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Abstract—This paper addresses the problem of opti-
mally controlling trajectories of autonomous mobile agents
(e.g., robots) so as to jointly minimize travel time and
energy consumption in the presence of multiple spatio-
temporal constraints on these trajectories. In addition to
state and input constraints, we impose spatial equality
and temporal inequality constraints viewed as interior-point
constraints. We address this problem by first identifying the
structure of the optimal agent controllable acceleration pro-
file and showing that it is characterized by several param-
eters subsequently used for trajectory design optimization.
Therefore, the infinite dimensional optimal control problem
is transformed into a finite dimensional parametric opti-
mization problem. The proposed algorithm is applied to the
eco-driving problem of autonomous vehicles approaching
multiple signalized intersections. We include simulation re-
sults to show quantitatively the advantages of the proposed
solution.

Index Terms— Autonomous agents, intelligent vehicles,
optimal control, spatio-temporal constraints, trajectory op-
timization

[. INTRODUCTION

HE operation of autonomous mobile agents, such as

autonomous vehicles and unmanned aerial vehicles, re-
quires an agent to travel on a planned reference trajectory.
Applications include coverage control [1]-[3], intersection
control of connected automated vehicles [4], [5], data har-
vesting [6], and persistent monitoring [7]-[10]. Often, these
tasks are dictated under a requirement for both time and
energy efficiency. Therefore, it is essential to develop real-
time optimal control algorithms to enable such tasks.

In this paper, we focus on a class of problems in which a
mobile agent (e.g., robot) follows a predetermined reference
trajectory which includes a series of “gateways” whose state
switches over time between open and closed, thus defining
both spatial and temporal constraints. An additional require-
ment is to finish this task in a way which is both time
and energy efficient. Such problems are usually solved by
using temporal logic and formal methods [11], [12]. Here,
we aim to tackle this problem by using calculus of variations
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methods within the optimal control framework [22]. There are
several aspects of this problem that make it challenging. The
major one is the switching of the gateway states which makes
crossing the gateway impossible for a period of time. This
can be modeled via interior point constraints. The interior
point constraints include specifically spatial equality con-
straints which relate to the location of gateways and temporal
inequality constraints which characterize the gateway open
time. Note that the unavailability of gateway access creates
discontinuities in the feasible space of the gateway crossing
time. These discontinuities lead to non-convex optimization
problems in which the global optimal solution is not generally
guaranteed. However, it follows from the theoretical analy-
sis that the optimal controllable acceleration profile can be
parameterized by a piece-wise linear function of time. Due
to the speed and acceleration constraints, we show that there
is only a limited number of cases for each gateway crossing
time, which greatly reduces the feasible range of each such
variable. After determining each gateway crossing interval,
the dynamic trajectory optimization problem is transformed
into an equivalent much simpler static parameter optimization
problem.

One particular application of the above problem is the eco-
driving of a single autonomous vehicle or the leading au-
tonomous vehicle of a platoon approaching multiple signalized
intersections in the free flow mode. In this case, an intersection
corresponds to a “gateway” and the traffic light signaling
mechanism is the switching controller that provides access to
it. The term “ECO-AND” (short for “Economical Arrival and
Departure”) is coined in the literature to refer to this problem
[13]. The solution of the ECO-AND problem is made possible
by vehicle-to-infrastructure (V2I) communication, which en-
ables a vehicle to automatically receive signals from upcoming
traffic lights before they appear in its visual range. Along these
lines, the problem of avoiding red traffic lights is investigated
in [4], [14]-[19]. Most existing work solves the eco-driving
problem with traffic light constraints numerically, invoking
methods such as using dynamic programming [4], and model
predictive control [14]. Such numerical approaches may have
the advantage of incorporating complex models. However,
to enable the real-time use of such eco-driving methods, it
is desirable to have an on-line analytical solution. If one
is available, then whenever a vehicle is rerouted, a solution
can be calculated with new initial conditions. In addition,
an analytical solution provides a reference trajectory and a
theoretical performance bound. The eco-driving problem for a
single isolated signalized intersection was addressed in [20].
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The approach proposed here considers multiple intersections
as a whole and includes the single intersection scenario as a
special case. Moreover, additional constraints, such as driving
comfort, or constrained turning speed, can be added to make
the solution more practical. Our analysis offers a real-time an-
alytical solution to eco-driving of autonomous vehicles cross-
ing multiple signalized intersections without stopping. We
illustrate the effectiveness of the proposed optimal parametric
approach through several simulation examples and show that
it yields better results compared with our previous eco-driving
approach [20] applied to each intersection individually.

The key contributions of this paper are as follows: (i)
We characterize the form of the optimal acceleration profile
for a class of trajectory optimization problems subject to
spatio-temporal constraints. (ii) The proposed parametrization
approach is applied to the eco-driving problem of autonomous
vehicles approaching multiple signalized intersections. (iii)
The eco-driving problem is equivalently transformed into a
solvable parameter optimization problem which enables a real-
time online implementation.

