Bioinformatics,YYYY, 0-0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY

Applications Note

Genome analysis

ViralMSA: Massively scalable reference-guided

multiple sequence alignment of viral genomes

Niema Moshiri'*

'Department of Computer Science & Engineering, UC San Diego, La Jolla, 92093, USA

*To whom correspondence should be addressed.
Associate Editor: X0XXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: In molecular epidemiology, the identification of clusters of transmissions typically
requires the alignment of viral genomic sequence data. However, existing methods of multiple
sequence alignment scale poorly with respect to the number of sequences.

Results: ViralMSA is a user-friendly reference-guided multiple sequence alignment tool that
leverages the algorithmic techniques of read mappers to enable the multiple sequence alignment of
ultra-large viral genome datasets. It scales linearly with the number of sequences, and it is able to
align tens of thousands of full viral genomes in seconds. However, alignments produced by

ViralMSA omit insertions with respect to the reference genome.

Availability: ViraIMSA is freely available at https://github.com/niemasd/ViralMISA as an open-source

software project.
Contact: almoshir@Qucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Real-time or near real-time surveillance of the spread of a pathogen can
provide actionable information for public health response (Poon et al.,
2016). Though there is currently no consensus in the world of molecular
epidemiology regarding a formal definition of what exactly constitutes a
“transmission cluster” (Novitsky et al., 2017), all current methods of
inferring transmission clusters require a multiple sequence alignment
(MSA) of the viral genomes: distance-based methods of transmission
clustering require knowledge of homology for accurate distance
measurement (Pond et al., 2018), and phylogenetic methods of
transmission clustering require the MSA as a precursor to phylogenetic
inference (Balaban et al., 2019; Ragonnet-Cronin et al., 2013; Prosperi
etal.,2011).

The standard tools for performing MSA such as MAFFT (Katoh &
Standley, 2013), MUSCLE (Edgar, 2004), and Clustal Omega (Sievers &
Higgins, 2014) are prohibitively slow for real-time pathogen surveillance
as the number of viral genomes grows. For example, during the
COVID-19 pandemic, the number of viral genome assemblies available
from around the world grew exponentially in the initial months of the
pandemic, but MAFFT, the fastest of the aforementioned MSA tools,
scales quadratically with respect to the number of sequences.

In the case of closely-related viral sequences for which a
high-confidence reference genome exists, MSA can be accelerated by
independently comparing each viral genome in the dataset against the

reference genome and then using the reference as an anchor to merge the
individual alignments into a single MSA (Pond ef al., 2018).

Here, we introduce ViralMSA, a user-friendly open-source MSA tool
that utilizes read mappers such as Minimap2 (Li, 2018) to enable the
reference-guided alignment of ultra-large viral whole-genome datasets.

2 Related work

VIRULIGN is another reference-guided MSA tool designed for viruses
(Libin et al., 2019). While VIRULIGN also aims to support MSA of
large sequence datasets, its primary objective is to produce codon-correct
MSAs (i.e., avoiding frameshifts), making it appropriate for aligning
coding regions, whereas ViralMSA’s primary objective is to align whole
viral genomes in real-time. Further, ViraIlMSA is orders of magnitude
faster than VIRULIGN (Fig. 1) and uses a fraction of the memory.

3 Results and discussion

ViralMSA is written in Python 3 and is thus cross-platform. ViraIMSA
depends on BioPython (Cock ef al., 2009) and whichever read mapper
the user chooses, which is Minimap2 by default (Li, 2018). In addition to
Minimap2, ViralMSA supports STAR (Dobin et al., 2013), Bowtie 2
(Langmead & Salzberg, 2012), and HISAT2 (Kim et al., 2019), though
the default of Minimap2 is strongly recommended: Minimap2 is much
faster than the others (Li, 2018) and is the only mapper that consistently
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succeeds to align all genome assemblies against an appropriate reference
across multiple viruses. ViraIMSA’s support for read mappers other than
Minimap2 is primarily to demonstrate that ViralMSA is flexible,
meaning it will be simple to incorporate new read mappers in the future.

ViraIMSA takes the following as input: (1) a FASTA file containing
the viral genomes to align, (2) the GenBank accession number of the
reference genome, and (3) the mapper to utilize (Minimap2 by default).
ViralMSA will pull the reference genome from GenBank and generate
an index using the selected mapper, both of which will be cached for
future alignments of the same viral strain, and will then execute the
mapping. ViraIMSA will then process the results and output an MSA in
the FASTA format. For commonly-studied viruses, the user can simply
provide the name of the virus instead of an accession number, and
ViralMSA will select an appropriate reference genome. The user can also
choose to provide a local FASTA file containing a reference genome,
which may be useful if the desired reference does not exist on GenBank
or if the user wishes to conduct the analysis offline.

