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1. Introduction

The classification of braided fusion categories (BFCs) stands as a formidable, yet
enticing problem. There are many approaches to this problem with varying levels
of preciseness and corresponding degrees of difficulty. As examples, one might try
to classify by categorical dimension [11, 12, 14, 27, 39, 49], by Witt class [19, 20],
by dimension of a generating object [1, 23, 24], or by rank [43, 44]. Each of these
approaches has a different motivation and has seen some measure of success. For
example, classifying by categorical dimension is related to the problem of classifying
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groups by their orders, while classifying by the dimension of a generating object is
related to the classification of subfactors of finite index and depth. Classification by
rank can be motivated physically: for condensed matter systems (e.g. topological
phases of matter) modeled by braided fusion categories, the rank of the category
corresponds to the number of distinguishable indecomposable particle species [40].
In this paper, we will be interested in classification of unitary BFCs by (low) rank
as motivated by this physical interpretation.

Interestingly, the classification of low-rank fusion categories has not progressed
very far; it is an open question whether there are finitely many fusion categories of
each rank whereas with the braiding assumption rank-finiteness is known [15, 32].
The classification of pivotal fusion categories is complete up to rank 3 [42]. Adding
the braiding assumption allows one to go a bit further. For example, there is a
complete classification of pre-modular categories of rank at most 5 [9, 17]. One
reason is as follows, which also serves to motivate this paper more specifically: It
is well known [22] that if B is a braided fusion category and Rep(G) ∼= B′

Tan ⊂ B is
the maximal Tannakian subcategory of the Müger center B′ of B, then the G-de-
equivariantization BG of B is either non-degenenerate (has trivial Müger center) or
slightly degenerate (has Müger center equivalent to sVec). For unitary BFCs this
produces either a unitary modular tensor category (in the non-degenerate case) or a
super-modular category (in the slightly degenerate case). Thus, if one is interested
in unitary braided fusion categories “modulo finite group representations” one is
led to study modular or super-modular categories.

Techniques for classifying modular categories are well-established ([16, 44]), and
the classification up to rank 6 is nearly complete [18, 31]. Those methods cannot
always be applied to general braided fusion categories. For example, a key approach
in [16] is to use the representation theory of the modular group SL(2, Z) to constrain
the (modular) S- and (twist) T -matrices, whereas a super-modular category does
not provide such representations as the S- matrix has determinant 0. On the other
hand, there is an important conjecture known as the minimal modular extension
(MME) conjecture [10, 19] that predicts that any super-modular category B can
be embedded in a modular category C with dim(C) = 2 dim(B). Necessarily such
a C will be a spin modular category, i.e. a modular category with a distinguished
fermion f , and B = 〈f〉′ is the Müger centralizer of the category generated by f .

Some techniques for classifying super-modular categories have been developed
recently [10, 13], which lead to a complete classification up to rank 6. There are only
2 such categories: modulo trivial Deligne product constructions and up to fusion
rules there are only two examples with rank ≤ 6, and both of them belong to the
a family of super-modular categories arising from quantum groups. A particularly
useful technique is to formally condense the fermion at the level of fusion rules and
modular data to obtain a fermionic quotient, which has naive fusion rules. These
can be studied using the concept of a sVec-enriched fusion category [35, 46], but we
will not pursue that here. In this paper, we make progress towards the classification
of rank 8 super-modular categories using a stratification by Galois group and some
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new techniques. We find many nontrivial examples in contrast to lower ranks, and
we were unable to give a definitively complete classification — that is, we expect
our list to be complete, but do not have an unconstrained proof.

For the following the (standard) notation is explained in Appendix A.

Theorem 1.1. (1) The following are constructions of prime rank 8 super-modular
categories as centralizers of a distinguished fermion in spin modular categories :

(a) PSU(2)14 = 〈f〉′ ⊂ SU(2)14 where f is the unique fermion corresponding to
highest weight 7!.

(b) [PSU(2)6 ! PSU(2)6]Z2 = 〈(f,1)〉′ ⊂ ([SU(2)6 ! SU(2)6]Z2)0 where the Z2-de-
equivariantization in both cases is with respect to the boson (f, f) where f has
highest weight 3!, and (f,1) is the image of (f,1) under de-equivariantization.

(c) 〈f〉′ ⊂ SO(12)2, where f is either of the fermions labeled by 2!5 or 2!6.

(2) Moreover, if we assume that the naive fusion rules {N̂k
ij = Nk

ij + Nfk
ij }i,j,k

and the simple objects’ dimensions di are each bounded by 14, then any prime
super-modular category of rank 8 has the same fusion rules as one of the above.

A more precise classification with less stringent bounds can be found in Sec. 3.
While we cannot claim this is a complete classification as we have placed bounds

in some cases on naive fusion rule multiplicities or dimensions, it is possible that
we have listed all possibilities. A counterexample would have large naive fusion
multiplicities/dimensions compared to the known examples: the largest naive fusion
multiplicity we find among fermionic quotients is 4 while the largest dimension of
a simple object is 3 + 2

√
2 ≈ 5.8. There is some precedent for these types of con-

straints: [30] gives a classification of low rank modular categories with bounded
fusion multiplicities and [48] uses numerical techniques to study low rank modu-
lar categories with constrained categorical dimension. Although our result is not
complete, we provide some new powerful methods for classifying super-modular
categories, and illustrate the utility of the existing techniques.

In this paper we assume that the reader is familiar with the notions and basic
properties of fusion, braided and modular tensor categories. For details, we refer
to [2, 26]. We provide the most relevant details and derive some general results in
Sec. 2. In Sec. 3, we state our main results in detail and complete the first step
of our classification, which determine the naive fusion rules. In Sec. 4, we lift the
naive fusion rules to those of super-modular categories. In Appendix A, we explain
some of the notations and give S- and T -matrices for a realization of each prime
super-modular category of rank 8 that appear in our constrained classification.

2. Preliminaries

In this section, we first introduce the notion of super-modular categories and some
of its properties. Most of the results can be found in ([10, 13]) and the references
therein. Then we discuss the Galois symmetry for super-modular categories.
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2.1. Centralizers

One may always define an S-matrix for any ribbon fusion category B; however, it
may be degenerate. The failure of modularity is encoded in the Müger center
B′, which is the subcategory of transparent objects. Here, an object X is called
transparent if all the double braidings with X are trivial: cY,XcX,Y = IdX⊗Y for
all Y ∈ B. In general, we have the following notion of the centralizer of the braiding.

Definition 2.1. The Müger centralizer of a subcategory D of a pre-modular
category B is the full fusion subcategory

D′ = CB(D) = {X ∈ B | cY,XcY,X = IdX⊗Y , ∀Y ∈ D}.

The Müger center of B is the centralizer B′ of B itself, that is, B′ = CB(B).

While the notation D′ is slightly ambiguous as it is relative to an ambient
category, the context will always make it clear.

By a theorem of Bruguières [8], the simple objects in B′ are those X with
S̃X,Y = dXdY for all simple Y , where dY = dim(Y ) = S̃1,Y is the categorical dimen-
sion of the object Y . The Müger center is symmetric, that is, cY,XcX,Y = IdX⊗Y

for all X, Y ∈ B′. Symmetric fusion categories have been classified by Deligne in
terms of representations of supergroups [21]. In the case that B′ ∼= Rep(G) (i.e. B′

is Tannakian), the de-equivariantization procedure of Bruguières [8] and Müger
[36] yields a modular category BG of dimension dim(B)/|G|. Otherwise, by taking
a maximal Tannakian subcategory Rep(G) ⊂ B′, the de-equivariantization BG has
Müger center (BG)′ ∼= sVec, the symmetric fusion category of super-vector spaces.
Generally, a braided fusion category B with B′ ∼= sVec as symmetric fusion cate-
gories is called slightly degenerate [22], while if B′ ∼= Vec, B is non-degenerate.

The symmetric fusion category sVec has a unique spherical structure compatible
with unitarity and has S- and T -matrices: SsVec = 1√

2

(
1 1
1 1

)
and TsVec =

(
1 0
0 −1

)
.

From this point on we will assume that all our categories are unitary, so that
sVec is a unitary spherical symmetric fusion category and all categorical dimensions
are equal to the largest eigenvalue of the corresponding fusion matrix, i.e. the
Frobenius–Perron dimension. In particular, for any simple object X , dX ≥ 1.

2.2. Definition of a super-modular category

Definition 2.2. A unitary pre-modular category B is called super-modular if
B′ + sVec.

Remark 1. In other terminology, we say B is super-modular if its Müger center is
generated by a fermion, that is, an object f with f⊗2 ∼= 1 and θf = −1. We restrict
to unitary categories both for mathematical convenience and for their physical
significance. On the other hand, there is a non-unitary version sVec− of sVec: the
underlying (non-Tannakian) symmetric fusion category is the same, but with the
other possible spherical structure, which leads to negative categorical dimensions.
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We could define super-modular categories more generally as pre-modular categories
B with Müger center equivalent to either of sVec or sVec−. However, we do not know
of any examples B with B′ ∼= sVec− that are not simply of the form C ! sVec− for
some modular category C.

Super-modular categories (or slight variations) have been studied from several
perspectives, see [5, 7, 10, 13, 19, 20, 33, 49] for a few examples. An algebraic
motivation for studying these categories is the following: any unitary braided fusion
category is the equivariantization [22] of either a modular or super-modular category
(see [45, Theorem 2]). Physically, super-modular categories provide a framework
for studying fermionic topological phases of matter [10]. Topological motivations
include the study of spin 3-manifold invariants ([3, 4, 45]) and (3+1)-TQFTs ([47]).

A braided fusion category is called prime if it contains no non-trivial non-
degenerate braided fusion subcategories. Indeed, if D ⊂ B with D non-degenerate
and B a braided fusion category then B ∼= D ! D′ as braided fusion categories [22,
Theorem 3.13] (see also [38]). As a special case of non-prime categories we say a
super-modular category C is split if C + sVec !D for some modular subcategory
D ⊂ C, and otherwise C is non-split.

2.3. Spin modular categories

A spin modular category C is a modular category with a distinguished fermion.
Let C be a spin modular category, with fermion f , (unnormalized) S-matrix S̃ and
T -matrix T . Proposition II.3 of [10] provides a number of useful symmetries of S̃
and T :

(1) S̃f,α = εαdα, where εα = ±1 and εf = 1,
(2) θfα = −εαθα,
(3) S̃fα,β = εβS̃α,β .

Remark 2. We have a canonical Z2-grading C0 ⊕ C1 with simple objects X ∈ C0

if εX = 1 and X ∈ C1 when εX = −1. The trivial component C0 is a super-modular
category, since C′

0 = 〈f〉 ∼= sVec.

Definition 2.3. Let B be a ribbon fusion category. A minimal modular exten-
sion MME of B is a modular category C such that B ⊂ C and FPdim(C) =
FPdim(B′) FPdim(B).