The rest of the paper is organized as follows. In Sec-
tion II, we formulate the autonomous mobile agent trajectory
optimization problem including spatio-temporal constraints.
Section III gives an in-depth analysis of the form of the op-
timal acceleration solution, and discusses its parametrization.
Section IV presents the extension to /N gateways and special-
ization to 1 gateway. Section V uses the proposed framework
to design the optimal acceleration profile for autonomous vehi-
cles approaching multiple signalized intersections, followed by
simulation results in Section VI. Section VII offers conclusive
statements derived from the theoretical analysis and simulation
results.

Il. PROBLEM FORMULATION

An agent travels on a pre-calculated route from origin
to destination. There are N gateways (as defined in the
Introduction) along the path. The distance between the agent’s
initial location to the first gateway is [y, and the distance
between gateway ¢ and gateway ¢ — 1 is [; as shown in Fig. 1.
For each gateway i, there are alternating open and closed
intervals, which are denoted as 7T (green lines in Fig. 1) and
T (red lines in Fig. 1), respectively. When an agent arrives at
gateway ¢ at t € T}, it can go through the gateway right away.
However, if the agent arrives at gateway ¢ at ¢ € T, it has to
wait until the gateway is open. Therefore, its gateway crossing
time belongs to the set {f > ¢| € T}. Note that the gateway
open and closed intervals are nonuniform, and we assume that
the information is available to the agent.

The autonomous mobile agent dynamics are modeled by a
double integrator

E(t)=v(t), o)=u(l)), (1)
where x (t) is the travel distance of the mobile agent relative
to some origin, v (¢) the velocity, and w (t) the accelera-
tion/deceleration. At ¢y, the initial travel distance and velocity
are given by x (t9) = xo and v (tg) = vp, respectively. The
agent has the minimum and maximum speed constraints

0 S Umin S v (t) S Umax ) (2)

I

Fig. 1. A sample of gateway locations and open/closed time

A\ 4

where Vi, and v,y are the minimum and maximum per-
missible speed of the mobile agent, respectively. The physical
constraints on acceleration and deceleration are given by

Umin S u (t) S Umax (3)

where Umin < 0 and upmax > 0 denote the maximum
deceleration and acceleration, respectively.

Let {t;}V, be a sequence of times when an agent crosses
the gateways with ¢; 1 > t;. This also implies that z (¢;) =
2221 l;. Since t; is the gateway crossing time, it must be
within the gateway open interval, that is, ¢; € T;.

Our objective is to optimize the trajectory of the agent going
through all gateways in terms of both travel time, which is
defined by the time when the last gateway is crossed, and
energy consumption. The objective function is

tn
J=p:(tn —to) + pu/ u? (t) dt, 4
to
where p; and p, are weight parameters to normalize the two
terms in (4) for the purpose of a well-defined optimization
problem, and ¢y is the time when the agent passes through
the last gateway. Here J' = ty — tg is the trip time, and we
define .
N
J¢ = / u? (t) dt (5)
to
as a measure of the energy cost.

Therefore, the problem formulation of the trajectory opti-
mization problem with spatio-temporal constraints (TOSTC)
is given below:

Problem 1: TOSTC Problem

tN
min p; (ty — to) + pu/ u? (t) dt

u(t) to
subject to (1) and
:c(ti):z;_zllj,izl,...,]\f ©6)
Umin < ¥ (t) < Umax (7
Umin < U (t) < Umax (8)
t; €T, i=1,...,N. 9)

Due to the discontinuity of the gateway open interval 77,
gradient-based algorithms are not applicable to this problem.
To make the problem solvable, a pruning algorithm may be
used firstly to identify all possible paths by taking advantage
of the velocity and acceleration constraints, and traffic signal
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phase and timing information [18]. After all feasible gateway
crossing time intervals have been found, the solutions in
Section III to the optimization problems can determine the
optimal gateway crossing time with a known gateway crossing
time interval. Lastly, the performance of all possible paths is
compared to select the optimal one. Details are omitted and we
instead make the assumption that the optimal gateway crossing
time t; is unknown but it belongs to a subset of the gateway
open set 77, that is, ¢; € [t;,t;] C T with known ¢; and ¢;.

1. MAIN RESULTS

Before proceeding further, let us introduce a lemma, which
will be used subsequently.

Lemma 1: Consider the agent’s dynamics (1) with initial
conditions zy and vg. If the acceleration or deceleration profile
of the agent has the form u (¢) = at+b during the time interval
[to, 1], where a and b are two constants, then

a
v (t)) =vg + bt —to) + 3 (1T —13).
1
€T (tl) =Zg + Vo (tl — to) —+ ib(tl — t0)2
a

+5 (£} +2t5 — 3t5t1)
Bk
where J“ is defined in Section II.
The proof is straightforward by integrating the kinematic
model in (1) and by using the definition of J“ in (5).

In order not to overshadow the main ideas in our analysis,
we consider the case of two gateways initially. Then, we

will show how the proposed method is applicable to multiple
gateways.

JU (8 —t3) +ab (&5 —t5) +b* (t1 — to),

A. Optimal Control Analysis

The main challenge stems from the interior-point constraints
(6) and (9), which are spatial equality constraints and temporal
inequality constraints, respectively. Other constraints, such
as state, acceleration/deceleration, and terminal constraints,
can be studied using the direct adjoining approach [21]. The
following theorem shows the optimal acceleration profile when
the interior-point constraints are imposed.

