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Abstract

Despite the undeniable success of vaccination programs in preventing diseases, effective vaccines
against several life-threatening infectious pathogens such as human immunodeficiency virus are still
unavailable. Vaccines are designed to boost the body's natural ability to protect itself against foreign
pathogens. To enhance vaccine-based immunotherapies to combat infections, cancer, and other
conditions, biomaterials have been harnessed to improve vaccine safety and efficacy. Recently,
peptides engineered to self-assemble into specific nanoarchitectures have shown great potential as
advanced biomaterials for vaccine development. These supramolecular nanostructures (i.e., composed
of many peptides) can be programmed to organize into various forms, including nanofibers, nanotubes,
nanoribbons, and hydrogels. Additionally, they have been designed to be responsive upon exposure to
various external stimuli, providing new innovations in the development of smart materials for vaccine
delivery and immunostimulation. Specifically, self-assembled peptides can provide cell adhesion sites,
epitope recognition, and antigen presentation, depending on their biochemical and structural
characteristics. Furthermore, they have been tailored to form exquisite nanostructures that provide
improved enzymatic stability and biocompatibility, in addition to the controlled release and targeted
delivery of immunomodulatory factors (e.g., adjuvants). In this short review, we first describe the
different types of self-assembled peptides and resulting nanostructures that have recently been
investigated. Lastly, we discuss the recent progress and development trends of self-assembled peptide-
based vaccines, their challenges, and clinical translatability, as well as their future perspectives.

Keywords: Supramolecular, Peptides, Self-assembly, Vaccine, Delivery.
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Supramolecular peptide-based vaccines

1 Introduction

Vaccination has been considered as one of the crowning achievements of humankind, and gained
remarkable triumph in treating many life-threatening and epidemic diseases, such as influenza,
tuberculosis, and smallpox (Malonis et al., 2019; Piot et al., 2019). Vaccines can greatly reduce the
burden of preventable infectious diseases by working with the body’s natural defenses to safely develop
immunity to disease (Piot et al., 2019; Parvizpour et al., 2020). For instance, to respond to the new and
unprecedented coronavirus disease 2019 (COVID-19) crisis, vaccination is considered to be the best
strategy to end this pandemic (Graham, 2020; Lurie et al., 2020). Conventional vaccination methods
are based on pathogens (e.g., attenuated, inactivated, toxins, subunits) that can provoke immunity
against antigens and provide long-lasting protection against the diseases (Chiang et al., 2010; Cockburn
and Seder, 2018). Despite these advantages, this approach is suffering from a number of drawbacks,
including low immunogenicity, high cost, manufacturing challenges, vaccine instability in the cold
chain, and potential contaminations during manufacturing which could alter vaccine efficacy and cause
a strong allergic shock (Skwarczynski and Toth, 2016).

Although great advances have been made in the development of vaccines and immunotherapies, there
is an increasing demand for enhanced control over the immune responses induced against infectious
diseases and cancer. Biomaterials can be leveraged for modulating the immune system and
subsequently controlling immune responses (Bookstaver et al., 2018). For instance, recent
immunization strategies have centered on biomaterial-based vaccines in which specific cellular
components were used as antigens to stimulate the immune response against cancer (Bencherif et al.,
2015; Malonis et al., 2019). Within these biomaterial-based vaccines, full-length proteins and peptides
have been extensively studied as antigens, but they can also be used as structural biomaterials
(Skwarczynski and Toth, 2016). Peptides are biomolecules that consist of sequences of 2-50 amino
acids and that have a molecular structure that is generally much simpler than that of proteins (Malonis
et al., 2019). Using peptides has become a widespread trend in vaccine development since they are
easily processed and presented by antigen-presenting cells, leading to potent T cell-mediated immune
responses (Purcell et al., 2007). Furthermore, current challenges associated with cell-based or protein-
based vaccination, such as manufacturing complexity, biological contamination, off-target effects, and
autoimmunity, can be prevented with peptide-based vaccines (Purcell et al., 2007; Skwarczynski and
Toth, 2016). Additionally, peptides are capable of self-assembly into ordered supramolecular
structures, making them excellent building blocks to form nanofibers, nanovesicles, nanotubes,
nanomicelles, and hydrogels (Habibi et al., 2016; Qi et al., 2018). These peptide assemblies can have
a multivalent character and present peptides in their native 3D conformation, which is essential for B-
cell stimulation. Furthermore, they allow mixing of multiple components with precise stoichiometry
(Wen and Collier, 2015). Ultimately, immunogenic, long-lasting, stable, and self-adjuvanted vaccines
can be engineered by combining epitopes, antigens, and immunomodulatory moieties within the self-
assembled peptide structures (Wen and Collier, 2015).

