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Abstract—This paper presents continuous distributed
algorithms to solve the finite-time distributed convex opti-
mization problems of multiagent systems in the presence
of disturbances. The objective is to design distributed
algorithms such that a team of agents seeks to minimize the
sum of local objective functions in a finite-time and robust
manner. Specifically, a distributed optimization algorithm,
combined with a continuous integral sliding-mode control
scheme, is proposed to solve this finite-time optimization
problem, while rejecting local disturbance signals. The
developed algorithm is further applied to solve economic
dispatch and resource allocation problems, and proven
that under proposed schemes, the optimal solution can be
achieved in finite time, while satisfying both global equality
and local inequality constraints. Examples and numerical
simulations are provided to show the effectiveness of the
proposed methods.

Index Terms—Distributed convex optimization, dis-
turbance rejection, finite-time convergence, multiagent
system.

IN RECENT years, there is increasing attention devoted to
the distributed optimization problem, where a team of agents

cooperatively minimizes the sum of agents’ local objective func-
tions in a distributed way, i.e.,

min
θ

F(θ) =
N∑

i=1

fi(θ), i = 1, 2, . . . , N (1)

(Corresponding
author: Guoqiang Hu.)

where θ ∈ Rn is a global decision variable and fi(θ) : Rn → R
represents a local objective function for agent i. This problem
arises in many applications involving multiagent systems, in-
cluding parameter estimation and source localization in sensor
networks [1], energy and thermal comfort optimization in smart
building [2], demand response [3], and economic dispatch [4]
in smart grid, and resource allocation in the multicell network
[5], to just list a few. In the existing literature, gradient-based
methods were widely employed to solve convex optimization
problems. In particular, the authors in [6] presented distributed
gradient-based optimization algorithms to minimize cost func-
tions. By using the consensus design, a subgradient scheme was
proposed in [7] to obtain an approximately optimal solution with
a constant step size. A projected distributed subgradient method
was developed in [8] to handle a set constraint. It was extended
to the dual problem with constraints in [9]. Zero-gradient-sum
(ZGS) algorithms were designed in [10] from a control point to
enable the convergence to an optimal solution.

Most of the existing results build on consensus algorithms
described by either discrete-time dynamics or continuous-time
dynamics to find the optimal solution. By including a quadratic
penalty in the Lagrangian problem, the authors in [11] em-
ployed saddle-point dynamics with proportional–integral (PI)
like consensus schemes to find the optimal solution with an
undirected graph. The authors in [12] extended the design to
a discrete-time communication case. Furthermore, the event-
triggered distributed optimization was studied in [13]. One ob-
servation is that all of the aforementioned discrete-time and
continuous-time optimization algorithms were based on linear
algorithms, which enabled the optimal solutions asymptotic or
exponential. That is, the optimal solutions were achieved over
an infinite-time horizon, which only provided the suboptimal
solutions for practical applications. Thus, it is highly desirable
to achieve the optimal solution in finite time.

In multiagent systems, many techniques have been proposed
to obtain finite-time consensus. A discontinuous sliding-mode
scheme via a signum function was developed in [14] to achieve
finite-time consensus. However, this nonsmooth algorithm was
undesired in reality due to chattering behaviors. Hence, contin-
uous finite-time designs were developed. Tools from the homo-
geneity theory were utilized in [15] for finite-time consensus,
while the analysis made the estimation of settling time difficult.
Besides, distributed protocols with odd functions were provided
in [16], where each agent was required to obtain its neighbors’
inputs simultaneously, causing a control-loop problem. Further,
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a finite-time protocol via a smoothing factor was presented in
[17] to remove the chattering. Although these smooth designs
enable finite-time convergence, robustness against disturbances
cannot be achieved. Recently, the integral sliding-mode con-
trol (ISMC) schemes were widely used to provide robustness in
multiagent coordination. In [18], the ISMC scheme was adopted
to achieve robustication of average consensus. The authors in
[19] also adopted the ISMC scheme with event-triggered sam-
pling to achieve formation tracking. In [20], finite-time consen-
sus was obtained based on the ISMC scheme for second-order
multiagent systems with disturbances. Mismatched disturbances
were further considered in [21] and a supertwisting-based ISMC
scheme motivated by [22] and [23] was adopted to achieve finite-
time formation tracking.

So far, finite-time convergence and robustness against uncer-
tainties/disturbances have not been fully addressed in distributed
optimization, which are important in practice. Take the power
system for instance. Since there are many renewable energy
resources introduced to the power system, frequent and severe
changes of operating conditions require a faster convergence rate
of a distributed optimal solution to meet the challenges of power
system developments [24]. In addition, the lack of robust designs
against disturbances may result in unreliable dispatches and in-
stability of the power system. Due to the nonlinearity of the cost
function and disturbances, the existing distributed optimization
techniques may not be directly applied. Recently, some results
have been reported on distributed convex optimization with ei-
ther finite-time convergence or disturbance rejection. In partic-
ular, the signum function-based algorithms were developed to
achieve finite-time distributed optimization of multiagent sys-
tems with first-order dynamics [25], linear dynamics [26], and a
convex constraint [27]. However, those nonsmooth algorithms
are usually undesired in practice. In the absence of disturbances,
the finite-time distributed optimization was achieved in [28] via
a smooth factor. In the presence of disturbances, the authors in
[29] studied the “bounded” optimization error with disturbances
and proposed algorithms to enable the convergence to a neigh-
borhood of optimization solutions. Based on an internal model
design, distributed optimization was considered for multiagent
systems with known-frequency disturbances [30] or unknown-
frequency disturbances [31], where the convergence to an opti-
mization point was achieved in a semiglobal sense. In contrast,
our preliminary work in [32] first employed a smooth ISMC
scheme to solve a distributed convex optimization problem with
the simultaneous finite-time and robust properties, while it only
considered quadratic optimization.

In this paper, we investigate a finite-time distributed optimiza-
tion problem for continuous-time multiagent systems subject to
disturbances. By using a supertwisting-based ISMC strategy,
finite-time distributed optimization algorithms are proposed to
solve this problem with finite-time convergence and disturbance
rejection. Specifically, to guarantee that the disturbance does not
influence the search of an optimal solution, the ISMC scheme is
adopted so that the equivalent system of the original system can
reside on the sliding manifold in a finite time with disturbance
rejection. Then, distributed optimization can be achieved on the
equivalent system via a finite-time distributed gradient proto-
col. Compared with the existing works, the main contributions
of this paper are as follows.

1) Distributed optimization algorithms with a supertwisting-
based ISMC scheme are presented to search for the
optimal solutions in a finite-time and robust fashion
for distributed quadratic and nonquadratic optimization,
respectively. The proposed optimization algorithms are
continuous and distributed, which avoid the chattering
phenomenon and/or the control loop issue that widely
exists in the finite-time consensus works (e.g., [14], [16],
[18], [19]).

2) In contrast to the algorithms in [25]–[31] that are de-
signed to achieve finite-time convergence or disturbance
rejection separately, the proposed algorithms in this pa-
per guarantee the finite-time convergence of the opti-
mal solution for distributed optimization, and meanwhile
enable the complete disturbance-rejecting property. The
aforementioned design limitations in [25]–[31] are also
removed. Moreover, unlike [29]–[31], the developed al-
gorithms are allowed for any arbitrary disturbances that
only satisfy mild and reasonable smoothness and bound-
edness properties.

