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Abstract— Through field experiments, we observed a varying

instantaneous charging capacity of the energy buffer with respect

to the dynamic intensity of the incident RF signal in the RF

energy harvesting system (RF-EHS). The dependency of charging

capacity on the incident power of RF signal challenges existing

RF energy harvesting models that assume constant charging

capacity. In order to accurately describe the energy harvesting

process in the real system, we propose a new energy clamp

model. The new model reveals that RF intensity higher than

the sensitivity of the harvester circuit cannot always guarantee

successful energy reception, especially when the energy level

of energy buffer is high while the intensity of the incident

power is relatively weak. In order to improve the efficiencies

of energy harvest and energy utilization in an RF-EHS, we

develop new offline (i.e., non-causal) optimal and online (i.e.,

causal) suboptimal data transmission strategies based on the

energy clamp model. Simulation results show that the new

strategy can considerably improve the throughput after taking

into account the varying instantaneous charging capacity caused

by the dynamic RF power density in the air.

Index Terms—RF energy harvesting system, varying RF power

density, energy clamp model, transmission strategy

I. INTRODUCTION

Applications of the smart city, precision agriculture, public
safety, and surveillance usually require the participation of
numerous sensors and lower-power actuators, which have
strong demands on energy efficiency and self-sustainability.
Radio frequency (RF) energy harvesting is one of the promis-
ing technologies to achieve those goals. Through scavenging
ambient RF power radiated from TV towers, WiFi access
points, and cellular base stations, an RF energy harvesting
system (EHS) is able to drive low-power wireless devices in
the long term without battery replacement [1].

However, an EHS needs to use the collected energy very
efficiently to optimize the communication performance due
to the thin RF power density in the environment [2], [3].
Along with the development of data transmission strategies
that aim to improve the energy utilization subject to different
constraints such as the energy causality [4], the size of a data
buffer [5], and the limited capacity of an energy buffer [6],
[7], hardware issues of the RF energy harvesting system are
being more and more considered in recent works to make the
transmission strategy realistic in real applications [8]–[10].

In existing RF energy harvesting models, it is commonly
accepted that if the aging effect on electronic materials is
ignored, the instantaneous amount of energy that an energy

buffer can be charged to (i.e., instantaneous charging capacity)
is a constant [11], [12]. According to this assumption, RF
waves arriving at an EHS can always be successfully harvested
as long as the strength of incoming energy is stronger than the
sensitivity1 of an energy harvesting circuit.

In this article, we challenge the above common assumption
and show through experimental results that in the RF energy
harvester, the instantaneous charging capacity of energy buffer
fluctuates in the real RF-EHS. The output voltage of the
voltage multiplier, which we call the charging voltage, is not
constant, but varies with the intensity of the RF signal as
shown in Fig.1. In supercapacitors, the instantaneous charging
capacity is a quadratic function of the charging voltage,
(i.e., Ei

max = 1
2C(V i

max)2), and thereby will change with
the power density of RF energy in a practical RF energy
harvester. The varying instantaneous charging capacity will
lead to the following situation: the RF energy may not be
successfully harvested even if the RF power density is stronger
than the sensitivity of the harvester circuit. It happens when
the buffered energy, Ei

r, in the supercapacitor is higher than
the instantaneous charging capacity, Ei

max. This phenomenon
indicates that existing RF energy harvesting models may not
match real systems well, which will inevitably result in a low
performance of existing data transmission strategies or even
cause them infeasible in reality.

Base station

Antenna
Rectifier

Battery

Matching 
circuit

I

t

I

t

Voltage multiplier

I

t

Load

[17] Non-negligible 
circuit power

[our work] Energy 
clamp phenomenon

[16] Battery nonlinearity 
[18] Battery leakage 

[6] Battery aging

[15] Diodes nonlinearity 
causes nonlinear 

conversion efficiency

Energy sources dynamics 
Channel dynamics 

Antenna design, etc.

Dynamic incident
P i

eRF energy,

Buffered
energy, Ei

r

energy, Ei
h

Harvested

Dynamic charging
voltage, V i

max

Figure 1: A diagram of RF energy harvesting system.

After taking into account varying instantaneous charging
capacity, we propose an energy clamp model to accurately

1The power sensitivity is the minimum strength of incident power that an
energy harvester can receive. The power sensitivity of an ambient RF energy
harvesting circuit is usually between -20 dBm and -9 dBm [13].



describe the scenario when RF energy cannot be harvested
(i.e., energy clamped) due to the reduced charging capacity.
In the proposed model, the maximal charging capacity of RF-
EHS is not only determined by the hardware design (e.g., the
circuit configuration and the type of energy buffer) but also
affected by the RF strength. In addition, several important
hardware properties, such as the nonlinear charging of energy
buffer and the unidirectional conductivity of diodes in the
circuit, are also considered to make the new model practical.

An essential difference between the new energy clamp
model and the conventional model [6], [14] is how to es-
timate the amount of harvested energy, Ei

h, in transmission
scheduling. In the conventional model, the energy packet
can be fully harvested as long as it is stronger than the
sensitivity of the harvester circuit. Therefore, Ei

h is usually
calculated directly based on the size of the energy packet
without considering the state of charge (SOC) of the energy
buffer. In the energy clamp model, Ei

h depends not only
on the size of the energy packet but also on the varying
charging capacity and the SOC of the energy buffer. The
interaction between the charging and discharging processes
is fully considered. Compared with existing work, the energy
clamp model can accurately calculate the amount of energy
that can be harvested from the environment, thereby making
the scheduled data transmission realistic.

Another obvious difference comes from the shape of the
feasible energy tunnel in the transmission scheduling. In
conventional models, the width of the feasible energy tun-
nel (i.e., the instantaneous charging capacity) is constant. A
tunnel of fixed width is only valid for a system like solar-
based harvester, which generates a stable charging voltage
regardless of changes in the environment. In the new model,
the instantaneous charging capacity changes with the intensity
of the incident RF wave. Therefore, the width of the energy
tunnel is different in different cycles.

Due to the energy clamp phenomenon, the design of an
offline (i.e., non-causal) optimal transmission strategy becomes
a challenging issue since the energy harvesting process and the
data transmission strategy can affect each other. The design
of offline optimal transmission strategy needs to know the
future Ei

h to better plan the energy usage for throughput
maximization; the transmission strategy itself, however, can
affect the energy harvesting process through managing the
SOC or buffered energy of the energy storage. Accordingly, we
need to jointly optimize the transmission strategy and harvest
scheme rather than simply optimizing the former based on
the predetermined value of latter, which is another difference
between our work and existing data transmission strategies.

To summarize, the contributions of our work are threefold.
1) Through experimental research on the RF-EHS, we identify

the energy clamp phenomenon, and further verify this phe-
nomenon through theoretical analysis. It it verified that the
intensity of incident RF power can significantly affect the
instantaneous charging capacity of battery in an RF energy
harvester. To the best of our knowledge, this is the first
work identified the varying charging capacity and the energy

clamp phenomenon in RF-EHS.
2) We propose a new model to correctly describe the en-

ergy harvesting process considering the energy clamp phe-
nomenon in a real RF-EHS. Due to the energy clamp
feature, traditional offline optimal transmission strategies
that are based on conventional EH model no longer work.
We developed new offline optimal transmission policy that
have energy clamp phenomenon considered.

3) Compared with the conventional model overlooking the
dynamic instantaneous charging capacity, the energy clamp
model achieves about 16% higher throughput in offline
optimal transmission scheduling when the relative standard
deviation of the charging voltage is 17.9%. Inspired by the
behavior of offline optimal solution, we use a prediction
based online (i.e., causal) suboptimal strategy as an example
to verify that online policies based on the energy clamp
model are feasible in reality.

The rest of this paper is organized as follows. Section II
introduces the related work. The impact of varying power
density on the instantaneous charging capacity of energy
buffer is analyzed in Section III. We describe the new energy
harvesting model in Section IV and propose an offline optimal
transmission strategy in Section V. The performance of the
offline optimal and online suboptimal transmission strategies
are evaluated in Section VI and Section VII, respectively.
Conclusions are drawn in Section VIII.