It is known that not every ribbon fusion category has a minimal modular exten-
sion [29]. Notice that if B is super-modular, a minimal modular extension of B
is a spin modular category (C, f), where the fermion f is transparent in B. It is
conjectured (see [10, 19]) that every super-modular category has an MME, and it
is known [10, 33] that if one exists there are precisely 16 inequivalent such exten-
sions. A complete classification of rank≤ 8 super-modular categories would include
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a classification of rank≤ 14 spin modular categories, whereas if the MME conjec-
ture is true a classification of spin modular categories of rank≤ 16 would imply a
classification of super-modular categories of rank≤ 8.

2.4. Fermionic quotient

One interesting feature of super-modular categories B is that their S and T matrices
have tensor decompositions:

Theorem 2.1. [10, Theorem 3.5] Let B be a super-modular category, then S̃ =(
1 1
1 1

)
⊗ Ŝ and T =

(
1 0
0 −1

)
⊗ T̂ , with Ŝ a symmetric invertible matrix and T̂ a

diagonal matrix.

Recall that for the category sVec, we have S̃sVec =
(

1 1
1 1

)
and TsVec =

(
1 0
0 −1

)
.

Definition 2.4. Ŝ and T̂ are called the S- and T -matrix of the fermionic
quotient.

By the following proposition, pointed super-modular categories always split.

Proposition 2.1 ([22, Corollary A.19.]). Let B be a pointed super-modular
category, then B + C ! sVec, where C is a pointed modular category.

Let f be the transparent fermion in a super-modular category B with label set
ΠB. By the following lemma, we know that f ⊗− is fixed-point-free on ΠB. We will
omit the ⊗ symbol and denote f ⊗ X simply as fX .

Lemma 2.1 ([37, Lemma 5.4]). Let B be a super-modular category with trans-
parent fermion f . Then fX ! X for any X ∈ ΠB.

As a direct consequence of the previous lemma, we have that super-modular
categories have even rank.

Lemma 2.2. Let B be a super-modular category with transparent fermion f . Then
fX /∼= X∗ for any X ∈ B.

Proof. By the balancing equation (given in by the third equality), we have that

−θXdX = θXθfdfdX

= θXθfSf,X =
∑

Y

NY
f,XdY θY

= dfXθfX = dXθfX .

Therefore, θfX = −θX . But since θX∗ = θX , it follows that fX /∼= X∗.

Thus there is a non-canonical partition of the label set ΠB = Π0 0 fΠ0. We can
arrange this partition such that 0 ∈ Π0 and such that X∗ ∈ Π0 if X ∈ Π0. For a
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rank 2r super-modular B, we have 0, . . . , r−1 ∈ Π0 and f = f0, . . . , f(r−1) ∈ fΠ0,
where fi is the label for fXi, i = 0, . . . , r − 1.

For i, j, k ∈ Π0, we define the naive fusion rule

N̂k
ij = dim Hom(Xi ⊗ Xj , Xk) + dim Hom(Xi ⊗ Xj , f ⊗ Xk) = Nk

ij + Nfk̇
ij ,

and corresponding naive fusion matrices (N̂i)k,j := N̂k
i,j . The semisimple com-

mutative algebra they generate will be denoted ÛB.

Proposition 2.2 ([13, Proposition 2.7]). Let B be a super-modular category,
then

(a) Ŝ is symmetric and Ŝ ¯̂S = D2

2 I.
(b) N̂iN̂j = N̂jN̂i for any i, j ∈ Π0.
(c) Let {xi|i ∈ Π0} denote the basis of the algebra ÛB. Then the functions φi(xj) :=

Ŝij/Ŝ0i for 0 ≤ i ≤ r − 1 form a set of orthogonal characters of ÛB. Thus Ŝ
simultaneously diagonalizes the matrices N̂i.

(d) We have a Verlinde type formula in this context given by N̂k
ij =

2
D2

∑
m∈Π0

ŜimŜjm
¯̂
Skm

dm
.

Corollary 2.1. Let B be a super-modular category and N̂k
ij be its naive fusion rule,

where i, j, k ∈ Π0. We have the following symmetries

N̂k
ij = N̂k

ji = N̂ j∗

ik∗ = N̂k∗

i∗j∗ , N̂0
ij = δij∗

Proof. The first equation is a direct consequence of Proposition 2.2 (d). The second
equation can be derived by combining (a) and (d) of Proposition 2.2.

Remark 3. One can combine Corollary 2.1 and [2, Eq. (2.4.3)] to get more relations
for the fusion coefficients. For example, we have Nfk

ij = Nfj∗

ik∗ . In fact, the result
follows from N̂k

ij = Nk
ij + Nfk

ij = N j∗

ik∗ + Nfk
ij = N j∗

ik∗ + Nfj∗

ik∗ = N̂ j∗

ik∗ .

Mimicking the proof for modular categories (see, e.g. [25, Lemma 1.2]), one can
derive the following property of the dimensions for super-modular categories.

Corollary 2.2 ([49, Corollary 3.4]). Let B be a super-modular category, then
d2

i |D
2

2 .

Proof. By Proposition 2.2, we know that Ŝ ¯̂S = D2

2 I, hence, we have

D2

2
=
∑

j∈Π0

Ŝij
¯̂Sjk =

∑

j∈Π0

Ŝij Ŝjk∗ .

The second equation comes from the fact that for pre-modular categories, we have
S̄ij = Sij∗ since we can embed them into their Drinfeld center. Therefore, we have
∑

j∈Π0

Ŝij

dj

Ŝjk∗

dj
= D2/2

d2
i

. The result follows since the left-hand side is an algebraic

integer.
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The following property of the second Frobenius–Schur indicator for self-dual
objects is useful in Sec. 3.2.

Lemma 2.3 ([13, Lemma 2.8.]). Let B be a super-modular category and Xi a
simple object such that Xi

∼= X∗
i (i.e., Xi is self-dual), then

±1 = ν2(Xi) =
2

D2

∑

j,k∈Π0

N̂ i
j,kdjdk

(
θj

θk

)2

.

Corollary 2.3 (Balancing equation for super-modular categories). For a
super-modular category of rank 2r, we have

θiθjŜij =
r−1∑

k=0

(Nk
i∗j − Nfk

i∗j)θkdk.

Proof. The balancing equation [2] for a pre-modular category gives us

θiθjŜij =
2r−1∑

k=0

Nk
i∗jθkdk

=
r−1∑

k=0

Nk
i∗jθkdk +

2r−1∑

k=r

Nk
i∗jθkdk

=
r−1∑

k=0

Nk
i∗jθkdk +

2r−1∑

k=r

Nfk
i∗jθfkdfk

=
r−1∑

k=0

(Nk
i∗j − Nfk

i∗j)θkdk.

2.5. Galois symmetries for super-modular categories

In this section, we discuss the Galois symmetry in the fermionic quotient of a super-
modular category, which is parallel to the modular setting. We extend results that
are well known for modular categories to this setting.

Let B be a super-modular category and Ŝ, T̂ and N̂i defined as above. We have
the following relation for the entries of Ŝ and N̂i [13, Eq. (2.3)]:

ŜijŜik

Ŝ0,i

=
∑

m∈Π0

N̂m
jkŜim. (1)

This means that λ̂ij := Ŝij

Ŝ0j
are eigenvalues of the matrices N̂j with eigenvectors

(Ŝim)m∈Π0 . Defining the diagonal matrix (Λ̂i)jk = δjk
Ŝij

Ŝ0j
, then Eq. (1) can be

written as N̂iŜ = ŜΛ̂i for all i ∈ Π0.

Remark 4. Let Q(Ŝ) be the smallest field containing all elements of the S-
matrix. Similarly to the modular setting, Q(Ŝ) is Galois over Q . Define Gal(B) =
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Gal(Q(Ŝ)/Q). Then Gal(B) is an abelian subgroup of Sr, where 2r is the rank
of the corresponding super modular category and Sr is the symmetric group on
r letters. We will use σ for both the element of the Galois group Gal(B) and its
associated element in Sr. Indeed, since σ( Ŝik

Ŝ0k
) is a character of ÛB (see Proposition

2.2), the following defines σ(k) for k ∈ Π0:

σ

(
Ŝik

Ŝ0k

)
=

Ŝiσ(k)

Ŝ0σ(k)

=
Ŝiσ(k)

dσ(k)
. (2)

Lemma 2.4. Let Ŝ be as above for a super-modular category B.

(i) Let σ ∈ Gal(B). Then σ(k)∗ = σ(k∗) for all k ∈ Π0.
(ii) The algebraic integers Ŝk,σ(0) are real numbers.

(iii) We have
∣∣ Ŝk,σ(0)

dσ(k)

∣∣2 = 1 for all k,σ.

Proof. Let τ ∈ Gal(Q̄/Q) be complex conjugation. Now, since Ŝij = Ŝij∗ we have

Sj,k∗

dk∗
= (Ŝj,k/dk)

= τ(Ŝj,k/dk) = Ŝj,τ(k)/dτ(k).

Thus τ sends the normalized kth column to the τ(k)th column which is also the
k∗th column. Since Gal(B) is abelian, we have σ(k)∗ = τσ(k) = στ(k) = σ(k∗).

The second result now follows from the following computation:

Ŝk,σ(0) = Ŝk,σ(0)∗ = Ŝk,σ(0∗) = Ŝk,(0).

For the third result, we compute

σ(D2) = 2
∑

j∈Π0

σ(dj)2 = 2
∑

j∈Π0

σ(dj)σ(d∗j )

= 2
∑

j∈Π0

Ŝj,σ(0)

dσ(0)

Ŝj∗,σ(0)

dσ(0)

=
2

d2
σ(0)

∑

j∈Π0

Ŝj,σ(0)(Ŝj,σ(0))∗ =
D2

d2
σ(0)

.

On the other hand, we have

σ(D2) = 2
∑

j∈Π0

σ(Ŝj,kŜj,k∗) = 2
∑

j∈Π0

σ(Ŝj,k)σ(Ŝj,k∗)

= 2
∑

j∈Π0

(
Ŝj,σ(k)Ŝk,σ(0)

dσ(0)dσ(k)

)(
Sj,σ(k∗)Sk∗,σ(0)

dσ(0)dσ(k∗)

)

2140017-9
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=
Ŝk,σ(0)Ŝk∗,σ(0)

d2
σ(0)dσ(k)dσ(k∗)

2
∑

j∈Π0

Ŝj,σ(k∗)Ŝj,σ(k)

=
Ŝk,σ(0)Ŝk∗,σ(0)

d2
σ(0)dσ(k)dσ(k∗)

D2.

Since dσ(k∗) = dσ(k)∗ = dσ(k) and Ŝk∗,σ(0) = Ŝk,σ(0) = Ŝk,σ(0), the result follows
because D2/d2

σ(0) is nonzero.