Theorem 1: The optimal acceleration u* (¢) of Problem 1
has the form u* (¢t) = a (¢) t + b (t), where a (t) and b (¢t) are
piece-wise constant functions of .

Proof: The interior-point constraints are dealt with by
using the calculus of variations methodology borrowed from
[22] with certain modifications. The Hamiltonian H (v, u, \)
and Lagrangian L(v,u, A, u, 7)) are defined as

H (v,u,\) = pg + puti® (1) + M1 () v (£) + A2 (8) u (2)
and
L (v,u, A\, u,m) = H (v,u, A)

+ 101 (8) [Pmin — v ()] + 12 () [0 (¢) — Vmax]
+ pa (1) [umin —u (t)] + 2 (t) [“ (t) - umaX] >

Umax
| - 2puumin

- 2puumax ‘

Aa(t)

Umin f-----------

Fig. 2. Optimality relationship between w* (¢) and A2 (t)

respectively, ¥here Alt) = [\ (’p MO, p@) =
(12 () p2 O], 0 () = [m () n2 ()], and

m(t) >0, n2(t) >0, (10)
M () [Vmin — v (£)] +m2 (t) [v (1) — Vmax] = 0, (11)
pa (t) >0, pa(t) >0, 12)
1 (8) [umin — w (t)] + p2 () [u (t) — umax] = 0. (13)

According to Pontryagin’s minimum principle, the optimal
control u* (t) must satisfy

min
Umin LU (t) <tmax

u* (t) = arg H (0" (), u(t), A (), (14)

where * denotes optimal quantities. The Hamiltonian H can

be viewed as a quadratic function in w. The minimum of

H depends on the relationship between —2’\72 and the range

Ao “

[tmin, Umax)- When 5 € [Umin, Umax], H attains its

_ 2 f — 22
2pu’ N 2pu

its minimum at Umax; if —5> < Upin, then H attains its
u

minimum at umi,. Therefore, we can express u* (t) in terms

of the co-state A (t), resulting in

minimum at u = > Umax, then H attains

Aa(t
Umax ~ When — —22(“’) > Umax
Aa(t Aa(t
U* (t) = _% When Umin S - 22P(u) S Umax (15)
Aa(t
Umin ~ When — 722/)2) < Unmin

Based on the optimality condition (15), the relationship be-
tween Ao (¢) and u*(t) can be visualized as shown in Fig. 2.
For simplicity, we write L(t), H(t), ®(t) and N(¢) without
the arguments of states, co-states, and multipliers in the rest
of the paper. Adjoin the system dynamics (1) to L (t) with
multiplier function A (¢):

ta
B =N (ta)+ [ L) =M (050 X (05 0] dr,
to
where t; is the first gateway crossing time, and
N (tl,tz) = I/(I (tg) — ll — 12) + 7T(£ZZ (tl) — ll)
+& (G —t)+ &t —t1) + &ty —ta) + &4 (b2 —t2),

51207 62203 §3207 54207

§i(ty —t1) +& (b — 1) = 0,83 (ty — t2) + & (t2 — 12) = 0.

The differential of @, taking into account differential changes
in t; and to, is

A () =dN (1, t2)

+d / CIL ) = M () (6) = ho (8) 0 (8)] dt.

to
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Split the integral into two parts:

d‘l)( ) = vdzx (tg) (54 —§3) dts + (52 —fl)dtl + wdx (tl)

FL ) = A (1) (1) = Ao (1) 8 ()] |,_,- dia
SILW) = M E ()~ A ()6 (1)]|,_prdis
M@l =M OO

R (5O~ ()0
o), o] o

+/:HA1() gﬁét)}‘s (>+ZL((,5))5 <t)}dt7

where we let ] signify just before ¢ and ¢ signify just after
t1. Next, we choose the functions A;(¢) and Az (¢) to make the
coefficients of dx (t) and dv (t) vanish. We now make use of
the relationships

dz (t;) = {

and similar expressions can be derived for dz () and
dv (t1). Using the above relationships to eliminate éz (¢7)
and 0x (tf), and regrouping terms, yields

v(t) 3

x (t) + @ (ty ) diy,
o (1) + 4 (¢7) dty,

d® (t) =[v — A1 (t)] 02 (1) [t=t, — A2 (t) 60 (1) |t=t,
+ A1 (8) 02 (1) li=t, + A2 (t) 60 (2) |t=t,
+[L(t7) =L () + & — & dh (16)
+ [ (tF) = >\1 (t7) + 7] dz (t1)
+ X2 (67) = e ()] dv (t1) + (&4 — &3) dto

+/t:2 8L() ou (t)dt

Let us assume that v(t1) # Umax and v(t1) # Vmin. fv(t1) =
Umax OF U(t1) = Umin, the problem can be decoupled at time
t1 as discussed in Remark 1. Since we have no constraints on
v (t) at t = t1, it follows that Ay (tf) = Ay (tf), that is to
say, there are no discontinuities in Aq (t) at ¢ = t;. Therefore,
u* (t) is continuous everywhere based on (14) and Theorem
1 in [20]. To make the term Ao(t2)dv(t2) in (16) vanish, we
must have A2(f2) = 0 since there are no constraints on v(t) at
t = to. From the optimality condition (15), we have u*(t5) =
0.

