

1 **Hyaluronic acid-based shape-memory cryogel scaffolds**

2 **for focal cartilage defect repair**

3 Tengfei He^a, Boting Li^a, Thibault Colombani^b, Kasturi Joshi-Navare^b, Shikhar Mehta^a,
4 John Kisiday^c, Sidi A. Bencherif^{a,b}, Ambika G. Bajpayee^{a,d}

5 ^aDepartment of Bioengineering, ^bChemical Engineering and ^dMechanical Engineering
6 Northeastern University, 805 Columbus Ave, Boston, MA, USA

7 ^cDepartment of Clinical Sciences, Colorado State University, Fort Collins, CO, USA

8 **Author Emails:**

9 Tengfei He | he.te@northeastern.edu | 617-459-0611

10 Boting Li | li.bot@northeastern.edu | 857-919-9540

11 Thibault Colombani | t.colombani@northeastern.edu | 617-818-7261

12 Kasturi Joshi-Navare | k.joshinavare@northeastern.edu | 617-373-2000

13 Shikhar Mehta | mehta.shi@northeastern.edu | 781-439-2095

14 John Kisiday | john.kisiday@colostate.edu | 970-297-5071

15 Sidi A. Bencherif | s.bencherif@northeastern.edu

16 Ambika G. Bajpayee | a.bajpayee@northeastern.edu

17 **Corresponding Authors:**

18 Sidi A. Bencherif

19 336 Mugar Life Sciences Building

20 330 Huntington Avenue, Boston, MA, USA

21 +1 617-373-7103 (Phone)

22 s.bencherif@northeastern.edu

23 Ambika G. Bajpayee

24 ISEC Room 216

25 805 Columbus Avenue, Boston, MA, USA

26 +1 617-373-7018 (Phone)

27 a.bajpayee@northeastern.edu

28 **Running Title:** Injectable Shape Memory Chondrocyte-Loaded Cryogels

29 **Keywords:** injectable scaffolds; hyaluronic acid; cryogel; shape-memory; cartilage repair;

30 tissue engineering

33 **Abstract**

34 Traumatic joint injuries can result in significant cartilage defects, which can greatly
35 increase the risk of osteoarthritis development. Due to the limited self-healing capacity of
36 avascular cartilage, tissue engineering approaches are required for filling defects and
37 promoting cartilage regeneration. Current approaches utilize invasive surgical procedures
38 for extraction and implantation of autologous chondrocytes, therefore injectable
39 biomaterials have gained interest in order to minimize the risk of infection as well as
40 patient pain and discomfort. Here, we engineered biomimetic, hyaluronic acid (HA)-based
41 cryogel scaffolds that possess shape-memory properties as they contract and regain their
42 shape following syringe injection to non-invasively fill cartilage defects. The cryogels,
43 fabricated with HA and glycidyl methacrylate at -20 °C, resulted in an elastic,
44 macroporous and highly interconnected network that provided a conducive
45 microenvironment for chondrocytes to remain viable and metabolically active following
46 injection through a syringe needle. Chondrocytes seeded within cryogels and cultured for
47 15 days exhibited enhanced cell proliferation, metabolism and production of cartilage
48 extracellular matrix glycosaminoglycans compared to in HA-based hydrogels.
49 Furthermore, immunohistochemical staining revealed production of collagen type II from
50 chondrocyte-seeded cryogels, indicating the maintenance of cell phenotype. These
51 results demonstrate the potential of chondrocyte-seeded, HA-based, injectable cryogel
52 scaffolds to promote regeneration of cartilage tissue for non-surgically invasive defect
53 repair.

54

55 **Impact Statement:** Hyaluronic acid-based shape memory cryogels provide a conducive
56 microenvironment for chondrocyte adhesion, proliferation and matrix biosynthesis for use
57 in repair of cartilage defects. Due to their sponge-like elastic properties, cryogels can
58 fully recover their original shape back following injection while not impacting metabolism
59 or viability of encapsulated cells. Clinically, they provide an opportunity for filling focal
60 cartilage defects by using a single, minimally invasive injection of a cell encapsulating
61 biocompatible 3D scaffold that can return to its original structure to fit the defect geometry
62 and enable matrix regeneration.

63

64 **INTRODUCTION**

65 Traumatic joint injuries can result in focal cartilage defects that regenerate poorly
66 due to a lack of blood supply and low chondrocyte density in cartilage ¹. Cartilage defects,
67 if left untreated, can cause the tissue to lose its mechanical integrity, while the joint loses
68 lubrication between bones, ultimately leading to severe pain and disability ². Currently,
69 the most promising FDA-approved treatment for regeneration of cartilage defects is
70 MACI[®] - a matrix-applied implantation of autologous chondrocytes cultured on a porcine
71 collagen membrane ³. Despite the clinical improvement it has provided, this technique
72 has a number of limitations. Primarily, MACI[®] requires two surgical procedures – an
73 arthroscopy for chondrocyte collection and a mini-arthrotomy for implantation. Secondly,
74 the membrane used for culturing cells is comprised of collagen types I and III derived
75 from porcine tissue which increases the risk of an immune response following
76 implantation ³. Thus, an improved design that can limit the number of surgeries or bypass

77 surgical implantations, while improving biocompatibility is desirable for cartilage defect
78 repair.

79 Hydrogels (e.g., PEG, alginate, self-assembling peptides, hyaluronic acid
80 (HA), collagen) have been extensively studied as conventional 3D scaffolds for their
81 biocompatible characteristics, mimicking the extracellular matrix ⁴⁻¹⁰. However, hydrogels
82 often exhibit a quasi-nonporous network which limits cell proliferation, mechanical
83 flexibility and diffusion of nutrients, oxygen and cellular waste ¹¹⁻¹³. Implantation of
84 preformed hydrogels typically requires invasive surgical procedures such as arthrotomic
85 surgery ^{14, 15}, thus injectable hydrogels have gained interest as a method for filling defects
86 due to their minimally invasive nature ¹⁶⁻¹⁹. However, due to the fact that a pre-gelation
87 liquid has to be delivered to the defect, issues with gelation time can cause leakage to
88 adjacent tissues or body fluids resulting in potential toxicity or changes in tissue
89 mechanical properties ^{9, 20-23}. Thus, injectable scaffolds possessing shape-memory
90 properties (the ability to contort within the needle and then recover back to the original
91 shape of the defect immediately) are desired for maintaining mechanical properties and
92 for preventing leakage from occurring ^{4, 12, 24-28}. Cryogels, a subclass of hydrogel, formed
93 from crystallization at freezing temperatures, have been shown to offer shape-memory
94 properties and have several advantageous features such as a macroporous architecture
95 with highly interconnected pores (for unrestricted flow of nutrients and matrix proteins),
96 and adequate mechanical strength and swelling capacity (for shape-memory and integrity)
97 ^{12, 23, 24}. These properties allow efficient flow of nutrients and cellular trafficking which in
98 turn facilitate tissue integration ²⁹. Cryogels can be fabricated using naturally derived
99 polymers, thus reducing risk of toxicity. For example, HA-based cryogels are

100 biocompatible and biodegradable, thereby limiting an immune response and allowing for
101 the scaffold to be replaced by repaired tissue ². Therefore, due to their injectable shape-
102 memory properties and their biocompatibility, the use of cryogels as cell-seeding scaffolds
103 for cartilage defect repair is promising ^{30, 31}.