II. RELATED WORK

Considering the limited energy supply, it is critically im-
portant to efficiently utilize the harvested energy for better
communication throughput in RF-EHS networks. For this pur-
pose, many offline optimal power management strategies are
designed to investigate the optimal communication throughput
that can be achieved with the limited energy supply. Although
the offline approach that assumes to know the future energy
arrivals is non-causal thus not feasible in real systems, it
provides a benchmark solution as well as insights into ef-
ficient transmission scheduling, which will be discussed in
Section VII. Next, we introduce energy harvesting models and
transmission strategies that are most relevant to our work.

In a classic energy harvesting model, it is assumed that RF
energy arrives at an EHS as discrete energy packets with vary-
ing sizes (i.e., predetermined amount of energy contained) and
random time of arrivals. Therefore, the accumulative energy
received by a harvester is represented as a staircase curve. It is
proven in [6] that the design of an offline optimal transmission
strategy can be converted into a piecewise-linear optimization
problem. Considering the size constraint of energy buffer, the
profile of accumulative energy consumption for data transmis-
sions must stay within a feasible energy tunnel bounded by
the accumulative harvested energy and buffer size. It is also
pointed out that from a graphical perspective, the profile of
the optimal energy consumption should be the tightest string
in the tunnel in order to maximize the throughput.



To make the transmission strategy realistic, more and more
hardware features and practical issues in real RF-EHSs are
considered in recent studies. In [15], the influences of the
diodes nonlinearity and the circuit parasitic on the energy
harvesting process are investigated. The results show that, due
to diodes nonlinearity and the circuit parasitic, the efficiency
of energy conversion in the RF harvesting circuit varies
depending on the input power density of the RF signal. In
[16], it is verified that the amount of energy harvested from a
given RF energy packet is not a constant but depends on the
SOC of an energy buffer. This phenomenon results from the
nonlinear charging feature of the energy buffer. In our work,
we justify that the amount of harvested energy is not only
affected by the nonlinear battery, but also determined by the
energy clamp phenomenon as discussed in Section IV-B.

The circuit power is another hardware feature that needs to
be considered in the power management. Besides the energy
spent on the RF transceiver, an EHS inevitably consumes
extra energy to power the microprocessor, digital-to-analog
converter (DAC), and other operating modules. After consid-
ering the overhead of the circuit, continuous transmissions of
data becomes inefficient, while an on-off transmission strategy
is advocated for higher throughput [17]. Battery leakage and
aging issues are also investigated in the literature. Specifically,
the energy stored in an energy buffer gradually leaks with
time due to the off current in a circuit and the self-discharge
characteristic of the energy buffer. If the energy leakage rate is
fixed, it is equivalent to adding a constant operation power to
the circuit [18]. Moreover, if the energy leakage is caused by
the material aging, the width of the feasible energy tunnel will
gradually reduce over time. The degradation of the battery’s
capacity is commonly slow but irreversible.

Although the practical issues such as hardware nonlinearity,
battery nonlinearity, circuit power, and battery imperfection
have been recognized and considered in the energy harvesting
system, the explorations on the RF-EHS circuit and the RF
environment are still insufficient. It is commonly assumed
that the instantaneous charging capacity is constant or slowly
degrades in the long run if battery aging is considered.
However, in this work, we will point out that the instantaneous
charging capacity has significant dynamics and varies with the
power density of the RF signal. The assumption on constant
charging capacity will cause inaccurate modeling of RF-EHS
and lead to inefficient power management. In this work, we
will justify the feature of dynamic charging capacity utilizing
the experiment results collected from field tests. And we will
propose an energy clamp model to accurately describe the
energy harvesting process aiming to provide an accurate and
realistic model for efficient data transmission design.

III. THE VARYING INSTANTANEOUS CHARGING CAPACITY

In this section, we first introduce the phenomenon of
RF-EHS charging voltage variation caused by the dynamic
strength of incident radio energy through experimental results.
Afterwards, the variation of RF power density in environments

is investigated. At last, we analyze the impact of varying RF
power density on the instantaneous charging capacity.

A. Dependency of Charging Voltage on RF Power Density
The dependency of charging voltage on RF power den-

sity results from the hardware characteristic of RF-EHS. A
common structure of RF-EHS consists of antenna, matching
circuit, rectifier, voltage multiplier, and energy buffer2 as
depicted in Fig. 1. After being captured by the antenna, the
RF signal will be rectified and boosted to a higher voltage to
charge the energy buffer. The output of the voltage multiplier
is not constant, but varies with the intensity of the incident
power of the RF signal. When the energy buffer is fully
filled, its capacitive reactance will be infinite; meanwhile, the
energy buffer reaches the voltage of the voltage multiplier. For
simplicity, the output voltage of voltage multiplier is referred
to as the charging voltage, Vmax, which is the charging voltage
of supercapacitor given the strength of the RF signal.

In order to verify how the strength of RF waves affects the
charging voltage of RF-EHS, we conducted lab experiments,
as demonstrated in Fig. 2. An HP 8648C signal generator [19]
connected to a power amplifier serves as the energy source
radiating 915 MHz RF signal at a controllable power density.
A Powercast P2110-EVB energy harvesting board [20] stores
the harvested energy to a 50 mF supercapacitor (i.e., energy
buffer). To estimate the strength of RF waves arrived at the
harvester, a Keysight N9340B spectrum analyzer [21] is placed
at a position symmetrical to the energy harvester. The spectrum
analyzer and harvester are equipped with the same receiving
antenna. In addition, multimeters are used to monitor the
charging current and the voltage of the energy buffer3. By
adjusting the output power of the signal generator, we can
radiate RF signals with varying power density.

Figure 2: Experiment setup for RF energy harvesting.

In Fig. 3, we show the charging voltage of P2110 harvester
with respect to the intensity of incident RF power. Some
existing test results with other RF harvesters [22]–[24] are

2Supercapacitors have low leakage current and are the ideal power buffer
between the energy harvester and the load. Therefore, we use supercapacitor
as an example and refer energy buffer to supercapacitor throughout this paper.

3We consider the energy buffer to be fully charged when the average
charging current reduced to 1µA for a low charging voltage (<1V) or 10µA
for a relatively high charging voltage (�1V). The reason behind this setting
is that it takes an infinite time to fully charge the energy buffer.



also presented in the figure for validation and comparison
purposes. From the figure, it can be observed that the charging
voltage of RF harvesters varies with the strength of the RF
signal. Taking P2110 harvester as an example, the charging
voltage drops from 1.95 V to 1.57 V when the intensity of RF
energy has only 1.5 dBm difference (i.e., reducing from �7.0
dBm to �8.5 dBm. The varying charging voltage is a common
phenomenon of different harvesters as shown in Fig. 3.
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Figure 3: Charging voltages, Vmax, with respect to the incident
power for different RF harvesters.

B. Dynamic RF Power Density and Varying Charging Capac-
ity in RF-EHS

With the previous results, we have verified the dependency
of RF-EHS’s charging voltage on the RF power density caused
by the hardware of RF-EHS. Next, we conducted outdoor
experiments to examine the strength of ambient radio signals
and the charging characteristic of RF-EHS in a real scenario.

N6850A antenna

Spectrum analyzer
Data logger

Energy harvester

Figure 4: Experiment setup for RF environment monitoring and
charging voltage measurement.

The field experiments were conducted on the campus of
Mississippi State University. As shown in Fig. 4, a Keysight
N6850A broadband omnidirectional antenna [25] was con-
nected with the spectrum analyzer to monitor the RF environ-
ment from 30 MHz to 3 GHz. The average gain of N6850A
is between 0 dBi and �2 dBi in the target frequency band.
The sampling interval of spectrum analyzer was 1.15 s. A
Powercast P21XXCSR-EVB board was deployed to harvest
RF energy from an LTE antenna array (not shown in Fig. 4)
that is 280 feet away from the energy harvester. Fig. 5
demonstrates the spectrograms of ambient RF signal measured
around the Powercast energy harvester. The X-axis represents
the frequency and the Y-axis is time, with the strength of RF

Table I: Mean value and standard deviations of signal strength.