For the co-state A, (t), we have \; (t) = 7853(:) = 0.
However, since dz (t1) = 0, A1 (£) may or may not have jumps
at t = t;. Therefore, A\ (¢) can be written as

Ap fortg <t <ty
Au(t) = { AT for tf <t <t {17
For the co-state Az (t), we have
‘ OL(t
o= N mm-me.  ay

Depending on the value of v (¢), we have different cases:

Case I: min < v (t) < Umax. In this case, 71 (t) = 19 (t) =
0. Therefore, Az (t) linearly increases or decreases according
to (17) and (18), and so does u* (¢) based on (15).

Case II: v (T) = Umin, Where 7 is the time when v(t) =
Umin. In this case, we have u* (¢) > 0 over some interval
[T, 7+ «, where « is a positive scalar. When u* (t) = 0 over
the interval [, 7 4 a], we must have \a(t) = Ay(t) = 0, that

is, m1 (t) = A1 (t) from (18) and the fact that 175(t) = 0 based
on (11). When u* () > 0, v (") > ¥min. Then, it becomes
Case L.

Case III: v (7) = VUmax, Where 7 is the time when v(¢) =
Umax- 10 this case, we have u* (t) < 0 over some interval
[7,7 4+ «]. When u* (t) = 0 over the interval [7,7 + o], we
have A(t) = Ap(t) = 0, that is, 7 (t) + A1 (£) = 0 from (18)
and the fact that 7y (¢) = 0 based on (11). When u* (1) < 0,
v (T1) < Umax. Then, it becomes Case 1.

Regardless of which of these three cases applies, Aa(t)
always has a linear form based on (18). Therefore, the optimal
control u* (t) always has a linear form. [ |

Remark 1: Assume that at t; all the state and accelera-
tion/deceleration constraints are relaxed. Then L (¢) is the
same as H (t). To cause the coefficient of dt; in (16) to vanish,
the condition L (t; ) — L (t{ ) +& —& = 0 has to be satisfied.
If t, < t; < ty, then & = & = 0. Therefore, there are no
jumps in L (¢) and H (t) at ¢;. In other words, the co-state
A1 has no jumps in this case. However, when ¢; = t; or
t1 = t1, there may be jumps in L (¢) and H (t) at ¢;. Then )\,
switches from one value to another as shown in (17). When
v(t1) = Umax OF ¥(t1) = Umin, the problem can be decoupled
at time ¢;. Then, we have dv(t;) = 0, and A\2(¢) may have
jumps at ¢1, and so may wu(¢) at ¢;. A jump in wu(t) leads
to a jerk effect, which is the rate of change of acceleration;
that is, @(¢). When the application of the proposed approach
is to control autonomous vehicles which will be shown in
Section V, we enforce no jumps in u(t) at ¢; so as to ensure
passenger riding comfort.

Based on Theorem 1, specifically (15), we know that the
optimal acceleration profile has the form u* (t) = a (¢) t+0 (t),
where a (t) and b(t) are piece-wise constant functions. For
example, we have a () = 0, b(f) = umax for u*(t) =
Umax, and a (t) = 0, b(t) = umin for u* (t) = Umin. For
the case that u (t) = 0, we could set a(t) = b(t) = 0.
When a(t) = a and b(t) = b are constants, the profile is
either linear acceleration (¢ > 0) or deceleration (a < 0).
In addition, there are only a few time instants when a (t)
and b(t) switch from a constant to another. Such instants
include the time when the maximum acceleration starts to
decrease, the maximum deceleration starts to increase, the
vehicle reaches the maximum or the minimum allowed speed
limits, or the agent is located at the first gateway. Therefore,
we can parameterize the optimal acceleration profile by a
sequence of linear functions of time.

B. Parametric Optimization

According to Theorem 1, we are able to parameterize
the optimal control in terms of piece-wise linear accelera-
tion/deceleration. Then, we can transform the dynamic opti-
mization problem into a static optimization problem by finding
the optimal values of a few parameters. Based on the analysis
of the last section, the optimal acceleration profile can be
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u*(t)

To T1

Umin

Fig. 3. A sample optimal acceleration profile for two intersections,
where the time instants in red signify the gateway crossing time

parameterized by a sequence of linear functions of time, such
as the one shown in Fig. 3, where 7y = ¢ is the initial time,
T5 =t is the first gateway crossing time, and 75 = t5 is the
second gateway crossing time. The optimal acceleration profile
at most has six switches based on the optimality condition (15)
and the following facts:

e u*(t2) = 0, which can be seen from the proof of
Theorem 1.

o Whenever v (t) = Umin OF Umax, u* (t) = 0.

e u* (t) is continuous without jumps.

e Only at t, A2 (t) may change sign from nonnegative
to nonpositive and vice versa (i.e., from nonpositive to
nonnegative) according to (18).

The above facts are discussed as follows. To make the term
Az2(t2)0v(te) in (16) vanish, we must have Aa(t2) = 0
since there are no constraints on v(t) at t = to. From the
optimality condition (15), we have u*(t3) = 0. The second
observation above corresponds to the intervals [z, 73] and
[r7,7s] in Fig. 3, in which v(t) = vmax for t € [r2, 73]
and v(t) = vy for t € [77,7g], respectively. The fourth
observation above can be visualized in Fig. 3 as well. Before
Ts, the acceleration decreases monotonically; and after 75 it
increases monotonically.

