.2. S-matrices for rank 8

The naive fusion coefficients NZE can be computed by the entries of S via the
Verlinde formula (see Proposition[2.21(d)). More precisely, to get the Ni’“j’s, it suffices

to determine the S-matrix.

Remark 5. We denote by ¢,, the positive real root of the equation 2 —nzx—1 = 0,
where n is an integer, i.e. ¢, = Y- +4 V2"2+4. If an algebraic number ¢ has conjugate
f%, then ¢ must be of the form ¢,, for some n € Z.

Theorem 3.2. If B is a rank 8 non-self dual super-modular category, then the
corresponding S-matriz, up to relabeling the simple objects, has the following form:

1 1 1 1
N 1 1 -1 -1
S = ) ]
1 -1 41 F
1 -1 Fi =i

Proof. The proof in [44, Appendix A.2] carries through, mutatis mutandis. O

Remark 6. Having dispensed with the non-self-dual case, we assume for the rest of
this section that all categories are self-dual. In particular the naive fusion coefficients
are cyclically symmetric (see Corollary [2.1]), so we will denote Nikj by 1 j k-

Theorem 3.3. There are no rank 8 self-dual super-modular categories with Galois
group G = ((23)), ((01),(23)) or ((123)).

Proof. (1) If G = ((23)), applying Eq. () with ¢ = ((23)), we have the following
form for the S-matrix:
1 dq do do
g dy  s11 S12 €1812
dy s12 S22 823

dy €1512 S23 €2522

2
As 0 and 1 are fixed by G, by Eq. ), we know that dy, d2, 3+, %2, Z# and
2
222328 are rationals as they are fixed by the Galois group. Since they are also

2
algebraic integers (see [26, Proposition 8.13.11]), we know these are integers.
Consequently, s11, S12, S22823 are also integers.
If e, = —1, the orthogonality of the columns of S gives

di(14 s11) =0,
didy + s11812 + S12822 — S12523 = 0,
didy — s11812 + S12523 — €2512522 = 0.
So we have s1; = —1. If e = 1, then we have d;ds = 0, which is a contradiction.

If e = —1, we have dydy = —s12522. Plugging this into the second equation above,
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we get 312(1 + 523) =0.1If S12 = 0, then d1d2 = O, which is impossible. If S923 = 71,
then sgo is an integer. Then all the entries of S are integers, which contradicts the
assumption that G is Z.

If €; = 1, the orthogonality of the columns of S gives

2 2
d2 + S19 + $922523 + €959225923 = 0.

If e = —1, then d3 + s%, = 0, a contradiction. If e = 1, by applying a Gréebner
basis algorithm on Maple, we get (2322+311 + 1)(2d1d2 + 811512 +2$12$22 7812) =0.
One sees that if either factor is 0, we will have trivial G, a contradiction.
(2) Assume G = ((01),(23)). Using Eq. (8), we get
1 & do ds
5 di +1 +do =+ds
dy *dy s33  S23
d3 Fd3z s23 *Es22

It follows from 52 = DTzI that 2d3 + s2, + s35 = 2d3 + s3, + s35. Since d;’s are
positive, do = d3.
Let
1 d ds ds
~ dl €1 62d2 €3d2
S =
d2 €ada S22 523
dy €e3dy  S23 €422
This case can be eliminated using orthogonality of the columns of S. Applying
a Grobner basis algorithm to these equations we find that the only possible
sign choice is given by €; = ¢4 = 1 and €5 = e3 = —1. We can further deduce
that so3 = —1, s90 = dy and dy = d%. Therefore, we have
1 d3 do ds
d 1 —dy —ds
dy —dy d3 —1
de —dy —1 d3

S =

Notice that G = Gal(Q(d2)/Q). Computing the characteristic polynomial for
N5, we have

2 1 2
_ A 3 2 2
pa(x) =x +<2d2+—d2>x +<d2+—d§4>x +<2d2—d2)x+1

Therefore, —2ds + d2—2 must be an integer. In particular, do satisfies a quadratic
equation over Q. This means Gal(Q(dz2)/Q) is either trivial or Zs, which con-
tradicts the fact that G is Zg X Zs.
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(3) If G = ((123)), then G fixes 0. Therefore, S; o = d; are rational numbers. Since
the dimensions d;’s are always algebraic integers, then they must be integers in
this case. Moreover, d; = 5‘0,1 = :I:S’O,Hl = #£d;4+1. So, by the positivity of the
dimensions (i.e. unitarity assumption), we have

1 dy dy dy

& dy  Ss11 €1533 €2522
dy  €1533 522 €3511
dy €2522 €3511 833

From Corollary 2.2 we have d3|(1 + 3d?). We can deduce that d; = 1. Since
dy is the largest (in magnitude) eigenvalue of the fusion matrices Np, N
and N3, we see that the other eigenvalues (which are real numbers) satisfy
:l:S’ii/dl = :l:S’m- = 41. This means the entries of S are +1’s which contradicts
the assumption of G being nontrivial. O

Theorem 3.4. If G = ((0)), then the corresponding S-matriz, up to relabeling the
simple objects, is one of the following:

1 1 1 1 1 1 1 1
1 -1 -1 1 1 1 -1 -1
1 -1 1 =1 (1 -1 1 =1
1 1 -1 -1 1 -1 -1 1

Proof. If G is trivial, then the proof of [44, Theorem 4.1, Case 7] goes through
mutatis mutandis showing that the corresponding super-modular category is
pointed. Thus by Proposition [2.1] the super-modular category splits, so that S has
the same form as the S-matrix of some rank 4 pointed modular category [44] as in
the statement. O

Theorem 3.5. If G = ((01)), then the corresponding S is
11 2 6
11 2 -6
2 2 -2 0
V6 —v6 0 0
Proof. By Eq. (3), we have
1 d da ds

di €1 eady e3ds

S fr—
dy eady S22 823
d3 e3ds s23 833
We first assume that e; = 1. Then we can have eseg3 = —1 or €5 = €3 = —1.
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For the first case, we can assume €5 = 1, e3 = —1 and interchange Ny and N3 if
necessary. Then the orthogonality of S gives us Sa3(S22+833) = 0 and 2d; +d% —d% =
0. Assume that s9o + s33 = 0, then since the columns of S are of equal length
2d3 + s3, = 2d% + s3;. This gives that do = d3, and that d; = 0, which is a
contradiction. So, we must have so3 = 0. Then S becomes