104 Here, we engineered macroporous biomaterials with shape-memory properties in
105 order to provide a conducive environment for chondrocyte adhesion, proliferation and
106 matrix formation. We first synthesize HA-based cryogel scaffolds with and without RGD,
107 a cell adhesion peptide, to evaluate cell-cryogel interactions, and then test their
108 mechanical properties for comparison with conventional HA-based hydrogels. We then
109 seed primary chondrocytes within the gels to provide the cells with a physiologically
110 relevant microenvironment for in vitro culture. We hypothesize that (i) chondrocytes
111 infused within HA-based cryogels will remain metabolically active following injection
112 through a small-pore needle and (ii) that the macroporous and highly interconnected
113 structure of cryogels will provide an unhindered environment for cell growth and diffusion
114 of oxygen and nutrients, thereby enhancing chondrocyte metabolism and matrix
115 production compared to that of mesoporous HA-based hydrogels.

116

117 **MATERIALS AND METHODS**

118 **Materials**

119 Ammonium persulfate (APS), N, N, N', N'-Tetramethylethylenediamine (TEMED),
120 Hyaluronic acid (HA), glycidyl methacrylate (GM), dimethylmethylenediamine (DMMB),
121 resazurin sodium salt, Griess reagent, Chloramine T and 4-(Dimethylamino)
122 benzaldehyde (DMAB), Paraformaldehyde (PFA), TritonTM X-100, 4',6-Diamidino-2'-

123 phenylindole dihydrochloride (DAPI) and other salts were purchased from Sigma-Aldrich
124 (St. Louis, MO). Acrylate-PEG-N-hydroxysuccinimide (Acrylate-PEG-Succinimidyl
125 Valerate, MW 3,400) was purchased from Laysan Bio Inc. Lithium phenyl-2,4,6-
126 trimethylbenzoylphosphinate (LAP) was purchased from Biobots. Trypan Blue and High-
127 glucose Dulbecco's Modification of Eagle's Medium (DMEM) were purchased from
128 Corning (Corning, NY). Fetal bovine serum (FBS) was purchased from GE Healthcare
129 (Chicago, IL). HEPES, non-essential amino acids (NEAA), Penicillin-streptomycin
130 Antibiotic-Antimycotic (PSA), L-proline, ascorbic acid and NHS-Rhodamine were
131 purchased from Thermo Fisher Scientific (Waltham, MA). Quant-iT™ PicoGreen™
132 dsDNA Assay Kit was purchased from Invitrogen (Cambridge, MA). ViaQuant™ Far-Red
133 Fixable Dead Cell Stain Kit and Alexa Fluor 488-phalloidin stain kit were purchased from
134 GeneCopoeia (Rockville, MD). The integrin binding peptide (Gly) 4-Arg-Gly-Asp-Ser-Pro
135 (RGD) was purchased from Commonwealth Biotech (Midlothian, VA). Staining antibodies
136 were provided by ServiceBio (Wuhan, China).

137

138 **Fabrication of Hyaluronic Acid-based Cryogels and Hydrogels**

139 *Chemical modification of hyaluronic acid*

140 HA was conjugated to GM to incorporate polymerizable methacrylate residues
141 along the polymer backbone ³². The resulting product, hyaluronic acid glycidyl
142 methacrylate (HAGM), was characterized by ¹H NMR as previously described [1].
143 Rhodamine-labeled HAGM (R-HAGM) was prepared by reacting NHS-rhodamine with
144 amine-terminated HAGM (NH₂-HAGM) based on a method previously reported [1]. R-
145 HAGM was incorporated into hydrogels and cryogels to stain the polymer network for

146 imaging via confocal microscopy. G4RGDSP (containing the RGD sequence) was
147 conjugated to acrylate-PEG-N-hydroxysuccinimide to form acrylate-PEG-G4RGDSP
148 (APR), as previously reported ²⁴. This approach allows functionalized G4RGDSP to be
149 covalently incorporated into the gels (hydrogels and cryogels) during polymerization to
150 promote cell adhesion.

151

152 *Synthesis of HA cryogels and hydrogels*

153 HA-based cryogels were prepared with 3.2% (wt/v) HAGM and either 0.8% (wt/v;
154 ~2 mM) APR (**Cryo RGD+**) or 0.8% (wt/v) methoxy-PEG-acrylate (MPA; **Cryo RGD-**)
155 based on methods previously described ²⁴ (**Fig. 1A**). Briefly, the polymers were first
156 dissolved in pre-cooled deionized (DI) water. Next, 14% (wt/v) APS (20 μ L/mL) and 7%
157 (v/v) TEMED (10 μ L/mL) were then added and mixed well. Next, the prepolymer solution
158 was transferred into cold and sterile Teflon cylindrical molds (6 mm diameter \times 1.5 mm
159 height) and incubated overnight at -20 °C to allow for cryogelation. The next day, Cryo
160 RGD+ and Cryo RGD- were thawed at room temperature to remove ice crystals, then
161 washed and stored at 4 °C in DI water for future use.

162 HA-based hydrogels (**Hydro RGD+**) were fabricated by first mixing 3.2% (wt/v)
163 HAGM, 0.8% (wt/v) APR, 0.5% (wt/v) LAP photoinitiator in DI water. Next, the prepolymer
164 solution was transferred into Teflon cylindrical molds (6 mm diameter \times 1.5 mm height)
165 and photopolymerized for 30 seconds under a UV light (405 nm) with a 10W UV lamp. To
166 fabricate cell-laden hydrogels, Hydro RGD+ were also photopolymerized with primary
167 bovine chondrocytes as described in section 2.4.

168

169 **Scanning electron microscopy (SEM) imaging and characterization of mechanical
170 properties**

171 For SEM analysis, cryogels were lyophilized and sputter-coated with
172 platinum/palladium up to 5 nm thickness ³³. Gels were imaged using a Hitachi S-4800
173 scanning electron microscope (Hitachi High-Technology Corporation, Japan) at 3 KV and
174 10 μ A.

175 Swelling ratio (Q_M) and pore connectivity were determined for further
176 characterization ³³. For swelling ratio, gels were swelled in phosphate-buffered saline
177 (PBS) at 37 °C under gentle shaking for 1 day to reach equilibrium. Then, the wet weights
178 of gels were measured after removal of excess surface liquid. The gels were lyophilized
179 and weighed to get the dry weight. The swelling ratio, Q_M , was calculated by using the
180 following equation:

$$181 \text{Swelling ratio } (Q_M) = \frac{\text{Wet weight} - \text{Dry weight}}{\text{Dry weight}}$$

182 The Pore connectivity was calculated as following:

$$183 \text{Pore connectivity } (\%) = \frac{\text{Wet weight} - \text{Wicked weight}}{\text{Wet weight}} \times 100$$

184 where wet weight is the weight of fully hydrated gels, and wicked weight is obtained by
185 measuring the gel weight after the free water is wicked away using absorbent wipes from
186 the gel surface.