Before t¢1, there are at most 4 switches of «*(¢) assuming
that A\y(¢) starts from either the far left or the far right as
seen from Fig. 2. At time ¢1, A2(¢) may change its direction.
After ¢y, there are at most 2 switches of u* (). The last switch
may be due to A2(t) = 0 and A2(t) = O since the optimality
condition indicates that u*(t2) = 0. Figure 3 corresponds to
the following case. Assume that A5 (7p) < —2p,Umax. Based
on (15), u*(79) = Umax. During the interval ¢t € (19,71),
A1) > 0 and M5(t) < —2putmax, then u*(t) = Umayx. At
time 71, A\3(71) = —2pyUmax. During the interval ¢ € (71, 72),
A3(t) > 0 and u*(t) starts to decrease based on Fig. 2 until
7o when u*(72) = 0 and v*(72) = Vmax. During the interval
t € (12,73), it is possible that 7o(t) = —A; and Aj(t) = 0.
After 73, the agent starts deceleration until 74 when \j(74) =
—2pyUmin- Then u*(t) = umiy for t € [14,75]. After the first
gatewat at 75, A5(t) < 0. When the velocity v*(77) = Vmin,
this may hold until the second gateway at time 7g. A similar
optimal acceleration profile to the one in Fig. 3 can be drawn
when it starts with the maximum deceleration.

Even though there are seven linear functions in Fig. 3, eight
linear functions are needed to parameterize the acceleration
profile, as explained next. Over the interval [4, 76| in Fig. 3,
there is only one linear function. In order to guarantee that
the gateway crossing time is within the open interval, the
constraint (26) is added below, where 75 is denoted as t;.
Therefore, two linear functions are used to parameterize the
optimal acceleration profile. We can thus parameterize the
optimal acceleration profile as follows:

u* (t) = ait + bz for t € [7—1’—177—1'} (19)

for ¢ = 1,2,. .. ,8, where To = to, 75 = 11, and 78 = t2.

Remark 2: The optimal acceleration profile is over param-
eterized by the triplets (a;,b;,7;), i = 1,2,...,8, resulting in
24 variables in total. The number of variables can be reduced
when the properties of u*(¢) are considered. The advantage of
the parametric approach is that it reduces the optimal control
policy to the simple structure above and replaces a complicated
analysis by a computationally efficient scheme suitable for
real-time implementation.

Let us define -
- |
Ti—1

as the energy cost during the interval [r;_1,7;]. Problem 1
is now equivalently transformed into a static parametric opti-
mization problem:

Problem 2: TOSTC problem

u?(t)dt (20)

8
min py7g + Py Zi:l g
subject to

Vmin < 0 (7i) < Vmax, (2D
(aimi +bi) (a;Ti—1 4 b;) >0, (22)
Umin < @;T; + b; < Unax, (23)
Tic1 <71, 1=1,...,8, 24)
Umin < @170 + b1 < Umax, (25)
ty <75 <t (26)
x(m5) =1 27
ty <13 < to, (28)
x(rs) =1l +1o (29)

where J*,v(7;) in (21), and z(7;) in (27) and (29) can be
expressed as

2
JP = % (TS’ - Tffl) + a;b; (712 - 7'1271) + bf (15 — Ti—1)

a;
[ (Tz) = (Ti—l) + bz (Ti — Ti—l) + = (7'12 — 7',?_1)

2
and
z(m) = w(ri—1) +v(ric1) (1 — 7iz1)
bi a;
+§ (1; — 7'1-_1)2 + 5 (7'13 +2r3  — 371»2_17'1-)

respectively, from Lemma 1.
Remark 3: Problem 2 is equivalent to Problem 1, where
the continuous velocity constraint (7) is ensured by (21) and
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(22). The continuous acceleration constraints (8) are ensured
by (23) and (25). The constraints (24) are needed to ensure the
correct order of the critical times defining the linear segments
of u*(¢) in (19).

Remark 4: The parametric optimization framework is very
general so that it can be used to solve many different tra-
jectory optimization problems. It can also easily incorporate
an initial acceleration condition, interior and terminal veloc-
ity/acceleration constraints by adding additional equality or
inequality constraints.

Remark 5: We can add the jerk constraints |a;| < a; to
smooth the acceleration profile, where a; corresponds to the
jerk profile, and a; is a given limit of jerk tolerance [13].

IV. EXTENSION TO MULTIPLE GATEWAYS

The proposed parametric framework for two gateways can
be easily extended to the case of more than two gateways. We
can use three triplets (a;,b;,7;) to parameterize the optimal
acceleration profile for a single gateway. For two gateways,
eight triplets (a;, b;, 7;) are enough to parameterize the optimal
acceleration profile. The following result shows the number of
triplets needed for general N gateways.

Lemma 2: A total of 5(N — 1) + 3 triplets of (a;,b;,7;)
are needed to characterize the optimal acceleration profile for
N gateways.

Proof: We prove the result by mathematical induction.
For a single and double gateways, 3 and 8 triplets are needed,
respectively. Therefore, we can assume that 5(k —1) + 3
triplets are needed for k gateways.