1 d dy ds

d3 —d3 0 533

Since o = (01) is the only nontrivial element of the Galois group, we conclude that

2 2 2
7(12((211“), n = 7‘13(‘211_1) t=2, u= 3 0= j—f, w = —(dldfl) and z = Z—i
are integers as coeflicients of the minimal polynomials of the IV;. Note that m, v, w
and z are strictly greater than 0 and n > 0. Since ds + d1ds + d2s22 = 0, we have
S92 < 0 sot < 0. Moreover, we have t? — u £ 0. In fact, if t> — u? = 0, then

2 2 2 2

u? 42 = a2 2 & (522;3"1 ) = (t2 +2). This implies that dy = ds.
3 3 3

Using 2d; +d% — d3 = 0, we have d; =0, a contradlctlon. Thus t* — u? # 0 and we

have

m =

2t(u? + 2) 2u(t? + 2) 2(u? +2)
m=—-————- n=-——"2  p=—"""
t27u2 t27u2 t27u2,
_2(tPu 4 2 4 u?) _2(t2+2)
w= 2 _ 2 T B R
Since # > 0, we have t? — u? > 0. We have ngo2 = % In order to have

ng2.2 > 0, we must have t —u? —2 < 0. The only integer solution satisfying all the
restrictions here is t = —1 and u = 0. Then s33 = 0 and s92 = —dsy. Thus, we have
d; = 1. The orthogonality condition on the columns of S gives that 2dy — d3 =
This implies that ds = 2 and d3 = V6.

If e = ¢35 = —1, we have
1 d do ds
. dq 1 —dy —ds
S =

dy —dy s So3

ds —d3 s23  S33
- . _ dg(dl—l) _di+1 , _ d} _ san
Similarly to the previous case, we have m = 5 n=—g—t=g,u= 7,

dz da(d .

v=FLw = Sdi:, T = 523, y = ‘%” and z = %@ . ) are integers. Here, we have

m)72272v:0,t+v72*0andm + 22 2n+4:0. Note that m? +n? # 0
sincen;«éO.So,wehaven—m+z +2,t= 2+2, mg;ﬂz
integer, we have m? > z2. Similarly, we have 22 > m?. Thus |m| = |z|so t = v = 1.

and v = Since ¢ is an
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This means dg = d3 = v/d;. Then m = d; — 1 and d; is an integer. From |m| = |z,
we get d; — 1 = %ﬁfl). If d; = 1, then we have do = d3 = 1. This would force all
the entries of S to be integers, which a contradiction to the assumption that the
Galois group is Zs. If dy > 1, then we have dy = d;. Recall that dy = d3 = \/d;.
This means either do = d3 = d; = 0 or dy = d3 = d; = 1, again a contradiction.

If e, = —1, the orthogonality of the columns of S gives €ad3 + €3d% = 0. Thus,

we have eze3 = —1 and da = d3. But then we have o(dy) = Z—? = —Z—f so ds =0, a

contradiction. |

Theorem 3.6. If G = ((01)(23), (02)(13)), then the corresponding S has the fol-

lowing form:

I 192 o1 b2
¢ 1 —p2 —¢n

¢1 —p2  —1 P12

P2 =1 P12 -1

Proof. By Eq. (3), we have the corresponding S:
1 4 ds ds
di €1 €ads e3do
do €ds €4 ex5dy
ds €3dy esdi  €g
Using orthogonality of the columns of S and the fact that d; > 1, there are only 2

possibilities for €;’s, namely,

(1) €1 — 1,62: —1,63: —1,64: 1,65 = —1,66: 1, or
(2) €1 — 1,62 = —1,63 - —1,64 = —1,65 = 1,66 =—1.

For the first case, the orthogonality of S gives dy = dads, do = dyds and d3 = dyds.
So, we have dideds = (didad3)?, we have didads = 1. Since d; > 1 for all i, this
implies that dy = do = d3 = 1. This cannot happen since the corresponding Galois
group should be trivial, which is a contradiction to our assumption.
Consider the second case. The orthogonality of S gives d; = dads. So, we can

write the corresponding matrix as

1 dods do ds
dads 1 —ds —do

do —d3 —1 dads

ds  —dy dods —1

S =
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Note that Eq. (2) indicates that dy and —1/ds are conjugates. By Remark [5, we
know that deo = ¢y, for some m € Z. Similarly, d3 = ¢,, for some integer n.
Thus, we have

L omdn  Im Pn
dm¢n 1 —n  —Om
¢m  —Pn =1 mon
on —Om OmPn  —1

S:

The corresponding N; matrices have integer entries in terms of m and n. More
precisely, we have

0 1 0 0 0O 0 1 0 0 0 0 1
R 1 mmn m n . 0 m 0 1 . 0 n 1 O
Nl = ) N2 == s and N3 =

0 m 0 1 1 0 m O 01 0 O

0 n 1 0 0 1 0 0 1 0 0 n

Using the formula given in Lemma [2.3] we calculate the 2nd Frobenius—Schur indi-
cator for the simple object Xo:

I/Q(XQ) ==+1

2 1\? ) 6:\° ) ) 05\
= ﬁ d2 @ +md1 +d1d3 % +md2 +d192 +d1d3 E

from this, we obtain

D? 2 2 2 —2 2! ’ b1 -
t— =m(di+d5) +da (05+6;°) +duds | () + |+
2 03 03

9 2
= m (djd3 + d3) +2d2 Re (63) + 2d2dj Re (é)

D_2_ 272 | 2, 32
< o =1+ d3di +d3+ df

0 2
0> md2(d2 + 1) + 2dy Re(62) + 2ds2 Re <é) R - B &
= md3(d3 + 1) — 2d(d3 + 1) — d5(d3 + 1) — (d3 + 1)
= (md3 — 2dy — d3 — 1)(d3 + 1)

= 0> (md2 —2dy —d35 — 1)
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=ds(m—1)—2dy — 1

P (m — 1) =26, — 1

= (mém +1)(m —1) = 26, — 1
= (m—=2)(¢m(m+ 1) +1).