187 Bulk compressive elastic modulus of gels was examined by using stress-relaxation
188 testing on an ElectroForce 5500 mechanical testing apparatus (TA instruments, DE).
189 Cryogels were subjected to multiple successive stress-relaxation cycles of 10% strain per
190 minute, followed by static holds of 800 s ³³, whereas hydrogels were subjected to a single

191 cycle for the same strain rate. For each cycle, the compression displacement and load of
192 the scaffolds were recorded with WinTest7 software. Equilibrium stress values were
193 extracted from relaxation curves using a custom MATLAB script adapted from previous
194 methods ³⁴, and the modulus was calculated from the linear region of equilibrium stress-
195 strain curves with 10% strain rate for 10 cycles per minute.

196

197 **Primary chondrocyte isolation, seeding in gels and culture**

198 Cartilage slices were obtained from immature bovine femoral condyles ³⁵ using a
199 scalpel and then placed in a petri dish containing PBS (**Fig. 1B**). Slices were then
200 chopped using a sterile blade before digesting in 50 mL of 2 mg/mL pronase solution in
201 culture medium for 1 h at 37 °C and in 50 mL of 0.25 mg/mL collagenase II solution in
202 culture medium overnight at 37 °C in a spinner flask. Isolated chondrocytes were filtered
203 from the rest of tissue using a 70 µm pore-size cell strainer and further purified using a
204 40 µm cell strainer, which was then rinsed twice using sterile PBS. Chondrocytes were
205 then resuspended in culture media containing high-glucose DMEM, 10% FBS, 1%
206 HEPES, 1% non-essential amino acids, 1% antibiotic-antimycotic, 0.4% proline and 0.4%
207 ascorbic acid. Viable primary chondrocytes were counted using Trypan Blue. On the
208 same day, cells were seeded into cryogels and hydrogels as described below.

209 Prior to cell seeding, cryogels were first sanitized with 70% ethanol for 30 min and
210 subsequently washed several times with sterile PBS. Next, cells were seeded dropwise
211 into two types of cryogels (Cryo RGD+ or Cryo RGD-): 10 µL of cell suspension containing
212 8×10⁵ cells in the culture media were seeded into cryogels in a dropwise manner in a 48-
213 well plate and kept for 30 min in a 37 °C in 5% CO₂ environment before adding culture

214 media. Hydro RGD+ containing cells were fabricated by first mixing cells (8×10^5 cells)
215 with the polymer and LAP photo-initiator in complete cell culture medium. Next, the cell-
216 containing polymer solution was transferred into a cylindrical mold (6 mm diameter \times 1.5
217 mm height). Cell-laden hydrogels were then formed via photopolymerization under UV
218 light (6.9 mW/cm², 320 – 390 nm) for 30 seconds.

219 Cryogels and hydrogels were cultured in 500 μ L of culture media at 37 °C in 5%
220 CO₂ environment for 15 or 21 days. Media was changed every 3 days and used for a
221 variety of biochemical analysis to measure nitrite release, DNA content, cell metabolic
222 activity, glycosaminoglycans (GAG) and collagen content in gels (**Fig. 1C**) after 15 days,
223 which is described in section **2.7**. Gels were fixed for histology and immunostaining as
224 described in section 2.8.

225

226 **Injectability test**

227 Cell-laden cryogels (Cryo RGD+) (2×10^5 cells/construct) were prepared and
228 incubated overnight in culture media to allow for cell adhesion to the polymer walls.
229 Cryogels were then loaded individually into syringes containing 50 μ L of culture media ³³,
230 and then injected through a hypodermic 16-gauge needle. Next, syringe-injected cell-
231 laden cryogels were cultured for another 24 h and the cell viability, cell metabolism and
232 nitrite release were assessed and compared to a control group (non-injected). Cryo RGD-
233 was not evaluated due to its similar mechanical structure and composition with Cryogel
234 RGD+ while Hydrogel RGD- was not injectable. Cryo RGD+ was also injected through a
235 16-gauge needle and deposited directly into an ex vivo bovine articular cartilage defect
236 (6 mm diameter \times 1.5 mm thickness) for evaluation of shape-memory property

237 (Supplemental Video). The defect was created by punching a full thickness 6 mm
238 diameter core into a 9 mm diameter x 1.5 mm thick condylar cartilage explant.

239

240 **Biochemical analysis**

241 Media was changed every three days throughout the culture duration. At Day 0
242 and Day 15, cell-laden gels were incubated in media containing 1x resazurin sodium salt
243 (AlamarBlue assay) for 3 h in dark at 37 °C and 5% CO₂. Then, the cell metabolic activity
244 was quantified following the manufacturer's recommendation. For injectability test, nitrite
245 released into the media was measured using the Griess assay. Briefly, equal volumes of
246 Griess reagent and culture media collected were mixed and incubated at room
247 temperature for 15 min. Next, the absorbance at 540 nm was measured using a
248 microplate reader. Sodium nitrite was used as a standard³⁶.

249 At the end of culture, gel samples were frozen at -80 °C and then lyophilized. Gels
250 were then digested in 500 µL of 5% wt/v proteinase K for 2 h at 57 °C in 1M tris buffer
251 (pH=8.0). DNA content in gels was analyzed using the PicoGreen assay following the
252 manufacturer's protocol. The total GAG content in gels was measured using the DMMB
253 assay³⁷. Total collagen content was determined using the Hydroxyproline assay³⁶.

254

255 **Cell viability and cytoskeleton staining in gels using confocal microscopy**

256 At Day 0 and Day 15, cell-laden cryogels and hydrogels were washed with 1 mL
257 of PBS and subsequently incubated for 15 min in the presence of a ViaQuant™ Fixable
258 Far-Red Dead Cell Staining Kit according to the manufacturer's instructions. Next, the
259 gels were rinsed with 1 mL of PBS, fixed with 500 µL of 4% PFA for 20 min at RT in dark,

260 and washed with 1 mL of PBS. Next, the cells were permeabilized using 500 μ L of PBS
261 supplemented with 0.1% Triton X-100 for 5 min, then stained with 4',6-diamidino-2-
262 phenylindole (DAPI) (nucleus, blue) and Alexa Fluor 488-phalloidin (cytoskeleton, green).
263 Confocal microscopy images were obtained using a Leica TCS SP5 X WILL confocal
264 microscope (Buffalo Grove, IL, USA), and processed using Image J. Percentage of cell
265 viability was defined as the fraction of number of viable cells to the total number of cells.
266 For each condition, one representative stacked image was recorded with a 5 μ m
267 separation in between z-stacks. Cryogels were stained with rhodamine during fabrication
268 as described previously ³³.