Besides being exploited as immunostimulatory materials in vaccine development, self-assembled
supramolecular peptides are also excellent candidates to serve as carriers for the delivery of
immunological factors (Sis and Webber, 2019; Xiao et al., 2019b). The macrostructural features of
supramolecular peptide assemblies can be fine-tuned by altering the amino acid sequences.
Additionally, bioactive segments can be introduced into the peptides during their self-assembly to
design stimuli-responsive and cell- or organ-targeted vaccine delivery vehicles (Sis and Webber, 2019;
Xiao et al., 2019a; Lampel, 2020). Moreover, combining immunogenic peptide epitopes with non-
immunogenic peptides that form delivery carriers could enhance vaccine efficacy while reducing
unwanted side effects (Eskandari et al., 2017).
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Supramolecular peptide-based vaccines

In this short review, we first describe the various strategies employed to create self-assembled
supramolecular peptides with sophisticated hierarchical nanostructures. Next, their application in
subunit vaccine design and delivery for cellular and humoral immunity is highlighted. Finally, we
discuss challenges and clinical translatability of self-assembled peptide-based vaccines, as well as their
future perspectives.

2 Design of supramolecular self-assembled peptides

Molecular self-assembly is a bottom-up approach for achieving highly ordered and stable nanoscale
structures or patterns. This technique is based on the spontaneous assembly of small molecules or
nanosized building blocks under thermodynamic equilibrium conditions (Qi et al.,, 2018).
Intermolecular and intramolecular interactions, such as hydrogen bonding, amphiphilic interactions,
and aromatic stacking, have been used for supramolecular peptide assembly, allowing the construction
of complexes with stratified nanostructures (Lampel, 2020). Specifically, peptides can be designed to
exhibit distinctive secondary structures, such as B-sheets, B-hairpins, and a-helices, and these natural
motifs can be leveraged to drive a complex hierarchical architecture (Rad-Malekshahi et al., 2015). For
instance, B-sheets consisting of alternating hydrophobic and hydrophilic amino acids have been
extensively applied in driving self-assembly of peptides into extended fibrillar nanostructures (Moore
et al., 2018; Sis and Webber, 2019). Several groups have designed self-assembled nanofibrils from the
synthetic amphiphilic peptide RADA16 (RADARADARADARADA) through the B-sheet motifs
(Figure 1A), in which alternating regions of hydrophobic alanine and hydrophilic arginine/aspartate
residues can yield a stable B-sheet-rich structure (Cormier et al., 2013; Lu et al., 2019). Furthermore,
the antiparallel orientation of double-layered B-sheets, such as B-hairpins, have shown to generate
another secondary structure, which promotes the formation of peptide-based nanofibrous hydrogels
under physiological conditions (Worthington et al., 2017). Smith et al. developed a multiphase
transitioning, injectable hydrogel through the molecular self-assembly of a peptide-based B-hairpin.
Their anastomosis photocage 1 (APC1) peptide, which contains seven lysine residues, was folded into
a P-hairpin and rapidly self-assembled into a cross-linked fibrillar hydrogel (Smith et al., 2016).
Alternatively, a-helices could also be used to form a highly ordered structure through helical self-
assembly, which closely resembles the sophisticated hierarchical coiled coil-type structures of native
proteins, such as collagen (Lampel, 2020). Thomson et al. designed supercoiled coil a-helical barrels
by self-assembling 5-7 a-helices twisted around each other with cyclic or dihedral symmetry (Figure
1B). The peptides used in their study have a canonical hpphppp heptad repeat sequence, in which h
and p represent hydrophobic and polar amino acids, respectively (Thomson et al., 2014; Rhys et al.,
2018). Di-phenylalanine peptide (FF) is another interesting building block to trigger peptide self-
assembly into desirable nanostructures such as nanotubes, nanospheres, and nanoribbons (Habibi et
al., 2016). While self-assembly of the FF motif is usually achieved in the form of amyloid-like sheets
(Lampel, 2020), Bera et al. interestingly generated a helical architecture by simply adding one more
amino acid (proline) to the FF peptide, forming proline-phenylalanine-phenylalanine (PFF) (Bera et
al., 2019).