Because it uses the positions of the reference genome as anchors with
which to merge the individual pairwise alignments, ViraIMSA only
keeps matches, mismatches, and deletions with respect to the reference
genome: it discards all insertions with respect to the reference genome.
For closely-related viral strains, insertions with respect to the reference
genome are typically unique and thus lack usable phylogenetic or
transmission clustering information, so their removal results in little to
no impact on downstream analyses (Tab. 1).
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Fig. 1. Execution time. Execution time for SARS-CoV-2 MSAs (genome length 29kb)
estimated by VIRULIGN, MAFFT, and ViralMSA for various dataset sizes. All runs were
executed sequentially on an 8-core 2.0 GHz Intel Xeon CPU with 30 GB of memory.

Table 1. Multiple sequence alignment accuracy

Virus  MAFFT (5) ViralMSA (S) MAFFT (P)  ViralMSA (P)
Ebola 0.9957 0.9873 0.9998 0.9816
HCV 0.9995 0.9506 0.9999 0.9678
HIV-1 0.9786 0.9705 0.9957 0.9941

Correlation coefficients are shown for Mantel tests between curated “ground truth”
MSAs and those estimated by MAFFT and ViralMSA. S and P denote Spearman
and_Pearson Correlation, respectively. 1 indicates perfect correlation, -1 indicates
perfect anticorrelation, and 0 indicates no correlation.

In order to assess MSA estimation accuracy, we obtained curated Ebola,
HCV, and HIV-1 full-genome MSAs from the Los Alamos National
Laboratory (LANL) Sequence Databases, which we used as our ground
truth. In order to benchmark MSA runtime, we obtained a large
collection of SARS-CoV-2 complete genomes from the Global Initiative
on Sharing All Influenza Data (GISAID) database. VIRULIGN crashed
when run on all datasets aside from the SARS-CoV-2 dataset.

To measure performance, we subsampled the full SARS-CoV-2
dataset, with 10 replicates for each dataset size, and then computed
MSAs of each replicate. ViralMSA is consistently orders of magnitude
faster than both MAFFT and VIRULIGN (Figs. 1, S1). Further, for all
SARS-CoV-2 datasets, both ViraIMSA and MAFFT required less than 1
GB of memory, but VIRULIGN required ~10 GB of memory.

Because ViralMSA’s objective is to be utilized in real-time
applications such as transmission clustering workflows, which typically
rely on pairwise distances between samples, we computed pairwise
distance matrices from each MSA under the TN93 model of sequence
evolution (Tamura & Nei, 1993) using the pairwise distance calculator
implemented in HIV-TRACE (Pond et al., 2018). Then, we measured
alignment accuracy by computing the Mantel correlation test between
the distance matrix of the curated (“true”) MSA against that of each
estimated MSA. ViralMSA seems to produce MSAs with just slightly
lower accuracy than those produced by MAFFT across different viruses
(Tab. 1) and different levels of subsampling (Figs. S2-S3). Furter, both
MAFFT and ViralMSA seem to produce MSAs that tend to
underestimate TN93 distance, with MSAs produced by ViralMSA
underestimating slightly more significantly (Fig. S4).

To obtain a phylogenetic metric of accuracy as well, we inferred
phylogenies from each MSA under the General Time Reversible (GTR)
model (Tavaré, 1986) with the “Gamma20” model of site-rate
heterogeneity using VeryFastTree (Pifieiro et al., 2020). We then
compared the phylogenies inferred from the curated (“true”) MSA
against those inferred from each estimated MSA by computing the
normalized Robinson-Foulds (RF) distance (Robinson & Foulds, 1981),
a metric ranging from 0 to 1, with 0 indicating identical tree topology.
The MSAs estimated by ViralMSA yielded phylogenies with far better
topological accuracy (RF 0.531, 0.411, and 0.599 for Ebola, HCV, and
HIV-1) than those estimated by MAFFT (0.956, 0.965, and 0.994).

Note that ViraIMSA’s speed and accuracy stem from the algorithmic
innovations of the selected read mapper (not from ViralMSA itself),
meaning ViralMSA can natively improve as read mapping tools evolve.
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