269

270 **Histology and immunohistochemistry**

271 Cell-laden gels at Day 21 were fixed in 4% formalin, embedded in 0.75% agarose
272 for ease of handling, dehydrated in a graded series of ethanol and xylenes, and
273 embedded in paraffin. Transverse sections of gels were taken at 6 μ m thickness. Sections
274 were then immunostained with anti-collagen II mouse monoclonal antibody (1:700)
275 (ServiceBio, GB12021) before an HRP-labeled goat anti-mouse secondary antibody
276 (ServiceBio, G1214) was used (1:2000). Using 3,3'-diaminobenzidine, sections were
277 stained in order to develop a strong signal. For nuclei staining, sections were further
278 stained with hematoxylin. Stained sections were imaged using a 3D scanner (MIDI II
279 HISTECH).

280

281 **Statistical methods**

282 Data is presented as Mean \pm Standard Deviation. For all studies, n = 3-5 gels per
283 condition were used and experiments were repeated at least three times. Confocal
284 images shown are representative of 3 samples per condition. For comparisons between
285 different treatment conditions, Tukey's Honestly Significant Difference test was used. P <
286 0.05 was considered statistically significant.

287

288 **EXPERIMENT**

289 **Synthesis and characterization of gels**

290 Gelation of HAGM (with or without RGD) at -20 °C resulted in ice crystal formation
291 (**Fig. 1A**). After thawing at RT, 3D cryogel scaffolds with an interconnected macroporous
292 architecture were created. Using SEM, an average pore size of $50 \pm 0.5 \mu\text{m}$ was
293 determined for 'dry' cryogels (pre-swelling) both with and without RGD (**Fig. 2A**),
294 confirming their macroporous architecture. As shown in **Fig. 2B**, Hydro RGD+ had the
295 highest swelling ratio ($Q_M = 50.2 \pm 2.6$), while Cryo RGD+ and Cryo RGD- exhibited 2x
296 lower swelling ratios compared to Hydro RGD+ ($Q_M = 22 \pm 3.7$ and 31 ± 2.6 , respectively).
297 Additionally, the degree of pore connectivity for Cryo RGD+ and Cryo RGD- (83.5 ± 2.8
298 and 85.0 ± 0.8 respectively) was approximately 7 times higher than that of Hydro RGD+
299 (**Fig. 2C**). The mechanical stiffness for Cryo RGD+ and Cryo RGD- was $4.8 \pm 0.3 \text{ kPa}$
300 and $5.5 \pm 0.4 \text{ kPa}$, respectively, both of which were significantly lower than that of
301 hydrogels, which measured at $65 \pm 10 \text{ kPa}$ (**Fig. 2D**). Cryogels, thus, exhibited a
302 macroporous network with high pore connectivity and low swelling.

303

304 **Injectability of cryogels**

305 The cell-laden cryogels restored their original shape rapidly, fitting into the same
306 size (6 mm diameter × 1.5 mm thickness) cylindrical defect in a cartilage explant after
307 being injected through a 16-gauge needle (**Figs. 3A-B**). This feature demonstrates their
308 shape-memory properties (**Supplemental Video**). In addition, chondrocytes
309 encapsulated within cryogels remained metabolically active and viable (**Fig. 3C**) (same
310 as untreated control) and showed no inflammatory response following their injection
311 through the 16-gauge needle, as evidenced by the similar levels of nitrite release (**Fig.**
312 **3D**).

313

314 **Biological response**

315 After 15 days of culture, cryogels did not show a significant reduction in percentage
316 of chondrocyte viability compared to Day 0, indicating that the cryogel had a
317 microenvironment that was conducive to maintaining chondrocyte health over a 2-week
318 period (**Fig. 4A**). Hydro RGD+ showed a slight decrease in cell viability from 83.8% to
319 73.7% over 15 days, although this difference was not significant.

320 Additionally, chondrocytes in cryogels exhibited higher cell proliferation rates (up
321 to 1.5x greater) than hydrogels over 15 days (**Fig. 4B**). By Day 15, at least 2x higher GAG
322 content was measured in cryogels compared to hydrogels, whether the data was
323 normalized by DNA content or not (**Figs. 4C-D**). Further, a greater percentage of GAGs
324 was found to be retained within the cryogels compared to from Hydro RGD+, indicating
325 the superior conducive microenvironment for matrix production provided by cryogels
326 (**Supplemental Fig. S1**). Additionally, there was no significant difference in total collagen
327 content in cryogels or hydrogels by Day 15 (**Fig. 4E**). Chondrocyte metabolism in all three
328 types of gels increased significantly by Day 15 compared to that at Day 0 ($p < 0.003$); cell

329 metabolism in cryogels was 2x higher compared to that in hydrogels at Day 15 (**Fig. 4F**),
330 indicating its superior micro-environment for chondrocytes. These data suggest that
331 cryogels provide a superior micro-environment for maintaining chondrocyte phenotype,
332 while supporting cell growth and promoting matrix regeneration. The presence of RGD in
333 cryogels, however, did not significantly enhance the number of chondrocytes that
334 remained adherent within the scaffold following 24 h of cell seeding (**Supplemental Fig.**
335 **S2**). Additionally, the presence of RGD did not improve biosynthesis rates as shown by
336 no difference in GAG or collagen content in the two types of cryogels by Day 15.

337

338 **Cell attachment, survival, and spreading in the gels**

339 Chondrocytes in Hydro RGD+ remained dispersed over 15 days, exhibiting less
340 cell-cell interaction and no characteristics of forming an intricate tissue-like structure (**Fig.**
341 **5**). When cultured in RGD-containing and RGD-free cryogels, chondrocytes exhibited
342 different behaviors. Chondrocytes seeded in both types of cryogels were homogenously
343 distributed and simultaneously formed cellular aggregates at Day 0. For Cryo RGD+, cells
344 interacted with the polymer network and displayed more of a spindle-shaped morphology
345 by Day 15 rather than maintaining their initial spheroid-like shape. On the other hand,
346 chondrocytes in Cryo RGD- self-organized and formed large 3D cylindrical organoids
347 throughout the construct by Day 15. The organoids displayed a sophisticated architecture
348 with spherical cells in the center surrounded by stretched spindle-shaped cells interacting
349 with the polymer walls.

350

351 **Histological and immunohistochemical analysis**

352 The three gel types were assessed by immunohistochemistry for collagen type II
353 content after 21 days of culture (**Fig. 6**). Collagen type II staining indicated that both
354 hydrogels and cryogels stimulated chondrocytes for the synthesis of de novo collagen as
355 evidenced by the brown color. Distinct differences in stain color between nuclei and
356 collagen II were not visible in hydrogels due to their mesoporous structure, whereas the
357 macroporous structure of cryogels allowed for vivid dark blue and brown staining of the
358 nuclei and collagen II, respectively. Total collagen levels did not show any difference
359 between Cryo RGD+ and Cryo RGD-, thereby supporting the data from the biological
360 analysis (Fig. 4E).