3) The proposed distributed optimization algorithms are
further employed to solve the economic dispatch and
resource allocation problems, respectively. The penalty
function and saddle-point dynamics are leveraged to
search for the optimal solutions, respectively. The pro-
posed algorithms can handle both global equality and
local inequality constraints. Convergence is proven by
using Lyapunov analysis.

Organization: preliminaries are provided in Section II, and
a distributed optimization problem is formulated in Section III.
Sections IV and V present finite-time algorithms to search for
the optimal solutions for distributed quadratic and nonquadratic
optimization, respectively. The economic dispatch and resource
allocation problems are further solved. Numerical examples are
given in Section VI, while Section VII concludes this paper.

A. Notation

R and RN ×N denote the sets of reals and N × N matrices,
respectively. Let col(x1 , . . . , xN ) and diag{a1 , . . . , aN } rep-
resent a column vector with entries xi and a diagonal matrix
with ai , i = 1, 2, . . . , N , respectively. The symbol ⊗ denotes
the Kronecker product. Define 1N = col(1, . . . , 1) ∈ RN . For
a matrix P = PT , λmin(P ) and λmax(P ) denote its minimum
and maximum eigenvalues, respectively. For a scalar xi ∈ R,
we define sigθ (xi) = |xi |θ sign(xi), where θ ∈ (0, 1), sign(xi)
is the signum function, and |xi | is the absolute value of xi ∈ R.
For a vector xi ∈ Rn , we define

sigθ (xi) = ‖xi‖θ sign(xi) (2)

where ||xi || ∈ R denotes the two-norm of a vector xi ∈ Rn .

B. Graph Theory

Let G = (V, E) represent a graph where V ∈ {1, 2, . . . , N}
denotes the set of vertices. Every agent is represented by a
vertex. The set of edges is denoted as E ⊆ V × V . We assume



that there is no self-loop in the graph, that is, (i, i) /∈ E . Ni(G)
= {j ∈ V |(j, i) ∈ E} denotes the neighborhood set of vertex i.
Graph G is said to be undirected if for any edge (i, j) ∈ E , edge
(j, i) ∈ E . A = [aij ] ∈ RN ×N denotes the adjacency matrix
of G, where aij > 0 if and only if (j, i) ∈ E , else aij = 0. The
Laplacian matrix of G is denoted by L = [lij ] ∈ RN ×N , where
lii =

∑N
j=1 aij and lij = −aij if i �= j. Let L = D −A with

the diagonal matrix given by D = diag{∑N
j=1 aij}.

C. Saddle-Point Dynamics

A pair (x∗, y∗) is a min–max saddle point of F (x, y) if for all
(x, y), the following inequality is satisfied [36]:

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗).

Saddle-point dynamics is a method that seeks the saddle point
of a continuously differentiable function F (x, y) that is strictly
convex in x and concave in y. The idea is to minimize F (x, y)
with respect to x and maximize it with respect to y. For k1 , k2 >
0, the saddle-point dynamics are given by

ẋ = −k1
∂F (x, y)

∂x
, ẏ = k2

∂F (x, y)
∂y

. (3)

Suppose that the optimal solution of this optimization prob-
lem exists and is finite. Let x∗ and y∗ be the optimal solution
of the primal and dual problems, respectively. Then, (3) enables
(x, y) to converge to (x∗, y∗) asymptotically [36].

D. Finite-Time Stability

Lemma 1: [17] If ξ1 , ξ2 , . . . , ξN ≥ 0 and 0 < p ≤ 1, then(
N∑

i=1

ξi

)p

≤
N∑

i=1

ξp
i . (4)

Lemma 2: [20] Consider a continuous function ẋ = f(x, t)
with f(0, t) = 0, x ∈ D ⊂ Rn . Suppose that there exists a C1

function V (x) defined on a neighborhood of the origin, and real
numbers a > 0, 0 < β < 1 such that V (x) ≥ 0 and

V̇ (x) + aV β (x) ≤ 0 (5)

then the origin of the system is finite-time stable, that is,
V (x) will reach zero in a finite time with the settling time

t∗ ≤ V 1−β (x(0))
a(1−β ) and V (x) = 0 for all t > t∗.

Consider a network of N agents interacting over the graph G.
Suppose that each agent generates a local estimate xi(t) on the
optimal solution to the problem in (1) according to the following
single-integrator agent dynamics:

ẋi(t) = ui(t) + ωi(t), i = 1, 2, . . . , N (6)

where xi(t), ui(t) ∈ Rn denote, respectively, the state and con-
trol input of agent i, and ωi(t) ∈ Rn are bounded disturbances.
Since all agents can communicate only with their neighbors in
the network, local gradient information and relative decision
variables will be utilized to find the optimal solution.

Problem 1. Fast Distributed Convex Optimization: Each
agent produced by the distributed algorithm (6) seeks the op-
timal solution of (1) in a finite time by solving the following

distributed convex optimization problem:

min
x

F (x) =
N∑

i=1

fi(xi), subject to L̃x = 0, L̃ = L ⊗ In (7)

where x = col(x1 , . . . ,xN ) is a collective vector of xi .
It follows from [11] that if the optimal solution of the problem

in (1) is θ∗ = arg minθ

∑N
i=1 fi(θ), then 1N ⊗ θ∗ is an optimal

solution to (7) [11]. The objective of this paper is thus to design
a distributed updating algorithm ui so that

1) ui , depending on local gradient information and relative
decision variables, is robust against disturbances ωi ;

2) xi fastly converges to the optimal solution under ωi .
Remark 1: Notice that the formulated problem can cover the

(finite-time) consensus/distributed optimization, and distributed
optimization with disturbance rejection as special cases. Clearly,
without assigning the cost functions to the agent network, then it
becomes a finite-time consensus problem studied in [14]–[20].
When the agent dynamics are not subject to disturbances, the
studied problem is reduced to a distributed optimization problem
considered in [8]–[13] or a finite-time distributed optimization
problem studied in [25]–[28]. If the finite-time convergence is
not required, it is reduced to the studied distributed optimization
problem with disturbance rejection in [29]–[31].

Remark 2: Solving Problem 1 in a fast and distributed man-
ner is important and challenging. To the best of our knowledge,
there are only a few works in [25]–[31] that study the finite-time
and robust convergence, separately, for distributed optimization.
This paper develops a smooth distributed optimization algo-
rithm such that the system is capable of achieving finite-time
and robust convergence simultaneously. Equation (7) may also
be formulated as a fixed terminal time (the desired finite-time
convergence time) optimal control problem where (6) contains
the state dynamics. The solution is not necessarily distributed,
which is why we adopt a priori distributed formulation.

To solve this problem, we make the following assumptions.
Assumption 1: Each agent can communicate with its neigh-

bors through an undirected and connected graph G.
Assumption 2: The disturbance ωi(t) and its time deriva-

tive are bounded by known constants (i.e., ωi(t), ω̇i(t) ∈ L∞).1

Remark 3: Assumption 1 on the communication graph has
been widely utilized in the existing papers (e.g., [6]–[8], [10],
[26], [31]) that solve distributed convex optimization problems.
Assumption 2 has also been widely adopted in the existing work
(e.g., see [20] and [21] for just an example) to deal with con-
tinuous and differentiable disturbances. Many types of practical
disturbances satisfy this assumption, including constant, ramp,
and sinusoidal disturbances. Besides, harmonic disturbances in
[30] and [31] can be covered as a special case.