T3 T4 T5 T T7

T8To9 Ti0 T11 T12 T13

Umin

Fig. 4. Optimal acceleration profile for three intersections, where the
time instants in red signify the gateway crossing time

For k + 1 gateways, the value of u(75;) does not need to be
zero at gateway k, which corresponds to 75 in Fig. 3. When
the costate Ao(75r—2) = 0 such as 73 in Fig. 4, it can keep
decreasing until u(t) = Umax, Which corresponds to 79 in
Fig. 4. In this case, the agent arrives at gateway k at 755 such
as 7o in Fig. 4. Then the control input decreases from U ax
to 0 from 75541 tO T542, for example, 717 to 712 as shown in
Fig. 4. Therefore, we can conclude that 5(N — 1) + 3 triplets
are enough to characterize the optimal acceleration profile for
N gateways. ]

Let J* be the energy cost during the interval [r;_1,7;]
defined in (20). Therefore, for N gateways, the TOSTC
problem can be solved by the following optimization problem:

Problem 3: TOSTC problem
5(N—1)+3

min pTs(N-1)+3 + Pu Zi:l i

subject to
Umin S v (Ti) S Umax (30)
(@i +b;) (a1 + b)) >0 (31
Umin S a;T; + bz S Umax; (32)
Tz'_lSTi,izl,Q,...,5(N—1)+3, (33)
Umin S a17o + bl S Umax (34)
i =m=rhy G
Rkl

w(r)=> "l (36)

j=510,....,5(N—1),5(N—-1)+3, (37

where [xz] is the smallest integer greater than or equal to x,
J, v(r;) and z (7;) can be expressed as

2
a;

JP = 3 (7;3 — Ti?’,l) + a;b; (TE - 72'271) + 07 (1i = Ti-1)

a;
v (1) =v(Tim1) + bi (i —Tic1) + = (77— 774)

2
and
i—1
() = Z L+ v (Ti-1) (T = 7i1)
j=1
+% (i — Ti1)® + % (7—13 +2r0 = 31hm),

respectively, from Lemma 1.

Remark 6: This remark pertains to the overall complexity
of the proposed algorithm. At each gateway ¢, the gateway
open intervals corresponding to p; = 0 (minimum energy
interval) and p,, = 0 (minimum time interval) are calculated.
All gateway open intervals between the minimum energy inter-
val and the minimum time interval are considered as feasible
intervals. Suppose that there are n; feasible intervals to cross
gateway i. At most, there are Hivzl n; different paths to cross
all gateways. Some of the paths such as ¢, ; > #; or when it is
impossible to travel a distance ; using the time ¢; —¢, ,, could
be eliminated by the pruning algorithm. For each possible
path, Problem 3 needs to be solved, which involves 15N — 6
variables with 32N — 10 inequality constraints and 16N — 6
equality constraints.

A. Special Case: Single Gateway

Assume that there is only one gateway. We can conclude
from Fig. 2 that the control input only contains acceleration
or deceleration, not both. Therefore, the optimal acceleration
profile can be parameterized as

u* (t) = a;t + b; for t € [1;_1,7i]

for ¢+ = 1,2, 3, where 79 = tg, and 73 = t;. Here we assume
that trip time ¢; belongs to some known interval [t,1]. Due
to physical constraints, there are only a limited number of
possibilities for the gateway crossing interval. Let J;* be the
energy cost during the interval [7;_1,7;] defined in (20). The
optimal parameters (a;, b;, 7;) for ¢ = 1,2, 3 can be obtained
by solving the following optimization problem:
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Problem 4: TOSTC problem
3

min py73 + Py Zi:l J!
subject to

Umin < U (73) < Umax (38)
Umin < @170 + b1 < Umax (39
Umin < @;T; + by < Unax, (40)
Ti-1<T, 1=1,...,3 41
t, <1<t (42)
x(13) =1, 43)

where J, z (7;), and v (7;) can be expressed as

2

Ji = % (7'13 — i?’_l) + a;b; (712 - 7'1'2—1) + 07 (10 = Tio1)

(1) = (ri—1) + v (Ti1) (7 — Ti—1)
b; i
+ 5 (Ti — Ti_1)2 + % (7'13 + 27‘5:1 — 37'1»2717'1‘)
and

v(1) =v(ri-1) +bi (s — Ti—1) + % (Tl2 - Tf_l)

respectively, according to Lemma 1.

Remark 7: Note that we do not include the constraint (31)
here since we have established that the optimal acceleration
profile contains either acceleration or deceleration, but not
both. Therefore, the terminal velocity constraint (38) can
replace the velocity constraints (30).

V. APPLICATION TO AUTONOMOUS VEHICLE
ECO-DRIVING PROBLEMS

Although vehicle dynamics can be very complicated, it is
common practice to use the purely kinematic model in (1)
to design a speed profile, and assume that the vehicle power
train dynamics are able to track the speed profile obtained
from the kinematic model. Vehicles also have physical accel-
eration/deceleration constraints as in (3). According to traffic
laws, on-road vehicles have to travel below the speed limit
posted, and the constraint (2) could be different on different
roads, such as

i—1 %
0<wy <o) <o for Y I <a(t) <Y I, (44
j=1 j=1

where ?; and v, are the maximum and minimum speed limits
on link ¢. The operation of a traffic signal is equivalent to the
switching behavior of a gateway. When facing green lights,
vehicles are free to pass the intersection; while when facing
red lights, vehicles must come to a full stop and wait for the
traffic signal to turn green. In the ECO-AND problem when
p¢ = 0, autonomous vehicles can be controlled to travel around
the speed limit at a constant speed in an urban environment.
The only time that the speed changes is to increase it in order
to beat the green signal or to slow down to avoid the red traffic
signal. Therefore, the most energy-efficient manner to operate
an autonomous vehicle is to avoid unnecessary braking and
acceleration. The eco-driving problem of autonomous vehicles

crossing multiple intersections has the same objective as that
in (4), where J“ well captures the eco-driving behavior to
penalize the acceleration and deceleration.