Additionally, non-peptidic compounds such as alkyls, amino acids, and metal ions have been used to
form self-assembled peptide complexes with a wide variety of structures and functionalities (Sis and
Webber, 2019). Alkyls, for instance, have been used as a hydrophobic tail to produce peptide
amphiphiles (PAs) that undergo self-assembly via hydrophobic shielding (Sis and Webber, 2019). As
a result, the nanostructure and other properties of self-assembled PAs can be controlled by switching
their hydrophobic components (Qi et al., 2018). Choi et al. proved that the nanostructure of self-
assembled amphiphilic Janus peptide dendrimers (JPDs) can be induced via a simple chemical
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bifurcation. Various JPDs were synthesized by varying the length of their hydrophilic and hydrophobic
regions, and their self-assembly resulted in the formation of spherical/cylindrical micelles or bi-layered
vesicles (Choi et al., 2019). PAs can also be made by conjugating peptides with functional polymers
(Habibi et al., 2016). Chin et al. designed a muscle-inspired anisotropic actuator in the form of a hollow
fibrous peptide-based hydrogel, in which VVVAAAEEE peptides were functionalized with a lysine-
coupled bromoisobutyryl moiety to enable the grafting of thermo-responsive polymers via atom
transfer radical polymerization (Chin et al., 2018). Recent studies also revealed that the nanostructure
of self-assembled peptides can be reshaped in a controllable manner by incorporating metal ions (Sis
and Webber, 2019). Knight et al. studied the effect of different metal ions on the morphological
transformation of self-assembled PAs consisting of hexahistidine as a hydrophilic head and
oligostyrene as a hydrophobic tail (Figure 1C). Interestingly, the presence of manganese(Il) promoted
the formation of multilamellar vesicles, while nickel(Il) and cadmium(Il) engendered micelle
nanoparticles. In contrast, zinc(Il), copper(Il), and cobalt(Il) led to agglomerated micelles (Knight et
al., 2018).

Finally, there has been a growing interest in designing smart nanomaterials that initiate the assembly
of molecular building blocks upon application of external stimuli such as enzymes, pH, heat, and light.
This strategy can provide additional spatiotemporal control over the formation and structure of
supramolecular peptides (Lampel, 2020). For instance, enzyme-instructed self-assembly (EISA) of
peptides has recently been applied to allow assembly in complex biological systems (Wang et al.,
2019). Li et al. synthesized several dipeptidic precursors, consisting of FF with various stereoisomers,
in which N- and C-terminal peptide sequences are linked to 2-(naphthalen-2-yl)acetic acid and 2-(4-
(2-aminoethoxy)-4-oxobutanamido)ethane-1-sulfonic acid, respectively. Molecular self-assembly
(i.e., EISA) of these peptides is induced by carboxylesterase, which is present inside the cells and in
the extracellular space of tissues. Using this approach, intracellular and intercellular peptide self-
assembly could be achieved at different rates (Li et al., 2018). Additionally, some stimuli-responsive
peptides, such as elastin-like polypeptides (ELPs), exhibit reversible transition behavior upon exposure
to the specific stimuli (Saha et al., 2020). Dreher et al. prepared several ELP block copolymers (with
varying molecular weights and block ratios) in a linear AB diblock architecture by homogeneously
fusing an N-terminal hydrophilic ELP block to a C-terminal hydrophobic ELP block. They observed
that copolymers with suitable diblock ratios are highly water-soluble at normal body temperature (37
°C) and can self-assemble into spherical micelles at the tumor temperature (42 °C). When the
temperature was lowered again, the copolymers showed the inverse transition behavior (Dreher et al.,
2008). Hassouneh et al. developed a theoretical model to explain the mechanism for this special
reversible transition behavior of the copolymers(Hassouneh et al., 2015).

3 Application of self-assembled peptides in vaccine design and delivery

A wide variety of vaccines have been designed to stimulate the immune system to combat pathogens
(e.g., bacteria, viruses) or tumors. In particular, vaccines aim to induce an adaptive immune response
that leads to immunological memory, as illustrated in Figure 1D. There are two subdivisions of the
adaptive immune system: the cell-mediated immune response, which is executed by cytotoxic T
lymphocytes (CTLs) that can kill infected or cancerous cells, and the humoral immune response, which
is mediated by activated B cells that produce antibodies to neutralize extracellular pathogens (Molnar
and Gair, 2015). Peptide-based vaccines generally require three major components—an antigen, an
adjuvant, and a delivery vehicle—to generate efficient adaptive immune responses. When peptides are
used as antigen, the conformation of the specific regions recognized by the immune system, known as
epitopes, is particularly important for inducing humoral immunity. Specifically, B cells need to bind
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epitopes in their native conformation to allow antibody binding. B-cell epitopes usually have a-helical,
loop, and B-strand conformations that are generally integrated into vaccines as longer peptides to allow
them to adopt their native conformation (Skwarczynski and Toth, 2016; Malonis et al., 2019). When
designing vaccines, self-assembly of peptides can be utilized to ensure correct folding of antigenic
epitopes. In vaccine applications where antibody affinity and titer are essential, self-assembling
peptides that also have inherent CD4+ T-cell epitopes, such as those included in the Coil29
(QARILEADAEILRAYARILEAHAEILRAD) peptide, can be incorporated to induce strong follicular
helper T-cell engagement that further promotes B-cell responses (Wu et al., 2020). Similar to CD4+
T-cell stimulation, the peptide sequence is more critical than the epitope conformation itself to induce
CTL-mediated cellular immunity. Therefore, shorter peptides can be used to induce T-cell responses,
as CD4+ T cells recognize 12-16 amino acid long peptides presented by MHC II on antigen-presenting
cells (APCs), while CD8+ T cells bind to slightly shorter 8-10 amino acid long peptides displayed by
MHC 1 (Skwarczynski and Toth, 2016; Malonis et al., 2019). Unlike attenuated pathogen-based
vaccines, peptide-based vaccines generally incorporate adjuvants to boost the overall immune response
to antigens and mimic the natural “danger signals” which follow infections. The choice of adjuvants
depends on several factors such as immunogenicity and toxicity. Several studies have established that
the adjuvanticity of self-assembled peptides is mediated via antigen presentation in an ordered and
repetitive array that resembles pathogen-associated molecular patterns (PAMPs), resulting in strong
immune responses mediated through Toll-like receptor (TLR)-inflammasome signaling pathways via
TLR2 and TLR4 activation (Azmi et al., 2014; Negahdaripour et al., 2017; Tandon et al., 2018; Zottig
et al., 2020). Additionally, self-assembling peptides may act as adjuvants themselves by forming an
antigen depot, directing vaccines to APCs, and ultimately enhancing immune-cell priming (Grenfell et
al., 2015; Acar et al., 2017; Negahdaripour et al., 2017).