Frequency (MHz) 887.5 739 1,952.5 2,115
µ (dB) -10.4 -16.8 -30.2 -33.8
� (dB) 1.2⇤ 2.6 2.8 2.8

⇤ The 1.2 dB standard deviation in signal strength seems stable from
communication point of view, which, however, is strong enough to cause
17.9% charging voltage dynamics in the RF energy harvesting system.

signal in each 1 MHz frequency band represented by color.
The two strongest bands on 887.5 MHz and 739 MHz are the
downlink signal from LTE base stations that are about 280
feet away. The eNB IDs of the two LTE base stations are
204758 and 204558, respectively [26]. The 1952.5 MHz and
2115 MHz bands are from other distant LTE base stations.
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Figure 5: Spectrograms of ambient RF energy.

In Table I, we list the mean value (µ) and the standard
deviation (�) of the radio power at different frequencies. From
the table, it can be realized that the RF strength in an outdoor
environment varies over time and the standard deviation of
radio strength on 887.5 MHz is 1.2 dB. The significant fluc-
tuations of the RF energy intensity in outdoor environments
are also verified in Fig. 6. The envelope of radio waves is
presented to visualize the upper and lower limits of the energy
strength. As can be observed from the figure, the instantaneous
RF intensity has random and high fluctuations (from �13
to �7 dBm) on 887.5 MHz band. Note that, as reported in
[27], the strength of RF waves in an indoor environment
has even higher fluctuations than outdoor signal due to the
shadowing effect caused by the large number of obstacles
and potential scatterers. The dynamic intensity of ambient RF
signal may result from a combined effect of small-scale fading,
shadowing, and weather dependent attenuations [3].
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Figure 6: Intensity of ambient RF energy on 887.5MHz.

To verify the impact of dynamic RF power density on the
charging voltage of RF energy harvester, we used a Graphtec
GL240 data logger to record the instant charging voltage (i.e.,
the output voltage of the voltage multiplier) every 10 ms.
In tests, we used two different antennas: a directional patch
antenna with 6 dBi gain at 915 MHz, and an omnidirectional



dipole with 1 dBi gain at the same frequency. The instant
charging voltage of energy harvester is presented in Fig. 7.

As demonstrated in the figure, there are many impulses in
the untreated curves (blue and yellow). This indicates that in
a short time period, there are remarkable variations (i.e., more
than 0.5 V) on the harvester’s charging voltage. According
to the measurements, with 1 dBi omnidirectional antenna, the
standard deviation of charging voltages can achieve 0.12 V,
which is 17.9% of the average charging voltage. The dynamic
range of charging voltage is from 0.4 V to 1.45 V with
1 dBi omnidirectional antenna and from 1.0 V to 1.7 V with
6 dBi directional antenna. Since the charging capacity of the
supercapacitor is a quadratic function of charging voltage, the
dynamic RF power density in the outdoor experiment resulted
in 13.14 times and 2.89 times variation in the instantaneous
charging capacity with 1 dBi and 6 dBi antenna, respectively.
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Figure 7: Charging voltage of RF and solar energy harvesters in real
outdoor environments.

To show the long-term feature of charging voltages, we filter
out impulses using a 100 points smooth filter and then plot
the smoothed curves in Fig. 7. It can be observed that the
dynamics of smoothed charging voltage are still significant.
In addition, from the experimental results, we can observe
that using directional antenna can significantly improve both
the long-term and short-term stabilities of the charging voltage.
Specifically, compared with the 1 dBi omnidirectional antenna,
the 6 dBi directional antenna can reduce the standard deviation
of charging voltages from 0.12 V to 0.06 V in a short term or
0.09 V to 0.04 V in a long-term.

It should be noted that a solar-powered EHS has nearly con-
stant charging voltage. According to the electrical properties
of amorton solar cells [28], the charging voltage of a single
glass type cell is 0.89 V when the illuminance of natural light
ranges from 10k to 100k lux in outdoor use. The charging
voltage presented in Fig. 7 is charged with a solar energy
harvester of four cells. During our outdoor experiment, the
daylight intensity changed between 5.8 klux and 89.9 klux,
the standard deviation of the charging voltage with Panasonic
AM-1801CA [28], however, was only 1.3% of the mean value,
as shown in Fig. 7. In addition to RF energy harvesters, the
characteristic of the dynamic charging voltage also commonly
exists in vibration- and thermal-based EHS [29], [30]. This

prompted us to study the impact of varying charging voltage
on transmission scheduling. Although conclusions of this work
may not be directly applicable to vibration- or thermal-based
EHS, they can provide useful design principles for optimal
transmission strategies in vibration- and thermal-based EHS.

In supercapacitors, the instantaneous charging capacity is
a quadratic function of the charging voltage. The dynamic
charging voltage will result in varying instantaneous charging
capacity in RF-EHSs. The conventional RF energy harvesting
models and transmission strategies assuming a constant instan-
taneous charging capacity is more suitable for solar-based EHS
rather than RF-EHS, since this assumption is valid only when
the charging voltage of the energy harvester is unaffected by
the environment like in solar-powered EHSs. For an RF-EHS,
the varying instantaneous charging capacity will inevitably
affect the energy harvesting process. Therefore, we propose
a new model to accurately calculate the amount of energy
that can be truly harvested in a real RF-EHS, which will be
presented in the next section.

IV. NEW ENERGY HARVESTING MODEL

In this section, we propose an energy clamp model to accu-
rately describe the variation of charging capacity in the energy
harvesting process. Here, we focus on co-located RF-EHSs
in which the energy harvester and the wireless transceiver
share the antenna in a time-division manner; hence, the energy
reception and the data communication cannot be performed at
the same time. The impact of energy clamp feature on the
offline optimal transmission scheduling is also discussed.

A. Two Scenarios in Energy Harvesting Process
To build a new energy harvesting model, we start by

analyzing two energy harvesting scenarios as illustrated in
Fig. 8. Both the exponential charging (i.e., red curve) and
discharging (i.e., brown curve) processes of energy buffer (i.e.,
capacitors [31] are presented. We use V ti to denote the instant
voltage of the energy buffer at time ti. According to the
energy-voltage function of supercapacitor, the buffered energy
at time ti is Ei

r = 1
2C(V ti)2. P i

e is the incident power density
of the RF signal in the charging period ti �Ti. V i

max (i.e., blue
lines in Fig. 8) is the instantaneous charging voltage, i.e., the
open-circuit voltage of the voltage multiplier, during ti � Ti.
As verified in Fig. 3 of Section III, V i

max is a variable that
depends on P i

e . We assume P i
e is constant within a harvesting

interval ti �Ti. Next, we detail the two scenarios in Fig. 8.

(a) (b)
t tti

V i
max

Vi�1
max

Ti Ti�1ti�1
Vi

max

ti

Clamped
Vti

Ti

Figure 8: Schematic diagrams of energy harvesting process: (a) no
energy clamp, (b) energy clamped.

a) V ti < V i
max: The buffered energy, Ei

r, is lower than the
instantaneous charging capacity, Ei

max. In this situation,



the voltage of the supercapacitor can be eventually charged
to V i

max with the unlimited charging time. We call it
reached the instantaneous charging capacity. When the
charging time is limited as Ui = Ti � ti, the amount of
energy to be harvested, Ei

h, can be calculated according
to energy harvest equation, which is modeled in the next
subsection. This situation is corresponding to Fig. 8 (a).

b) V ti � V i
max: When the buffered energy, Ei

r, in the
supercapacitor is higher than or equal to the instantaneous
charging capacity, Ei

max, the energy clamp happens. As
with a low energy intensity, the incident RF energy can
only charge the supercapacitor to V i

max, which is lower
than the concurrent voltage of the supercapacitor. In this
situation, the supercapacitor is “full” and no energy can
be harvested even if the incident power of RF signal is
stronger than the sensitivity of the harvester, the harvester
cannot receive any RF energy if V ti � V i

max. However,
whether the supercapacitor is “full” or not depends on
the intensity of the incident RF energy. If at time ti+1,
V ti = V ti+1 < V i+1

max, the supercapacitor will not be
“full” but can be potentially charged to a higher voltage.
The energy clamp situation is corresponding to Fig. 8 (b).