We can also derive a result parallel to [16, Eq. (2.12)] for the S-matrix of the
fermionic quotient.

Corollary 2.4. Let σ ∈ Gal(B) and j, k the indices of simple objects in Π0. Then

σ(Ŝj,k) = ±
Ŝj,σ(k)

dσ(0)
.

Moreover, we have the following symmetries :

Ŝj,k = ±Ŝσ(j),σ−1(k). (3)

Proof. By Eq. (2), we have

σ(Ŝj,k) = Ŝj,σ(k)σ(dk)/dσ(k),

σ(dk) = Ŝk,σ(0)/dσ(0).

In particular,

σ(Ŝj,k) =
Ŝj,σ(k)Ŝk,σ(0)

dσ(0)dσ(k)
.

So it suffices to show that Sk,σ(0)
dσ(k)

= ±1 which follows from Lemma 2.4. For Eq. (3),

we use the symmetry of the Ŝ-matrix and apply σ ◦ σ−1 to the first equation.

Let (C, f) be a spin modular category, recall that the fermion f gives a grading
C0 ⊕ C1.

Lemma 2.5. Let (C, f) be spin modular with (unnormalized) S-matrix S, and Ŝ
the S-matrix for the fermionic quotient. Then [Q(S) : Q(Ŝ)] = 2n, for some n.

Proof. Denote by S(0,0), S(0,1) = [S(1,0)]T and S(1,1) the 2 × 2 blocks of the S-
matrix S relative to the grading C0 ⊕ C1. Suppose that Xa, Xb ∈ C1 so that Sb,a is
an entry in S(1,1). Then, since the normalized ith column Si,a/da is a character of
the Grothendieck ring K0(C) for each i, we see that (Sb,a)2 = d2

a

∑
j N j

b,aSj,a/da.
Since N j

b,a = 0 if Xj ∈ C1 we find that (Sb,a)2 lies in the field generated by the
entries of S(0,1). In particular, [Q(S(1,1)) : Q(S(0,1))] = 2k for some k, since every
entry of S(1,1) satisfies a polynomial equation of degree ≤ 2 over S(0,1).
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Now, let Sb,c be an entry of S(0,1) = [S(1,0)]T , i.e. Xb ∈ C1 and Xc ∈ C0. A
similar argument shows that (Sb,c)2 lies in the field generated by S(0,0), so that
[Q(S(0,1)) : Q(S(0,0))] = 2%. Since Q(Ŝ) = Q(S(0,0)), the result follows.

Example 2.1. Consider the Ising modular category with label set {1,σ,ψ}. It is
a spin modular category with fermion ψ. Its S-matrix is

1
2





1
√

2 1
√

2 0 −
√

2

1 −
√

2 1



.

The subcategory generated by 1 and ψ is sVec, and we have [Q(S) : Q(SsVec)] = 2.

Question 1. Is there a relationship between the Galois group of the S-matrix of
a braided fusion category B and that of its Drinfeld center Z(B)?

The following lemma can probably be generalized to non-self-dual categories,
but we will only use it in the self-dual case:

Lemma 2.6. Suppose that B is a self-dual super-modular category and z is a label
in the fermionic quotient such that dz = 1 and Ŝz,z /= 1. Then B contains a modular
pointed subcategory equivalent to C(Z2, Q) (i.e. Sem or Sem).

Proof. The hypothesis immediately implies that B contains an invertible, self-dual
simple object Z. Since SZ,Z = Ŝz,z /= 1, the object Z is not self-centralizing, hence
generates a modular subcategory of dimension 2.

Question 2. Can we drop the self-duality condition in the above, with the same
conclusion?

2.6. Rank finiteness

The rank-finiteness property can be extended to categories that do not necessarily
admit a spherical structure. It was recently proved that rank-finiteness holds for
G-crossed braided fusion categories.

Theorem 2.2 ([32, Corollary 4.7.]). There are finitely many equivalence classes
of G-crossed braided fusion categories of any given rank.

This motives us to pursue a classification of low-rank super-modular categories
parallel to [16, 44]. A classification of super-modular categories of rank ≤ 6 is given
in [13]. It is shown, for example, that the fusion rules of any non-split super-modular
category of rank ≤ 6 are the same as PSU(2)4k+2 for k = 0, 1 and 2.
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3. Classification of Super-modular Categories by Rank

3.1. Main results

Similarly to modular categories, the Galois group Gal(B) of a super-modular cate-
gory B defined in Sec. 2.5 is an abelian subgroup of the symmetric group Sr, where
2r is the rank of B (see Remark 4).

In this section, we consider the problem of classifying rank 2r = 8 super-modular
categories. If B is non-self dual, we can denote the four simple objects in Π0 as
1, Y, X, X∗. The naive fusion rules satisfy the relations in Corollary 2.1 and the
argument in [44, Appendix A.2] works for this case. Therefore, we sometimes assume
the super-modular categories are self-dual, in which case Ŝ has real entries.

The abelian subgroups (up to relabeling, but with 0 distinguished) G of S4 are
listed in the following table.

In this section, we determine the possible Ŝ-matrices for super-modular cate-
gories, and then derive the fusion rules in Sec. 4. We summarize our results into
the following.

Theorem 3.1. Suppose B is a rank 8 self-dual super-modular category and G is
its Galois group as in Table 1 then:

• If G = 〈(23)〉, 〈(01), (23)〉 or 〈(123)〉, then B does not exist.
• If G = 〈(0)〉, then B is pointed, i.e. of the form C(Z2 × Z2, Q) ! sVec.
• If G = 〈(01)〉, then B is prime and weakly integral with the same fusion rules

as the centralizer of either fermion in SO(12)2.
• If G = 〈(01)(23), (02)(13)〉, then B has the same fusion as Fib ! PSU(2)6.
• If G = 〈(0123)〉 and N̂k

ij < 14, then B is prime and has the same fusion rules
as PSU(2)14.

• If G = 〈(012)〉 and N̂k
ij < 21, then B has the same fusion rules as PSU(2)7!sVec.

• If G = 〈(01)(23)〉 and di ≤ 14 for all i, then the fusion rules of B are the same
as [PSU(2)6 ! PSU(2)6]Z2 and is prime, Fib! Fib! sVec, Sem ! Fib! sVec or
Sem ! PSU(2)6.

In several cases the proofs in [44] for the classification of rank 4 modular use
techniques and results that apply to super-modular categories as well, so we do not
repeat the proof here. For many computations the Gröbner basis software in Maple
is useful — we used Maple 2018 for our calculations.

Table 1. Abelian subgroups of S4.

〈1〉 〈(0)〉

Z2 〈(01)〉, 〈(23)〉, 〈(01)(23)〉

Z2 × Z2 〈(01)(23), (02)(13)〉, 〈(01), (23)〉

Z3 〈(012)〉, 〈(123)〉

Z4 〈(0123)〉
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3.2. Ŝ-matrices for rank 8

The naive fusion coefficients N̂k
ij can be computed by the entries of Ŝ via the

Verlinde formula (see Proposition 2.2 (d)). More precisely, to get the N̂k
ij ’s, it suffices

to determine the Ŝ-matrix.

Remark 5. We denote by φn the positive real root of the equation x2−nx−1 = 0,
where n is an integer, i.e. φn = n+

√
n2+4
2 . If an algebraic number φ has conjugate

− 1
φ , then φ must be of the form φn for some n ∈ Z.

Theorem 3.2. If B is a rank 8 non-self dual super-modular category, then the
corresponding Ŝ-matrix, up to relabeling the simple objects, has the following form:

Ŝ =





1 1 1 1
1 1 −1 −1
1 −1 ±i ∓i

1 −1 ∓i ±i




.

Proof. The proof in [44, Appendix A.2] carries through, mutatis mutandis.

Remark 6. Having dispensed with the non-self-dual case, we assume for the rest of
this section that all categories are self-dual. In particular the naive fusion coefficients
are cyclically symmetric (see Corollary 2.1), so we will denote N̂k

ij by ni,j,k.

Theorem 3.3. There are no rank 8 self-dual super-modular categories with Galois
group G = 〈(23)〉, 〈(01), (23)〉 or 〈(123)〉.

Proof. (1) If G = 〈(23)〉, applying Eq. (3) with σ = 〈(23)〉, we have the following
form for the Ŝ-matrix:

Ŝ =





1 d1 d2 d2

d1 s11 s12 ε1s12

d2 s12 s22 s23

d2 ε1s12 s23 ε2s22




.

As 0 and 1 are fixed by G, by Eq. (2), we know that d1, d2, s11
d1

, s12
d1

, s2
12
d2
2

and
s22s23

d2
2

are rationals as they are fixed by the Galois group. Since they are also
algebraic integers (see [26, Proposition 8.13.11]), we know these are integers.
Consequently, s11, s12, s22s23 are also integers.
If ε1 = −1, the orthogonality of the columns of Ŝ gives

d1(1 + s11) = 0,

d1d2 + s11s12 + s12s22 − s12s23 = 0,

d1d2 − s11s12 + s12s23 − ε2s12s22 = 0.

So we have s11 = −1. If ε2 = 1, then we have d1d2 = 0, which is a contradiction.
If ε2 = −1, we have d1d2 = −s12s22. Plugging this into the second equation above,
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we get s12(1 + s23) = 0. If s12 = 0, then d1d2 = 0, which is impossible. If s23 = −1,
then s22 is an integer. Then all the entries of Ŝ are integers, which contradicts the
assumption that G is Z2.

If ε1 = 1, the orthogonality of the columns of Ŝ gives

d2
2 + s2

12 + s22s23 + ε2s22s23 = 0.

If ε2 = −1, then d2
2 + s2

12 = 0, a contradiction. If ε2 = 1, by applying a Gröebner
basis algorithm on Maple, we get (2s22+s11+1)(2d1d2+s11s12+2s12s22−s12) = 0.
One sees that if either factor is 0, we will have trivial G, a contradiction.
(2) Assume G = 〈(01), (23)〉. Using Eq. (3), we get

Ŝ =





1 d1 d2 d3

d1 ±1 ±d2 ±d3

d2 ±d2 s22 s23

d3 ±d3 s23 ±s22




.

It follows from Ŝ2 = D2

2 I that 2d2
2 + s2

22 + s2
23 = 2d2

3 + s2
22 + s2

23. Since di’s are
positive, d2 = d3.

Let

Ŝ =





1 d1 d2 d2

d1 ε1 ε2d2 ε3d2

d2 ε2d2 s22 s23

d2 ε3d2 s23 ε4s22




.