Self-assembled peptide-based vaccines for cellular immunity
Supramolecular self-assembling peptides can form excellent structures to induce cytotoxic immune

responses, which is particularly important for cancer immunotherapy. For this purpose, peptide
assemblies can function as a platform for safe and controlled delivery of antigens, adjuvants, immune
cells and/or drugs (Table 1). For example, Wang et al. utilized a tumor-penetrating peptide Fmoc-
KCRGDK-based hydrogel formulation to encapsulate a BRD4 inhibitor, a photothermal agent
(indocyanine green), and autologous tumor cells. Upon laser irradiation, the personalized cancer
vaccine released tumor-associated antigens. This process promoted DC maturation, T-cell infiltration,
the formation of memory immune cells to prevent tumor relapse, and inhibited distant tumors (Wang
et al., 2018b). Interestingly, Xu et al. observed that the configuration and the number of lysine residues

in the peptide are critical to enhance CTL response. They described a supramolecular NF-kB-activating
nano-adjuvant hydrogel, synthesized by pH-triggered self-assembly of Ada-GFFYGKKK-NH2
peptide, for cancer immunotherapy. According to their findings, nano-adjuvants containing D-
configured peptides and 3 lysine residues encapsulated antigens more efficiently through charge-
charge interaction than 2 lysine residues, and as a result, generated more robust adaptive and innate
immune responses than peptides with L-configuration (Xu et al., 2019). Yang et al. showed that a
nanofibrous RADA16 peptide-based hydrogel scaffold encapsulating bone-marrow derived DCs,
model antigen ovalbumin (OVA), and anti-PD-1 antibody recruited and stimulated endogenous and
exogenous DCs. This process increased DC migration to the lymph nodes, driving a more robust
antigen-specific immune response against EG7-OVA tumors (Yang et al., 2018). Furthermore, Wang
et al. developed glutathione-responsive nanocomposites by co-assembling a positively charged cell-
penetrating CWWRCRCRC peptide with a negatively charged protein such as ovalbumin (OVA) via

This is a provisional file, not the final typeset article 6



259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

Supramolecular peptide-based vaccines

electrostatic interactions. After being internalized by APCs, intracellular glutathione degraded the
disulfide bonds of the peptide, inducing rapid release of the antigen into the cytoplasm, which was then
cross-presented to induce potent CD8+ T-cell responses. When compared to free OVA, the peptide-
based nanocomposites improved antigen uptake by DCs, promoted DC activation and maturation, and
enhanced cellular as well as humoral immune responses (Wang et al., 2018a). Overall, the use of self-
assembled peptides as a delivery vehicle provides multiple benefits, including efficient cell and antigen
loading, minimal loss of active components, as well as controlled and targeted release in the tumor
microenvironment (Zhang, 2017; Lee et al., 2019).