361

362 **DISCUSSION**

363 Here, we have designed syringe-injectable, HA-based shape-memory cryogels
364 that provide a conducive microenvironment for chondrocyte adhesion, proliferation and
365 matrix biosynthesis for use in the repair of cartilage defects. These shape-memory
366 cryogels provide an opportunity for improving the standard of care as they require only a
367 single, minimally invasive injection of a biocompatible 3D scaffold that can return to its
368 original structure (fitting to cartilage defect size and shape) following injection ³⁸. The large
369 interconnected macropores of cryogels (~50 μ m) (**Fig. 2A**), may provide the unobstructed
370 transport of nutrients, solutes and waste as evidenced by the increased cell metabolism
371 and GAG synthesis from chondrocytes over 15 days. In addition, their high pore
372 interconnectivity is able to enhance the regulation of cell adhesion, viability, proliferation
373 and metabolism while providing the mechanical strength required for injectability and
374 shape-memory properties ³⁷. The interconnected macropores of the designed cryogels

375 also aid in recreating the tissue microenvironment for chondrocyte growth and function,
376 while providing compositional similarity with the native cartilage ECM due to its HA-based
377 nature. These characteristics have also been previously shown to improve ECM protein
378 production for tissue engineering ^{29, 39}.

379 While cryogels have been designed with different types of polymers (i.e. hyaluronic
380 acid, chitosan, gelatin, chondroitin sulfate (CS), PEG, collagen, alginate, agarose and
381 their blends) for various tissue engineering applications, cartilage defect repair remains a
382 largely unexplored area ^{2, 4, 29, 30, 39-43}. Gupta et al. designed a cell-free chitosan-agarose-
383 gelatin cryogel scaffold which was able to promote the regeneration of cartilage in a rabbit
384 osteochondral defect ⁴. However, their non-injectable cryogels required surgical
385 implantation, most likely due to their high modulus (~44 kPa) and poor compressibility. A
386 chondrocyte-seeded gelatin-chondroitin-6-sulfate-hyaluronan cryogel scaffold designed
387 by Kuo et al. also regenerated cartilage in rabbit osteochondral defects ⁴¹. However, the
388 scaffold's ability to retain its structure following injection was not evaluated. Recently, a
389 gelatin-HA-PEG acrylate cryogel was shown to be repeatedly injectable and stretchable
390 for use in adipose tissue engineering applications ⁴⁴. Thus, this is the first time that
391 injectable shape-memory cryogels have been considered for their ability to promote
392 cartilage regeneration for defect repair.

393 Hyaluronic acid is a natural occurring polysaccharide that has been widely studied
394 and used for tissue engineering ²⁴. It is the polymer backbone of aggrecan – the primary
395 proteoglycan that comprises the dense protein meshwork existing in cartilage tissue, and
396 it is also the main solid component of synovial fluid ⁴⁵. Further, chondrocytes have been
397 shown to efficiently adhere to HA due to the presence of CD44 receptors on the cell

398 surface, which can enhance chondrocyte proliferation and matrix synthesis ⁴⁶. Therefore,
399 HA is an ideal candidate biomaterial for cartilage tissue regeneration ⁴⁷. However, the
400 function of HA is limited due to the in vivo enzymatic degradation caused by multiple
401 metabolic pathways ⁴⁸; therefore requiring strategies to crosslink chemically modified HA
402 to decrease degradation ⁴⁹. Previous studies have added methacrylate derivatives to HA
403 so as to create photopolymerizable HAGM macromers for further crosslinking. The
404 crosslinked networks of such conjugates have been reported to have high biocompatibility,
405 low inflammatory response and considerable vascularization at an optimized polymer
406 concentration ^{50, 51}. The cryogels used in this study were previously optimized for the
407 degree of methacrylation (~30%) and HAGM macromonomer concentration (3.2% wt/v)
408 in order to enable shape-memory following injection ²⁴. In this study, HAGM is utilized as
409 the main component of the polymer for both hydrogels and cryogels. In hydrogels,
410 chondrocytes were encapsulated during the photopolymerization process while they were
411 seeded dropwise on the preformed cryogels. This way, the relatively low Young's
412 modulus (5.5 ± 0.4 kPa), combined with high crosslink density and interconnected
413 macropores, make cryogels injectable with shape-recovering ability. While the cryogels
414 possess shape-memory, it is important to note that the gels are poroelastic in nature, as
415 a result of fluid flow through the matrix.

416 Our biological analysis shows that the HAGM cryogel can provide a superior
417 microenvironment for chondrocytes compared to the hydrogel. Following syringe injection
418 of cell-seeded cryogels, cells exhibited similar metabolic activity and viability as prior to
419 injection (**Figs. 3C-D**), which is consistent with previously reported findings ^{24, 33}. Shape-
420 memory cryogels can therefore be used as a tissue-engineered construct to be injected

421 into chondral defects without surgical implantation. Its highly interconnected macroporous
422 structure enables efficient transport of nutrients, waste and macromolecules (i.e. matrix
423 proteins), thereby providing ideal physical support for chondrocytes to adhere, remain
424 functional and synthesize their own extracellular matrix (GAGs and collagen). Thus, these
425 cryogels allow for the complete integration of implanted 3D substrates compared to
426 conventional hydrogels (**Figs. 4B, D, E**). Conversely, our previous work has shown that
427 conventional hydrogels possess a mesoporous structure (pore size: ~2-50 nm) with low
428 pore interconnectivity (Fig. 2C) which limits cellular infiltration and ease of injectability²⁴,
429 further emphasizing the superior physical support provided by cryogels to chondrocytes.

430 To provide a bioactive surface for chondrocytes to proliferate, adhesion peptides
431 (RGD) were grafted to the cryogels^{24, 33}. However, the cell-substrate interaction
432 performed similarly in HAGM cryogels with or without RGD likely due to the interactions
433 between CD44 receptors present on the surface of chondrocytes and the HA component
434 of the gel structure. This strong bioadhesion may [overcome the adhesion effects](#)
435 [expected from the presence of RGD peptide](#)^{27, 33}, resulting in similar DNA content
436 between Cryo RGD+ and Cryo RGD-. It is important to note that under compression
437 (during injection), presence of RGD may influence long-term cellular adhesion and
438 production of GAG and collagen, therefore warranting a future study investigating the
439 long-term effects post-injection. Interestingly, chondrocytes were able to form large
440 spheroids with fibroid matrix connecting to the polymer walls in cryogels without RGD,
441 while chondrocytes formed smaller spheroids in the presence of RGD (**Fig. 5**). The
442 presence of integrin-binding ligands (RGD) can enhance cell interaction with the
443 synthesized extracellular matrix and polymer walls, leading to a reduced number of cells

444 in clusters. These chondrocyte clusters are involved in the reparative process due to the
445 overexpression of RUNX1, a hematopoietic lineage determining transcription factor,
446 which likely upregulates the expression of aggrecan and lubricin, a chondroprotective
447 molecule^{52, 53}. Additionally, it has been shown that chondrocyte clusters form to initiate
448 the repair response in a partial thickness cartilage defect rabbit model⁵⁴, confirming the
449 cells' chondroprogenitor phenotype⁵³. Therefore, in our study, the clusters formed in
450 cryogels may contribute to the enhanced cell proliferation, metabolism and production of
451 cartilage extracellular matrix.