The energy clamp phenomenon usually happens when RF
power in the air was strong during pervious charging interval,
ti�1 �Ti�1 and becomes weak in the next charging interval,
ti � Ti (i.e., P e

i�1 � P i
e), as illustrated in Fig. 8 (b). The

blue line indicates the drop of Vmax. At time ti, the voltage
of supercapacitor is higher than the charging voltage, i.e., the
red charging curve was above the blue line during ti �Ti. The
voltage of the supercapacitor will be clamped at V ti due to
the unidirectional conductivity of diodes in the circuit.

The energy clamp situation illustrated in Scenario b) cannot
be correctly represented in existing energy harvesting models.
However, the energy clamp phenomenon eventually occurs in a
frequent manner when the incident power density of RF signal
drops due to dynamic RF environments. It can be realized
that the energy arriving at a harvester cannot be successfully
received if the current energy level is high while the strength
of incoming RF energy is relatively weak.

The energy clamping phenomenon will dramatically change
the behavior of RF energy harvester. For convenience, most of
the existing works consider the energy arriving at a harvester
as discrete packets containing random energy; the RF energy4

can always be harvested as long as the incident power of RF
signal is higher than the sensitivity of the harvester circuit [4]–
[6], [8]. This indicates that when Scenario b) happens, the
existing models will falsely add an amount of energy that
actually cannot be captured. Planing the data transmissions
based on the energy that does not exist would make it
infeasible for implementation.

The energy clamping feature of RF-EHS motivates us to
propose a new energy harvesting model to accurately calculate

4In the conventional EH model, the amount of harvested energy is prede-
termined based on energy conversion efficiency and the size of energy packet.

the amount of energy that can be truly harvested by an EHS
in a dynamic RF environment.

B. Energy Clamp Model
Since the harvester and transceiver share the same antenna

in a time-division manner in the co-located EHSs, data trans-
mission and energy harvest will not happen at the same time.
As demonstrated in Fig. 9 (a), there are interleaved charging
(i.e., red curve) and discharging (i.e., brown curve) processes.

In the discharging phase, when we schedule the optimal
transmission strategy, only the amount of harvested energy
in the charging phases matters and the charging interval is
neglected. Therefore, after we seamed the discharging phases,
the accumulation of harvested energy forms a staircase curve
as demonstrated in the purple lines in Fig. 9 (b) and (c). The
rise height represents the amount of energy harvested in the
charging process, Ei

h, and the tread depth equals to the length
of the discharging phase.
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h

E2
h E3

h

t

E E1
max

E2
max

E3
max

(a) Charging and discharging process

E1
r E3

r

E0
E2

r
t4

t1(T1) t2 t3

E1
h

E2
h

E3
h

t

E

t4
(b) Conventional EH model
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(c) Energy clamp model
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Figure 9: (a) Schematic diagram of charging and discharging pro-
cesses, where blue lines represent the instantaneous charging capacity,
Ei

max, varying with dynamic RF power density, red curves show
the energy charging process with Ei

h as the amount of harvested
energy and brown curves indicate energy discharging during data
transmission. (b) Feasible energy tunnel in conventional EH model,
where purple lines represent the accumulative harvested energy; green
lines are obtained by shifting purple lines down by Emax. (c) Energy
tunnel in energy clamp model.

In the conventional EH model, we can obtain a feasible
energy tunnel by shifting the purple staircase curve down
by Emax, as shown in Fig. 9 (b). The design of optimal
transmission strategy is converted into planning the profile of
accumulative energy consumption within the feasible energy
tunnel for highest communication throughput. The fixed width
of the tunnel indicates that the instantaneous charging voltage
is assumed to be constant in the conventional model [4]–
[6], [8]. In addition, it also ignores the energy clamping
scenario in the real RF energy harvesting process and results
in overestimated E2

h (i.e., EHS cannot harvest any energy in
interval t2 �T2).

In the energy clamp model, by contrast, the variation of the
instantaneous charging capacity, Ei

max, indicates its depen-
dency on the incident power density of RF signal. When the



buffered energy at the beginning of charging interval t2 �T2 is
higher than E2

max, the energy stored in the buffer is clamped
and the harvester cannot receive energy from the environment
in this charging interval (i.e., E2

h =0), as indicated in Fig.8 (b).
When the energy buffer is not clamped, the EHS can charge the
energy buffer to a higher voltage as shown in intervals t1 �T1

and t3 �T3. According to the charging curve of capacitor and
the energy-voltage function [31], we have

Vti = V i
max

✓
1 � e�

Pi
j=1 Uj
RC

◆
, Ei

r =
1

2
C (Vti)

2 . (1)

Here, Ui is the length of charging interval ti � Ti.
Pi

j=1Uj

represents the accumulative charging time. R and C are the
resistance of the RC charging circuit and the capacitance of
the energy buffer (i.e., supercapacitor), respectively.

When the energy clamp does not occur, the energy buffer
will be charged to a higher voltage. �vi+1 and Ei+1

h indicate
the voltage and energy increments with charging time Ui+1,
respectively. The new voltage and energy level become

Vti+1 =Vti +�vi+1 =V i+1
max

✓
1 � e�

Pi+1
j=1 Uj
RC

◆
,

Ei+1
r =Ei

r+Ei+1
h =

1

2
C(Vti+1)

2.
(2)

By solving (1) and (2), we get the charging function with
no energy clamp as

Ei
h=C(Ei�1

r , Ui, Ei
max)=A1

i (A
2
i )

2+A1
i A

3
i (E

i�1
r )

1
2+A1

i A
4
i E

i�1
r ,

(3)
where

A1
i =

1

2
e�

2Ui
RC , A2

i = (2Ei
max)

1
2

⇣
e

Ui
RC � 1

⌘
,

A3
i = 2

3
2 A2

i , A4
i = 2

⇣
1 � e

2Ui
RC

⌘
.

(4)

Considering the energy clamp phenomenon, in case of Ei
r �

Ei+1
max (i.e., Vti � V i+1

max), the harvester cannot receive energy
in the current harvesting cycle, i.e., Ei

h = 0; otherwise, the
received energy is calculated via C(·).Therefore, we can use a
step function to formulate Ei

h.

Ei
h =

(
C(Ei�1

r , Ui, Ei
max), Ei�1

r < Ei
max,

0, Ei�1
r � Ei

max.
(5)

One essential difference between the new energy clamp
model and the conventional EH model is the way that Ei

h
is estimated. In most of the conventional EH model, Ei

h is
only determined by the length of charging interval, Ui, which
is modeled as a predetermined random sequence [4], [6], [14],
[16]–[18]. In the energy clamp model, Ei

h is also affected by
the buffered energy, Ei�1

r , owing to the battery nonlinearity,
and the variation of the charging capacity, Ei

max due to the
energy clamp phenomenon. Compared with existing works, the
energy clamp model is able to accurately estimate the amount
of energy that can be harvested from the environment making
the scheduled data transmission realistic. Another obvious
difference comes from the shape of the energy tunnel. The

tunnel of fixed width in conventional models is only valid for
a system like solar-based harvester which generates a stable
charging voltage regardless of changes in the environment. In
the new model, the instantaneous charging capacity changes
with the strength of incident RF waves. Therefore, widths of
the energy tunnel are different in different time periods, as
depicted in Fig. 9 (c).

Given the essential differences between the energy clamp
model and conventional EH model, the design of offline
optimal transmission policy with varying charging capacity
needs to be revisited, which is discussed in the next section.

V. OFFLINE OPTIMAL DATA TRANSMISSION

To maximize the system performance in terms of through-
put, transmission completion time, or energy consumption,
existing offline methods (e.g., water-filling based algorithms
and geometrical approaches) assume that the exact energy that
can be received is known prior to scheduling transmissions.
However, the energy clamp model reveals that the amount
of energy to be harvested by an RF-EHS is no longer pre-
determined but influenced by the data transmission strategy
in a real time fashion. Therefore, we should jointly optimize
energy utilization and energy harvest in the offline optimal
data transmission scheduling.