Apart from acting as a delivery vehicle, self-assembling peptides can also serve as an antigen source
themselves to induce cellular immunity. For example, Black et al. developed cancer vaccines consisting
of self-assembling tumor antigen peptides with enhanced immunogenicity. Conjugating a synthetic
lipid tail with two palmitic residues to an OV A-derived peptide containing a CTL epitope initiated the
self-assembly of PAs into cylindrical micelles, resulting in multivalent epitope presentation. These
micelles were internalized by APCs, likely due to fusion of their hydrophobic tails with the cell
membrane, leading to CTL activation in absence of additional adjuvants. Additionally, these
cylindrical micelles act as antigen depots, thereby protecting the peptides from degradation and
prolonging antigen exposure to the APCs. Improved in vivo protection was observed against OVA-
expressing tumor cells after immunization with the diC16-OVA micelles compared to free OVA
peptide formulated with incomplete Freund’s adjuvant (Black et al., 2012). Xing et al. developed
injectable, peptide-based supramolecular hydrogels by co-assembling poly-L-lysine (PLL) and FF
dipeptide via electrostatic coupling. Fmoc-FF/PLL-SH hydrogels have a nanofibrous structure with a-
helical conformation which resembles natural fimbrial antigens, thereby acting as an adjuvant. When
injected around a tumor, the hydrogels activated T-cell responses and efficiently suppressed tumor
growth without the addition of other adjuvants or antigens. In this case, the tumor cells themselves act
as the source of antigen to stimulate the immune response (Xing et al., 2017). Self-assembly can also
be used to incorporate longer peptides containing multiple epitopes to ensure optimal APC stimulation,
increase the magnitude of CTL response, and simultaneously promote helper T-cell activity (Lynn et
al., 2020). Overall, peptide-based self-assembly can induce robust cellular immune responses by
serving as a durable source of antigen that allows easy uptake and processing by APCs, providing
multiple epitopes, and conferring self-adjuvanticity to the vaccine.

Self-assembled peptide-based vaccines for humoral immunity

Robust humoral immune responses are essential to treat infectious diseases. For this purpose, self-
assembly designs have included approaches such as flanking the antigen with a self-assembling peptide
sequence to display the secondary structure of the antigen, presenting antigens in a highly ordered and
repetitive form, and optimizing the distance between repeated epitopes for optimal B-cell receptor
(BCR) engagement (Raman et al., 2006; Black et al., 2010; Babapoor et al., 2011; Trent et al., 2015;
Skwarczynski et al., 2020). Self-assembling supramolecular peptides can serve as a delivery scaffold
to present antigenic peptides, and they can simultaneously possess self-adjuvanting characteristics to
induce B-cell responses. For instance, Grenfell et al. exploited RADA4 peptide-based hydrogels that
self-assembled into hydrated nanofibers after injection into the tissue to form a gel matrix depot, to
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deliver a recombinant antigen for the hepatitis B virus. This system elicited enhanced adjuvant-free
humoral and cellular responses when compared to the antigen delivered with aluminum hydroxide
(alum) and complete Freund’s adjuvant. The authors credited the slow release of antigen from the depot
to have improved the activation of APCs and prolonged immunostimulation (Grenfell et al., 2015). In
a different study, Tian et al. utilized a supramolecular hydrogel-based nanovector comprised of Nap-
GFFY-NMe (naphthylacetic acid-modified tetrapeptide GFFY with C-terminal methyl amide group),
using an EISA approach to encapsulate a DNA sequence encoding gp145, an envelope glycoprotein of
the human immunodeficiency virus (HIV). Alkaline phosphatase triggered self-assembly of the
peptide, leading to formation of nanofibrous hydrogels. The strong cellular and humoral immune
responses were attributed to the ability of left-handed nanofibers to effectively condense DNA and
prevent it from degradation, thus enhancing DNA transfection and gene expression in cells (Tian et al.,
2014).

Self-assembling peptides can also be the antigen source to induce humoral immunity. For instance,
Kaba et al. utilized a self-assembling peptide-based nanoparticle platform to present repeated
immunodominant B-cell circumsporozoite peptide epitope (DPPPPNPN),D of the malarial parasite.
The polypeptide consisted of two oligomerization domains—a de novo trimeric coiled-coil domain and
a pentameric coiled-coil domain—which were fused together with flexible diglycine residues. The self-
assembled nanoparticles, containing multiple coiled-coil domains, displayed the B-cell peptide epitope
in a highly ordered and repetitive array, thereby triggering robust helper T cell-dependent and long-
lasting antibody responses with higher avidity and titer (Kaba et al., 2009). Pimentel et al. utilized a
similar polypeptide-based self-assembling nanoparticle platform to display the C-terminal heptad
repeat region (HRC) of the SARS-CoV S-protein in its native a-helical trimeric coiled-coil
conformation. These nanoparticles not only maintained this conformational integrity, but also provided
repetitive presentation of the B-cell epitope and displayed icosahedral symmetry that resembled viral
protein capsids. The SARS-CoV vaccine evoked conformation-specific neutralizing antibodies against
the B-cell epitope without additional adjuvants (Pimentel et al., 2009). A potent peptide-based vaccine
against Streptococcus pneumoniae was proposed by Dorosti et al., who incorporated CTL epitopes
such as pneumococcal surface protein A (PspA) and choline-binding protein A (CbpA), helper T-cell
epitopes such as pneumococcal histidine triad protein D (PhtD) and a lipoprotein from pneumococcal
iron ABC transporter (PiuA) and universal helper T-cell epitopes like diphtheria toxoids on a coiled-
coil self-assembling interface. The designed vaccine was predicted to exhibit stronger immunogenic
responses compared to an analogous epitope-based vaccine (Dorosti et al., 2019). In addition, Rudra
et al. developed a peptide-based vaccine to prevent malaria by combining self-assembling B-sheet
peptides with epitopes of protozoan parasite P. falciparum (Rudra et al., 2012). In another example,
Trent et al. designed a self-adjuvant peptide-based vaccine for group A streptococcus (GAS). When
the J8 antigenic peptide of the GAS-M protein is taken out of its native protein environment, its a-
helical structure is lost, and as a result, it adopts a random conformation in the solution. The addition
of two C16 alkyl chains at the N terminus of the J§ peptide triggered its self-assembly into cylindrical
micelles, and reinforced a-helicity of the antigen, which subsequently induced a strong B-cell response
in mice. Since the hierarchical micellar structure kept thousands of peptides in close proximity, it
conferred potent adjuvanticity while maintaining the native antigen conformation at the injection site.