Thus m must be 0,1, or 2.
Similarly, we calculate the 2nd Frobenius—Schur indicator for Xjs:

2

o\’ 2%

D2 61\°
=+ = 2d3 Re(63) + n(d3d3 + d3) + 2d3ds Re (0—1)
2
D_2 _ 2 12 2 2
< o =ltdidi+di+d;

0 2
= 0> 2d3 Re(63) + nd3(ds + 1) + 2dzd3 Re (9_1) —1—d3d3 — d3 — d3

2

Y

—2d3 + nd3(d3 + 1) — 2dsd3 — d3(d3 + 1) — (1 + d3)
= (nd3 —2d3 —d5 — 1)(d3 + 1)
= 0> (nd3 —2ds —dj — 1)
=dj(n—1)—2d;—1
= 0u(n—1) =26, —1
= (ngp +1)(n—1) —2¢, — 1
= (n—2)(¢pp(n+1)+1).
So n must be 0,1, or 2.
Up to symmetry, we can exclude the cases (m,n) = (0,0),(1,1),(1,0),(2,2)
since the corresponding Galois groups are not isomorphic to Zs X Zs. The possible

value for this case, up to symmetry, is (m,n) = (1,2). Note that ¢; = 1+2_\/g and
b2 =142 |

In the last few cases we were unable to complete the classification in general —
instead we placed bounds on the Nl-’;’s. Since Nl-’; < 2||Ni||max, this could also be
done in terms of bounds on the N,’s. Sometimes it is easier to work in terms of a
bound on the dimensions d;. Indeed, the proof of [15, Lemma 3.14] goes through
with no change, from which we conclude: ]\71’3 <d; < 4|\Ni||max.
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Theorem 3.7. If G = ((0123)) and ]{71’3 < 14, the corresponding S is
1 d dy  ds
dy —ds d3 1
dy d3 -1 —d
ds 1 —di ds

where di = 14+V2+V2+ V2, do = 14+vV2+1/2(24+ V2), and ds = 1+ /2 + /2.

Proof. Applying Eq. @) with o = ((0123)), we have the following form of S matrix:
1 dy dy  ds

)

d1 61d2 €2d3 €3

S’ =
d2 62d3 €4 €5d1
d3 €3 €5d1 €6d2
Using a Maple’s Grobner basis algorithm, we deduce that ¢ = €4 = €5 = —1
and €9 = €3 = €5 = 1.
So
1 dy do ds
. di —ds dj 1
S =
do d3 -1 —dy
ds 1 —di ds
Let pi(z) = a* — c12® + 2% + c3x — 1 be the characteristic polynomial of Nj.
Then p3(z) = x* — c32® — co2® + ¢z — 1, where ¢; € Z for i = 1,2 and 3.
Note that ¢; = Trace(N1) > 0 and c¢3 = Trace(Ns) > 0 as the V;’s are matri-
ces with nonnegative integer entries. Let pa(x) = z* —b123 +bo2? + b3z +1 be
the characteristic polynomial of Ns, where by = by = dy + Z—f — % — g—; and
_ d d dad dod
bo= 2435 ~aam  h T

The orthogonality of the rows of S gives di = dyds — dod3 — d3, d3 = —dy +
d1d2 —d2d3, d1d2 - d3+d1 +d2d3 and d2d3 - —d1 +d1d2 —d3. SO, we have b2 =—6
and b3 = —by. Thus pa(z) = 2% — b1a® — 622 + bz + 1, where by = Trace(Ng) > 0.

Note that ¢ + ¢3 = 2(d2ji'21)d3 + 4(d2i““1)d3. This gives ¢; + ¢3 > 4+/2. Since ¢;
and c3 are integers, we have c; 4¢3 > 6. Moreover, we have 4b; — ¢ + 8¢z + ¢% = 0.

Let A =c1 —c3 and ¥ = 1 + ¢3, then ¢ = £=[3AY + /(32 + A%)(—32 + X?)]
and by = S[~AX F /(32 + A?)(-32+ X?)]. Let P = 165-385 — 4 /& -82

We compute the n; ;s and we get the following relations:

5¢1 —3cs (¢1 —c3)P
nii1 = - )

8 8

niie=1—-—P=1+n123=2+n233,
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c1+c3 c1—c3)P 1
_ ) =nj33= 5(n1,1,1 +n333),

ni,3 = 3 3
c1+c c1 —c3)P

ni22 = ! 1 2 + (c1 1 3 = 12723,
2 2

n222 = a-¢% _ 2co + 2P = by + 2P,

Recall that the fusion coefficients are integral. In particular, since 19 2 2 is an integer,
we know that ¢; and c3 are both even. Thus A and ¥ are divisible by 2. Via a
computer search for integer solutions using the above equations, we found there is

only one solution when n; ; < 14, with ¢; = ¢3 = 4 and ¢o = 2P = —2. The
corresponding S matrix for this case is the one in the statement (and is the same
as that of PSU(2)14). m|

We can make further progress using more sophisticated number theoretical
arguments:

Lemma 3.1. If ¥ and A are divisible by 4, the corresponding super-modular cat-
egories have ¢, = c3 = 2(¢F! — 221_1), o = —(¢¥ 1+ 221_1) and P =

7%(421'71 +Z2i71), where ( =1++v2,(=1—+/2 and i > 1 is an integer.

Proof. Assume that ¥ and A in the proof above are also divisible by 4. Denote

a= %, b= 2 and ¢ = P. Then we have the following Diophantine equation

1
a? — (b +2)c* =2.