452 A limitation of this study was the exclusion of hydrogels without RGD, as the
453 primary objective was to evaluate chondrocyte behavior in cryogels compared to
454 hydrogels following injection. Further, there were no significant differences in chondrocyte
455 proliferation, metabolism or matrix production between Cryo RGD+ and Cryo RGD-,
456 despite their improvement over hydrogels. Previous studies have also indicated that
457 presence of RGD in PEG-hydrogels positively influences cartilage matrix synthesis and
458 gene expression, however only in response to dynamic mechanical stimulation⁵⁵. Thus,
459 since our gels were not subjected to mechanical loading, we would expect to see similar
460 trends between hydrogels with or without RGD.

461 In our study, we evaluated the microenvironment for chondrocytes, however
462 clinically, success for chondrocyte-based tissue regeneration has been limited. A phase
463 III trial was recently launched with NeoCart, a product similar to MACI®, however with a
464 bovine type I collagen matrix as opposed to porcine collagen mix of type I and III. The
465 trial however did not meet its primary endpoint of change in physical functioning and pain
466⁵⁶. Hyalograft C, a hyaluronan-based scaffold seeded with autologous chondrocytes, was

467 investigated in prospective clinical trials with 5-12 years follow-ups, showing clinical
468 improvement in patients at 32 ± 12 years old, with single and multiple defects (smaller
469 than 4 cm^2), however, its use in salvage cases was not recommended. Concerns
470 surrounding the manufacturing process and uncertainty of a positive benefit-risk balance
471 eventually lead to the withdrawal of the product from the European market ⁵⁷. Thus,
472 MACI® remains as the only scaffold-based product for repairing cartilage defects. The
473 limited success of these trials and the risks and high costs associated with extraction and
474 culture of autologous chondrocytes has resulted in the increased use of alternative cell
475 types such as mesenchymal stem cells (MSCs) for cartilage regeneration. Injectable,
476 shape-memory cryogels designed similar to ours have been used for delivering
477 bioluminescent murine MSCs to mice via subcutaneous injection, resulting in enhanced
478 survival and higher local retention compared to free cells ²⁴. MSCs are advantageous as
479 they can be sourced from several areas including bone marrow, adipose tissue and
480 umbilical cord using a syringe, and therefore, do not require surgery for collection ⁵⁸. Thus,
481 combined with the injectable nature of cryogels, there is the potential to treat cartilage
482 defects with MSCs entirely free of surgery, which would not only reduce patient discomfort
483 but would also lower the risk of infection and incurred costs ⁵⁹. Further, induced pluripotent
484 stem cells (iPSCs) which can be derived from somatic cells, have also shown the ability
485 to differentiate into chondrocytes, and therefore have the potential to be seeded into our
486 cryogels for cartilage defect repair ⁶⁰. Future studies will investigate the use of cryogels
487 seeded with either chondrocytes, MSCs or iPSCs for in vivo cartilage defect implantation.

488 It is important to note that for cartilage regeneration, chondrogenic differentiation
489 of MSCs and iPSCs must be induced in order to produce hyaline-like cartilage. Therefore,

490 these cells require treatment with factors such as TGF β or Kartogenin for sustained
491 periods of time to promote chondrogenic differentiation ^{61, 62}. This can be achieved using
492 drug delivery systems which can enable charge-based interactions between the
493 negatively charged hyaluronan matrix and positively charged drug carriers ⁶³⁻⁶⁷ that can
494 provide controlled drug release such as multi-arm Avidin ⁶⁸⁻⁷⁰. Combination of different
495 cell sources, biomaterials and/or growth stimulators are directions to be considered going
496 forward in cartilage tissue engineering. Additionally, bioadhesives may be required to
497 keep the gels tightly secured within the cartilage defect site following their placement such
498 that they can sustain cyclic mechanical loading pressures through the regeneration period,
499 which will be incorporated in future design and tested using animal models. Optimization
500 of cell harvesting and growth, improvements in ECM production, and reduction of cost
501 from medical operation should be the focus of future research ⁵⁹.

502

503 **CONCLUSION**

504 Hyaluronic acid based cryogels loaded with primary chondrocytes remain viable
505 and metabolically active, while recovering their shape following injection. Compared to
506 HA-based hydrogels, cryogels provide a more conducive microenvironment for cell
507 adhesion, proliferation and matrix biosynthesis. The shape-memory feature of these
508 cryogels allows for them to be injected into the joint space via syringe for the non-
509 surgically invasive treatment and repair of cartilage defects. Use of these cryogels with
510 various cell types and phenotype promoters can enhance cartilage tissue regeneration
511 and allows for a broad range of applications in regeneration of other tissues of the body.

512

513 **ACKNOWLEDGEMENTS**

514 We would like to thank Professor Samuel Chung for providing access to their
515 microscopes for histological imaging.

516

517 **AUTHOR CONTRIBUTION STATEMENT**

518 TH, BL, TC, KJN, SM, JDK, SB, AGB all contributed to the design of experiments
519 and preparation and review of this manuscript.

520

521 **AUTHOR DISCLOSURE STATEMENTS**

522 The authors have no competing financial interests to disclose.

523

524 **FUNDING STATEMENT**

525 This work was supported by the United States Department of Defense through the
526 Congressionally Directed Medical Research Programs (CDMRP) [W81XWH-17-1-0085];
527 and National Science Foundation [DMR 1847843].

528

529 **REFERENCES**

530

- 531 1. Bajpayee AG, Grodzinsky AJ. Cartilage-targeting drug delivery: can electrostatic
532 interactions help? *Nat Rev Rheumatol* 2017;13:183.
- 533 2. Hwang Y, Sangaj N, Varghese S. Interconnected macroporous poly (ethylene glycol)
534 cryogels as a cell scaffold for cartilage tissue engineering. *Tissue Engineering Part A*
535 2010;16:3033-3041.
- 536 3. MACI Safety: <https://www.maci.com/patients/how-maci-works/the-maci-procedure.html>. Accessed June 20, 2020.
- 537 4. Gupta A, Bhat S, Jagdale PR, et al. Evaluation of three-dimensional chitosan-agarose-
538 gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a
539 rabbit model. *Tissue Engineering Part A* 2014;20:3101-3111.

541 5. Thornton AJ, Alsberg E, Hill EE, Mooney DJ. Shape retaining injectable hydrogels for
542 minimally invasive bulking. *The Journal of urology* 2004;172:763-768.