A. Properties of Offline Optimal Data Transmissions
For an offline transmission strategy, it is assumed that an

RF-EHS can accurately predict the strength of energy arriving
in the future and the variation of channel quality. It is further
assumed that lengths of each data transmission cycle and
energy harvesting cycle are known. In other words, Ei

max,
hi, Li and Ui are random variables with pre-known values5.
We consider a quasi-static fading channelwith additive white
Gaussian noise for the data communications. A typical power-
rate function is r(t)=B log[1 + |h(t)|2p(t)

BN0
], where h(t) is the

channel gain at time t, B and N0 are the channel bandwidth
and the noise power density, respectively. In Table II, we list
notations and definitions of parameters used in the paper.

In the energy clamp model, it can be proved that an offline
optimal data transmission strategy has the following properties
to maximize the communication throughput of an RF-EHS:
Property 1. The optimal transmission rate is a constant in
each data transmission cycle.
Property 2. The optimal transmission strategy never com-
pletely deplete the energy buffer until the end of the last data
transmission cycle.
Property 3. Not all energy worth to be harvested, especially
when the power density in an energy harvesting cycle is low,
while the length of the following data transmission cycle is
much longer than the previous one.

Property 1 is a common property for existing offline opti-
mal transmission strategies, the proof of which can refer to

5Although the offline approach is not feasible in a real system, it provides
a benchmark solution as well as insights for efficient online transmission
scheduling, which will discussed in Section VII.



Table II: Notations

Symbol Definition

B Communication bandwidth
C Capacitance of the energy buffer (i.e., supercapacitor)
C(·) Charging function of supercapacitor
D(·) A function representing relationship between E1

r and EN
r

E0 Initial energy on energy buffer
Et The amount of energy stored in an energy buffer at time t
Ei

r Residual energy at the end of transmission cycle i
Ei

h Energy received during energy harvesting cycle i
Ei

max Instantaneous charging capacity of battery in harvest cycle i
G(·) Power-rate function
hi Channel gain in transmission cycle i
L(·) Lagrangian function
N0 Noise power density
N Total number of transmission cycles
pi Transmission power in transmission cycle i
p⇤i Optimal transmission power in transmission cycle i
ri Transmission rate in transmission cycle i
R Resistance of charging circuit
S Coefficient of sigmoid function

S(·) Sigmoid function
Li Length of transmission cycle i
Ui Length of energy harvesting cycle i

V i
max Charging voltage in energy harvesting cycle i
Vt Voltage of super capacitor at time t

rx(·) Partial derivative with respect to x
�i KKT multipliers

Section III. A of [6]. This property converts continuous power
management into a piecewise-linear optimization problem.

The proof of Property 2 can refer to Section 5.2 of our
previous work [32]. This property arises from the nonlinear
charging characteristic of the energy buffer. Property 2 in-
dicates that the optimal transmission strategy must have an
important feature: Ei

r 6= 0 for i = 1, . . . , N � 1 and Ei
r = 0

for i = N . This feature is important to design the offline
optimal transmission strategy.

Property 3 is a new property introduced by the energy
clamp model. This property is validated in Section VI-A. It
reveals the tradeoff between energy utilization and energy
harvest efficiency. To be specific, in order to harvest the
weak energy, the RF-EHS needs to increase the transmission
power (i.e., consume energy faster) to avoid energy clamp.
However, the high transmission power degrades the efficiency
of energy utilization according to the concave power-rate func-
tion. Therefore, instead of mandatory harvesting all received
energy packets in the conventional model, whether or not to
harvest the received energy becomes an option and needs to be
carefully decided in transmission scheduling algorithms with
the energy clamp model.

Conventional strategies hold that all energy packets can
be successfully received if the energy buffer is not full and
thus ignores the efficiency of energy harvest. Specifically, the
profile of cumulative energy consumption (i.e.,

R t
0 p(x) dx)

will not exceed the feasible energy tunnel [4]–[6], [8], as
shown in Fig. 17(a) to guarantee that all energy will be
harvested. By comparing the optimal transmission strategies
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Figure 10: Optimal transmission strategy with (a) energy clamp
model. (b) conventional EH model.

in Fig. 17(a) and Fig. 17(b), we can observe the impact
of Property 3 on balancing the energy harvest and energy
utilization efficiency with the energy clamp model.

B. Offline Optimal Transmission Strategy

The varying instantaneous charging capacity of the energy
buffer due to fluctuations in RF power density in the en-
vironment makes conventional water-filling algorithms and
geometrical approaches not work properly in the new energy
harvesting model. To tackle this problem, we first formulate
the offline data transmission as an optimization problem and
then solve the problem through a recursive algorithm.

According to the piecewise linear feature of the optimal data
transmission strategy introduced in Property 1, we obtain the
following optimization problem with a fading channel.

P1: arg max
pi

N+1X

i=1

LiB

2
log2

 
1 +

|hi|
2 pi

BN0

!
,

s.t.

C1: � Ei
r  0, i =1, . . . , N,

C2: Ei
r + Ei+1

h max
�
Ei+1

max, Ei
r

 
, i =1, . . . , N�1,

(6)
where

Ei
r = E0 +

iX

j=1

Ej
h �

iX

j=1

pjLj , i = 1, . . . , N, (7)

and the expression of Ei
h can be found in (5).

The objective function in P1 is to find the optimal transmis-
sion power, pi, in each data transmission cycle to maximize
the communication throughput. The constraint C1 is an energy
causality constraint, indicating that the total energy consumed
by RF-EHS must not exceed the cumulative energy received
in all previous harvesting cycles. C2 is an energy storage
constraint that specifies the instantaneous charging capacity
of the energy buffer. Essentially, if Ei

r < Ei+1
max, no energy

clamp will occur; hence the total amount of energy that can



be charged to the energy buffer depends on the incident
power density in the current energy harvesting cycleand cannot
exceed Ei+1

max. If Ei
r �Ei+1

max, the energy level will be forcibly
clamped at Ei

r.
The definition of all parameters can be found in Table II.

Substituting (5) into (6) to (7), we can convert the design
of an efficient data transmission strategy into an optimization
problem that takes into account the impact of varying power
density on the energy harvesting process.

In Appendix A, we prove that constraint C2 can be removed
from P1 without affecting the optimal solution. Accordingly,
the original optimization problem can be simplified as

P2: arg max
pi

N+1X

i=1

LiB

2
log2(1 +

|hi|
2 pi

BN0
),

s.t.

C1:
iX

j=1

pjLj �

iX

j=1

Ej
h�E0  0,

(8)

where the expression of Ei
h can be found in (3) and (5); the

relationship between Ei
h and Ei

r is described in (7).
Although the optimization problem, P2, looks similar to

the existing work [4], [6], [14], [17], [18], they are essentially
different, as the Ej

h in P2 is not a known value but a function
of Ej�1

r and Ej
max. Traditional solutions that are based on

conventional EH model no longer work. Therefore, we revisit
the offline and online transmission policies with the energy
clamp model in Section V-C and Section VII, respectively.

C. Solutions to Optimization Problem

Although there is only a single constraint in P2, it is not
easy to solve because: (a) the step function, Ei

h, in (5) is not
continuously differentiable, and (b) even when energy clamp
does not occur, Ei

h is a complex nonlinear function of pi

according to (3) and (7), making it difficult to identify whether
or not C1 is convex. Next, we introduce how to address those
two challenges.
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Figure 11: A set of sigmoid curves.

To find the offline optimal transmission strategy from P2,
we first reform Ei

h in (5) via a continuously differentiable
function. This can be done by using a sigmoid function,
S(x) = 1

1+e�Sx , to approximate the piecewise function. As
illustrated in Fig. 11, by increasing the value of the coeffi-
cient S, S(x) gradually approaches Heaviside step function.