Lemma [3.2] shows that b = 0. Consequently, we have ¢; = c3, and the Diophantine
equation becomes a? — 2¢* = 2. Since a = § > 0 and ¢ = P = ¢ < —1 the
resulting solutions are

) 1 5 =2i-1 . 1, 91 =2i-1
a(r) i = — — , c(r)=—= + ,
()= (=TT, el = 54T
where 1 < ¢ and ( = 1 + V2 and Z = 1 — +/2. This determines all
possible fusion rules under these assumptions. The first few are (a,¢) €

{(2,-1),(10,-7), (58, —41), (338, —239),.. .}. O

Some cases can be ruled out if we assume the MME conjecture using Lemma [2.5]
as follows.

Example 3.1. In the case (a,c) = (58,—41), we find that d; is a root of the
irreducible polynomial 2% — 2 - 5823 — 8222 + 2 - 582 — 1. The smallest cyclotomic
field in which d; resides has degree 464 = 24.29 (i.e., the conductor of Q(d;) is 464).
Now suppose that the corresponding super-modular category B has a MME (C, f).
Then the order of the 7' matrix of C is divisible by 29, so that 7|¢(29)|[Q(T) : Q).
But Lemma 2.5 and the results of [41] imply that [Q(T) : Q] = 2™ for some m
(since [Q(T) : Q(S)] = 2"). Thus no such category can exist.

2140017-21



P. Bruillard et al.

Remark 7. The (a,c) = (10, —7) case cannot be dealt with in this way since the
corresponding conductor is 80.

Lemma 3.2. Assume a, b and c are integers and a® — (b*> + 2)c* = 2, then b= 0.

Proof. Reducing modulo 8 both sides of the equation, there are three cases to
consider since a square modulo 8 is 0, 1, or 4.

o If b2 = 1 mod 8, then we have a? — 2 = 3¢? mod 8. This gives no solutions.
e If b2 = 0 mod 8, then we have ¢ = 1 mod 8 and a = 4 mod 8.
e If b2 = 4 mod 8, then we have ¢ = 1 mod 8 and a = 0 mod 8.

Therefore, we must have that a and b are even and ¢ is odd. Moreover, if 4|b, then
4t a and vice versa.

Now we consider both sides of a? — (b? + 2)c? = 2 modulo 4. This gives us
b2 42 =2 mod 4. Let B = b? + 2, and then we need to solve the following Pell-like
equation

a’? — B? =2

As b is even, B is not divisible by 4. So we write B = m?d, where d is square-free
and even and m is odd.

Claim: d = 2. Assume otherwise, then we can prove that a®> — Bc? = 2 has no
solutions by looking at the class group of Z[\/E] via genus theory. In fact, assume
d # 2 and even. Then the equation a? — d(mc)? = 2 can be written as

a? —dy? = 2.
If the above equation has no integer solution, then a? — Bc? = 2 has no solution.
Now, we consider the quadratic number field K = Q(v/d). We denote the class group
of K by Ck (see [28] p. 45), which is a finite abelian group. Let V' = (Z/2Z)9, where

g is the number of distinct prime dividing d. Let e¢; = (0,...,1,...,0) be the basis
of V, where i = 1,...,g and 1 is on the n'* position. Let C o be the subgroup

of Cx consisting of the elements of order 2. For primes pi,...,ps € Z, denote the
corresponding prime ideals as p1,...,pg € Z[\/d]. Define the map
(b . V — CK72
ei — [pil.

This assignment gives a group homomorphism. By Corollary 1 in [28, Chap. 5],
we know that ¢ is surjective and ker(¢) = {0,(1,1,...,1)}. Consequently, Cx o ~
(Z)72)9~'. In particular, if g > 2, then for any prime pld, p = (p,v/d) is not
principal.

Now, we return to our equation a? — dy? = 2, where d # 2 and even. Consider
the ideal (a+y+v/d) C Z[V/d], which has norm 2. We have (a+yvd)(a—yvd) = (2).
Moreover, we have (2,v/d)? = (2). By the unique factorization, we have (2,v/d) =
(a + yV/d). However, if g > 2, (2,+/d) is not principal. Consequently, there is no
integer solutions for a and y when d # 2.

2140017-22



On classification of super-modular categories of rank 8
Thus, we have

a?—2m?c? =2, b —2m?=-2.
One can further deduce that 4|b. Let b = 43, the second equation gives us m? —
832 = 1. This is a Pell-equation. Note that (m, 3) = (3,1) is the smallest nontrivial
solution. Let z = 3 4+ 2v/2 and denote its conjugate as z. The solutions (m, 3) of
the equation are given by

2+ 2" 2 —zZ"

2 )

My =

where n is a positive integer. We also have a? — 2y? = 2, which is a Pell-type
equation. Notice that (a,y) = (2,1) is a solution. Let s = 2 4+ v/2. By the theorem
of Mahler [34], the solutions are given by

sk 4+ 5* sk — gk
ak = yk =
2v2(k=1) 2¢/2k

where k is an odd positive integer. By modifying the indices, we know the solutions
of the pair (m,,y,) are given by
- (Z + 1)2n+1 _ (7 _ 2)2n+1 on + (6 _ Z)n
y’ﬂ - 2377,-‘1-2\/5 bl -

where n € N. Recall that the values of m and y are related by y = mc, where m
and c¢ are both odd. In particular, y > m. Now, we consider the function given by
flx) = ;7’1—“; Using standard calculus, we know that f is a monotonic increasing
function and lim, ., f(x) = 1 + /2. Therefore, the only possible solution here is
m = 1. Consequently, we have b = 0. O

Remark 8. If n; j;, < 115, by a computer search for positive integer values, we
find two more solutions with (X, A) = (40,0) and (232,0), which are correspond
to ¢ = 2,3 in Lemma [B.Il The first possible solution with ¥ = 2 (mod 4) has
(3,A) = (434,18) and ny 1,1 = 115.