This case can be eliminated using orthogonality of the columns of Ŝ. Applying
a Gröbner basis algorithm to these equations we find that the only possible
sign choice is given by ε1 = ε4 = 1 and ε2 = ε3 = −1. We can further deduce
that s23 = −1, s22 = d1 and d1 = d2

2. Therefore, we have

Ŝ =





1 d2
2 d2 d2

d2
2 1 −d2 −d2

d2 −d2 d2
2 −1

d2 −d2 −1 d2
2




.

Notice that G = Gal(Q(d2)/Q). Computing the characteristic polynomial for
N̂2, we have

p2(x) = x4 +
(
−2d2 +

2
d2

)
x3 +

(
d2
2 +

1
d2
2

− 4
)

x2 +
(

2d2 −
2
d2

)
x + 1

Therefore, −2d2 + 2
d2

must be an integer. In particular, d2 satisfies a quadratic
equation over Q. This means Gal(Q(d2)/Q) is either trivial or Z2, which con-
tradicts the fact that G is Z2 × Z2.
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(3) If G = 〈(123)〉, then G fixes 0. Therefore, Ŝi,0 = di are rational numbers. Since
the dimensions di’s are always algebraic integers, then they must be integers in
this case. Moreover, di = Ŝ0,1 = ±Ŝ0,i+1 = ±di+1. So, by the positivity of the
dimensions (i.e. unitarity assumption), we have

Ŝ =





1 d1 d1 d1

d1 s11 ε1s33 ε2s22

d1 ε1s33 s22 ε3s11

d1 ε2s22 ε3s11 s33




.

From Corollary 2.2, we have d2
1|(1 + 3d2

1). We can deduce that d1 = 1. Since
d1 is the largest (in magnitude) eigenvalue of the fusion matrices N1, N2

and N3, we see that the other eigenvalues (which are real numbers) satisfy
±Ŝii/d1 = ±Ŝi,i = ±1. This means the entries of Ŝ are ±1’s which contradicts
the assumption of G being nontrivial.

Theorem 3.4. If G = 〈(0)〉, then the corresponding Ŝ-matrix, up to relabeling the
simple objects, is one of the following:





1 1 1 1

1 −1 −1 1
1 −1 1 −1

1 1 −1 −1




,





1 1 1 1

1 1 −1 −1
1 −1 1 −1

1 −1 −1 1




.

Proof. If G is trivial, then the proof of [44, Theorem 4.1, Case 7] goes through
mutatis mutandis showing that the corresponding super-modular category is
pointed. Thus by Proposition 2.1 the super-modular category splits, so that Ŝ has
the same form as the S-matrix of some rank 4 pointed modular category [44] as in
the statement.

Theorem 3.5. If G = 〈(01)〉, then the corresponding Ŝ is




1 1 2
√

6

1 1 2 −
√

6

2 2 −2 0
√

6 −
√

6 0 0




.

Proof. By Eq. (3), we have

Ŝ =





1 d1 d2 d3

d1 ε1 ε2d2 ε3d3

d2 ε2d2 s22 s23

d3 ε3d3 s23 s33




.

We first assume that ε1 = 1. Then we can have ε2ε3 = −1 or ε2 = ε3 = −1.
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For the first case, we can assume ε2 = 1, ε3 = −1 and interchange N2 and N3 if
necessary. Then the orthogonality of Ŝ gives us s23(s22+s33) = 0 and 2d1+d2

2−d2
3 =

0. Assume that s22 + s33 = 0, then since the columns of Ŝ are of equal length
2d2

2 + s2
22 = 2d2

3 + s2
33. This gives that d2 = d3, and that d1 = 0, which is a

contradiction. So, we must have s23 = 0. Then Ŝ becomes

Ŝ =





1 d1 d2 d3

d1 1 d2 −d3

d2 d2 s22 0

d3 −d3 0 s33




.

Since σ = (01) is the only nontrivial element of the Galois group, we conclude that
m = d2(d1+1)

d1
, n = d3(d1−1)

d1
, t = s22

d2
, u = s33

d3
, v = d2

2
d1

, w = (d2
1+1)
d1

and x = d2
3

d1

are integers as coefficients of the minimal polynomials of the N̂i. Note that m, v, w
and x are strictly greater than 0 and n ≥ 0. Since d2 + d1d2 + d2s22 = 0, we have
s22 < 0 so t < 0. Moreover, we have t2 − u2 /= 0. In fact, if t2 − u2 = 0, then
u2 + 2 = s2

33+2d2
3

d2
3

= s2
22+2d2

2
d2
3

= d2
2

d2
3
( s2

22+2d2
2

d2
2

) = d2
2

d2
3
(t2 + 2). This implies that d2 = d3.

Using 2d1 + d2
2 − d2

3 = 0, we have d1 = 0, a contradiction. Thus t2 − u2 /= 0 and we
have

m = −2t(u2 + 2)
t2 − u2

, n =
2u(t2 + 2)
t2 − u2

, v =
2(u2 + 2)
t2 − u2,

w =
2(t2u2 + t2 + u2)

t2 − u2
, x =

2(t2 + 2)
t2 − u2

.

Since x > 0, we have t2 − u2 > 0. We have n2,2,2 = t(t2−u2−2)
(t2−u2) . In order to have

n2,2,2 ≥ 0, we must have t2−u2−2 ≤ 0. The only integer solution satisfying all the
restrictions here is t = −1 and u = 0. Then s33 = 0 and s22 = −d2. Thus, we have
d1 = 1. The orthogonality condition on the columns of Ŝ gives that 2d2 − d2

2 = 0.
This implies that d2 = 2 and d3 =

√
6.

If ε2 = ε3 = −1, we have

Ŝ =





1 d1 d2 d3

d1 1 −d2 −d3

d2 −d2 s22 s23

d3 −d3 s23 s33




.

Similarly to the previous case, we have m = d3(d1−1)
d2

, n = d2
1+1
d1

, t = d2
3

d1
, u = s22

d2
,

v = d2
2

d1
, w = s33

d3
, x = s23

d2
, y = s23

d3
and z = d2(d1−1)

d1
are integers. Here, we have

nv − z2 − 2v = 0, t + v − 2 = 0 and m2 + z2 − 2n + 4 = 0. Note that m2 + n2 /= 0
since n /= 0. So, we have n = m2+z2

2 + 2, t = 2m2

m2+z2 , and v = 2z2

m2+z2 . Since t is an
integer, we have m2 ≥ z2. Similarly, we have z2 ≥ m2. Thus |m| = |z| so t = v = 1.
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This means d2 = d3 =
√

d1. Then m = d1 − 1 and d1 is an integer. From |m| = |z|,
we get d1 − 1 = d2(d1−1)

d1
. If d1 = 1, then we have d2 = d3 = 1. This would force all

the entries of Ŝ to be integers, which a contradiction to the assumption that the
Galois group is Z2. If d1 > 1, then we have d2 = d1. Recall that d2 = d3 =

√
d1.

This means either d2 = d3 = d1 = 0 or d2 = d3 = d1 = 1, again a contradiction.

If ε1 = −1, the orthogonality of the columns of Ŝ gives ε2d2
2 + ε3d2

3 = 0. Thus,
we have ε2ε3 = −1 and d2 = d3. But then we have σ(d2) = d2

d1
= − d2

d1
so d2 = 0, a

contradiction.

Theorem 3.6. If G = 〈(01)(23), (02)(13)〉, then the corresponding Ŝ has the fol-
lowing form:





1 φ1φ2 φ1 φ2

φ1φ2 1 −φ2 −φ1

φ1 −φ2 −1 φ1φ2

φ2 −φ1 φ1φ2 −1




.

Proof. By Eq. (3), we have the corresponding Ŝ:




1 d1 d2 d3

d1 ε1 ε2d3 ε3d2

d2 ε2d3 ε4 ε5d1

d3 ε3d2 ε5d1 ε6




.

Using orthogonality of the columns of Ŝ and the fact that di ≥ 1, there are only 2
possibilities for εi’s, namely,

(1) ε1 = 1, ε2 = −1, ε3 = −1, ε4 = 1, ε5 = −1, ε6 = 1, or
(2) ε1 = 1, ε2 = −1, ε3 = −1, ε4 = −1, ε5 = 1, ε6 = −1.

For the first case, the orthogonality of Ŝ gives d1 = d2d3, d2 = d1d3 and d3 = d1d2.
So, we have d1d2d3 = (d1d2d3)2, we have d1d2d3 = 1. Since di ≥ 1 for all i, this
implies that d1 = d2 = d3 = 1. This cannot happen since the corresponding Galois
group should be trivial, which is a contradiction to our assumption.

Consider the second case. The orthogonality of Ŝ gives d1 = d2d3. So, we can
write the corresponding matrix as

Ŝ =





1 d2d3 d2 d3

d2d3 1 −d3 −d2

d2 −d3 −1 d2d3

d3 −d2 d2d3 −1




.
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Note that Eq. (2) indicates that d2 and −1/d2 are conjugates. By Remark 5, we
know that d2 = φm for some m ∈ Z. Similarly, d3 = φn for some integer n.

Thus, we have

Ŝ =





1 φmφn φm φn

φmφn 1 −φn −φm

φm −φn −1 φmφn

φn −φm φmφn −1




.

The corresponding N̂i matrices have integer entries in terms of m and n. More
precisely, we have

N̂1 =





0 1 0 0

1 mn m n

0 m 0 1

0 n 1 0




, N̂2 =





0 0 1 0

0 m 0 1

1 0 m 0

0 1 0 0




, and N̂3 =





0 0 0 1

0 n 1 0

0 1 0 0

1 0 0 n




.

Using the formula given in Lemma 2.3, we calculate the 2nd Frobenius–Schur indi-
cator for the simple object X2:

ν2(X2) = ±1

=
2

D2

(
d2

(
1
θ2

)2

+ md2
1 + d1d3

(
θ1
θ3

)2

+ md2
2 + d1θ

2
2 + d1d3

(
θ3
θ1

)2
)

from this, we obtain

±D2

2
= m

(
d2
1 + d2

2

)
+ d2

(
θ22 + θ−2

2

)
+ d1d3

((
θ1
θ3

)2

+
(
θ1
θ3

)−2
)

= m
(
d2
2d

2
3 + d2

2

)
+ 2d2 Re

(
θ22
)

+ 2d2d
2
3 Re

(
θ1
θ3

)2

≤ D2

2
= 1 + d2

2d
2
3 + d2

2 + d2
3

⇒ 0 ≥ md2
2(d

2
3 + 1) + 2d2 Re(θ22) + 2d2d

2
3 Re

(
θ1
θ3

)2

− 1 − d2
2d

2
3 − d2

2 − d2
3

= md2
2(d

2
3 + 1) − 2d2(d2

3 + 1) − d2
2(d

2
3 + 1) − (d2

3 + 1)

= (md2
2 − 2d2 − d2

2 − 1)(d2
3 + 1)

⇒ 0 ≥ (md2
2 − 2d2 − d2

2 − 1)

2140017-18



January 15, 2021 8:24 WSPC/S0219-4988 171-JAA 2140017

On classification of super-modular categories of rank 8

= d2
2(m − 1) − 2d2 − 1

= φ2
m(m − 1) − 2φm − 1

= (mφm + 1)(m − 1) − 2φm − 1

= (m − 2)(φm(m + 1) + 1).