Accordingly, we can reconstruct Ei
h as follows:

Ei
h = lim

S!1
C(Ei�1

r , Ui, Ei
max) · S(Ei

max�Ei
r)

= lim
S!1

C(Ei�1
r , Ui, Ei

max)

1 + e�S(Ei
max�Ei

r)
,

(9)

where the charging function C{·} has been introduced in (3).
By using the approximate function of Ei

h, the constraint C1
in P2 becomes continuously differentiable.

From (8), we observe that P2 is a nonlinear maximization
problem with inequality constraints, and the optimal solution
of P2 will satisfy the Karush-Kuhn-Tucker (KKT) first-order
necessary conditions. We list the stationarity, primal feasibility,
and complementary slackness conditions in Appendix B.

The objective function of P2 is concave since its Hessian
matrix is negative semidefinite for all pi. However, it is hard
to verify whether or not the left side of the constraint C1
is a concave function of pi due to the complex relationship
between pi and Ei

h described in (7), (4), and (9). Therefore,
the KKT conditions are necessary but not sufficient. In this
case, we may obtain multiple local optimal solutions from the
KKT conditions and eliminations need to be done to find the
global optimal solution.

To solve the KKT conditions, we start from the complemen-
tary slackness. According to Property 2 and (A.8), it can be ob-
tained that for i = 1, . . . , N�1,

Pi
j=1 p⇤jLj�

Pi
j=1E

j
h�E0 6= 0

and thus �i =0. Substituting �1 = . . . = �N�1 = 0 into (A.5),
then we have that for m = 1, . . . , N :

rp⇤
m
L =

BLm |hm|
2

2 ln2(BN0+|hm|2p⇤m)
+�N

0

@rp⇤
m

NX

j=1

Ej
h�Lm

1

A.

(10)
According to the relationship among harvested energy, Ej

h,
residual energy, Ej

r and transmission power, pj described in
(7) and (9), we derive an iterative expression of rp⇤

m

Pm
j=1E

j
h:

rp⇤
m

mX

j=1

Ej
h = Lm

2

41 �

kY

j=m

(Vj + 1)

3

5, k = m, . . . , N � 1,

(11)
where Vm,@Em

h /@Em
r . Substituting (11) into (10), it can be

obtained that

rp⇤
m
L=Lm

2

4 B |hm|
2

2 ln2(BN0+|hm|2p⇤m)
��N

N�1Y

j=m

(Vj +1)

3

5. (12)

To satisfy the stationarity of the KKT conditions, let rp⇤
m
L , 0

and then we have that

p⇤m =
1

2�N ln2
N�1Y

j=m

(Vj + 1)

�
BN0

|hm|2
,

=

✓
BN0

|hm�1|
2

+ p⇤m�1

◆
(Vm�1+1) �

BN0

|hm|2
.

(13)

In (13), we give a recursive expression of p⇤i , where Vm�1=



@Em
h /@Em�1

r can be calculated based on (3), (4), and (9). (13)
is a general relationship for the optimal transmission power
and can be applied to other sustainable energy resources, such
as thermal, vibration, pressure energy harvesters, where the
instantaneous charging voltage changes with respect to the
dynamic intensity of the energy source. However, if different
battery is used, the energy-voltage function (i.e., (1)) will need
to be modified and (13) may not apply.

According to the relationship among Ei
h, Ei

r and p⇤i de-
scribed in (7) and (9) and the iterative expression (13), Ei

r

can be represented by a nonlinear function of p⇤1. Utilizing
Property 2 that all harvested energy will be exhausted at the
end of data transmission, i.e., EN

r =0, a high-order recursive
equation EN

r =D(p⇤1)=0 is available, which can be solved via
a numerical approach like Newton’s method and Steffensen’s
method. The computational complexity solving the high-order
recursive equation mainly depends on the required precision.
For instance, the time complexity of the Newton’s method
to solve D(p⇤1) = 0 with n-digit precision is O(log n)F(n),
where F(n) is the cost of calculating D(p⇤1)/D

0(p⇤1).

VI. NUMERICAL EVALUATION

In this section, we evaluate the performance of the of-
fline optimal transmission strategy with the energy clamp
phenomenon. To be specific, we compare the transmission
scheduling policies with and without considering the energy
clamp phenomenon.

Both transmission policies use the same objective function
as illustrated in P1. The differences lie in the ways how
the instantaneous charging voltage and charging capacity are
treated. In the energy clamp model, dynamic charging voltage
and charging capacity (i.e., V i

max and Ei
max) are calculated

based on the strength of incident energy. By contrast, in
the benchmark policy that does not consider the impact of
varying RF power density on the charging voltage, constant
charging voltage and charging capacity, which are denoted by
Vmax and Emax respectively, are assumed. We first analyze
the differences between the behaviors of two transmission
strategies in an 8-tunnel example. Afterward, the performance
enhancements with the energy clamp model is presented and
then some practical issues are discussed.

A. Behaviors of Optimal Transmission Strategy with the en-
ergy clamp model and the conventional model

In Fig. 12, we illustrate the energy tunnel and the transmis-
sion consumption curves for the offline optimal transmission
policies with the energy clamp model and the benchmark
policy with the conventional model that ignores the dynamic
charging voltage. The red staircase curves and the blue dash
ones forms energy tunnels for the energy clamp model and
the benchmark policy, respectively. The top staircase curves
are the accumulative energy harvested with two strategies. The
vertical distance (i.e., width of energy tunnel) between a pair
of staircase curves is the dynamic charging capacity of battery.

As demonstrated in Fig. 12, after considering the vary-
ing strength of RF waves, the tunnel width in the energy

clamp model changes significantly over time. The conventional
model, by contrast, has a fixed tunnel width. Moreover, the
end of the red step curve is higher than the end of blue one,
which indicates that more energy can be harvested with the
energy clamp model than the conventional one. This is because
as revealed in (3) and (4), the amount of energy that can
be harvested from the environment (i.e., Ei

h) depends on the
instantaneous charging capacity (i.e., Ei

max); the conventional
model, however, overlooks the dynamics in Ei

max and thus
has an inaccurate estimation on Ei

h, which in turns results in
less harvested energy.
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Figure 12: Transmission strategy with the energy clamp model and
benchmark method.

The red and the blue piecewise linear curves in Fig. 12 in-
dicate the accumulative energy consumption of the two trans-
mission strategies. By comparing two transmission strategies,
we observe that the accumulative energy consumption with
the energy clamp model has more variations in transmission
power than that with the benchmark strategy. To be specific,
the energy clamp model may sharply increase the transmission
power to avoid energy clampping (e.g., in [3 s ! 5 s] and
[12 s ! 13 s]) when the width of the incoming tunnel decreases
(e.g., at 5 s and 13 s), while reducing the transmission power
(e.g., in [5 s ! 7.9 s]) when the next energy packet has high
intensity (e.g., at 7.9 s).

The logic behind it is that the ratio of the buffered energy,
Ei�1

r , to the instantaneous charging capacity, Ei
max, affects

the energy harvest efficiency6. As discussed in [33], accord-
ing to the nonlinear charging feature of the energy buffer,
the harvester achieves the highest harvest efficiency around
Ei�1

r /Ei
max = 0.25. However, it is worth noting that more

harvested energy does not guarantee a higher throughput, as
Ei�1

r also influences the efficiency of energy utilization7 as
shown in (7). Therefore, the optimal transmission strategy
seeks a tradeoff between the energy harvest efficiency and
energy utilization efficiency.

By contrast, the transmission power shows less changes in
the benchmark strategy. By assuming constant charging volt-
age, the variation of tunnel width is overlooked. The energy

6The energy harvest efficiency characterizes the ability of the EH system
to actually capture the energy at a given intensity of arrival energy.

7The energy utilization efficiency as the ratio of transmitted data to the
amount of harvested energy,

P
i E

i
h characterizes how efficient the EH system

utilize the harvested energy.



tunnel bounded by the blue dash staircase curves actually does
not exist in the real world. Therefore, the capacity constraint
of energy buffer in the benchmark transmission scheduling
cannot fully avoid the energy overflow. Especially when the
instantaneous charging capacity reduces in the environment
(e.g., at 13.1 s in Fig. 12), energy overflows are highly likely
to incur and cause low energy harvest efficiency. In addition
to possible energy overflow, the conventional strategy also
has lower utilization efficiency than the energy clamp model.
The transmission policies are supposed to utilize all the
cumulative energy at the end of the experiment to avoid energy
waste. However, owing to the unrealistic assumption on the
instantaneous charging capacity, the benchmark policy won’t
be able to accurately estimate the amount of harvested energy,
Ei

h. As shown in Fig. 12, in the 8-tunnel example, there is
energy left over when the test ends at 17 s. The wasted energy
further reduces the performance of the benchmark strategy.