A. Solve Problem 1 for Quadratic Objective Functions

Assumption 3: fi(θ) are quadratic objective functions.
From Assumption 3, suppose that fi(xi) in (7) is given by

fi(xi) = xT
i Aixi + BT

i xi + Ci (8)

where xi ∈ Rn , Ai ∈ Rn×n (Ai > 0), Bi ∈ Rn , and Ci ∈ R.

1Adaptive controller designs in [40] might be adopted in future work to
remove the need for these known upper bounds.



et al.

A penalty function-based design is used to find an approxi-
mate optimal solution of Problem 1. Define

P (x) =
N∑

i=1

fi(xi) +
γ

2

N∑
i=1

N∑
j=1

aij‖xi − xj‖2 (9)

where γ > 0 is a penalty parameter and the second term denotes
the penalty for violations on the constraint L̃x = 0. The penalty
term is equal to 0 if and only if L̃x = 0. Let x∗

i be the optimal
solution of (9). By the Karush–Kuhn–Tucker (KKT) condition,
P (x) reaches the minimum if 2Aix∗

i +Bi +γ
∑N

j=1 lijx∗
j =0.

A finite-time distributed algorithm is thus proposed as

ui = uo
i + ur

i , i = 1, 2, . . . , N (10a)

uo
i = −sigα

⎛
⎝�fi(xi) + γ

N∑
j=1

aij (xi − xj )

⎞
⎠ (10b)

ur
i = −k1isig

1
2 (si) + φi, φ̇i = −k2isign(si) (10c)

si = xi − xi(0) −
∫ t

0
uo

i (τ)dτ (10d)

where �fi(xi) is the gradient of the objective function, γ > 0
is the penalty parameter, sigα (·) is defined in (2), α ∈ (0, 1),
sig

1
2 (si) = col(sig

1
2 (si1), . . . , sig

1
2 (sin )) with sig

1
2 (sik ) =

|sik | 1
2 sign(sik ), k = 1, . . . , n, and k1i , k2i > 0 are constants.

Remark 4: To solve Problem 1, the distributed optimization
algorithm has been proposed by adopting a supertwisting-based
ISMC scheme in (10c) and (10d), which is capable of achieving
chattering avoidance, disturbance rejection, and finite-time con-
vergence simultaneously. In particular, the proposed algorithm
includes two parts: the continuous distributed optimal controller
uo

i and the continuous ISMC controller ur
i . To make sure that

the disturbance does not influence the achievement of distributed
optimization, we employ ur

i that makes the equivalent system
of the original system reside on the sliding manifold in finite
time with disturbance rejection. As a result, the finite-time dis-
tributed optimization can be achieved on the equivalent system
via the designed continuous optimal controller uo

i .
Remark 5: The proposed distributed algorithm in (10) can

represent many protocols in the existing literature. For exam-
ple, if the disturbances are not considered in (6), the controller
ur

i is removed, and the system becomes ẋi = −sigα (�fi(xi) +
γ

∑N
j=1 aij (xi − xj )). It can be seen that if we set α = 1, it

becomes the typical nonlinear optimization protocol, and in this
case, it can solve an asymptotic distributed convex optimiza-
tion problem in [6]–[13]. Moreover, if we set α = 0, it becomes
the discontinuous distributed optimization algorithm studied in
[25]–[27]. Furthermore, when the agents are not assigned with
the local gradients of the objective functions, it becomes the
typical discontinuous consensus protocol in [14] for α = 0,
the finite-time consensus protocol in [17] for α ∈ (0, 1), and
the consensus protocol in [40] for α = 1.

Theorem 1: Under Assumptions 1–3, the proposed updating
algorithm in (10) enables the agents’ strategies to converge to
an approximate optimal solution of Problem 1 in a finite time,
that is, limt→T1 xi = x∗

i , i = 1, 2, . . . , N .
Proof: The proof includes two steps:

Step 1: prove that limt→T0 si = ṡi = 0;

Step 2: prove that limt→T1 xi = x∗
i , where T0 , T1 are to be

determined in the subsequent analysis.
i) Taking the time derivative of (10d) and submitting the

updating law into the agent dynamics (6) yield

ṡi = ur
i + ωi = −k1isig

1
2 (si) + ϕi (11a)

ϕ̇i = −k2isign(si) + ω̇i (11b)

ϕi = φi + ωi, i = 1, 2, . . . , N. (11c)

Inspired by [23], define a variable ξik = col(sig
1
2 (sik ), ϕik )

where sik , ϕik is the kth element of si, ϕi , respectively. Select
a Lyapunov function candidate V (t) =

∑N
i=1

∑n
k=1 Vik (t) =∑N

i=1
∑n

k=1 ξT
ikPik ξik , where Pik ∈ R2×2 is a constant, sym-

metric, and positive definite matrix. Due to the term sig
1
2 (sik ),

V is absolutely continuous (AC) but not locally Lipschitz on the
set Ξ = {(sik , ϕik ) ∈ R2 |sik = 0}. This violates the classical
Lyapunov theorem, which requires the Lyapunov function to
be continuously differentiable, or at least locally Lipschitz. As
illustrated in [23], V (t) can still be used for stability analysis
thanks to the Zubov theorem, which only requires a Lyapunov
function to be continuous. Similarly, it can be checked that V (t)
is an AC function of t, and thus, its time derivative is defined
almost everywhere [40]–[42].

The time derivative of ξik can be expressed as

ξ̇ik =
1
2
|sik |− 1

2

[ −k1isig
1
2 (sik ) + ϕik

−2[k2i − ω̇ik sign(sik )]sig
1
2 (sik )

]
.

Then, the time derivative of V (t) along (11) is given by

V̇ =
N∑

i=1

n∑
k=1

|sik |− 1
2 ξT

ik

(
RT

ikPik + PikRik

)
ξik (12)

where Rik = [ − 1
2 k1 i

−[k2 i −ω̇ i k sign(si k )]

1
2
0 ] is Hurwitz if and only if

k1i > 0, k2i > ‖ω̇i‖∞ by Assumption 2.
Since Rik is Hurwitz, there exists a unique solution Pik to

the following algebraic Lyapunov equation RT
ikPik + PikRik =

−Qik , i = 1, 2, . . . , N, k = 1, 2, . . . , n for each symmetric and
positive define matrix Qik , such that for the constructed strict
Lyapunov function V (t) [23], we can further obtain V̇ (t) =
−∑N

i=1
∑n

k=1 |sik |− 1
2 ξT

ikQik ξik ≤ 0. In addition, |sik | 1
2 =

|sig
1
2 (sik )| ≤ |ξik | ≤ λ

− 1
2

min(Pik )V
1
2

ik . Then, it follows from (4)

that for α0 = mini,k{λ
1
2
min(Pik )λmin(Qik )/λmax(Pik )}:

V̇ ≤ −
N∑

i=1

n∑
k=1

λ
1
2
min(Pik )V − 1

2
ik

λmin(Qik )
λmax(Pik )

Vik

≤ −α0

N∑
i=1

n∑
k=1

V
1
2

ik ≤ −α0

(
N∑

i=1

n∑
k=1

Vik

)1
2

= −α0V
1
2 .