Thus m must be 0, 1, or 2.
Similarly, we calculate the 2nd Frobenius–Schur indicator for X3:

ν2(X3) = ±1 =
2

D2

(
d3θ

−2
3 + nd2

1 + d1d2

(
θ1
θ2

)2

+ d1d2

(
θ2
θ1

)2

+ nd2
3 + d3θ

2
3

)

⇒ ±D2

2
= 2d3 Re(θ23) + n(d2

2d
2
3 + d2

3) + 2d2
1d3 Re

(
θ1
θ2

)2

≤ D2

2
= 1 + d2

2d
2
3 + d2

2 + d2
3

⇒ 0 ≥ 2d3 Re(θ22) + nd2
3(d

2
2 + 1) + 2d3d

2
2 Re

(
θ1
θ2

)2

− 1 − d2
2d

2
3 − d2

2 − d2
3

≥ −2d3 + nd2
3(d

2
2 + 1) − 2d3d

2
2 − d2

3(d
2
2 + 1) − (1 + d2

2)

= (nd2
3 − 2d3 − d2

3 − 1)(d2
2 + 1)

⇒ 0 ≥ (nd2
3 − 2d3 − d2

3 − 1)

= d2
3(n − 1) − 2d3 − 1

= φ2
n(n − 1) − 2φn − 1

= (nφn + 1)(n − 1) − 2φn − 1

= (n − 2)(φn(n + 1) + 1).

So n must be 0, 1, or 2.
Up to symmetry, we can exclude the cases (m, n) = (0, 0), (1, 1), (1, 0), (2, 2)

since the corresponding Galois groups are not isomorphic to Z2 ×Z2. The possible
value for this case, up to symmetry, is (m, n) = (1, 2). Note that φ1 = 1+

√
5

2 and
φ2 = 1 +

√
2.

In the last few cases we were unable to complete the classification in general —
instead we placed bounds on the N̂k

ij ’s. Since Nk
ij ≤ 2‖Ni‖max, this could also be

done in terms of bounds on the Ni’s. Sometimes it is easier to work in terms of a
bound on the dimensions di. Indeed, the proof of [15, Lemma 3.14] goes through
with no change, from which we conclude: N̂k

ij ≤ di ≤ 4‖N̂i‖max.
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Theorem 3.7. If G = 〈(0123)〉 and N̂k
ij < 14, the corresponding Ŝ is





1 d1 d2 d3

d1 −d2 d3 1

d2 d3 −1 −d1

d3 1 −d1 d2




,

where d1 = 1+
√

2+
√

2 +
√

2, d2 = 1+
√

2+
√

2(2 +
√

2), and d3 = 1+
√

2 +
√

2.

Proof. Applying Eq. (3) with σ = 〈(0123)〉, we have the following form of Ŝ matrix:

Ŝ =





1 d1 d2 d3

d1 ε1d2 ε2d3 ε3

d2 ε2d3 ε4 ε5d1

d3 ε3 ε5d1 ε6d2




.

Using a Maple’s Gröbner basis algorithm, we deduce that ε1 = ε4 = ε5 = −1
and ε2 = ε3 = ε6 = 1.

So

Ŝ =





1 d1 d2 d3

d1 −d2 d3 1

d2 d3 −1 −d1

d3 1 −d1 d2




.

Let p1(x) = x4 − c1x3 + c2x2 + c3x − 1 be the characteristic polynomial of N̂1.
Then p3(x) = x4 − c3x3 − c2x2 + c1x − 1, where ci ∈ Z for i = 1, 2 and 3.
Note that c1 = Trace(N̂1) ≥ 0 and c3 = Trace(N̂3) ≥ 0 as the N̂i’s are matri-
ces with nonnegative integer entries. Let p2(x) = x4 − b1x3 + b2x2 + b3x+1 be
the characteristic polynomial of N̂2, where b1 = b3 = d2 + d3

d1
− 1

d2
− d1

d3
and

b2 = −2 + d1
d2d3

− d3
d1d2

− d2d1
d3

+ d2d3
d1

.
The orthogonality of the rows of Ŝ gives d1 = d1d2 − d2d3 − d3, d3 = −d1 +

d1d2−d2d3, d1d2 = d3 +d1 +d2d3 and d2d3 = −d1 +d1d2−d3. So, we have b2 = −6
and b3 = −b1. Thus p2(x) = x4 − b1x3 − 6x2 + b1x + 1, where b1 = Trace(N̂2) ≥ 0.

Note that c1 + c3 = 2 (d2+1)d3
d2

+ 4 d2
(d2+1)d3

. This gives c1 + c3 ≥ 4
√

2. Since c1

and c3 are integers, we have c1 + c3 ≥ 6. Moreover, we have 4b1 − c2
1 + 8c2 + c2

3 = 0.
Let ∆ = c1 − c3 and Σ = c1 + c3, then c2 = 1

16 [3∆Σ ±
√

(32 + ∆2)(−32 + Σ2)]

and b1 = 1
8 [−∆Σ ∓

√
(32 + ∆2)(−32 + Σ2)]. Let P = 16c2−3∆Σ

∆2+32 = ±
√

Σ2−32
∆2+32 .

We compute the ni,j,k’s and we get the following relations:

n1,1,1 =
5c1 − 3c3

8
− (c1 − c3)P

8
,

n1,1,2 = 1 − P = 1 + n1,2,3 = 2 + n2,3,3,
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n1,1,3 =
c1 + c3

8
− (c1 − c3)P

8
= n1,3,3 =

1
2
(n1,1,1 + n3,3,3),

n1,2,2 =
c1 + c3

4
+

(c1 − c3)P
4

= n2,2,3,

n2,2,2 =
c2
1 − c2

3

4
− 2c2 + 2P = b1 + 2P,

Recall that the fusion coefficients are integral. In particular, since n2,2,2 is an integer,
we know that c1 and c3 are both even. Thus ∆ and Σ are divisible by 2. Via a
computer search for integer solutions using the above equations, we found there is
only one solution when ni,j,k < 14, with c1 = c3 = 4 and c2 = 2P = −2. The
corresponding Ŝ matrix for this case is the one in the statement (and is the same
as that of PSU(2)14).

We can make further progress using more sophisticated number theoretical
arguments:

Lemma 3.1. If Σ and ∆ are divisible by 4, the corresponding super-modular cat-
egories have c1 = c3 =

√
2(ζ2i−1 − ζ

2i−1
), c2 = −(ζ2i−1 + ζ

2i−1
) and P =

− 1
2 (ζ2i−1 + ζ

2i−1
), where ζ = 1 +

√
2, ζ = 1 −

√
2 and i ≥ 1 is an integer.

Proof. Assume that Σ and ∆ in the proof above are also divisible by 4. Denote
a = Σ

4 , b = ∆
4 and c = P . Then we have the following Diophantine equation

a2 − (b2 + 2)c2 = 2.

Lemma 3.2 shows that b = 0. Consequently, we have c1 = c3, and the Diophantine
equation becomes a2 − 2c2 = 2. Since a = c1

2 ≥ 0 and c = P = c2
2 ≤ −1 the

resulting solutions are

a(i) :=
1√
2
(ζ2i−1 − ζ

2i−1
), c(i) = −1

2
(ζ2i−1 + ζ

2i−1
),

where 1 ≤ i and ζ = 1 +
√

2 and ζ = 1 −
√

2. This determines all
possible fusion rules under these assumptions. The first few are (a, c) ∈
{(2,−1), (10,−7), (58,−41), (338,−239), . . .}.

Some cases can be ruled out if we assume the MME conjecture using Lemma 2.5
as follows.

Example 3.1. In the case (a, c) = (58,−41), we find that d1 is a root of the
irreducible polynomial x4 − 2 · 58x3 − 82x2 + 2 · 58x − 1. The smallest cyclotomic
field in which d1 resides has degree 464 = 24 ·29 (i.e., the conductor of Q(d1) is 464).
Now suppose that the corresponding super-modular category B has a MME (C, f).
Then the order of the T matrix of C is divisible by 29, so that 7|ϕ(29)|[Q(T ) : Q].
But Lemma 2.5 and the results of [41] imply that [Q(T ) : Q] = 2m for some m
(since [Q(T ) : Q(S)] = 2t). Thus no such category can exist.
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Remark 7. The (a, c) = (10,−7) case cannot be dealt with in this way since the
corresponding conductor is 80.

Lemma 3.2. Assume a, b and c are integers and a2 − (b2 + 2)c2 = 2, then b = 0.

Proof. Reducing modulo 8 both sides of the equation, there are three cases to
consider since a square modulo 8 is 0, 1, or 4.

• If b2 ≡ 1 mod 8, then we have a2 − 2 ≡ 3c2 mod 8. This gives no solutions.
• If b2 ≡ 0 mod 8, then we have c ≡ 1 mod 8 and a ≡ 4 mod 8.
• If b2 ≡ 4 mod 8, then we have c ≡ 1 mod 8 and a ≡ 0 mod 8.

Therefore, we must have that a and b are even and c is odd. Moreover, if 4|b, then
4 " a and vice versa.

Now we consider both sides of a2 − (b2 + 2)c2 = 2 modulo 4. This gives us
b2 + 2 ≡ 2 mod 4. Let B = b2 + 2, and then we need to solve the following Pell-like
equation

a2 − Bc2 = 2

As b is even, B is not divisible by 4. So we write B = m2d, where d is square-free
and even and m is odd.

Claim: d = 2. Assume otherwise, then we can prove that a2 − Bc2 = 2 has no
solutions by looking at the class group of Z[

√
d] via genus theory. In fact, assume

d /= 2 and even. Then the equation a2 − d(mc)2 = 2 can be written as

a2 − dy2 = 2.

If the above equation has no integer solution, then a2 − Bc2 = 2 has no solution.
Now, we consider the quadratic number field K = Q(

√
d). We denote the class group

of K by CK (see [28] p. 45), which is a finite abelian group. Let V = (Z/2Z)g, where
g is the number of distinct prime dividing d. Let ei = (0, . . . , 1, . . . , 0) be the basis
of V , where i = 1, . . . , g and 1 is on the nth position. Let CK,2 be the subgroup
of CK consisting of the elements of order 2. For primes p1, . . . , pg ∈ Z, denote the
corresponding prime ideals as p1, . . . , pg ∈ Z[

√
d]. Define the map

φ : V → CK,2

ei 8→ [pi].