B. Performance Comparison
In the following evaluations, we will verify that the trans-

mission strategy with the energy clamp model has superior
performance in terms of harvested energy and throughput
compared to that with the conventional model.
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Figure 13: Harvested energy and throughput with respect to accu-
mulative energy arrivals.

Fig. 13 illustrates the amount of harvested energy and the
amount of transmitted data of two strategies in 100 indepen-
dent tests. The corresponding charging voltage, V i

max, for each
energy packet has a uniform distribution with 2.25 V mean and
20% relative standard deviation8. The length of energy packet
in seconds also has a uniform distribution, Ui ⇠U(5, 30).

We define the energy harvest efficiency as the ratio of the
amount of harvested energy,

P
i Ei

h, to the efficient energy
that reaches battery. It characterizes the ability of the EH
system to actually capture the energy and store the energy
in battery. From the V i

max and P i
e relationship demonstrated

8Relative standard deviation, also called coefficient of variation, is defined
as the ratio of standard deviation � to the mean µ.

in Fig. 3, we observe that when P i
e is between 0.05 mW and

0.5 mW (i.e., -14.5 dBm and -1 dBm), (V i
max)2 is nearly

proportional to P i
e . Therefore, we use

P
i Ui(V i

max)
2, as an

indicator to represent the efficient energy reached the energy
buffer. The indicator of energy harvest efficiency, (i.e., y-
axis of Fig. 14) is thus calculated as the ratio of

P
i Ei

h
to

P
i Ui(V i

max)2. Due to the randomness of V i
max and Ui,P

i Ui(V i
max)

2 has a vast variation, ranging from 400 to
1, 500, among different tests. Therefore, the x-axis of Fig. 13
and Fig. 14 also indicates the variation of energy intensity:
the further

P
i Ui(V i

max)
2 deviates from the average (i.e.,

around 900), the larger variation V i
max has. In some tests

when
P

i Ui(V i
max)

2 is between 700 and 1, 000, the variation
of V i

max is moderate. When
P

i Ui(V i
max)

2 is below 600 or
above 1, 200, V i

max has significant variations; this is also the
scenario when the energy clamp model and the conventional
model have large performance gap.
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Figure 14: Efficiency of energy harvest and energy utilization with
accumulative energy arrivals.

The transmission strategy with the energy clamp model is
able to adapt to the dynamics of incident RF power and achieve
linear performance growth when more energy is available in
the air, which indicates a stable efficiency of energy harvest as
shown in the top figure of Fig. 14. By contrast, the benchmark
strategy with conventional model assumes constant Vmax and
has inaccurate estimation on the amount of energy that can
be truly harvested. It, therefore, achieves much lower energy
harvest efficiency than the energy clamp model as shown in
the top figure of Fig. 14.

We define the energy utilization efficiency as the ratio of
transmitted data to the amount of harvested energy,

P
i Ei

h,
in the offline optimal transmission policy. It characterizes how
efficient the EH system utilize the harvested energy. According
to Property 1 and its proof in [6], a good energy utilization
efficiency is generally achieved when the transmission power
is low and has least variation. As demonstrated in Fig. 12 of the
manuscript, in order to adapt to the dynamics of incident RF
power, the transmission power needs to adjust accordingly to



avoid energy clamp phenomenon. Therefore, the transmission
power in energy clamp model has more variations than that
in the conventional EH model as shown in the bottom figure
of Fig. 14. As a result, the energy utilization efficiency of
conventional policies is higher when

P
i Ui(V i

max)
2 is less

than 900 (i.e., with small V i
max the energy waste less occurs).

However, higher energy utilization efficiency cannot guaran-
tee higher throughput since the lower energy harvest efficiency
may compensate for the benefit of higher utilization efficiency.
One example is the transmission policy in conventional EH
model. Although when

P
i Ui(V i

max)
2 is less than 900, it

achieves higher utilization efficiency than the energy clamp
model, its energy harvest efficiency is much lower due to its
inaccurate estimation on Ei

h under the impact of varying V i
max.

When the Ei
h is underestimated (i.e.,

P
i Ui(V i

max)
2 is larger

than 900), the energy waste occurs in an often manner and the
offline optimal transmission policy in the energy clamp model
outperforms that in conventional EH model in terms of both
energy harvest efficiency and energy utilization efficiency.

Note that the performance gap between the energy clamp
model and the conventional model increases when the Vmax

has a high variation (i.e., low or high
P

i Ui(V i
max)2 in

Fig. 13). The reason is obvious: the larger the deviation of
V i

max from the mean value, the worse the traditional model’s
estimate of the harvested energy. It, in turn, leads to worse
throughput. The same phenomenon is also revealed in Fig. 15.
In the test, we change the deviation and mean value of V i

max

to evaluate their impact on the performance enhancement with
the energy clamp model.
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Figure 15: Energy harvest and transmission rate with respect to the
standard deviation of incident RF energy.

In the top figure of Fig. 15, the mean of V i
max is 2.25 V

and the relative standard deviation varies from 6% to 32%.
Each errorbar plot comes from 100 independent tests. As
shown in the figure, regardless the significance of deviation,
the transmission strategy with the energy clamp model always
have positive performance improvement in terms of harvested
energy and throughput than the benchmark strategy with the
conventional model. The performance enhancement increases

with the growth of V i
max’s deviation. As revealed in Fig.7, the

relative standard deviation of charging voltage tested in real
experiment is 17.9% with 1 dBi, which could lead to about
16% performance enhancement with the energy clamp model.

We also varied the mean value of the V i
max and demonstrate

the performance enhancement with the energy clamp model
in the bottom figure. In these tests, the relative standard
deviation was fixed as 20%. As shown in Fig. 7, the varying
average strength of RF waves has no obvious impact on the
performance difference.

From the above analysis, we can conclude that 1) con-
ventional models fail to accurately estimate the amount of
harvested energy, which in turns degrades the throughput
performance of existing transmission strategies; 2) the trans-
mission strategy with the energy clamp model is able to
adapt to highly dynamic RF strength and achieves linear
performance growth there is more energy in the air; 3) the
transmission strategy with the energy clamp model always
achieves higher throughput than that with the conventional
model; and 4) the significance of performance enhancement
grows with the growing fluctuations of the signal strength.

VII. ONLINE TRANSMISSION SCHEDULING

Although the offline optimal policy can achieve the highest
throughput under the limited energy constraints, it is not
feasible in practice due to two essential limitations. First,
it’s non-causal as it assumes to know all the future energy
arrivals. Second, as the length of feasible energy tunnel grows,
the computation complexity of the nonlinear optimization
problem in Section V-C increases significantly. Following
these concerns, we investigate the possibility of dividing long
tunnels into shorter ones and using prediction to assist in the
online transmission scheduling.

In the simulation evaluation, we assume that the original
length of the energy tunnel, N , is 64. Instead of scheduling
the transmissions in the 64-tunnel at one time, we break the
64-tunnel into shorter ones and seek for individual optimal
transmission strategy in each sub-tunnel. A suboptimal solu-
tion will be obtained by combining the transmission strategies
in all sub-tunnels. In this transition, we expect a performance
degradation compared to the original optimal solution. Consid-
ering the ultra-low energy harvest efficiency when the energy
buffer is completely drained, we arrange an amount of energy
left over at the end of each sub-tunnel. The residual energy,
Er, in the previous period will be the initial energy, Ê0, of
energy buffer in the following sub-tunnel.