(13)

Therefore, it is obtained that V ∈ L∞ and si(t) converges to
zero in a finite time with T0 = 2

α0
V

1
2 (0) based on Lemma 2.

Moreover, it follows from (10d) that si(0) = 0, which means
that si(t) in (10d) starts on it at the initial time and afterwards,
the multiagent system will not go away in sequential time. By
Lemma 2, the accurate finite-time convergence is achieved de-
spite disturbances, that is, limt→T0 si = ṡi = 0.



Remark 6: With the signum function sign(si) in the pro-
posed algorithm, the right-hand sides of φ̇i in (10c) are dis-
continuous and their solutions should be investigated in terms
of differential inclusions via the nonsmooth analysis [40]–[42].
However, since the signum function is measurable and locally
essentially bounded, the Filippov solutions of the closed-loop
dynamics always exist. Besides, the adopted Lyapunov function
candidate is AC. Thus, its set-valued Lie derivative is a Single-
ton at the discontinuous points and the proof still holds. To avoid
symbol redundancy, the differential inclusions are not utilized.
Further, the Filippov solutions are AC curves [42], which means
that the agents’ states are continuous.

ii) By Step 1, ṡi = ẋi − uo
i = 0, t ≥ T0 , i.e.,

ẋi = −sigα

⎛
⎝�fi(xi) + γ

N∑
j=1

aij (xi − xj )

⎞
⎠ , 0 < α < 1.

(14)
Next, we will prove limt→T1 xi = x∗

i . Define ei = xi − x∗
i .

By using the first-order optimal condition

∂P (xi)
∂xi

= 2Ai(ei + x∗
i ) + Bi + γ

N∑
j=1

lij (ej + x∗
j )

= 2Aiei + γ
N∑

j=1

aij (ei − ej ). (15)

The updating law in (14) is thus rewritten as ẋi = ėi =
−sigα (2Aiei + γ

∑N
j=1 aij (ei − ej )). Define an error variable

ϑi = 2Aiei + γ
∑N

j=1 aij (ei − ej ). Then, ėi = −sigα (ϑi). Let
e, ϑ, sign(ϑ) be the stack vectors of ei , ϑi , and sign(ϑi), respec-
tively. Thus, ϑ = He and ė = −(diag{‖ϑi‖α} ⊗ In )sign(He),
where H = A + γ(L ⊗ In ) with A = diag{2Ai} being a pos-
itive definite diagonal matrix by Assumption 3.

As the graph is undirected and connected by Assumption 1,
H is invertible [13]. Define a Lyapunov function candidate as

W =
1
2

(
∂P (x)

∂x

)T

H−1
(

∂P (x)
∂x

)
=

1
2
ϑT H−1ϑ (16)

where ∂P (x)/∂x is the collective form of ∂P (xi)/∂xi . Then,
the time derivative of W along (15) is given by

Ẇ = ϑT H−1 ϑ̇ = −(He)T (diag{‖ϑi‖α} ⊗ In )sign(He)

= −

⎡
⎢⎣

ϑ1
...

ϑN

⎤
⎥⎦

T ⎡
⎢⎣
‖ϑ1‖αIn

. . .
‖ϑN ‖αIn

⎤
⎥⎦

⎡
⎢⎣

sign(ϑ1)
...

sign(ϑN )

⎤
⎥⎦

≤ −
N∑

i=1

‖ϑi‖α+1 = −
N∑

i=1

(‖ϑi‖2) α + 1
2 . (17)

Since (
∑n

k=1 εk )p ≤ ∑n
k=1 εp

k holds for εk ≥ 0 and 0 < p ≤
1, then for α1 = [2/λmax(H−1)]

α + 1
2 , (17) can be rewritten as

Ẇ ≤ −
⎧⎨
⎩

N∑
i=1

⎛
⎝2Aiei + γ

N∑
j=1

aij (ei − ej )

⎞
⎠

2⎫⎬
⎭

α + 1
2

≤ −[2/λmax(H−1)]
α + 1

2 W
α + 1

2 = −α1W
α + 1

2 . (18)

According to the finite-time stability lemma 2, W ∈ L∞ and
ei(t) converge to zero in a finite time with the settling time
given by T1 = T0 + 2

α1 (1−α) W
1−α

2 (T0). Thus, by (14) and (16),
ei(t) → 0 as t → T1 , which implies limt→T1 xi = x∗

i . �

B. Application to an Economic Dispatch Problem

By the penalty method, Problem 1 is solved in Section A
to obtain an approximately optimal solution. Next, the pro-
posed algorithm will be applied to solve the following economic
dispatch problem where each generator has a local cost func-
tion fi(xi) = aix

2
i + bixi + ci , ai > 0, bi , ci ≥ 0, xi ∈ R [4].

By saddle-point dynamics, distributed algorithms will be devel-
oped to solve this problem with global and local constraints.

min
N∑

i=1

fi(xi), i = 1, 2, . . . , N

subject to
N∑

i=1

xi = d and xmin
i � xi � xmax

i (19)

where d ∈ R is the total power demand, and xmin
i , xmax

i with
xmin

i < xmax
i are the lower and upper generation bounds.

When the capacity constraints are not considered first, define
a Lagrangian function as L(x, λ0) =

∑N
i=1 fi(xi) + λ0(d −∑N

i=1 xi), where λ0 is the Lagrange multiplier and x is the
collective vector of xi . By using saddle-point dynamics, there
exists a pair (x∗, λ∗

0) such that x∗ is the optimal solution to (19).
Thus, (x, λ0) converges to (x∗, λ∗

0) by a centralized algorithm

ẋi = −∂L(x, λ0)
∂xi

= −∂fi(xi)
∂xi

+ λ0 (20a)

λ̇0 =
∂L(x, λ0)

∂λ0
= d −

N∑
i=1

xi. (20b)

Based on the first-order optimal condition, the optimal solu-
tion to (20a) and (20b) is given by

x∗
i = (λ∗

0 − bi)/(2ai) and λ∗
0 =

(
d +

N∑
i=1

bi

2ai

)/ N∑
i=1

1
2ai

.

(21)
1) Distributed Solution without Capacity Constraints

Inspired by (10), a distributed algorithm is proposed as

ẋi = ui + ωi, ui = uo
i + ur

i , i = 1, . . . , N (22a)

uo
i = −

N∑
j=1

aij sigβ (λi − λj ) (22b)

λ̇i = 2ai

(
uo

i + sigα

(
xi − λi − bi

2ai

))
(22c)

ur
i = −k1isig

1
2 (si) + φi, φ̇i = −k2isign(si) (22d)

si = xi − xi(0) −
∫ t

0
uo

i (τ)dτ. (22e)

Let x̂i = (λi − bi)/2ai , δi = λi −
∑N

j=1 λj /N, and ηi =
xi − x̂i . Next, the goal is to show δi = 0 and ηi = 0 in a fi-
nite time T , that is, λi = λ∗

0 and xi = x∗
i after a finite time T ,

for certain settling time T > 0.
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Theorem 2: Suppose that Assumptions 1 and 2 hold. Then,
the distributed algorithm (22) enables (xi, λi) to converge to the
optimal solution (x∗

i , λ
∗
0) in a finite time, i.e.,

lim
t→T

xi = x∗
i and lim

t→T
λi = λ∗

0 , i = 1, 2, . . . , N. (23)