This assignment gives a group homomorphism. By Corollary 1 in [28, Chap. 5],
we know that φ is surjective and ker(φ) = {0, (1, 1, . . . , 1)}. Consequently, CK,2 +
(Z/Z2)g−1. In particular, if g ≥ 2, then for any prime p|d, p = (p,

√
d) is not

principal.
Now, we return to our equation a2 − dy2 = 2, where d /= 2 and even. Consider

the ideal (a+y
√

d) ⊆ Z[
√

d], which has norm 2. We have (a+y
√

d)(a−y
√

d) = (2).
Moreover, we have (2,

√
d)2 = (2). By the unique factorization, we have (2,

√
d) =

(a + y
√

d). However, if g ≥ 2, (2,
√

d) is not principal. Consequently, there is no
integer solutions for a and y when d /= 2.
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Thus, we have

a2 − 2m2c2 = 2, b2 − 2m2 = −2.

One can further deduce that 4|b. Let b = 4β, the second equation gives us m2 −
8β2 = 1. This is a Pell-equation. Note that (m,β) = (3, 1) is the smallest nontrivial
solution. Let z = 3 + 2

√
2 and denote its conjugate as z̄. The solutions (m,β) of

the equation are given by

mn =
zn + z̄n

2
, βn =

zn − z̄n

4
√

2
,

where n is a positive integer. We also have a2 − 2y2 = 2, which is a Pell-type
equation. Notice that (a, y) = (2, 1) is a solution. Let s = 2 +

√
2. By the theorem

of Mahler [34], the solutions are given by

ak =
sk + s̄k

2
√

2(k−1)
, yk =

sk − s̄k

2
√

2k
,

where k is an odd positive integer. By modifying the indices, we know the solutions
of the pair (mn, yn) are given by

yn =
(z + 1)2n+1 − (7 − z)2n+1

23n+2
√

2
, mn =

zn + (6 − z)n

2
,

where n ∈ N. Recall that the values of m and y are related by y = mc, where m
and c are both odd. In particular, y ≥ m. Now, we consider the function given by
f(x) = yx

mx
. Using standard calculus, we know that f is a monotonic increasing

function and limx→∞ f(x) = 1 +
√

2. Therefore, the only possible solution here is
m = 1. Consequently, we have b = 0.

Remark 8. If ni,j,k < 115, by a computer search for positive integer values, we
find two more solutions with (Σ, ∆) = (40, 0) and (232, 0), which are correspond
to i = 2, 3 in Lemma 3.1. The first possible solution with Σ ≡ 2 (mod 4) has
(Σ, ∆) = (434, 18) and n1,1,1 = 115.

Theorem 3.8. If G = 〈(012)〉 and N̂k
ij < 21, then Ŝ is





1 d 1 + d d2 − 1

d −(1 + d) −1 d2 − 1

1 + d −1 d −(d2 − 1)

d2 − 1 d2 − 1 −(d2 − 1) 0




,

where d is the largest real root of the polynomial x3 − 3x − 1 = 0.
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Proof. Applying Eq. (3) to σ = (012), we get

Ŝ =





1 d1 d2 d3

d1 ε1d2 ε2 ε3d3

d2 ε2 ε4d1 ε5d3

d3 ε3d3 ε5d3 s33




.

A computation using Ŝ2 = D2

2 I and di ≥ 1 reduces the sign choices to the following
three cases:

(1) ε3 = ε4 = −1, ε1 = ε5 = 1, ε2 = −1,
(2) ε3 = ε4 = 1, ε1 = ε5 = −1, ε2 = −1, or
(3) ε3 = ε4 = −1, ε1 = ε5 = −1, ε2 = 1.

In case (3), we find that d2
3 + d1d2 − (d1 + d2) = 0. However, since di ≥ 1, we

have d2
3 + d1d2 ≥ 2 and −(d1 + d2) ≤ −2. So, the equality holds if and only if

d1 + d2 = 2 = d2
3 + d1d2, which forces d1 = d2 = d3 = 1. This is impossible since

the Galois group is nontrivial by hypothesis.
Case (1) is equivalent to case (2) by permuting columns/rows 2 and 3 and

relabeling d1 ↔ d2. So, without loss of generality, we may assume we are in case
(2). Let g(x) = x3 − c1x2 + c2x− c3 be an irreducible polynomial for which d3 is a
root. Note that c1 = d3

d1d2
(d1d2 + d2 − d1), c2 = d2

3
d1d2

(d2 − d1 − 1), and c3 = − d3
3

d1d2
.

The orthogonality of the rows of Ŝ shows that c1 = −c3. Moreover, c2
c3

= −λ33 ∈ Z.
Let n = λ33 and c = −c3 = c1, so we have g(x) = x3 − cx2 + ncx + c. Since the
Galois group is Z3, we have that dis(g)

c2 = c2(n2 +4)−2nc(9+2n2)−27 is a square.

Take t to be the positive root of this, that is, t = (d1−1)(d1+d2)(1+d2)
d1d2

.

Note that c = d3
3

d1d2
> 0. Moreover t > 0. Computing the fusion rules, we get

n1,1,1 =
(t − nc − 1)

2
− t

n2 + 3
, n1,1,2 = n1,3,3 =

−cn + 2n2 + t − 3
2(n2 + 3)

,

n1,1,3 =
cn2 + 2c − nt + 3n

2(n2 + 3)
, n1,2,2 = n2,3,3 =

cn − 2n2 + t + 3
2(n2 + 3)

,

n1,2,3 =
c − 3n

n2 + 3
, n2,2,2 =

1 + nc + t

2
− t

3 + n2
,

n2,2,3 =
2c + 3n + cn2 + nt

2(3 + n2)
, n3,3,3 =

c + n3

n2 + 3
.

If we restrict ni,j,k < 21, the only integer values of n, t and c that satisfy t2 =
c2(n2 + 4) − 2nc(9 + 2n2) − 27 and yield ni,j,k ∈ Z is (n, t, c) = (0, 3, 3). The
corresponding Ŝ-matrix is the one given in the statement and is the same as that
of PSU(2)7 (see [44]).
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Remark 9. Here is an alternative approach that is less computationally intensive,
but assumes the minimal modular extension conjecture holds. First note that c
is a divisor of dim(C), so that if we assume the MME conjecture holds then, by
the Cauchy theorem [15], any prime divisor p of c must divide the order N of the
T -matrix of any minimal modular extension of the corresponding super-modular
category. Now, by Lemma 2.5, we have ϕ(N) = [Q(T ) : Q] = 3 · 2k since |G| = 3.
Thus if p | c, we also have ϕ(p) = 2a3b where b ∈ {0, 1} and at most one prime
divisor p can have 3 |ϕ(p). Thus the prime divisors of c are somewhat uncommon
(for example Fermat primes).

For n = 0, the discriminant equation above yields the Diophantine equation
(2c)2 − 27 = t2, which has finitely many solutions. The only values of c > 0 that
correspond to a solution are: 3 and 7. Since n3,3,3 ∈ Z, when n = 0 we have 3 | c.
So c = 3 which, in turn, implies t = 3, giving the same solution as above. So in this
case we do not need to assume the MME conjecture.

For n = 1 the Diophantine discriminant equation 5c2 − 22c − 27 = t2 has
infinitely many solutions, with the smallest few c values:

c ∈ {7, 31, 199, 1351, 9247, 63367, 434311, 2976799, 20403271}.

The method above eliminates all of these values of c except for 7 (note that
9 |ϕ(1351) = 2732). In the case that c = 7, we find that t = 8 which implies
n1,1,1 = −2, so this cannot occur.

Theorem 3.9. If G = 〈(01)(23)〉 and di < 14 for all i, then the corresponding Ŝ
is one of the following:





1 φ2
1 φ1 φ1

φ2
1 1 −φ1 −φ1

φ1 −φ1 −1 φ2
1

φ1 −φ1 φ2
1 −1




,





1 φ2
2 φ2 φ2

φ2
2 1 −φ2 −φ2

φ2 −φ2 −1 φ2
2

φ2 −φ2 φ2
2 −1




,





1 φ1 1 φ1

φ1 −1 φ1 −1

1 φ1 −1 −φ1

φ1 −1 −φ1 1




,





1 φ2 1 φ2

φ2 −1 φ2 −1

1 φ2 −1 −φ2

φ2 −1 −φ2 1




.

Proof. Similar as previous cases, we have

Ŝ =





1 d1 d2 d3

d1 ε1 ε2d3 ε3d2

d2 ε2d3 s22 s23

d3 ε3d2 s23 s33




.
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Case (1). ε1 = 1. Using Maple’s Gröbner basis algorithm, we deduced that

(s33 + 1)(s23 − 1)(s23 + 1) = 0.

First, we assume s33 + 1 = 0, then we have s33 = s22 = −1, ε2 = ε3 = −1, ε1 = 1
and s23 = d1 = d2d3. Therefore the corresponding Ŝ is given by

Ŝ =





1 d2d3 d2 d3

d2d3 1 −d3 −d2

d2 −d3 −1 d2d3

d3 −d2 d2d3 −1




.

Note that this is exactly the same matrix we derived in Theorem 3.6. But here we
do not get a contradiction since the Galois group is Z2. Thus the same argument
using the 2nd Frobenius–Schur indicator works here. Since the Galois group is Z2,
we have solutions for S-matrix when (m, n) = (1, 1), (1, 0), (2, 0) and (2, 2), i.e.
(d2, d3) = (φi,φi) or (φi, 1) for i = 1, 2. The cases (1, 1) and (2, 2) yield the first
two Ŝ-matrices above, while for (2, 0) and (1, 0) the Galois group G /= 〈(01)(23)〉,
a contradiction. However, see Case 2 where these solutions do occur.

If s23 − 1 = 0, one can show that the corresponding Galois group is trivial.
Now, we assume s23 + 1 = 0, then the matrix Ŝ has the form

Ŝ =





1 d2
3 d3 d3

d2
3 1 −d3 −d3

d3 −d3 d2
3 −1

d3 −d3 −1 d2
3




.

Note this is the same matrix as the previous one if d2 = d3 and permuting the
matrices N̂2 and N̂3.

Case (2). ε1 = −1. In this case, the Ŝ is of the form

Ŝ =





1 d1 d2 d3

d1 −1 d3 −d2

d2 d3 s22 s23

d3 −d2 s23 −s22




.

Note that the conjugate of d1 is − 1
d1

. Moreover, we know that if d1 = 1, then
the corresponding Galois group is trivial. Thus the field Q(Ŝ) = Q(d1), where
d1 = φn = n+

√
n2+4
2 for some n. Now, we assume k

√
P =

√
n2 + 4, where k

is an integer and P is a square-free integer. Then d1 = n+kξ
2 , where ξ =

√
P .