This is a provisional file, not the final typeset article 8
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In addition, the micellar structure increased the local antigen concentration available to immune cells
in comparison to free peptide, which quickly diffused away from the injection site (Trent et al., 2015).
Taken together, these studies have demonstrated that self-assembled peptides can efficiently induce
humoral immune responses through the display of secondary structures, thereby maintaining the
conformational integrity of epitopes. Furthermore, these self-assembly platforms offer a highly ordered
and multivalent display of relevant antigens, resulting in efficient stimulation and proliferation of B
cells, and their subsequent differentiation into antibody-secreting plasma cells. Inclusion of helper T-
cell epitopes further enhances vaccine efficacy by imparting long-lasting B-cell immunity.

4 Challenges and future perspectives

Despite the great potential of self-assembled supramolecular peptides for vaccine design and
engineering, many challenges still persist. Compared to conventional vaccines containing live-
attenuated or inactivated pathogens (viruses, bacteria, etc.), most peptide-based vaccines induce a weak
immune response (Malonis et al., 2019). The use of adjuvants can overcome this obstacle, and deepen
our understanding of their mechanism of action and their safety (Skwarczynski and Toth, 2016).
Additionally, the stability and efficacy of peptide-based vaccines in complex biological environments
remain challenging. For instance, their rapid enzymatic degradation and structural integrity in the body
is a major limiting factor (Kim et al., 2019). Self-assembled peptides must exhibit improved stability
when interfacing with biological barriers (e.g., pH, enzymes) that are encountered upon administration
in tissues (Eskandari et al., 2017). Rational systematic design of the supramolecular peptide structure
to include covalent cross-linking—or via improved intermolecular interactions such as hydrogen
bonding, n-w stacking, and hydrophobic interactions—may augment their resilience and mechanical
stability (Khalily et al., 2015; Li et al., 2019). The development of supramolecular self-assembled
peptide-based vaccines is hindered by our limited understanding of the interface between self-
assembled nanostructures and immune cells. In-depth investigation of the interactions between the self-
assembled structures and the receptors on human immune cells, their uptake by APCs, as well as their
effect on DC maturation, B-cell and T-cell priming, and cytokine profiling, is needed (Zhao et al.,
2017). Challenges exist in translating the ease in design and small-scale synthesis of supramolecular
peptides to an industrial scale. Furthermore, advanced engineering of supramolecular assembly (e.g.,
cell-penetrating peptides) may target intracellular vaccine delivery more precisely, ultimately
enhancing antigen uptake, promoting endosomal escape and cross-presentation by APCs, which are
critical steps in inducing a robust cellular immune response (Yang et al., 2019). Existing technologies
such as machine learning, bioinformatics, and computational modeling can potentially be leveraged
for the macromolecular engineering of immunostimulatory peptide assemblies with improved vaccine
immunogenicity, efficacy, and safety (Kim et al., 2019). Moving forward, biologically inspired
supramolecular peptides, an excellent and sparsely explored class of materials, could be further
exploited in designing the next generation of vaccines that are effective, safe, affordable, and accessible
to everyone. Despite their importance and great potential, self-assembled peptide-based vaccines do
require further investigation and validation prior to regulatory approval and clinical use.
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Figure 1. Strategies to induce supramolecular self-assembly of peptides and peptide-based
vaccines. (A) Formation of [B-strands from self-assembling peptide RADA16-1 (top) and their
arrangement into nanofibers with different symmetry classes arranged into stacks of two B-sheets
(bottom). B-sheets are formed by alternating segments of hydrophobic alanine (green) and hydrophilic
arginine/aspartate (blue/red) regions (reproduced with permission from Cormier et al., 2013). (B)
Symmetry (top) and sequence (bottom) of coiled-coils (CCs) made of peptides containing a heptad
repeat of hydrophobic (h) and polar (p) residues in a hpphppp pattern. Helical wheels for classical