Proof: The proof includes the following steps:
Step 1: prove that limt→T0 si = ṡi = 0;
Step 2: prove that limt→T1 xi = x̂i ;
Step 3: prove that limt→T2 λi = λ∗

0 ;
Step 4: by Step 3, x̂i = x∗

i . Thus, limt→T xi = x∗
i , T = T2 .

i) According to (11)–(13) in Step 1 of Theorem 1, it is not
difficult to obtain limt→T0 si = ṡi = 0 in a similar way.

ii) Define a Lyapunov function candidate: V = 1
2

∑N
i=1 η2

i

= 1
2

∑N
i=1(xi−x̂i)2 . Then, the time derivative of V is given by

V̇ =
N∑

i=1

(xi − x̂i)(ẋi − ˙̂xi) =
N∑

i=1

(xi − x̂i)
(

uo
i −

1
2ai

λ̇i

)

= −
N∑

i=1

(xi − x̂i)sigα

(
xi − λi − bi

2ai

)

= −
N∑

i=1

(xi − x̂i)sign(xi − x̂i)|xi − x̂i |α

� −
(

N∑
i=1

(xi − x̂i)2

) α + 1
2

= −(2V )
α + 1

2 . (24)

Thus, V̇ + (2V )
α + 1

2 � 0. According to the finite-time stabil-
ity lemma and the selected Lyapunov function, limt→T1 xi = x̂i

with the settling time T1 = V
1−α

2 (T0 )
(
√

2)α −1 (1−α)
+ T0 .

iii) Since xi = λi −bi

2ai
as t � T1 shown in Step 2, we have

λ̇i = −2ai

N∑
j=1

aij sigβ (λi − λj ), t � T1 . (25)

Since aij = aji by Assumption 1,
∑N

i=1
1

2ai
λ̇i(t) = 0.

That is,
∑N

i=1
1

2ai
λi(t) is invariable as t � T1 , which yields∑N

i=1
1

2ai
λi(t) =

∑N
i=1

1
2ai

λi(T1). In addition, limt→T1 xi =

x̂i implies xi(T1) = λi (T1 )−bi

2ai
. Therefore, it is not difficult to

obtain
∑N

i=1
1

2ai
λi(t) =

∑N
i=1(xi(T1) + bi

2ai
).

Based on (25), next we will show limt→T2 λi = λj .
Define a Lyapunov function candidate: W =

∑N
i=1

1
4ai

δ2
i (t).

Then, the time derivative of W along (25) is given by

Ẇ =
N∑

i=1

1
2ai

δi(t)

⎛
⎝−2ai

N∑
j=1

aij sigβ (δi(t) − δj (t))

⎞
⎠

= −1
2

N∑
i,j=1

aij (δi(t) − δj (t))sigβ (δi(t) − δj (t))

= −1
2

N∑
i,j=1

aij |δi − δj |β+1 � −β0W
β + 1

2 (26)

where β0 = 1
2 ε

β + 1
2 , ε = 8λ2(Lβ )ã0 , andLβ has the same struc-

ture with L, where aij is replaced by a
2

1 + β

ij , and ã0 = mini∈Vai .

Hence, Ẇ + β0W
β + 1

2 � 0. Applying the finite-time stability
lemma yields limt→T2 λi = λj with the settling time described

as T2 = T1 + 2W
1−β

2 (T1)/(β0(1 − β)).
iv) Since λi = λj as t ≥ T2 , there exists a constant λ̃ such that

λi = λ̃, t ≥ T2 . By
∑N

i=1
1

2ai
λi(t) =

∑N
i=1(xi(T1) + bi

2ai
)

λ̃ =
N∑

i=1

(
xi(T1) +

bi

2ai

)/ N∑
i=1

1
2ai

. (27)

It follows from (22e) and aij = aji by Assumption 1 that:

N∑
i=1

xi =
N∑

i,j=1

aij

∫ t

0
sigβ (λj (s) − λi(s))ds +

N∑
i=1

xi(0) = d.

(28)
According to (27) and (28)

λ̃ =

(
d +

N∑
i=1

bi

2ai

)/ N∑
i=1

1
2ai

= λ∗
0 . (29)

Thus, this consensus value is λ̃ = λ∗
0 , where λ∗

0 is the opti-
mal solution shown in (21). Since limt→T2 λi = λj by Step 3,
limt→T2 λi = λ∗

0 holds. Moreover, limt→T1 xi = x̂i = λi −bi

2ai
by

Step 2. That is, xi = λ∗
i −bi

2ai
= x∗

i (i.e., xi = x∗
i as t ≥ T2). In

conclusion, it proves that λi = λ∗
0 and xi = x∗

i after a finite
time T2 , and the proof is thus completed. �

Remark 7: From (28), it can be seen that
∑N

i=1 xi(0) = d
as widely used in many existing papers, is employed to achieve
the optimal solution. That is, the sum of initial states is required
to satisfy the power demand condition. In future work, we will
develop algorithms to remove this initial state requirement and
meanwhile to enable finite-time and robust convergence.

2) Distributed Solution With Capacity Constraints
To avoid violations of capacity constraints, based on (22), a

fast economic dispatch algorithm is presented as follows.
Theorem 3: Suppose that Assumptions 1 and 2 hold. Under

the proposed Algorithm 1, the economic dispatch problem with
global and local constraints can be solved in a finite time.

Proof: When considering the capacity constraints, we de-
fine the incremental cost as: λi = 2aixi + bi. The well-known
solution is the equal incremental cost criterion [4]⎧⎨

⎩
2aixi + bi = λ∗, if xmin

i < xi < xmax
i

2aixi + bi > λ∗, if xi = xmin
i

2aixi + bi < λ∗, if xi = xmax
i .

(36)

By the defined Ξ in Algorithm 1, (36) can be rewritten as

λ∗ = 2aixi + bi =

(
d −

∑
i∈Ξ

xi +
∑
i /∈Ξ

bi

2ai

)/∑
i /∈Ξ

1
2ai

=

(∑N
i=1

1
2ai

)
d+

∑N
i = 1

b i
2 a i(∑N

i = 1
1

2 a i

) −∑
i∈Ξ xi −

∑
i∈Ξ

bi

2ai∑
i /∈Ξ

1
2ai

=
d +

∑N
i=1

bi

2ai∑N
i=1

1
2ai

+

∑
i∈Ξ

(
λ∗

0 −2ai xi −bi

2ai

)
∑

i /∈Ξ
1

2ai

. (37)



Algorithm 1: Finite-Time Economic Dispatch Algorithm.
1. Run the distributed algorithm in (22) to obtain the
optimal solution (x∗

i , λ
∗
0) of (19) without capacity

constraints.
2. Check the capacity constraint violations. Denote xi as

xi =
{

xmin
i , if x∗

i < xmin
i ,

xmax
i , if x∗

i > xmax
i .

(30)

Define Ξ as the set of generators with xi = xmin
i or

xi = xmax
i .