Then Q(Ŝ) = Q(ξ). As all the entries of Ŝ are algebraic integers, we can assume
d2 = a + bξ, d3 = c + dξ, s22 = e + fξ, s23 = g + hξ, where a, b, c, d, e, f, g and h
are either half integers or integers. Then using Maple’s Gröbner basis algorithm to
eliminate non-rational variables we obtain 21 Diophantine equations (over 1

2Z).

2140017-26



January 15, 2021 8:24 WSPC/S0219-4988 171-JAA 2140017

On classification of super-modular categories of rank 8

Note that N̂3
12 = −1 if d = 0 or 2h−k = 0. One Diophatine equation we derive is

2b2h − b2k + 2d2h + d2k = 0,

Which can be written as b2

d2 = − 2h+k
2h−k . So we have (2h − k)(2h + k) ≤ 0, and

since k > 0, we see that h ∈ (−k
2 , k

2 ). The condition d1 < 14 implies n ≤ 13 and
k ≤

√
n2 + 4, and k is determined by n, so we do a brute force search for solutions

using parameters (n, h, k). There are 13 cases which pass the non-negative and
integral condition of the naive fusion coefficients N̂k

ij , which are the cases when
n = 1, . . . , 13 and h = −k

2 , for each k corresponding to n. In fact, for these cases,
the corresponding Ŝ matrix has the following form:





1 φn 1 φn

φn −1 φn −1

1 φn −1 −φn

φn −1 −φn 1




.

All the cases can be ruled out by Lemma 2.6 except when (n, k, h) = (1, 1,− 1
2 ) and

(n, k, h) = (2, 2,−1). For the first case, we have a = 2d, b = 0, c = d, e = −1, f = 0,
and g = − 1

2 . Then n3,3,3 = 2d − 1
2d , which is non-negative and integral. Thus

d = − 1
2 or 1

2 . Note that d2 = −1 if d = − 1
2 , which is a contradiction. If d = 1

2 ,
the corresponding Ŝ-matrix has a modular realization as Fib! Sem. For the second
case, we have n2,2,2 = d − 1

d . Thus d = 1 and the corresponding S-matrix has a
modular realization as PSU(2)6 ! Sem. These are the second pair of Ŝ-matrices.

4. Fusion Rules

Recall that the naive fusion coefficients are defined as N̂k
ij = Nk

ij + Nfk
ij , where

i, j, k ∈ Π0. To get the fusion coefficients Nk
ij for the corresponding super-modular

categories, we need to determine how these N̂k
ij split. Note that for the pointed

cases, such as the ones in Theorems 3.2 and 3.4, the corresponding super-modular
categories split by Proposition 2.1. Moreover, the Ŝ matrices in Theorem 3.4 give
the same naive fusion coefficients. From this discussion, we have the following
results:

Lemma 4.1. If B is non-self dual super-modular category of rank 8, then B has the
same fusion rules as C(Z4, Q) ! sVec where C(Z4, Q) is a pointed modular category
with Z4 fusion rules.

Lemma 4.2. If B is a self-dual super-modular category with Galois group G =
〈(0)〉, then B has the same fusion rules as D ! sVec, where D is a Toric code
modular category.
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Lemma 4.3. Let B be a self-dual super-modular category with Ŝ of the following
form:





1 1 2
√

6

1 1 2 −
√

6

2 2 −2 0
√

6 −
√

6 0 0




.

Then B has the same fusion rules as the centralizer 〈f〉′ of either fermion f in the
modular category SO(12)2 (see the Appendix A).

Proof. N̂1
11 = N̂2

11 = N̂3
12 = N̂3

22 = N̂3
33 = 0, N̂2

12 = N̂3
13 = N̂2

22 = 1 and N̂3
23 = 2.

We can assume that N2
22 = 1 and Nf2

22 = 0 by interchanging X2 and fX2

if necessary. Similarly, we assume N3
13 = 1 and Nf3

13 = 0 by interchanging X3

and fX3 and X1 and fX1 simultaneously, if needed. Using the modified balancing
equation on Ŝ23, we get 0 = (N3

23 − Nf3
23 )θ3

√
6. So, we have N3

23 = Nf3
23 = 1. Now

we have

(1) f⊗2 = 1,
(2) X⊗2

1 = 1,
(3) X⊗2

2 = 1⊕ aX1 ⊕ bfX1 ⊕ X2,
(4) X⊗2

3 = 1⊕ X1 ⊕ X2 ⊕ fX2,
(5) X1 ⊗ X2 = aX2 ⊕ bfX2,
(6) X1 ⊗ X3 = X3,
(7) X2 ⊗ X3 = X3 ⊕ fX3.

Computing X2⊗X2⊗X3 in two ways gives us: (2+a)X3⊕(b+1)fX3 = 2X3⊕2fX3.
So we have a = 0 and b = 1.

Lemma 4.4. Let B be a self-dual super-modular category with

Ŝ =





1 φ1φ2 φ1 φ2

φ1φ2 1 −φ2 −φ1

φ1 −φ2 −1 φ1φ2

φ2 −φ1 φ1φ2 −1




.

Then B has the same fusion rules as Fib! PSU(2)6.

Proof. The naive fusion coefficients are: N̂1
11 = N̂3

33 = 2, N̂2
11 = N̂3

12 = N̂2
22 = 1,

N̂2
12 = N̂3

13 = N̂3
22 = N̂3

23 = 0. As N̂2
22 = N2

22 + Nf2
22 = 1, we assume N2

22 = 1 and
Nf2

22 = 0 by interchanging X2 and fX2 if necessary. Then we have X⊗2
2 = 1⊕X2, so

X2 generates a subcategory F with fusion rules like those of Fib, which is necessarily
modular. Therefore B ∼= F ! D where D is a super-modular category of rank 4
[22, Theorem 3.13]. The classification results in [13] imply that B has the same
fusion rules as Fib! PSU(2)6.
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Lemma 4.5. Let B be a self-dual super-modular category with Ŝ of the following
form





1 d1 d2 d3

d1 −d2 d3 1

d2 d3 −1 −d1

d3 1 −d1 d2




,

where d1 = 1 +
√

2+
√

2 +
√

2, d2 = 1 +
√

2+
√

2(2 +
√

2) and d3 = 1 +
√

2 +
√

2.
Then B has the same fusion rules as PSU(2)14.

Proof. The corresponding naive fusion coefficients are: N̂1
11 = N̂3

11 = N̂3
12 = N̂3

13 =
N̂3

33 = 1, N̂2
11 = N̂2

12 = N̂2
22 = N̂3

22 = 2 and N̂3
23 = 0. Since N̂1

11 = N1
11 + Nf1

11 = 1,
we can assume N1

11 = 1 and Nf1
11 = 0 by interchanging X1 and fX1 if necessary.

Similarly, since N̂3
33 = N3

33 + Nf3
33 = 1, we can assume N3

33 = 1 and Nf3
33 = 0.

Finally, we may use the X2 versus fX2 labeling ambiguity to assume that N2
13 = 1.

We have

(1) f⊗2 = 1,
(2) X⊗2

1 = 1⊕ X1 ⊕ aX2 ⊕ bfX2 ⊕ cX3 ⊕ dfX3, where a + b = 2, c + d = 1,
(3) X⊗2

2 = 1⊕gX1⊕hfX1⊕ lX2⊕mfX2⊕pX3⊕qfX3, where g+h = 2, l+m = 2
and p + q = 2,

(4) X⊗2
3 = 1⊕ rX1 ⊕ sfX1 ⊕ X3, where r + s = 1,

(5) X1 ⊗ X2 = aX1 ⊕ bfX1 ⊕ gX2 ⊕ hfX2 ⊕ X3,
(6) X1 ⊗ X3 = cX1 ⊕ dfX1 ⊕ X2 ⊕ rX3 ⊕ sfX3,
(7) X2 ⊗ X3 = X1 ⊕ pX2 ⊕ qfX2.

Computing X1 ⊗ X3 ⊗ X3 in two ways and comparing the coefficients of X1, fX1,
X2 and fX2, we have c + r = 2, d + s = 0, ar + bs + 1 = c + p and br + as = d + q.
Thus, we have c = r = 1, d = s = 0, a = p and b = q. Applying Corollary 2.3 to
Ŝ23, we have |d1| = |d1θ1 + (p − q)d2θ2| ≥ ||(p − q)d2θ2| − d1|. If |p − q| = 2, then
4.26 ≈ d1 ≥ |2d2−d1| ≈ 5.79, which is impossible. So we have p = q = 1. Therefore
a = b = 1. Computing X2 ⊗ X3 ⊗ X3 in two different ways and comparing the
coefficients of X2 and fX2, we have g = h = 1. Tensoring X2 ⊗ X2 ⊗ X3 in two
ways and comparing the coefficients of X1 and fX1, we have l = 1 and m = 1.

Lemma 4.6. Let B be a self-dual super-modular category with

Ŝ =





1 d 1 + d d2 − 1

d −(1 + d) −1 d2 − 1

1 + d −1 d −(d2 − 1)

d2 − 1 d2 − 1 −(d2 − 1) 0




,

where d is the largest real root of x3−3x−1 = 0. Then B has the same fusion rules
as PSU(2)7 ! sVec.
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Proof. We have N̂1
11 = N̂2

11 = N̂3
13 = 0 and N̂3

11 = N̂2
12 = N̂3

12 = N̂2
22 = N̂3

22 =
N̂3

23 = N̂3
33 = 1.

Note that since N̂2
22 = N2

22 + Nf2
22 = 1, we can assume N2

22 = 1 and Nf2
22 = 0 by

interchanging X2 and fX2 if necessary. Similarly, we can assume N3
33 = 1, Nf3

33 = 0,
N̂1

22 = 1 and N̂f1
22 = 0. We have

(1) f⊗2 = 1,
(2) X⊗2

1 = 1⊕ aX3 ⊕ bfX3, where a + b = 1,
(3) X⊗2

2 = 1⊕ X1 ⊕ X2 ⊕ gX3 ⊕ hfX3, where g + h = 1,
(4) X⊗2

3 = 1⊕ lX2 ⊕ mfX2 ⊕ X3, where l + m = 1,
(5) X1 ⊗ X2 = X2 ⊕ pX3 ⊕ qfX3, where p + q = 1,
(6) X1 ⊗ X3 = aX1 ⊕ bfX1 ⊕ pX2 ⊕ qfX2,
(7) X2 ⊗ X3 = pX1 ⊕ qfX1 ⊕ gX2 + hfX2 ⊕ lX3 ⊕ mfX3.

Computing X1 ⊗ X1 ⊗ X2 in two different ways and comparing the coefficients
of X2 and fX2, we have ag + bh = 1, bg + ah = 0. Thus, we have a = g and b = h.
Similarly, comparing the coefficients of X3 and fX3 in X1⊗X1⊗X3 gives us a = 1
and b = 0. Computing X2 ⊗ X2 ⊗ X3 and comparing the coefficients of X3 and
fX3, we have l = 1 and m = 0. Computing X1⊗X3⊗X3 in two different ways and
comparing the coefficients for X2 and fX2, we have p = 1 and q = 0. Observing
that the simple objects 1, X1, X2 and X3 generate a fusion subcategory with the
same fusion rules as PSU(2)7 we obtain the stated result.