Type-N, and Type-1, Type-2, and Type-3 interfaces are depicted. All are viewed along the a-helices
from the N to C termini, labels are for the canonical a—g nomenclature and the teardrop shapes indicate
the direction of Co—Cp bonds (reproduced with permission from Rhys et al., 2018). (C) Effect of
different divalent transition metal ions on the morphological transformation of self-assembled PAs,
consisting of hexahistidine as a hydrophilic head and oligostyrene as a hydrophobic tail (reproduced
from Knight et al., 2017). (D) Schematic illustration of immune stimulation by self-assembled peptide-
based vaccines. Peptides undergo self-assembly upon intra-muscular or subcutaneous vaccination,
after which they can induce humoral and/or cellular immune responses to protect individuals against
pathogens. Humoral immune response arises once B cells encounter the antigen and are subsequently
activated in the secondary lymphoid organs. Mechanistically, B-cell activation occurs upon binding of
antigens to the B-cell receptor (BCR), resulting in the internalization of antigens via receptor-mediated
endocytosis. These antigens are then processed, and antigenic peptide-loaded MHC 11 is displayed on
the cell surface, allowing CD4+ helper T-cell binding. Once activated, B cells undergo proliferation,
immunoglobulin (Ig) class-switching, and differentiation into antigen-specific antibody-secreting
plasma cells and memory B cells. To induce CTL-mediated cellular immune responses, antigens need
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to be processed and presented by antigen-presenting cells (APCs), such as dendritic cells and
macrophages. APCs take up the antigen by pinocytosis, phagocytosis, and receptor-mediated
phagocytosis, cleave the antigen into smaller peptide fragments, and present these peptides on MHC.
In the lymph nodes, extracellular antigenic peptides are presented on MHC II to CD4+ T cells, whereas
intracellular proteins, including viral and tumor-associated antigens, are presented on MHC I to CD8+
T cells. A subset of APCs can also present extracellular antigenic peptides on MHC I in a process
known as cross-presentation. Once activated, naive CD8+ T cells proliferate into CTLs to mediate
antigen-specific cytotoxicity. A fraction of CD8+ T cells become memory CD8+ T cells to ensure long-
term protection. Upon activation, naive CD4+ T cells differentiate into helper T cells which secrete
cytokines to support CTL expansion and survival along with B-cell proliferation and differentiation.
Memory B and T cells persist in the body for a long time and mount an immediate and efficient antigen-
specific immune response upon reinfection with the same pathogen.

6 Tables

Table 1: Summary of supramolecular peptide-based vaccines for cancer and infectious diseases

Peptide Active ingredient Features Applications References
RADAL16 Anti-PD-1 + DCs + OVA B-sheet-rich nanofibrous ~ Delivery system (Yang et al.,
peptide hydrogel for DC-based 2018)
vaccine in EG7-
OVA tumor
model
K2(SL)sK> STING agonist Nanofibrous hydrogel Delivery system (Leach et al.,
with sustainable release in MOC,-E¢E; 2018)
properties tumor model
Fmoc-KCRGDK BRD4 inhibitor + Micellar hydrogel with Delivery system (Wang et al.,
indocyanine green + tumor penetrating for postoperative ~ 2018b)
autologous tumor cells properties cancer
immunotherapy in
4T1 tumor model
Ac-I3SLKG-NH2 G(IIKK)3I-NH2 MMP-2 mediated enzyme Delivery system (Chen et al.,
responsive fibrillar for MMP-2 2017)
hydrogels, sustained and ~ overexpressing
targeted release HeLa tumor
properties model
OV Ajs3266 peptide OV Ajs3266 peptide Cylindrical micelles Delivery system (Black et al.,
conjugated with dialkyl displaying epitopes at plus peptide 2012)
lipid tail and 2 palmitic multiple valences with tumor antigen in
chains self-adjuvanting EG7-OVA tumor
properties model
OV Ajs4267-HBc OV Ajs467 peptide Nanocage with controlled Delivery system (Shan et al.,
(Hepatitis B core properties and high- plus tumor 2019)
protein) density epitope display antigen plus
adjuvant for B16-
OVA-Luc tumor
model
Peptide- Peptide-MHC (pMHC) Liposome Antigen for B16-  (Mao et al.,,
MHC/ANXAS OVA tumor 2018)
model
Ada-GFFYGKKK- OVA peptide Nanofibrous hydrogel Nano-adjuvant for (Xu et al.,
NH2 with NF-kB activating B16-OVA cancer  2019)

properties

immunotherapy
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Nap-GFFpY-OMe OVA peptide Nanofibrous hydrogel Vaccine adjuvant ~ (Wang et al.,
formed by phosphatase for EG7-OVA 2016)
enzyme tumor model