3. Determine the optimal solution (x∗
i , λ

∗) of (19) with
capacity constraints by the following algorithm:

x∗
i =

{
λ∗−bi

2ai
, if i /∈ Ξ,

xmin
i or xmax

i , if i ∈ Ξ,
(31)

λ∗ = λ∗
0 + ρi/ηi, i = 1, 2, . . . , N, (32)

ρ̇i = −
N∑

j=1

aij sigκ(ρi − ρj ), η̇i = −
N∑

j=1

aij sigκ(ηi − ηj ),

(33)

where κ ∈ (0, 1), and ρi, ηi are two auxiliary variables with

ρi =
{

λ∗
0 −2ai xi −bi

2ai
, if i ∈ Ξ,

0, if i /∈ Ξ,
(34)

ηi =
{ 1

2ai
, if i /∈ Ξ,

0, if i ∈ Ξ.
(35)

4. When the capacity constraints are violated by the optimal
generation, λ∗

0 = λ∗ and go back to step 2; otherwise, end.

In light of (21), we can express (37) as

λ∗ = λ∗
0 +

∑
i∈Ξ

(
λ∗

0 − 2aixi − bi

2ai

) / ∑
i /∈Ξ

1
2ai

. (38)

It follows from (33)–(35) that after a finite time:

ρi → 1
N

∑
i∈Ξ

λ∗
0 − 2aixi − bi

2ai
and ηi → 1

N

∑
i /∈Ξ

1
2ai

. (39)

As a result, the optimal incremental cost is λ∗ = λ∗
0 + ρi/ηi,

which implies (38), and x∗
i is thus obtained in (31). �

A. Solve Problem 1 for Nonquadratic Objective
Functions

Assumption 4: fi(θ) are twice continuously differentiable,
strongly convex, and have a locally Lipschitz matrix �2fi(θ).

Motivated by the ZGS algorithm in [10] and [38], a new
distributed algorithm is proposed as

ui = uo
i + ur

i , i = 1, 2, . . . , N (40a)

uo
i = −(�2fi(xi))−1

N∑
j=1

aij sigα (xi − xj ) (40b)

ur
i = −k1isig

1
2 (si) + φi, φ̇i = −k2isign(si) (40c)

si = xi − xi(0) −
∫ t

0
uo

i (τ)dτ (40d)

where �2fi(xi) is the Hessian matrix of the local cost function
and xi(0) = x∗

i with x∗
i being a minimizer of fi(θ) [10], [38].

Remark 8: The above design in (40) is inspired by the ZGS
algorithm in [10] and [38], and is combined with the continuous-
time ISMC algorithm given in (10). Notice that limt→0 si = ṡi

= 0 if ωi(0) = 0. That is, ẋi = −(�2fi(xi))−1 ∑N
j=1 aij sigα

(xi − xj ) for t ≥ 0. Then,
∑

i∈V �2fi(xi)ẋi = 0 for t ≥ 0.
This implies that

∑
i∈V �fi(xi(t)) is constant, which, to-

gether with
∑

i∈V �fi(xi(0)) = 0, yields
∑

i∈V �fi(xi(t)) = 0
for t ≥ 0. Besides,

∑N
j=1 aij sigα (xi − xj ) gives a consen-

sus value x̃ in a finite time T . Thus, limt→T xi(t) = x̃ and∑
i∈V �fi(x̃) = 0 imply that finite-time distributed optimiza-

tion is achieved.
Theorem 4: Under Assumptions 1, 2, and 4, the proposed

distributed algorithm (40) enables xi to converge to the optimal
solution (i.e., θ∗) of the problem in (1) in a finite time, i.e.,

lim
t→T

xi = xj = θ∗, i = 1, 2, . . . , N. (41)

Proof: By (11)–(13) in Step 1 of Theorem 1, limt→T0 si =
ṡi = 0. Thus, ṡi = ẋi − uo

i = 0, t ≥ T0 , i.e.,

ẋi = −(�2fi(xi))−1
N∑

j=1

aij sigα (xi − xj ), 0 < α < 1. (42)

From (42),
∑

i∈V �2fi(xi)ẋi = 0 for t ≥ 0 by Remark 8,
which implies that

∑
i∈V �fi(xi(t)) is constant for t ≥ 0

and
∑

i∈V �fi(x∗
i ) = 0. Thus,

∑
i∈V �fi(xi(t)) = 0 for t ≥ 0.

Denote ς = 1
N

∑
i∈V xi(t) and let x̃∗ = col(x∗,x∗, . . . ,x∗),

x = col(x1 , x2 , . . . , xN ) ∈ RnN be the minimizer (x∗ = θ∗)
and state vector, respectively. Then,

∑
i∈V fi(x∗) ≤ ∑

i∈V fi(ς)
and for a constant Θi > 0, V (x) =

∑
i∈V fi(ς) − fi(xi) −

�fi(xi)T (ς − xi) ≤ max{Θ i }
2 xT (L ⊗ In )x.

Next, choose a Lyapunov function candidate [10], [38]

V (x) =
∑
i∈V

fi(x∗) − fi(xi) − �fi(xi)T (x∗ − xi). (43)

Let Lf have the same structure with L, where aij is replaced

by a
2

1 + α

ij . The time derivative of V (x) along (42) is

V̇ (x) = −1
2

∑
i∈V

∑
j∈Ni (G)

aij (xj − xi)T sigα (xj − xi)

≤ −2
α −1

2 [xT (Lf ⊗ In )x]
α + 1

2 . (44)

Then, the remainder of the proof is similar to [38] to
achieve finite-time convergence (limt→T xi = x∗) and, thus, is
omitted. �

B. Application to A Resource Allocation Problem

In the above section, Problem 1 has been solved for non-
quadratic objective functions. Next, the proposed algorithm will
be applied to solve the following resource allocation problem
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with global and local constraints, where each agent has a local
nonquadratic objective function

min
N∑

i=1

fi(xi), i = 1, 2, . . . , N (45a)

subject to
N∑

i=1

xi = l and xmin
i ≤ xi ≤ xmax

i (45b)

where l ∈ Rn is the total network resource, and xmin
i , xmax

i

(xmin
i < xmax

i ) are the lower and upper bounds of xi .
Assumption 5: The functions fi(xi) are continuously dif-

ferentiable, strongly convex, and have locally Lipschitz gradi-
ents.

We aim to eliminate the inequality constraints, while keeping
the equality constraints intact. Thus, a modified penalty design
is given with a smooth ε-exact penalty function [34]

xεi(hi(xi)) =

⎧⎨
⎩

0, if hi(xi) < 0
γh2

i (xi)/(2ε), if 0 ≤ hi(xi) ≤ ε
γ(hi(xi) − ε/2), if hi(xi) > ε

(46)

where hi(xi) = (xmin
i − xi)T (xmax

i − xi) + ε, ε > 0 is a small
constant, and γ is the penalty parameter.

Next, we solve the following optimization problem:

min fε(x) =
N∑

i=1

fεi(xi) =
N∑

i=1

(fi(xi) + xεi(hi(xi)))

(47a)

subject to
N∑

i=1

xi = l, i = 1, 2, . . . , N. (47b)

Assume that x∗ = col(x∗
1 , . . . , x

∗
N ) is the optimal solu-

tion of (45) and x̂∗ = col(x̂∗
1 , . . . , x̂

∗
N ) is the optimal so-

lution of (47). By Propositions 3 and 4 in [35], the re-
lationship between the optimal solution of (45) and (47)
is 0 ≤ f(x∗) − fε(x̂∗) ≤ εγN , where γ = γ∗(1 − N)/(1 −√

N), γ∗ > max{λ∗
1 , . . . ,λ

∗
N } with λ∗

i denoting the Lagrange
multiplier vector satisfying the KKT condition, and the upper
bound of λ∗

i is given by [35]

max{λ∗
i }N

i=1 ≤ 2max{maxxi ∈xf e a , i
‖�fi(xi)‖}N

i=1

min{‖xmax
i − xmin

i ‖}N
i=1

(48)

where xf ea,i = {xi ∈ Rn |∑N
i=1 xi = l and hi(xi) ≤ 0}.