Theorem 3.8. If G = ((012)) and ]\71’3 < 21, then S is

1 d 1+d 2 -1

d —(1+4d) -1 d—1
1+d -1 d —(d-1)|
-1 -1 —(d®-1) 0

where d is the largest real root of the polynomial 23 — 3z — 1 = 0.
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Proof. Applying Eq. (3) to o = (012), we get

1 d ds ds
N di ed € esd
G — 1 142 2 33

d2 €9 €4d1 €5d3

d3 e3d3 esdz  s33

A computation using 52 = DTZI and d; > 1 reduces the sign choices to the following
three cases:

(1) €3 = €4 — —1,61 — €5 = 1,62 = —1,
(2) es=es=1,e1 =e¢5=—1,ea=—1, 0r
(3) €3 = €4 = 71,61 = €5 = 71,62 =1.

In case (3), we find that d3 + dida — (d; + d2) = 0. However, since d; > 1, we
have d3 + dids > 2 and —(d1 + d2) < —2. So, the equality holds if and only if
di +dy =2 = d% + dyds, which forces di = do = d3 = 1. This is impossible since
the Galois group is nontrivial by hypothesis.

Case (1) is equivalent to case (2) by permuting columns/rows 2 and 3 and
relabeling dy < ds. So, without loss of generality, we may assume we are in case
(2). Let g(x) = 23 — c122 + cax — ¢ be an irreducible polynomial for which dj is a
root. Note that ¢; = ﬁ(dldg +dy—dy), c2 = %i(dg —dy —1),and ¢3 = —d‘j—z”b.
The orthogonality of the rows of S shows that ¢; = —c3. Moreover, i—g = —)\33 € Z.
Let n = A33 and ¢ = —c3 = ¢4, so we have g(z) = 3 — ca? + nex + ¢. Since the
Galois group is Zs, we have that 429 — c2(n? +4) — 2nc(9+2n?) — 27 is a square.

c2

Take t to be the positive root of this, that is, ¢t = (dlfl)(d5+d2)(1+d2).

1d2

3
Note that ¢ = % > 0. Moreover ¢ > 0. Computing the fusion rules, we get
142

(t—nc—1) t —en+2n2+t—3
n = — n =n =
1,1,1 5 FEREY 1,1,2 1,3,3 2(n2 + 3) )
en? +2c—nt+3n ecn—2n2 +t+3
1,1,3 2(n2 + 3) ) 1,2,2 2,3,3 2(n2 + 3) )
c—3n l1+nc+t t
n e n = —
1,2,3 n2 T 37 2,2,2 2 3 ¥ n27
2¢+3n+cen? +nt c+n?
n = n = —
2,2,3 2(3 + 77,2) ) 3,3,3 n2 + 3

If we restrict n; jx < 21, the only integer values of n,t and ¢ that satisfy t* =
(n? +4) — 2nc(9 + 2n?) — 27 and yield n; j, € Z is (n,t,c) = (0,3,3). The
corresponding S-matrix is the one given in the statement and is the same as that
of PSU(2)7 (see [44]). m|
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Remark 9. Here is an alternative approach that is less computationally intensive,
but assumes the minimal modular extension conjecture holds. First note that ¢
is a divisor of dim(C), so that if we assume the MME conjecture holds then, by
the Cauchy theorem [15], any prime divisor p of ¢ must divide the order N of the
T-matrix of any minimal modular extension of the corresponding super-modular
category. Now, by Lemma 2.5, we have ¢(N) = [Q(T) : Q] = 3 - 2¥ since |G| = 3.
Thus if p|e, we also have ¢(p) = 2?3° where b € {0,1} and at most one prime
divisor p can have 3| ¢(p). Thus the prime divisors of ¢ are somewhat uncommon
(for example Fermat primes).

For n = 0, the discriminant equation above yields the Diophantine equation
(2¢)? — 27 = t?, which has finitely many solutions. The only values of ¢ > 0 that
correspond to a solution are: 3 and 7. Since nz 33 € Z, when n = 0 we have 3 |c.
So ¢ = 3 which, in turn, implies t = 3, giving the same solution as above. So in this
case we do not need to assume the MME conjecture.

For n = 1 the Diophantine discriminant equation 5¢? — 22¢ — 27 = t2 has
infinitely many solutions, with the smallest few ¢ values:

c €{7,31,199,1351,9247,63367, 434311, 2976799, 20403271}.

The method above eliminates all of these values of ¢ except for 7 (note that
9| p(1351) = 273%). In the case that ¢ = 7, we find that ¢ = 8 which implies
n1,1,1 = —2, so this cannot occur.

Theorem 3.9. If G = ((01)(23)) and d; < 14 for all i, then the corresponding S
is one of the following:

L ¢ ¢ ¢ L¢3 ¢ ¢
1 1 =g — o5 1 —dy —o
¢ —p -1 2 ¢ —d2 -1 43 |
¢~ ¢f -1 b2 —¢o @3 -1
1 ¢ 1 ¢1 I ¢ 1 b2

o -1 ¢ 1 p2 =1 ¢2 -1
Lo¢r -1 =i [1 ¢ -1 —¢
o -1 =g 1 p2 =1 —¢2 1

Proof. Similar as previous cases, we have

1 dy dy ds
N d € €ads  €3d
& 1 1 203 302

dy €2d3 S22 523

d3 e3dy  s23 833
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Case (1). ¢; = 1. Using Maple’s Grobner basis algorithm, we deduced that
(s33+1)(s23 — 1)(s23 +1) = 0.
First, we assume s33 + 1 = 0, then we have s33 = spp=-lLe=a=-la=1
and so3 = dy = dads. Therefore the corresponding S is given by
1 dods do ds
dods 1 —ds  —ds
dy —ds —1 dads
ds —dy dads —1

S:

Note that this is exactly the same matrix we derived in Theorem [3.6l But here we
do not get a contradiction since the Galois group s Za. Thus the same argument
using the 2nd Frobenius—Schur indicator works here. Since the Galois group is Zs,
we have solutions for S-matrix when (m,n) = (1,1),(1,0),(2,0) and (2,2), i.e.
(do,d3) = (¢, ;) or (¢;,1) for i = 1,2. The cases (1,1) and (2,2) yield the first
two S-matrices above, while for (2,0) and (1,0) the Galois group G # ((01)(23)),
a contradiction. However, see Case 2 where these solutions do occur.