543 6. Prata JE, Barth TA, Bencherif SA, Washburn NR. Complex fluids based on methacrylated
544 hyaluronic acid. *Biomacromolecules* 2010;11:769-775.

545 7. Bencherif SA, Sheehan JA, Hollinger JO, Walker LM, Matyjaszewski K, Washburn NR.
546 Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels. *Journal of*
547 *Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The*
548 *Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean*
549 *Society for Biomaterials* 2009;90:142-153.

550 8. Kennedy S, Bencherif S, Norton D, Weinstock L, Mehta M, Mooney D. Rapid and
551 extensive collapse from electrically responsive macroporous hydrogels. *Advanced healthcare*
552 *materials* 2014;3:500-507.

553 9. Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest
554 progress in electrospun nanofibers for wound healing applications. *ACS Applied Bio Materials*
555 2019;2:952-969.

556 10. Gsib O, Duval J-L, Goczkowski M, et al. Evaluation of fibrin-based interpenetrating
557 polymer networks as potential biomaterials for tissue engineering. *Nanomaterials* 2017;7:436.

558 11. Vedadghavami A, Minooei F, Mohammadi MH, et al. Manufacturing of hydrogel
559 biomaterials with controlled mechanical properties for tissue engineering applications. *Acta*
560 *biomaterialia* 2017;62:42-63.

561 12. Bencherif SA, Braschler TM, Renaud P. Advances in the design of macroporous polymer
562 scaffolds for potential applications in dentistry. *Journal of periodontal & implant science*
563 2013;43:251-261.

564 13. Fallahi A, Khadivi N, Roohpour N, et al. Characterization, mechanistic analysis and
565 improving the properties of denture adhesives. *Dental Materials* 2018;34:120-131.

566 14. Kawamura S, Wakitani S, Kimura T, et al. Articular cartilage repair: rabbit experiments
567 with a collagen gel-biomatrix and chondrocytes cultured in it. *Acta Orthopaedica Scandinavica*
568 1998;69:56-62.

569 15. Choi N-Y, Kim B-W, Yeo W-J, et al. Gel-type autologous chondrocyte (Chondron™)
570 implantation for treatment of articular cartilage defects of the knee. *BMC musculoskeletal*
571 *disorders* 2010;11:103.

572 16. Funayama A, Niki Y, Matsumoto H, et al. Repair of full-thickness articular cartilage
573 defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit
574 model. *Journal of orthopaedic science* 2008;13:225-232.

575 17. Vinatier C, Gauthier O, Fatimi A, et al. An injectable cellulose-based hydrogel for the
576 transfer of autologous nasal chondrocytes in articular cartilage defects. *Biotechnology and*
577 *bioengineering* 2009;102:1259-1267.

578 18. Sepantafar M, Maheronnaghsh R, Mohammadi H, et al. Stem cells and injectable
579 hydrogels: synergistic therapeutics in myocardial repair. *Biotechnology advances* 2016;34:362-
580 379.

581 19. Béduer A, Braschler T, Peric O, et al. A compressible scaffold for minimally invasive
582 delivery of large intact neuronal networks. *Advanced healthcare materials* 2015;4:301-312.

583 20. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. *Chemical Society*
584 *Reviews* 2008;37:1473-1481.

585 21. Guvendiren M, Lu HD, Burdick JA. Shear-thinning hydrogels for biomedical applications.
586 *Soft matter* 2012;8:260-272.

587 22. Silva E, Mooney DJ. Spatiotemporal control of vascular endothelial growth factor
588 delivery from injectable hydrogels enhances angiogenesis. *Journal of Thrombosis and*
589 *Haemostasis* 2007;5:590-598.

590 23. Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable cryogels for
591 biomedical applications. *Trends in biotechnology* 2020;38:418-431.

592 24. Bencherif SA, Sands RW, Bhatta D, et al. Injectable preformed scaffolds with shape-
593 memory properties. *Proceedings of the National Academy of Sciences* 2012;109:19590-19595.

594 25. Rogers ZJ, Bencherif SA, Cryogelation and Cryogels. Multidisciplinary Digital Publishing
595 Institute: 2019.

596 26. Shih TY, Blacklow SO, Li AW, et al. Injectable, tough alginate cryogels as cancer vaccines.
597 *Advanced healthcare materials* 2018;7:1701469.

598 27. Villard P, Rezaeeyazdi M, Colombani T, et al. Autoclavable and injectable cryogels for
599 biomedical applications. *Advanced Healthcare Materials* 2019;8:1900679.

600 28. Memic A, Rezaeeyazdi M, Villard P, et al. Effect of Polymer Concentration on Autoclaved
601 Cryogel Properties. *Macromolecular Materials and Engineering* 2020:1900824.

602 29. Han M-E, Kim S-H, Kim HD, et al. Extracellular matrix-based cryogels for cartilage tissue
603 engineering. *International journal of biological macromolecules* 2016;93:1410-1419.

604 30. Kathuria N, Tripathi A, Kar KK, Kumar A. Synthesis and characterization of elastic and
605 macroporous chitosan-gelatin cryogels for tissue engineering. *Acta Biomaterialia* 2009;5:406-
606 418.

607 31. Bencherif SA, Sands RW, Ali OA, et al. Injectable cryogel-based whole-cell cancer
608 vaccines. *Nature communications* 2015;6:1-13.

609 32. Rezaeeyazdi M, Colombani T, Memic A, Bencherif SA. Injectable Hyaluronic Acid-co-
610 Gelatin Cryogels for Tissue-Engineering Applications. *Materials (Basel)* 2018;11.

611 33. Rezaeeyazdi M, Colombani T, Memic A, Bencherif S. Injectable hyaluronic Acid-co-
612 Gelatin cryogels for tissue-engineering applications. *Materials* 2018;11:1374.

613 34. Eisenberg SR, Grodzinsky AJ. Swelling of articular cartilage and other connective tissues:
614 electromechanochemical forces. *Journal of Orthopaedic Research* 1985;3:148-159.

615 35. Florine EM, Miller RE, Liebesny PH, et al. Delivering heparin-binding insulin-like growth
616 factor 1 with self-assembling peptide hydrogels. *Tissue Engineering Part A* 2014;21:637-646.

617 36. Mehta S, Akhtar S, Porter RM, Önnerfjord P, Bajpayee AG. Interleukin-1 receptor
618 antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-
619 synovium co-culture than in cartilage monoculture. *Arthritis research & therapy* 2019;21:1-15.

620 37. Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated
621 glycosaminoglycans in cartilage cultures. *Connective tissue research* 1982;9:247-248.

622 38. Wang L, Shansky J, Borselli C, Mooney D, Vandenburgh H. Design and fabrication of a
623 biodegradable, covalently crosslinked shape-memory alginate scaffold for cell and growth
624 factor delivery. *Tissue Engineering Part A* 2012;18:2000-2007.