Based on the ε-exact penalty function, a finite-time distributed
algorithm is proposed as

ẋi = ui + ωi, ui = uo
i + ur

i , i = 1, . . . , N (49a)

uo
i = −

N∑
j=1

aij sigα (�fεi(xi) − �fεj (xj )) (49b)

ur
i = −k1isig

1
2 (si) + φi, φ̇i = −k2isign(si) (49c)

si = xi − xi(0) −
∫ t

0
uo

i (τ)dτ. (49d)

Remark 9: Unlike using projection methods [8], [9], and
[37] to handle constraints where the local feasible sets are explic-
itly obtained, a modified ε-exact penalty function is employed

here. The algorithm in (49) is distributed and enables finite-time
and robust convergence. If we set α = 1 and do not consider the
disturbances, the algorithm is reduced to the protocol in [33].

Theorem 5: Under Assumptions 1, 2, and 5, the distributed
algorithm in (49) makes the feasible set xf ea time-invariant, and
any trajectory starting from xf ea converges to the solution set
of (45) approximately in a finite time.

Proof: By (11)–(13) in Step 1 of Theorem 1, limt→T0 si =
ṡi = 0. Thus, ṡi = ẋi − uo

i = 0, t ≥ T0 , i.e.,

ẋi = −
N∑

j=1

aij sigα (�fεi(xi) − �fεj (xj )), 0 < α < 1. (50)

By (50),
∑N

i=1 ẋi = 0. Therefore, the total network resource∑N
i=1 xi is conserved and the feasible set xf ea is time-invariant.

Now, we prove that the trajectories starting from xf ea fastly con-
verge to the optimal solution set. Uniqueness of the solution to
(47) follows from the strong convexity implying strict convexity.
Choose a Lyapunov function candidate

Vε =
N∑

i=1

(fεi(xi) − fεi(x∗
i )) , i = 1, 2, . . . , N (51)

where Vε ≥ 0 by Assumption 5, and Vε = 0 if xi = x∗
i .

The time derivative of Vε is expressed as

V̇ε = −
N∑

i=1

�fT
εi (xi)

N∑
j=1

aij sigα (�fεi(xi) − �fεj (xj ))

= −1
2

N∑
i=1

(�fεi(xi) − �fεj (xj ))T
N∑

j=1

aij sigα

× (�fεi(xi) − �fεj (xj ))

≤ −1
2

⎛
⎝ N∑

i=1

N∑
j=1

a
2

1 + α

ij (�fεi(xi) − �fεj (xj ))
2

⎞
⎠

1 + α
2

= −1
2

(
2�fT

ε (x)Lf �fε(x)
) 1 + α

2 (52)

where �fε(x) = col(fε1(x1), . . . , fεN (xN )).
Since fi is strongly convex by Assumption 5, fεi is strongly

convex. Then, for x̂ = col(x̂1 , . . . , x̂N ), and θ > 0

fε(x̂) − fε(x) ≥ �fT
ε (x)

(
(IN − 1T

N 1N

N
) ⊗ In

)
(x̂ − x)

+
θ

2
‖x̂ − x‖2 . (53)

For the fixed x, it follows from (53) that fε(x̂) ≥ fε(x) −
1
2θ ‖((IN − 1T

N 1N

N ) ⊗ In )�fε(x)‖2 . Hence∥∥∥∥
((

IN − 1T
N 1N

N

)
⊗ In

)
�fε(x)

∥∥∥∥
2

≥ 2θ(fε(x) − fε(x̂)).

(54)
In addition, by Assumption 1

�fT
ε (x)Lf �fε(x)

≥ λ2(Lf )
∥∥∥∥
((

IN − 1T
N 1N

N

)
⊗ In

)
�fε(x)

∥∥∥∥
2

.



Define θ0 = 0.5(4θλ2(Lf ))
1 + α

2 . Thus, for x∗ = x̂

V̇ε ≤ −0.5 (4θλ2(Lf )Vε)
1 + α

2 = −θ0V
1 + α

2
ε . (55)

By Lemma 2 and the Comparison Lemma, limt→T Vε(t) = 0

with the settling time given by T = T0 + 2
θ0 (1−α) V

1−α
2

ε (T0).

Since Vε(t) → 0,
∑N

i=1(fεi(xi) − fεi(x∗
i )) = 0, which im-

plies that �fεi(xi) = �fεj (xj ). Thus, for x∗ = x̂, limt→T xi =
x∗

i , i = 1, . . . , N . Moreover, since
∑N

i=1 xi = l by hypothesis,
the state trajectories starting from xf ea converge to the optimal
solution set of (45) approximately. �

Remark 10: Finite-time distributed convex optimization al-
gorithms have been presented in Sections IV and V for quadratic
and nonquadratic cost functions, respectively. The proposed al-
gorithms are further applied to solve the economic dispatch and
resource allocation problems, where each agent is assigned with
a local cost function fi(xi). That is, the consensus constraint of
Problem 1 is thus not required, which simplifies the design of
algorithms. As a first attempt to investigate the distributed con-
vex optimization problem that takes the chattering avoidance,
finite-time convergence, and disturbance rejection into account,
we focus on the distributed unconstrained optimization problem.

In this section, different cases are provided to illustrate the ef-
fectiveness of the proposed distributed optimization algorithms.
In particular, Case 1 considers finite-time distributed quadratic
optimization for continuous-time multiagent systems subject to
disturbances. The proposed algorithm is then applied to solve
an economic dispatch problem in Case 2. Case 3 studies finite-
time distributed nonquadratic optimization, while the algorithm
is applied to solve a resource allocation problem in Case 4.

Case 1. Finite-Time Distributed Quadratic Optimization:
Consider a multiagent system with six agents described by (6) in
R3 . The team of agents aims to achieve finite-time distributed
optimization with disturbance rejection. The communication
graph is depicted in Fig. 1. The network objective function is

F(x) =
6∑

i=1

fi(x) = xT Ax + BT x (56)

where

A =

⎡
⎣3 1 1

1 5 1
1 2 6

⎤
⎦ and B = [0.3 −0.5 0.8 ]T .