Fig.16 (a) shows the performance degradations when we di-
vide the long 64-tunnel into shorter ones (i.e., N =32, 16, 8, 4
and 2). Take N =2 on the blue curve as an example. Since we
set a constant Ê0 = 0.2Emax, the residual energy at the end
of each sub-tunnel (i.e., E2·i

r , i = 1, ..., N/2) will be fixed to
0.2Emax. However, by observing Fig. 12, we can see that the
residual energy, Ek

r , varies in the offline optimal transmission
strategy. The diverge of Ê0 from Ek

r leads to the performance
degradation. Therefore, the value of Ê0 has significant influ-
ence on the performance of the suboptimal solution. As shown
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Ê0 = 0:4 " Emax

64 32 16

Figure 16: Performance degradation when using shorter tunnel.

in Fig. 16 (b), for sub-tunnels with N = 2, the performance
degradation is less than 1% when Ê0 is around 0.15Emax.
This result confirms the possibility of dividing long tunnels
into shorter ones without much performance degradation in
the offline optimal transmission scheduling.

By reviewing the behaviors of offline optimal transmission
policy in the energy clamp model illustrated in Fig. 12, we
observe that the optimal transmission power, p⇤i , depends
more on the charging voltage of the next harvesting cycle,
V i+1

max, than on the current charging voltage. The system
needs to increase the energy consumption rate (i.e., higher
transmission power) to avoid energy clamp if the next charging
voltage will reduce, while reducing the transmission power for
better energy harvest and utilization efficiency when the next
charging voltage will increase.

The feasibility of dividing long tunnels into shorter ones
(i.e., N = 2) and the dependences of the current transmis-
sion power on the incoming charging voltage advocate the
prediction based online transmission strategy. The prediction
based online policy makes the online transmission scheduling
every 2 tunnels. It calculates the transmit power (i.e., p⇤1 and
p⇤2) according to the observed battery energy (i.e., E1

r ), the
current energy arrival (i.e., E1

h) and the estimated incoming
charging voltage (i.e., V 2

max). According to (13) and (5), p⇤2
and the next energy arrival (i.e., E2

h) can be represented by
p⇤1. Instead of drain the battery at the end of N th tunnel in
the offline policy, we left 0.15Emax amount of energy in the
battery at the end of the 2nd tunnel. This online transmission
power decision is thus converted to a Quadratic equation of
p⇤1 that can be easily solved using numerical methods.

By leveraging the weak correlation among energy pack-
ets [34], it is feasible to predict the strength of RF waves
in the near future. Next, we use a simple autoregressive
(AR) [35] model of order 4 as the one-step-ahead predictor.
In the simulation, we use the experimental data demonstrated
in Fig. 7 to generate a series of practical dynamic charging
voltage for Powercast energy harvester. Without loss of gen-
erality, we assume that the charging voltage does not change

within one harvest cycle but varies among different cycles as
shown in Fig. 17 (a). The relative standard deviation of Vmax

is 16.4%, slightly lower than the original measured charging
voltage. The 4-order AR (i.e., AR-4) model shown in (14) is
applied to predict the incoming charging voltage, V 2

max. Next,
we conduct numerical evaluations to verify the feasibility of
prediction based online transmission strategy when energy
clamp phenomenon is considered.

V i
max = �

pX

j=1

ajV
i�j
max + w[i]. (14)

The AR-4 model based one-step-ahead predictor achieves
7.6% normalized root mean-square error (RMSE). The corre-
sponding performance gap compared with the offline optimal
approach is about 0.5%. With more advanced prediction meth-
ods such as In order to evaluate the performance degradation
in terms of throughput and harvested energy resulted from
the errors in the prediction, we manually added prediction
errors ranging from 1% to 14% and showed the results in
Fig. 17 (b). As displayed in the figure, compared to the offline
optimal solution, the performance degrades by 0.1% to 3%
when prediction error is changed from 1% to 14%. The
low performance degradation of AR-4 based online policy
verifies the feasibility of prediction based online suboptimal
transmission strategy in reality.
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Figure 17: Performance evaluation of online transmission strategy.

VIII. CONCLUSION

In this work, we revealed the phenomenon of varying
charging voltage in the RF energy harvesting system that is
caused by the dynamic RF strength in the environment. We
proposed an energy clamp model to accurately describe the
variations in the charging voltage and instantaneous charging
capacity. Based on the new energy clamp model, the offline
optimal transmission scheduling is proposed. Due to the



nonlinear charging feature of energy buffer and the dynamic
charging voltage, the amount of energy to be harvested is not
predetermined but varies with the data transmission strategy.
Therefore, we proposed a new offline optimal transmission
scheduling strategy that jointly optimize energy harvest and
energy utilization. Simulation results have demonstrated that
proposed offline optimal transmission scheduling with the
energy clamp model well adapts to the dynamic RF environ-
ment and achieves higher performance than the conventional
strategies. The research of this paper is expected to shed light
on the future research of practical energy harvesting powered
wireless communications.
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APPENDIX

A. Simplifying Optimization Problem P1
Here, we prove that the constraint C2 in the optimization

problem P1 can be removed if an RF-EHS selects a superca-
pacitor as its energy buffer. This can be achieved by proving
that any transmission strategy can naturally meet C2 if the
charging function is (3).

Proof. We first rewrite C2 in (6) as follows:

Ei+1
h + Ei

r  max
�
Ei+1

max, Ei
r

 
, i = 1, . . . , N � 1. (A.1)

Next, we investigate two cases separately: (a) Ei
r �Ei+1

max and
(b) Ei

r <Ei+1
max.

Case 1: If Ei
r �Ei+1

max, max
�
Ei+1

max, Ei
r

 
=Ei

r and Ei+1
h =0

according to (5). In this case, (A.1) becomes Ei
r  Ei

r. Appar-
ently, any data transmission strategy satisfies that condition.

Case 2: If Ei
r < Ei+1

max, max
�
Ei+1

max, Ei
r

 
= Ei+1

max and
Ei+1

h =C(Ei
r, Ui+1, Ei+1

max). (A.1) becomes

C(Ei
r, Ui+1, Ei+1

max) + Ei
r  Ei+1

max (A.2)

Let Ui+1

RC , �, then substituting (3) and (4) into (A.2), the left
side of (A.2) is

C(Ei
r Ui+1, Ei+1

max) + Ei
r

= A1
i+1(A

2
i+1)

2+A1
i+1A

3
i+1(E

i
r)

1
2 +A1

i+1A
4
i+1(E

i
r + 1)

=
�
1�e��

�
Ei+1

max+2
�
e��

�e�2�
��

Ei+1
max Ei

r

� 1
2 +e�2�Ei

r

=
h
e��

�
Ei

r

� 1
2 + (1 � e��)

�
Ei+1

max

� 1
2

i2
.

(A.3)
Substituting (A.3) into (A.2) and performing square root
operations on both sides of the inequality, we get

h
e��

�
Ei

r

� 1
2 + (1 � e��)

�
Ei+1

max

� 1
2

i
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�
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� 1
2

) e��
�
Ei

r

� 1
2
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Ei+1

max

� 1
2

)
�
Ei

r

� 1
2


�
Ei+1

max

� 1
2 .

(A.4)

For any transmission strategy, the inequality in (A.4) is always
true since Ei

r < Ei+1
max.

According to the above proof, it can be realized that
constraint C2 in P1 is always satisfied if the charging function
of an energy buffer is (3). Therefore, C2 is redundant and we
can remove it from the optimization problem without affecting
the optimal solution.

B. KKT conditions of Problem P2

Stationarity:

rp⇤
m
L =rp⇤

m

 
N+1X

i=1

LiB

2
log2
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|hi|
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BN0

!!

�

NX
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�irp⇤
m

0

@
iX
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p⇤jLj �

iX
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Ej
h�E0

1

A, m=1, . . . , N

(A.5)
where L is the Lagrangian depending on pi, �i and µi; rx(·)
represents the partial derivative with respect to x, and m =
1, . . . , N+1.

Primal feasibility:

iX

j=1

p⇤jLj �

i�1X

j=1

Ej
h�E0  0, i = 1, . . . , N. (A.6)

Dual feasibility: �i � 0, i = 1, . . . , N. (A.7)

Complementary slackness:

�i
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@
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