625 39. Han M-E, Kang BJ, Kim S-H, Kim HD, Hwang NS. Gelatin-based extracellular matrix
626 cryogels for cartilage tissue engineering. *Journal of Industrial and Engineering Chemistry*
627 2017;45:421-429.

628 40. Bhat S, Tripathi A, Kumar A. Supermacroprous chitosan–agarose–gelatin cryogels: in
629 vitro characterization and in vivo assessment for cartilage tissue engineering. *Journal of the*
630 *Royal Society Interface* 2011;8:540-554.

631 41. Kuo C-Y, Chen C-H, Hsiao C-Y, Chen J-P. Incorporation of chitosan in biomimetic
632 gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. *Carbohydrate*
633 *polymers* 2015;117:722-730.

634 42. Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-
635 engineered constructs. *Tissue Engineering Part B: Reviews* 2011;17:213-227.

636 43. Bölgön N, Yang Y, Korkusuz P, Güzel E, El Haj A, Pişkin E. 3D ingrowth of bovine articular
637 chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. *Journal of*
638 *tissue engineering and regenerative medicine* 2011;5:770-779.

639 44. Qi D, Wu S, Kuss MA, et al. Mechanically robust cryogels with injectability and
640 bioprinting supportability for adipose tissue engineering. *Acta biomaterialia* 2018;74:131-142.

641 45. Bajpayee AG, Wong CR, Bawendi MG, Frank EH, Grodzinsky AJ. Avidin as a model for
642 charge driven transport into cartilage and drug delivery for treating early stage post-traumatic
643 osteoarthritis. *Biomaterials* 2014;35:538-549.

644 46. Ishida O, Tanaka Y, Morimoto I, Takigawa M, Eto S. Chondrocytes are regulated by
645 cellular adhesion through CD44 and hyaluronic acid pathway. *Journal of Bone and Mineral*
646 *Research* 1997;12:1657-1663.

647 47. Tavsanli B, Okay O. Mechanically strong hyaluronic acid hydrogels with an
648 interpenetrating network structure. *European Polymer Journal* 2017;94:185-195.

649 48. Band P. Hyaluronan derivatives: chemistry and clinical applications. The chemistry,
650 biology and medical applications of hyaluronan and its derivatives 1998:33-42.

651 49. Jeon O, Song SJ, Lee K-J, et al. Mechanical properties and degradation behaviors of
652 hyaluronic acid hydrogels cross-linked at various cross-linking densities. *Carbohydrate polymers*
653 2007;70:251-257.

654 50. Baier Leach J, Bivens KA, Patrick Jr CW, Schmidt CE. Photocrosslinked hyaluronic acid
655 hydrogels: natural, biodegradable tissue engineering scaffolds. *Biotechnology and*
656 *bioengineering* 2003;82:578-589.

657 51. Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and
658 mechanical behavior of photopolymerized hyaluronic acid networks. *Biomacromolecules*
659 2005;6:386-391.

660 52. Jay GD, Fleming BC, Watkins BA, et al. Prevention of cartilage degeneration and
661 restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior
662 cruciate ligament transection. *Arthritis & Rheumatism* 2010;62:2382-2391.

663 53. LeBlanc KT, Walcott ME, Gaur T, et al. Runx1 activities in superficial zone chondrocytes,
664 osteoarthritic chondrocyte clones and response to mechanical loading. *Journal of cellular*
665 *physiology* 2015;230:440-448.

666 54. Bos P, Verhaar J, van Osch G, Age-related differences in articular cartilage wound
667 healing: A potential role for transforming growth factor β 1 in adult cartilage repair. In *Tissue*
668 *Engineering*, Springer: 2006; pp 297-309.

669 55. Villanueva I, Weigel CA, Bryant SJ. Cell–matrix interactions and dynamic mechanical
670 loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. *Acta*
671 *biomaterialia* 2009;5:2832-2846.

672 56. Crawford DC, DeBerardino TM, Williams III RJ. NeoCart, an autologous cartilage tissue
673 implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA
674 phase-II prospective, randomized clinical trial after two years. *JBJS* 2012;94:979-989.

675 57. Brix MO, Stelzeneder D, Chiari C, et al. Treatment of full-thickness chondral defects with
676 hyalograft C in the knee: long-term results. *The American journal of sports medicine*
677 2014;42:1426-1432.

678 58. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering
679 techniques for articular cartilage. *Nature Reviews Rheumatology* 2015;11:21.

680 59. Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue
681 regeneration in humans. *Osteoarthritis and cartilage* 2013;21:1824-1833.

682 60. Ko J-Y, Kim K-I, Park S, Im G-I. In vitro chondrogenesis and in vivo repair of
683 osteochondral defect with human induced pluripotent stem cells. *Biomaterials* 2014;35:3571-
684 3581.

685 61. Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair.
686 *Science* 2012;336:717-721.

687 62. Liebesny PH, Byun S, Hung H-H, et al. Growth factor-mediated migration of bone
688 marrow progenitor cells for accelerated scaffold recruitment. *Tissue Engineering Part A*
689 2016;22:917-927.

690 63. Vedadghavami A, Wagner EK, Mehta S, He T, Zhang C, Bajpayee AG. Cartilage
691 penetrating cationic peptide carriers for applications in drug delivery to avascular negatively
692 charged tissues. *Acta biomaterialia* 2019;93:258-269.

693 64. Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers:
694 Drug delivery using cationic peptides and proteins. *Nano Today* 2020;34:100898.

695 65. Young CC, Vedadghavami A, Bajpayee AG. Bioelectricity for Drug Delivery: The Promise
696 of Cationic Therapeutics. *Bioelectricity* 2020.

697 66. Vedadghavami A, Mehta S, Bajpayee AG. Characterization of Intra-Cartilage Transport
698 Properties of Cationic Peptide Carriers. *JoVE (Journal of Visualized Experiments)* 2020:e61340.

699 67. Wagner EK, Vedadghavami A, Jacobsen TD, Goel SA, Chahine NO, Bajpayee AG. Avidin
700 grafted dextran nanostructure enables a month-long intra-discal retention. *Scientific reports*
701 2020;10:1-14.

702 68. He T, Zhang C, Vedadghavami A, et al. Multi-arm Avidin nano-construct for intra-
703 cartilage delivery of small molecule drugs. *Journal of Controlled Release* 2020;318:109-123.

704 69. Bajpayee AG, Quadir MA, Hammond PT, Grodzinsky AJ. Charge based intra-cartilage
705 delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced
706 catabolism long term. *Osteoarthritis and Cartilage* 2016;24:71-81.

707 70. Zhang C, He T, Vedadghavami A, Bajpayee AG. Avidin-biotin technology to synthesize
708 multi-arm nano-construct for drug delivery. *MethodsX* 2020:100882.

709

710 **CORRESPONDENCE ADDRESS**

711 Ambika G. Bajpayee
712 ISEC Room 216
713 805 Columbus Avenue, Boston, MA, USA

714 +1 617-373-7018 (Phone)
715 a.bajpayee@northeastern.edu
716