In this simulation, the objective functions of the agents are
f1(x) = 1

6 (xT Ax + BT x), f2(x) = 1
3 (xT Ax + BT x), f3(x)

= 1
12 (xT Ax + BT x), f4(x) = 1

12 xT Ax + 1
4 BT x, f5(x)= 1

12
xT Ax, f6(x) = 1

4 xT Ax + 1
6 BT x. By direct calculation, it can

be derived that the optimal solution is given by [x∗
1 , x

∗
2 , x

∗
3 ]

T =
[−0.0521, 0.0965,−0.0901]T . Each agent estimates this
optimal solution based on the dynamics in (6), where the

disturbances are expressed as ωi(t) = 0.5icol(sin(t), cos(2t)-1,
sin(3t)). Thus, ‖ωi(t)‖∞ = 0.5i and ‖ω̇i(t)‖∞ = 1.5i. By
Theorem 1, the parameters of the proposed algorithm in (10) are
selected as k1i = 1.5i, k2i = 3i, and α = 0.3. The simulation
result is shown in Fig. 2, where the proposed design enables
the agents’ states to converge toward the optimal solution
in a finite time. To better demonstrate the finite-time and
robust convergence of (10), we make a comparison with the
nonsmooth distributed gradient (NDG) algorithm in [25]–[27],
and standard distributed gradient (SDG) algorithm in [11] and
[29], respectively. Then, these algorithms are performed under
the same environment, and the simulation results are depicted
in Figs. 3 and 4. In particular, Fig. 3 shows that under the
disturbances, although consensus is achieved in finite time via
the NDG algorithm, the agents’ states converge to the wrong
optimal solution as shown in Fig. 3(a), while Fig. 3(b) shows
the chattering phenomenon. Under the SDG algorithm, Fig. 4
shows the agent’s responses without and with disturbances.
From Fig. 4(a), the agents’ states converge to the optimal
solution asymptotically, while under the disturbances, there
exist bounded errors as shown in Fig. 4(b) (consistent with the
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observation in [29]). In comparison with the NDG and SDG
algorithms, the proposed algorithm in (10) shows chattering
avoidance, finite-time convergence, and robustness properties.

Case 2. Finite-Time Economic Dispatch (FED): In this case
study, a power system with six buses and three generators is con-
sidered as shown in Fig. 5. The single-line diagram of the power
system is depicted in Fig. 5(a), while the corresponding commu-
nication graph is shown in Fig. 5(b). The cost function parame-
ters and generation capabilities are listed in Table I. The power
demand of loads located in buses 4–6 is 100, 120, 200 MW, re-
spectively. Thus, the total load demand is 420 MW. By direct cal-
culation for fi(xi) = aix

2
i + bixi + ci , it can be derived that the

optimal generations are x∗
1 = 124.39 MW, x∗

2 = 149.72 MW,
and x∗

3 = 145.89 MW.

A. Without Capacity Limits

In this simulation, the capacity limits are not considered.
Choose α = 0.7 and β = 0.8. The simulation results are shown
in Fig. 6 by performing (22). Fig. 6 shows the power generation
xi , estimated marginal costs λi , and total power output, respec-
tively. It can be seen that xi converges to the optimal generation
x∗

i , λi converges to the marginal cost λ∗ = 13.0 $/MWh, and
the sum of output generations satisfies the generation-demand
equality constraint. However, the second generator violates the
limit xmax

2 = 120 MW.

B. With Capacity Limits

In this simulation, the generator capacity limits are con-
sidered. Hence, Algorithm 1 is performed. First, by (22),
x∗

1 = 124.39 MW, x∗
2 = 149.72.39 MW, and x∗

3 = 145.89 MW.
Notice that x∗

2 > x∗
max . Then, let x∗

2 = x∗
max and Ξ = {2}

by (30). Based on (34) and (35), ρi(0) = col(0, 30, 0), and
ηi(0) = col(93.81, 0, 67.48). By running (31)–(35), the opti-
mal incremental cost is λ∗ = 13.18 $/MWh. Thus, the optimal
generator outputs are x∗

1 = 141.68 MW, x∗
2 = 120 MW, and

x∗
3 = 158.32 MW. The simulation results are shown in Fig. 7,

where it is concluded that Algorithm 1 guarantees that the ca-
pacity constraints are not violated.

C. Convergence Performance Comparison

The IEEE 30-bus system as shown in Fig. 8 is chosen to test
the scalability of the proposed FED algorithm, and make a com-
parison with the incremental cost consensus (ICC) algorithm in
[39]. Buses 1, 2, 5, 8, 11, and 13 contain generators numbered
1 to 6. The data and the generator parameters are shown in
Table II. If a bus only contains loads, the power generation is set
to zero. The total load demand is set as d = 850 MW. Assume
that at t = 50 s and t = 100 s, the load demand is increased by
30% and deduced by 20%, respectively. To give a marked com-
parison, the proposed FED algorithm and the ICC algorithm in
[39] are performed under the same environment. The simulation
results are shown in Fig. 9, where the comparative evaluation
of the marginal cost update is depicted. It can be seen that the
proposed algorithm leads to faster convergence compared with
the ICC algorithm in [39].

Case 3. Finite-Time Distributed Nonquadratic Optimization:
Consider a multiagent system with six agents described by (6)

in R. This example solves a finite-time distributed optimization
problem for nonquadratic objective functions

fi(x) =
1
2

(
x − i

2

)2

+
3
4

(
x − i

2

)4

+
5
8

(
x − i

2

)6

(57)

where i = 1, 2, . . . , 6, and x ∈ R denotes the global variable.
Hence, it can be derived that x∗

i = i
2 , i = 1, 2, . . . , 6, and the

optimal value of cost function
∑6

i=1 fi(x) is given by 1.75 via
calculation. In this simulation, each agent estimates this optimal
solution based on the dynamics in (6), where the disturbances
are given as ωi(t) = 0.5isin(3t). Thus, ‖ωi(t)‖∞ = 0.5i and
‖ω̇i(t)‖∞ = 1.5i. The communication graph and parameters of
the proposed finite-time distributed optimization algorithm in
(40) are the same as those in Case 1. By Theorem 4, the simula-
tion result is provided in Fig. 10, where the algorithm in (40) can
guarantee the finite-time convergence of the optimal solution in
the absence/presence of disturbances.

In order to better show the validity of the proposed algorithm
in (40), we make a comparison with the ZGS algorithm in [10]
and the SDG algorithm in [11] and [29]. The simulation results
are shown in Figs. 11 and 12 to illustrate the agents’ response on
the optimal solution with/without the disturbance, and Table III
shows the performance comparison of different algorithms. It
can be seen that 1) in the absence of disturbances, it takes more
time to achieve convergence by the ZGS and SDG algorithms,
and 2) in the presence of disturbances, their optimal solutions
cannot be exactly estimated.



ρi ηi

λi

Case 4. Finite-Time Resource Allocation: This exam-
ple solves a resource allocation problem for nonquadratic
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objective functions

fi(xi) = xT
i Axi + BT xi + eB T xi (58)

where xi ∈ R2 , A = [2
1

1
2 ] and B = [0.1 0.2 ]T .

The local constraints for agents are given by: 0.1 ∗ i ≤ x1i ≤
1.5 and 0.1 ∗ (i + 1) ≤ x2i ≤ 1.5. The proposed algorithm (49)
is performed with ε = 0.01, and the simulation results are shown
in Fig. 13. Fig. 13(a) shows the agents’ optimal allocations and
they always remain within the corresponding constraints, while
Fig. 13(b) depicts the agreement of agents’ gradient updates.

In this paper, finite-time distributed algorithms have been pro-
posed to address convex optimization problems for continuous-
time multiagent systems in the presence of disturbances.
The proposed distributed optimization algorithms combine a
supertwisting-based and continuous ISMC scheme to deal with
disturbances and to search for the optimal solution within a finite
time. The designs are further applied to solve the economic dis-
patch and resource allocation problems with both global equality
and local inequality constraints, respectively. It can be proven
that the presented algorithms can find the optimal solution in a
finite-time and robust manner.
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