If so3 — 1 =0, one can show that the corresponding Galois group is trivial.

Now, we assume so3 + 1 = 0, then the matrix S has the form

1 & dy ds
@2 1 —d; —ds
dy —ds di -1
ds —ds -1 d?

S:

Note this is the same matrix as the previous one if do = d3 and permuting the
matrices No and Njs.

Case (2). e; = —1. In this case, the S is of the form
1 dn dy ds
d -1 d3 —dq

»»
I

dy ds 522 523
d3 —dz s33 —822

Note that the conjugate of d; is —%. Moreover, we know that if d; = 1, then
the corresponding Galois group is trivial. Thus the field Q(S) = Q(d,), where
di = ¢ = %\/m for some n. Now, we assume kvVP = v/n2+ 4, where k
is an integer and P is a square-free integer. Then d; = "‘Ekf, where £ = /P.
Then Q(S) = Q(£). As all the entries of S are algebraic integers, we can assume
do = a4+ b, ds = c+ d€, sea = e+ fE€, sa3 = g + hE, where a,b,c,d,e, f,g and h
are either half integers or integers. Then using Maple’s Grobner basis algorithm to
eliminate non-rational variables we obtain 21 Diophantine equations (over 17).
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Note that N3, = —1if d = 0 or 2h—k = 0. One Diophatine equation we derive is

20%h — b’k + 2d%h + d*k = 0,

Which can be written as Z—z = — 2tk So we have (2h — k)(2h + k) < 0, and
since k > 0, we see that h € (fg, %) The condition d; < 14 implies n < 13 and

k < +v/n?+4, and k is determined by n, so we do a brute force search for solutions
using parameters (n, h, k). There are 13 cases which pass the non-negative and
integral condition of the naive fusion coefficients Nl-’;, which are the cases when
n=1,...,13 and h = 7%7 for each k corresponding to n. In fact, for these cases,
the corresponding S matrix has the following form:

L én 1 o0
on =1 on -1

L b -1 —¢n
on =1 —¢n 1

All the cases can be ruled out by Lemma 2.6l except when (n, k, h) = (1,1, f%) and
(n,k,h) = (2,2, —1). For the first case, we have a = 2d,b=0,c=d,e = -1, f =0,
and g = —%. Then n333 = 2d — 5, which is non-negative and integral. Thus

2d°
d = f% or Note that dy = —1 if d = —%, which is a contradiction. If d = 1

2 - 2 29
the corresponding S-matrix has a modular realization as Fib X Sem. For the second

|=bo

case, we have ngoo = d — %. Thus d = 1 and the corresponding S-matrix has a
modular realization as PSU(2)g X Sem. These are the second pair of S-matrices.
O

4. Fusion Rules

Recall that the naive fusion coefficients are defined as ]\71’3 = Nl@- + Nl-];k, where
1,7,k € Ily. To get the fusion coefficients Nikj for the corresponding super-modular
categories, we need to determine how these NZE split. Note that for the pointed
cases, such as the ones in Theorems [3.2] and [3.4] the corresponding super-modular
categories split by Proposition 2.1l Moreover, the S matrices in Theorem [3.4] give
the same naive fusion coefficients. From this discussion, we have the following

results:

Lemma 4.1. If B is non-self dual super-modular category of rank 8, then B has the
same fusion rules as C(Zy4, Q)X sVec where C(Z4, Q) is a pointed modular category
with Z4 fusion Tules.

Lemma 4.2. If B is a self-dual super-modular category with Galois group G =
((0)), then B has the same fusion rules as D KW sVec, where D is a Toric code
modular category.
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Lemma 4.3. Let B be a self-dual super-modular category with S of the following
form:

1 1 2 V6
1 1 2 -6
2 2 -2 0

V6 V6 0 0

Then B has the same fusion rules as the centralizer {f)' of either fermion f in the
modular category SO(12)y (see the Appendiz A).

Proof. N}, = N3 = N}, = N3, = N3, =0, N3, = N}, = N3, =1 and N, = 2.
We can assume that N3, = 1 and N2)‘22 = 0 by interchanging X, and fX>

if necessary. Similarly, we assume Njy; = 1 and legg = 0 by interchanging X3

and fX3 and X; and fX; simultaneously, if needed. Using the modified balancing

equation on Shz, we get 0 = (Ng; — N{g’)ﬁg\/@ So, we have Nj; = N{g’ = 1. Now

we have

(1) f#2 =1,

(2) X2 =1,

(3) X§? =1@aX1 ®bfX1 D Xo,

(4) X2 =10 X1 ® X2 ® fXo,

(5) X1 ® Xy =aXo @ bfXo,

(6) X1 ® X3 = X3,

(7) Xo® X3 =X3& fXs.

Computing X2 ® Xo® X35 in two ways gives us: (2+a)X3®(b+1)f X3 = 2X382f X5.
So we have a = 0 and b= 1. O

Lemma 4.4. Let B be a self-dual super-modular category with
L 192 ¢ b2

P12 1 =P —n
¢ =2 1 P19
¢2 —¢1 P12 —1

Then B has the same fusion rules as Fib K PSU(2)g.

S =

Proof. The naive fusion coefficients are: N}, = N, = 2, N2, = N3, = N2, = 1,
N2, = N3, = N3, = N3, = 0. As N2, = N, + NJJ = 1, we assume N2, = 1 and
N2f22 = 0 by interchanging X» and f X5 if necessary. Then we have X§®2 =16 X5, so
X, generates a subcategory F with fusion rules like those of Fib, which is necessarily
modular. Therefore B =2 F X D where D is a super-modular category of rank 4
[22, Theorem 3.13]. The classification results in [13] imply that B has the same
fusion rules as Fib X PSU(2)s. m|
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Lemma 4.5. Let B be a self-dual super-modular category with S of the following
form

1 d  do s
di —ds dy 1
dy ds -1 —dy
ds 1  —di do

where dy = 14+vV2+V2+ V2, do =1+V2+1/2(2+V2) and d3 = 1+ V2 + V2.
Then B has the same fusion rules as PSU(2)14.