Lemma 4.7. Let B be a self-dual super-modular category. Suppose that the corre-
sponding Ŝ has one of the following forms :





1 φ2
1 φ1 φ1

φ2
1 1 −φ1 −φ1

φ1 −φ1 −1 φ2
1

φ1 −φ1 φ2
1 −1




,





1 φ2
2 φ2 φ2

φ2
2 1 −φ2 −φ2

φ2 −φ2 −1 φ2
2

φ2 −φ2 φ2
2 −1




,





1 φ1 1 φ1

φ1 −1 φ1 −1

1 φ1 −1 −φ1

φ1 −1 −φ1 1




,





1 φ2 1 φ2

φ2 −1 φ2 −1

1 φ2 −1 −φ2

φ2 −1 −φ2 1




,

then B has the same fusion rules as Fib! Fib! sVec, [PSU(2)6 ! PSU(2)6]Z2 ,
Sem ! PSU(2)6 ! sVec, or Sem ! Fib! sVec, respectively.

Proof. Consider the first Ŝ-matrix. We have N̂1
11 = N̂2

11 = N̂3
11 = N̂3

12 = N̂2
22 =

N̂3
33 = 1 and N̂2

12 = N̂3
13 = N̂3

22 = N̂3
23 = 0. Without loss of generality, we may

assume N2
22 = 1, Nf2

22 = 0 by interchanging X2 and fX2 if necessary. Thus X⊗2
2 =

1⊕X2, so X2 generates a subcategory F with fusion rules like those of Fib, which is
necessarily modular. In particular B ∼= F !D, where D is a super-modular category
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of rank 4. The classification results of [13] now imply that B has the same fusion
rules as Fib ! Fib! sVec.

For the second Ŝ-matrix, we have that the associated naive fusion coefficients
are N̂1

11 = 4, N̂2
11 = N̂3

11 = N̂2
22 = N̂3

33 = 2, N̂3
12 = 1, N̂2

12 = N̂3
13 = N̂3

22 = N̂3
23 = 0.

We may assume N3
12 = 1 and Nf3

12 = 0 by interchanging X3 and fX3 if necessary.
Using Corollary 2.3 on Ŝ12 gives

−θ1θ2φ2 = (N1
12 − Nf1

12 )φ2
2θ1 + φ2θ3.

Dividing by φ2, we have

−θ1θ2 = (N1
12 − Nf1

12 )φ2θ1 + θ3.

Taking absolute value on both sides, we get

1 =
∣∣(N1

12 − Nf1
12 )φ2θ1 + θ3

∣∣ ≥
∣∣|(N1

12 − Nf1
12 )φ2|− 1

∣∣.

So we must have N1
12 = Nf1

12 = 1. Similarly, applying Corollary 2.3 to Ŝ33 and Ŝ13

gives

−θ23 = 1 + (N3
33 − Nf3

33 )φ2θ3, −θ1θ3φ2 = (N1
13 − Nf1

13 )φ2
2 + φ2θ2

and we get N3
33 = Nf3

33 = 1 and N3
11 = Nf3

11 = 1. A parallel calculation for Ŝ22

yields N2
22 = Nf2

22 = 1. By using Corollary 2.3 again for Ŝ11, we get

θ21 = (N1
11 − Nf1

11 )φ2
2θ1 + 1.

The potential choices of (N1
11, N

f1
11 ) are (2, 2), (4, 0), (0, 4), (1, 3) and (3, 1), but

since φ2
2 > 2 the only possibility is (2, 2). This category has the same fusion rules

as [PSU(2)6 ! PSU(2)6]Z2 , see the Appendix A.
In the last two cases, observe that B must contain a modular subcategory of

the form C(Z2, Q) by Lemma 2.6. Then B ∼= C(Z2, Q) ! D, where D is a rank 4
super-modular category. The result now follows from the classification in [13].

Appendix A.

Here, we record the data for some of the realizations of the super-modular categories
that appear in this paper, both modular and super-modular, as well as the families
of categories in which they reside. We write the T -matrix as an n-tuple with the
understanding that these are the diagonal entries.

Appendix A.1. Pointed modular categories

Pointed braided fusion categories are classified, see [22]. They correspond to pairs
(A, Q), where Q is a symmetric quadratic form on A (with values in U(1)). The
fusion rules of C(A, Q) are the same as the multiplication in A, and the S- and
T -matrices are determined by Q as follows: Sa,b = Q(a+b)

Q(a)Q(b) and θa = Q(a). If the
symmetric bilinear form given by Sa,b is non-degenerate then C(A, Q) is modular.

For example the semion theory Sem = C(Z2, Q) that appears in our classification
has the following modular data: S =

(
1 1
1 −1

)
, and T = (1, i).
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Appendix A.2. PSU(2)k

The rank k + 1 modular category SU(2)k obtained from Uqsl2 at q = eπi/(2+k)

contains the subcategory PSU(2)k whose simple objects have even labels (“integer
spin” in the physics literature). Denote by ! the fundamental weight of type A1,
so that X) tensor generates SU(2)k. The object labeled by k

2! is always invertible.
When k ≡ 2 (mod 4) the category PSU(2)k is super-modular with f = X k

2 ), when
4 | k, there is a boson b = X k

2 ) in PSU(2)k, and when k is odd, PSU(2)k is modular,
with X k

2 ) a semion (not in PSU(2)k.)
The (modular) Fibonacci theory Fib = PSU(2)rev3 as well as PSU(2)7 appear in

our classification, and the data can be found in [44].
Some low rank super-modular categories that appear in this paper are

• PSU(2)6 with data:

S =

(
1 1 +

√
2

1 +
√

2 −1

)
⊗
(

1 1

1 1

)
and T = (1, i) ⊗ (1,−1).

• PSU(2)10 with data:

S =





1 2 +
√

3 1 +
√

3

2 +
√

3 1 −1 −
√

3

1 +
√

3 −1 −
√

3 1 +
√

3



⊗
(

1 1

1 1

)
and

T = (1,−1, eπi/3) ⊗ (1,−1).

• PSU(2)14 with data:

S =





1 1 + x 1 +
√

2 + x 1 +
√

2 +
√

2x

1 + x 1 +
√

2 +
√

2x 1 −1 −
√

2 − x

1 +
√

2 + x 1 −1 −
√

2 −
√

2x 1 + x

1 +
√

2 +
√

2x −1 −
√

2 − x 1 + x −1





⊗
(

1 1

1 1

)
, where

x =
√

2 +
√

2 and T = (1, eiπ/4, e3iπ/4,−i) ⊗ (1,−1).

The full sequence of super-modular categories PSU(2)4m+2 was studied in [6,
10], where the modular data can be found. If we order the simple objects
[1, X1, . . . , Xr−1, fXr−1, . . . , fX1, f ] = [Y0, . . . , Y2(r−1)] the fusion rules are com-
pletely determined by the rule Y1 ⊗ Yk

∼= Yk−1 ⊕ Yk ⊕ Yk+1 for 0 < k < 2(r − 1)
and the obvious rules involving Y2(r−1) = f and Y0 = 1.
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Appendix A.3. Other examples

The following are spin modular categories coming from quantum groups with
fermion f so that the subcategory 〈f〉′ is super-modular, where r, m ∈ N:

• SU(4k + 2)4m+2,
• SO(2k + 1)2m+1,
• Sp(2r)m with rm = 2 (mod 4),
• SO(2r)m with r = 2 (mod 4) and m = 2 (mod 4),
• (E7)4m+2.

The pointed sub-category of the rank 13 modular category SO(12)2 is sVec! sVec
and hence contains two fermions labeled by 2!5 and 2!6, where !i are the fun-
damental weights of type D6. The centralizer of either of these fermions is super-
modular and has modular data:

S :=





1 1 2
√

6

1 1 2 −
√

6

2 2 −2 0
√

6 −
√

6 0 0




⊗
(

1 1

1 1

)
and

T = (1, 1, e2πi/3, e3πi/8) ⊗ (1,−1).

If we label the simple objects of dimension
√

6 by X3 and fX3 then the fusion rules
are determined by X⊗2

3
∼= 1⊕X1 ⊕X2 ⊕ fX2, X⊗2

1
∼= 1, X⊗2

2
∼= 1⊕ fX1 ⊕X2 and

X2 ⊗ X3
∼= X3 ⊕ fX3.

Finally, we observe that if (C1, f1) and (C2, f2) are spin modular categories,
then (f1, f2) ∈ C1 ! C2 is a boson and hence can be condensed to obtain a new
spin modular category ([C1 ! C2]Z2)0, where we de-equivariantize by Rep(Z2) ∼=
〈(f1, f2)〉 and then take the trivial component of the corresponding Z2-grading. For
example applying this to PSU(2)6 we obtain the prime rank 8 example (PSU(2)6 !
PSU(2)6)Z2 with data:

S :=





1 3 + 2
√

2 1 +
√

2 1 +
√

2

3 + 2
√

2 1 −1 −
√

2 −1 −
√

2

1 +
√

2 −1 −
√

2 −1 3 + 2
√

2

1 +
√

2 −1 −
√

2 3 + 2
√

2 −1




⊗
(

1 1

1 1

)
and

T = (1,−1, i, i)⊗ (1,−1).

The fusion rules may be readily determined from those of PSU(2)6 by condensing
the boson b := (f1, f1). Note that b ⊗ X /∼= X for any simple X so that there
is no ambiguity in labeling the objects in the de-equivariantization. Setting f :=
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[(f1,1)] = [(1, f1)] we have

X⊗2
1

∼= 1⊕ 2(X1 ⊕ fX1) ⊕ X2 ⊕ fX2 ⊕ X3 ⊕ fX3,

X1 ⊗ X2
∼= X3 ⊕ X1 ⊕ fX1

X1 ⊗ X3
∼= X2 ⊕ X3 ⊕ fX3, X2 ⊗ X3

∼= X1, and X⊗2
2

∼= 1⊕ X2 ⊕ fX2

from which all fusion rules can be recovered.
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[34] K. Mahler, Über den grössten Primteiler spezieller Polynome zweiten Grades
(Johansen, 1935).

[35] S. Morrison and D. Penneys, Monoidal categories enriched in braided monoidal cat-
egories, Int. Math. Res. Not. IMRN, (11) (2019) 3527–3579.
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[37] M. Müger, Galois theory for braided tensor categories and the modular closure, Adv.
Math. 150(2) (2000) 151–201.

2140017-35



January 15, 2021 8:24 WSPC/S0219-4988 171-JAA 2140017

P. Bruillard et al.
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