The previous results show that the optimal solution u*(t)
has a piece-wise linear form u (t) = at + b, which captures
most acceleration profiles used in the literature and vehicle
simulation software [23]. When a = b = 0, the vehicle travels
at a constant speed. When a = 0, the acceleration profile
becomes either constant acceleration (b > 0) or constant
deceleration (b < 0). When a # 0, the resulting linear
acceleration profile is also called “smooth jerk” [23].

Remark 8: For autonomous vehicle eco-driving problems,
some practical issues have to be considered. First, by taking
driving comfort into account, we have to add the constraints
la;] < @, where a; in the parametric form u; = a;t + b;
corresponds to the jerk profile, and @ is the limit of jerk
tolerance. The value a is reported to be 10 m/ s% in [13].
Second, when an autonomous vehicle turns at intersections,
the arrival speed should be constrained for purposes of safety
and ride comfort, i.e., v(¢;) < v¢, where v°¢ is some comfort
speed for turning. Finally, when an autonomous vehicle is
commanded to approach a traffic light at the exact time that
the traffic light changes from red to green, this may provide
discomfort to the passengers. Therefore, a safety buffer ¢
may be added to the start of green lights, i.e. the feasible
intersection crossing time is re-defined as 7° = {t|[t — d,t] C
T?4.

The ECO-AND problem can be formulated as
Problem 5: ECO-AND Problem

tN
min p; (ty — to) + pu / u? (t) dt

u(t) to

subject to (1) and

x(t;) = _ 1lj, i=1,...,N (45)
.
1—1 7
v, <wv(t) <7 for ij I < x(t) < ijl l; (46)
Umin < U (1) < Umax (47)
la(®)| < a (48)
t;eT?, i=1,...,N. (49)

Let J* be the energy cost during the interval [r;_1, 7;] defined
in (20). Then, based on the results in Section IV, the ECO-
AND problem can be solved by the following optimization
problem:

Problem 6: ECO-AND problem

5(N—1)+3

Min Pe7s(N—1)43 + Pu ) .
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subject to
< N < D
o] < v(m) <oy
(aiti +b;) (a;mi—1 +b;) >0
Umin < a;T; + bz < Umax,
|a;| < a,
Ti—1 < T,
i=1,2,...,5(N—-1)+3,
Umin < a7 + bl < Umax
[£] -
.%‘(Tj) = Zi:l li,Tj S T|—%-|,
j=5,10,...,5(N—=1),5(N—-1)+3,
where [z] is the smallest integer greater than or equal to z,
JI#, v(7;), and z (7;) can be expressed as

2
a.
Ju—%
¢ 3

o

v(7i) = v (Tim1) +bi (10 — Tim1) + *21 (7 —771)

(77 = 7iig) + by (7 —720) + b7 (1 = 7im1)

and
i—1
(L‘(TZ) :ijl lj + v (’7'1'71) (Ti — Tifl)
b;

Q;
+ 5 (Ti — 7'1;1)2 + g (’7'23 + 2’7’2-371 — 37’1-2717'1')

respectively, from Lemma 1.

A. ECO-AND Problem For An Isolated Signalized
Intersection

Based on our analysis for a single intersection [20], the
optimal acceleration profile can be parameterized as

u* (t) = a;t + b; for t € |11, 7]

for ¢ = 1,2,3, where 79 = o, and 73 = ¢;. Let J;* be the
energy cost during the interval [7;_1,7;] defined in (20). The
optimal parameters (a;, b;, 7;) for ¢ = 1,2, 3 can be obtained
by solving the following optimization problem:

Problem 7: ECO-AND problem

3
win prrs -+, 3 J7

subject to
Umin S v (7-3) S Umax (50)
Umin < a1y + bl < Umax (51)
Umin < a;T; + bz < Umax (52)
la;] < a (53)
Ti_lgTh Z=1,73 (54)
z(r3) = 1,73 € T? (55)

where J¥, v (7;), and z (7;) can be expressed as

a?
J=5 (12 —720) +aibi (17 — 771) + b7 (10 — 7i1)

Q;
v (1) = v (Tic1) +bi (7 — Ti-1) + 5 (7'712 - 71'2—1)

TABLE |
OPTIMAL PERFORMANCE FOR DIFFERENT WEIGHT PARAMETERS
Pt Pu t1 to Jt JU J
0 1 | 09437 422904 7.0000 02330 0.2330
025 075 | 09276 4.1020 6.8527 02761 19203
1 0 | 09205 4.0000 67312 03217 67311
and
z(r) = x(ri—1)+v(Tim1) (1 — Tiz1)

+% (ri —75-1)” + % (rP + 272 = 37747m)
respectively, according to Lemma 1.