)

Proof. The corresponding naive fusion coefficients are: N}, = N3, = N3, = N3, =
N3, =1, N3 = N2, = N2, = N3, = 2 and N3, = 0. Since N}, = N}, + N{} =1,
we can assume Ni; = 1 and lell = 0 by interchanging X; and fX; if necessary.
Similarly, since N3, = N3, + N3 = 1, we can assume N3, = 1 and N7 = 0.
Finally, we may use the X versus fXs labeling ambiguity to assume that NZ = 1.
We have

(1) f22 =1,

(2) X2 =10 X, 0aXo®bfXo P cX3Ddf X3, where a +b=2,c+d=1,

(3) X3 =19gX1@hfX10IXodmfXoDpX3®qf X3, where g+h =2, [+m = 2
and p+ q = 2,

(4) X?Qzl@r)ﬁ@sf)(l@)(g, where r + s =1,

(5) X1 ®@ Xy =0aX1 &bfX1®gXoPDhfXo® X3,

(6) X1®X3:CXl@del@XQ@TXg@SfXg,

( ) X2®X3:X1 @pXQ@quQ.

Computing X7 ® X3 ® X3 in two ways and comparing the coefficients of X7, fX7,
Xsand fX5, wehavec+r=2,d4+s=0,ar+bs+1=c+pand br+as=d+gq.
Thus, we have c=r =1,d = s =0, a = p and b = ¢q. Applying Corollary [2.3] to
Sys, we have |di| = |di61 + (p — q)d2b2] > ||(p — q)daba| — dy]. If |p — ¢| = 2, then
4.26 ~ dy > |2dy — dy| = 5.79, which is impossible. So we have p = ¢ = 1. Therefore
a = b = 1. Computing Xo ® X3 ® X3 in two different ways and comparing the
coefficients of X and fXs, we have g = h = 1. Tensoring X, ® X ® X3 in two
ways and comparing the coefficients of X7 and fX;, we havel=1and m=1. O

Lemma 4.6. Let B be a self-dual super-modular category with

1 d 1+d d?—1
5 d —(1+4d) —1 a2 -1
1+d -1 d —(d-1)|
2-1 -1 —(d?-1) 0

where d is the largest real Toot of 23 —3x —1 = 0. Then B has the same fusion rules

as PSU(2)7 K sVec.
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Proof. We have N}, = N2, = N}y = 0 and N}, = N, = N}, = N3, = N§, =
N§’3 = N??:z =1

Note that since N2, = N2, + NJZ = 1, we can assume N2, = 1 and N7 = 0 by
interchanging X» and f X, if necessary. Similarly, we can assume N3, = 1, Ng;’ =0,
N, =1 and NJJ = 0. We have

) X2 =1@aX3®bf X3, where a +b =1,
) X§2 =10 X, © Xo® gX3® hfX3, where g+ h =1,
)Xgm:l@ng@meg@Xg,Wherel+m:1,
5) X1 ® Xy = Xo ®pX3®qfX3, where p+¢=1,
) X1®@ X3 =aX1®bfX1®pXs @ qfXo,
) Xo® X3 =pXy EquXl @ gXo +th2 @ZX3EBme3

Computing X7 ® X7 ® X in two different ways and comparing the coefficients
of X5 and fX5, we have ag+ bh =1, bg + ah = 0. Thus, we have a = g and b = h.
Similarly, comparing the coefficients of X3 and fX3 in X7 ® X; ® X3 givesusa =1
and b = 0. Computing X ® Xo ® X3 and comparing the coefficients of X3 and
fX3, we have l = 1 and m = 0. Computing X; ® X3® X3 in two different ways and
comparing the coefficients for Xs and fX5, we have p = 1 and ¢ = 0. Observing
that the simple objects 1, X7, X2 and X3 generate a fusion subcategory with the
same fusion rules as PSU(2)7 we obtain the stated result. O

Lemma 4.7. Let B be a self-dual super-modular category. Suppose that the corre-
sponding S has one of the following forms:

L ¢ & h 1 ¢3¢ &2
71— —h o5 1 —gy —
¢ =g -1 2l e e -1 3
o1 —¢1 @7 -1 G2 —2 5 -1
I ¢ 1 ®1 1 ¢ 1 b2

o -1 ¢ -1 ¢2 =1 ¢2 -1
Logn =1 = | |1 ¢ -1 =g
o -1 =g 1 p2 =1 —¢2 1

then B has the same fusion rules as FibXFibXsVec, [PSU(2)s X PSU(2)g]z,,
Sem X PSU(2)g X sVec, or Sem X Fib K sVec, respectively.

Proof. Consider the first S-matrix. We have N}, = N2, = N{, = N3, = N3, =
N3, = 1 and N2, = Ni, = N3, = N3, = 0. Without loss of generality, we may
assume N3, = 1, NQJ;Q = 0 by interchanging X» and fXj if necessary. Thus X5% =
16 X5, so Xo generates a subcategory F with fusion rules like those of Fib, which is
necessarily modular. In particular B =2 FXD, where D is a super-modular category
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of rank 4. The classification results of [13] now imply that B has the same fusion
rules as Fib X Fib X sVec.

For the second S’-matrix, we have that the associated naive fusion coefficients
are N111 =4, N121 = Ni31 = N222 = N§3 =2, N132 =1, N122 = N133 = N§2 = N% = 0.
We may assume N7, = 1 and le 5-0 by interchanging X3 and f X3 if necessary.

Using Corollary 2.3l on S15 gives
—0102¢2 = (N{y — N{} ) 6301 + ¢obs.
Dividing by ¢, we have
—60105 = (Niy — N{3 ) o6y + 6.