Q11 Mucin 1 (MUCI) Nanofibers, B-turn Delivery system (Huang et

(QQKFQFQFEQQ) glycopeptide structure with self- plus adjuvant for  al., 2012)
adjuvanting properties MCF-7 tumor

model
Ac-AAVVLLLW- OVAss0-264 + HPV16 Nanostructure TC-1 tumor (Rad-
COOH E74-57 model Malekshahi
etal., 2017)

Cholesterol-aK-Cha- ~ EGFRvVIII + PADRE Lipopeptide micelles with ~ Cellular and (Chen et al.,

VAaWTLKAa- epitopes self-adjuvanting humoral immune  2018)

LEEKKGNYVVTDH properties response in B16-

EGFRVIII tumor
model

Coil29 EGFRUVIIIL, PADRE, o-helical coiled-coiled Induction of (Wu etal.,

(QARILEADAEILR  SIINFEKL, PEPvIII peptide fiber CD4+ T-cell, and  2017)

AYARILEAHAEILR CD8+ T-cell and

AD) B-cell response in
mice

DEAP-DPPA-1 PD-L1 antagonist (°PPA-1)  Nanoparticle responding ~ B16-F10 tumor (Cheng et

+ peptide substrate of to dual stimuli for model al., 2018)
MMP-2 + indoleamine- targeted delivery and
dioxygenase inhibitor controlled release
(NLG919)
GE11 (EGFR ligand)  Acetylcholinesterase gene +  Self-assembling peptide Drug and gene (Liang et al.,
Doxorubicin nanovesicle delivery system 2016)
targeted towards
EGFR expressing
cancer

S4-8Q 8Q (HPV-16 E7 epitope) Dendrimers with self- TC-1 tumor (Liu et al.,

(QAEPDRAHYNIVT adjuvanting properties model 2013); (Liu

FCCKCD conjugated etal., 2015)

to a 4-arm star

polymer)

Nap-GFFY-NMe DNA encoding gp145 Nanofibrous hydrogel Strong cellular (Tian et al.,
and humoral 2014)
immune response
for HIV treatment
and prevention

EAK16-11 SL9 (HIV specific CTL B-sheet-rich nanofibers Delivery system (Ding et al.,

epitope) + TL13 (CD4+ T- for HIV-1 vaccine  2016)
cell epitope) + R848
(TLR7/8 agonists) + DCs
p4l p41 peptide (analogue a-helical nanocomplexes ~ HIV and HCV co- (Zhang et al.,
derived from HCV protein inhibition 2013)
NS5A)
P6HRC1 HRCI1 (B-cell epitope from  Coiled-coil polypeptide Coronavirus (Pimentel et
S-protein) nanoparticles mediated SARS al., 2009)
(severe acute
respiratory
syndrome)
infection
KFES EIIT (West Nile Virus B-sheet-rich nanofibrous =~ West Nile virus (Friedrich et
envelope protein domain) hydrogel with self- vaccine al., 2016)
adjuvanting properties

Pentamer and trimer

PspA and CbpA (CTL

5-stranded + 3-stranded

Streptococcus

(Dorosti et
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sequence epitopes) + PhtD and PiuA coiled-coils nanoparticle ~ pneumoniae al., 2019)
(helper T-cell epitopes) + scaffold with self- vaccine
DTD (universal T-helper) adjuvanting properties
J8 (B-cell epitope: J8 conjugated with dialkyl Cylindrical micelles with ~ Group A (Trent et al.,
(SREAKKQVEKAL) hydrophobic moiety (diC16) self-adjuvanting Streptococcus 2015)
properties pyogenes vaccine
MAX1 Inherently antibacterial B-hairpin-rich hydrogel Broad spectrum (Salick et al.,
bacterial 2007)

resistance to
gram-positive and
gram-negative

bacteria
Fmoc-F, Silver nanoparticles Macroscopic hydrogels Anti-bacterial (Paladini et
wound dressing al., 2013)
Phage-VS-LK Sap2 (VS) + Hsp90 (LK) Nanofiber Candida albicans ~ (Wang et al.,
peptides detection via 2018b)
ELISA and
vaccine
Cholesterol- Inherently antimicrobial Nanoparticles Cryptococcus (Wang et al.,
G3R6TAT neoformans- 2010)
induced mengitis
Q11 NANP; (circumsporozoite [-sheet-rich nanofibers P. falciparum (Rudra et al.,
protein epitope) vaccine for 2012)
malaria
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