In the above solution, we do not consider the case of
turning. When a vehicle makes a turn in an intersection,
this intersection may be signalized or not. For signalized
intersections, we can just add the constraint v(7;) < v° when
vehicles make a turn at z(7;). When vehicles make a turn at
non-signalized intersections, we can treat the intersection as a
signalized intersection but with T2 = [0, c0).

VI. SIMULATION EXAMPLES

We evaluate the proposed solution by testing the following
scenario with three gateways, where Problem 3 is solved
by the fmincon function in the Optimization Toolbox in
MATLAB. The lengths between any two consecutive gateways
are generated randomly by uniformly distributed numbers
between 1 and 10. In our case, the lengths are 1.0934 m,
5.5169 m and 5.4620 m, which correspond to the gaps
between horizontal lines in Fig. 5. Each alternates between
open and closed states with a period of time 1 second. The
initial speed is vg = 1 m/s, and the maximum speed is set as
Umax = 2 m/s. The maximum acceleration and deceleration
are Umax = 1 m/s? and Ui, = —1 m/s2. It is not difficult to
figure out that the agent should cross the first gateway in the
interval [0,1] due to the acceleration and speed constraints.
Since the maximum speed of the agent is 2 m/s, it is not
possible for agents to cross the second gateway during [2, 3]
when it is open. Therefore, the agent should pass the second
gateway in the interval [4,5]. Finally, the agent should pass
the third gateway in the interval [6,7]. Once all the feasible
intervals are determined, we can solve the TOSTC Problem 3.
Let us consider three different cases: case 1 (p; = 0 and
pu = 1), case 2 (py = 0.25 and p, = 0.75), and case 3
(pt = 1 and p, = 0). The optimal speed, acceleration and
distance profiles are depicted in Fig. 5 for these three different
cases. The gateway crossing times, the energy cost, and the
total cost are shown in Table I. The first case responds to the
energy optimal solution. In this case, the agent chooses to pass
the third gateway at the latest feasible time within the interval
[6,7]. The third case corresponds to the time-optimal solution.
In this case, the agent reaches the maximum speed exactly at
the second gateway, which is the earliest feasible time.
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Fig. 5. Optimal acceleration, speed and distance profiles for the cases
in Table I.

Fig. 6. Mcity test route

A. ECO-AND Problem for Multiple Signalized
Intersections

We evaluate the proposed solution by testing the following
scenario with two intersections in Mcity - an automated and
connected car test facility in Ann Arbor, Michigan, where the
test route with two signalized intersections circled is shown
in Fig. 6. Two phases were set up for each traffic signal for
simplicity. The cycle time for the first traffic signal is 76
seconds, where the green time is 34 seconds and the red time
is 42 seconds. The cycle time for the second traffic signal
is 32 seconds, where the green time is 12 seconds and the
red time is 20 seconds. The distance between the two traffic
lights is 312 meters. Autonomous vehicles receive phase and
time information of both traffic lights with a distance of 150
meters to the first traffic light, and the speed is 11.25 m/s.
Currently, both traffic lights are red. The times until the next
green are 17 seconds and 7 seconds, for the first and second
traffic signals, respectively. The speed limits are set as vy, =
2.78 m/s, and vmax = 20 m/s. The maximum acceleration
and deceleration are Upmax = 2.5 m/s2 and Upmin = —2.9
m/sQ. Here we choose p; = 0.0036 and p,, = 0.0093,
where their values are calculated based on the normalization
procedure in [20] with p = 0.6. The parameter p € [0, 1]
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Fig. 7. Distance profile of different methods.

in [20] captures the trade-off between minimizing the travel
time (p = 1) and minimizing the energy consumption (p =
0). We use our previous approach for a single intersection
[20] as the baseline scenario, which solves the eco-driving
problem for each road segment individually, and compare the
proposed solution and the baseline scenario. Even though our
previous approach [20] calculates the optimal performance
for each road segment, it is not the optimal solution for the
combined two segments as a whole. Overall, the optimal multi-
intersection parametric approach outperforms [20] by 3.13%.
Figure 7 shows the acceleration, speed, and distance profiles
for both the optimal multi-intersection parametric approach
(blue solid curve) and [20] (orange dashed curve). In addition,
the speed profile of the optimal multi-intersection parametric
approach is smoother than that of [20] as seen from Fig. 7.
We can see from Fig. 7 that the intersection crossing times of
both approaches are within the green light interval. The travel
times are 42.5407 and 44.5333 seconds for the optimal multi-
intersection parametric approach and [20], respectively. Also
note that all speed and acceleration constraints are satisfied
for both approaches.

VII. CONCLUSIONS

A thorough analysis is presented to identify the optimal
acceleration profile for a class of trajectory optimization
problems with spatio-temporal constraints. A parametrization
method is used to transform the dynamic trajectory opti-
mization into a static parameter optimization. The proposed
framework is applied to solve the eco-driving problem of
autonomous vehicles approaching multiple signalized intersec-
tions. The effectiveness of the proposed method is demon-
strated by simulation results. The results here are limited to
autonomous vehicles in the free flow mode, and the case with
interfering traffic is studied in [24].
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