Taking absolute value on both sides, we get

1= |(Ny = N{p)baby + 05| = [|(Niy — Ny )da| — 1].
So we must have N{, = N1f21 = 1. Similarly, applying Corollary 2.3] to S35 and S5
gives

—05 = 1+ (Nify — Nf;)gabs,  —16302 = (N3 — N3)05 + da6>
and we get N3, = N3 = 1 and N}, = NJ/? = 1. A parallel calculation for Sy,
yields N2, = N2)‘22 = 1. By using Corollary [2.3] again for Sll, we get
67 = (N, — N )30, + 1.

The potential choices of (N7, Nil) are (2,2), (4,0), (0,4), (1,3) and (3,1), but
since ¢3 > 2 the only possibility is (2,2). This category has the same fusion rules

as [PSU(2)g X PSU(2)g]z,, see the

In the last two cases, observe that B must contain a modular subcategory of
the form C(Z2,Q) by Lemma 2.6l Then B = C(Z2,Q) X D, where D is a rank 4
super-modular category. The result now follows from the classification in [13]. DO

Appendix A.

Here, we record the data for some of the realizations of the super-modular categories
that appear in this paper, both modular and super-modular, as well as the families
of categories in which they reside. We write the T-matrix as an n-tuple with the
understanding that these are the diagonal entries.

Appendix A.1. Pointed modular categories

Pointed braided fusion categories are classified, see [22]. They correspond to pairs
(A,Q), where @ is a symmetric quadratic form on A (with values in U(1)). The
fusion rules of C(A, Q) are the same as the multiplication in A, and the S- and
T-matrices are determined by @ as follows: S, = Qcii‘%?i) and 0, = Q(a). If the
symmetric bilinear form given by S, 5 is non-degenerate then C(A, Q) is modular.

For example the semion theory Sem = C(Zz, Q) that appears in our classification

has the following modular data: S = G _11>, and T = (1,1).
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Appendix A.2. PSU(2),

The rank & + 1 modular category SU(2); obtained from U,sly at ¢ = e™/(2+k)
contains the subcategory PSU(2);, whose simple objects have even labels (“integer
spin” in the physics literature). Denote by w the fundamental weight of type Aj,
so that X, tensor generates SU(2);. The object labeled by %w is always invertible.
When k =2 (mod 4) the category PSU(2), is super-modular with f = X, when
4|k, there is a boson b = X in PSU(2), and when k is odd, PSU(2)y, is modular,
with X, a semion (not in PSU(2).)

The (modular) Fibonacci theory Fib = PSU(2)%" as well as PSU(2); appear in
our classification, and the data can be found in [44].

Some low rank super-modular categories that appear in this paper are

e PSU(2) with data:

1 1+2 11 ,
S:<1+\/§ L )@(1 1) and T = (1,7 ®(1,-1).

[ PSU(2)10 with data:

1 243 1+V3 -
S=124+V3 1 -1-3 ®<1 1) and
1+v3 —1-vV3 1+3

T=(1,-1,e"3) @ (1,-1).

e PSU(2)14 with data:

1 l1+z 1+vV2+4z 1+V2+V2z

14z 14+ V2 ++V22 1 —1-V2-2z
| o1rvEee 1 1—3— V2 142
1+vV24+V22 —1-V2-z 14z -1

11
® ,  Where
11
=1/2+v2 and T = (1,4, %4 —i)® (1,-1).

The full sequence of super-modular categories PSU(2)4,12 was studied in [6,
[10], where the modular data can be found. If we order the simple objects
1, X0, X, [ X, f X0 f] = Yo, ., Yoeony] the fusion rules are com-
pletely determined by the rule V1 @ Y, 2 Y1 @Yy @ Yiy1 for 0 < k < 2(r — 1)
and the obvious rules involving Y5(,._1) = f and Yy = 1.
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Appendix A.3. Other examples

The following are spin modular categories coming from quantum groups with
fermion f so that the subcategory (f)’ is super-modular, where r,m € N:

SU(4k + 2)4m+2,

SO(2k + 1)2m41,

Sp(2r)m with rm =2 (mod 4),

SO(2r)y, with r =2 (mod 4) and m =2 (mod 4),
(E7)am+2-

The pointed sub-category of the rank 13 modular category SO(12)s is sVec X sVec
and hence contains two fermions labeled by 2ws and 2wg, where w; are the fun-
damental weights of type Dg. The centralizer of either of these fermions is super-
modular and has modular data:

1 1 2 6
1

1 2 -6 1 1
S = Q and
2 2 -2 0

V6 =6 0 0
T = (17 1,6271'1'/3,6371'1'/8) ® (1, 71)

If we label the simple objects of dimension v/6 by X5 and f X5 then the fusion rules
are determined by X5? 210 X1 @ Xo @ fXo, XP? 21, X$? 210 fX; © X, and
Xo® X3 =2 X3& fX3.

Finally, we observe that if (C1, f1) and (Ca, f2) are spin modular categories,
then (f1, f2) € C1 K Cy is a boson and hence can be condensed to obtain a new
spin modular category ([C1 & C2]z,)o, where we de-equivariantize by Rep(Zgz) =
((f1, f2)) and then take the trivial component of the corresponding Zs-grading. For
example applying this to PSU(2)g we obtain the prime rank 8 example (PSU(2)g X

PSU(2)6)z, with data:

1 342vV2 14+vV2  1+4V2
3+2v2 1 —1-v2 —-1-V2 1 1
& and
1+v2 —1—-+2 -1 3+2v2
1+vV2 —-1-v2 3+2V2 -1
T = (1,-1,i,i)® (1,—1).

The fusion rules may be readily determined from those of PSU(2)g by condensing
the boson b := (f1, f1). Note that b ® X % X for any simple X so that there
is no ambiguity in labeling the objects in the de-equivariantization. Setting f :=
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[(f1,1)] = [(1, f1)] we have

X2 >2102X10fX1) 0 X2 fXo® X538 X3,

X10Xo=2X30X10 fXy

X1XsZ2XoP X3P fX3, Xo®X3=X;, and X£®2%1@X2@fX2

from which all fusion rules can be recovered.
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