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SUMMARY

Quantile regression serves as a popular and powerful approach for studying the effect of re-
gressors on quantiles of a response distribution. However, existing results on quantile regression
were mainly developed when the quantile level is fixed, and the data are often assumed to be
independent. Motivated by recent applications, we consider the situation where (i) the quantile
level is not fixed and can grow with the sample size to capture the tail phenomena; and (ii) the
data are no longer independent but collected as a time series that can exhibit serial dependence
in both tail and non-tail regions. To study the asymptotic theory for high quantile regression esti-
mators in the time series setting, we introduce a previously undescribed tail adversarial stability
condition, and show that it leads to an interpretable and convenient framework for obtaining limit
theorems for time series that exhibit serial dependence in the tail region but are not necessarily
strong mixing. Numerical experiments are provided to illustrate the effect of tail dependence
on high quantile regression estimators, where simply ignoring the tail dependence may lead to
misleading p-values.

Some key words: Adversarial innovations; double asymptotics; high quantile regression; limit theorems; tail dependent
time series

1. INTRODUCTION

Quantile regression (Koenker & Bassett, 1978) has been celebrated as a powerful method for
quantile analysis with given regressors, and tremendous research has been carried out in this
direction; see for example Bai et al. (1992), Gutenbrunner & Jureckova (1992), He (1997), Wu
(2007), Zhou & Shao (2013), and the book by Koenker (2005) for additional references. Howev-
er, existing results on quantile regression were mainly developed for fixed quantile levels, which
can potentially limit their applicability to problems that involve the study of tail phenomena; see
for example the analysis of low percentiles of the birthweight distribution by Abrevaya (2001),
the problem of forecasting high percentile wind power by Bremnes (2004), the problem of under-
standing temporal trends of strong tropical cyclones by Elsner et al. (2008), and the trend analysis
on temperatures of the coldest days in North America by Rhines et al. (2017). The aforemen-
tioned examples suggest the desirability to study quantile regression in the setting where the
quantile level is not fixed and can grow with the sample size to capture the tail phenomena.

Despite the vast literature on quantile regression, as commented by Wang et al. (2012), rel-
atively little has been done for estimating in the high quantile regression setting. In addition,
existing results in this direction were mainly developed for independent data; see for example
Belloni & Chernozhukov (2011), Wang & Li (2013), He et al. (2016a,b), Wang & Wang (2016),
D’Haultfceuille et al. (2018), Zhang (2018) and references therein. The influential work of Cher-
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2 T. ZHANG

nozhukov (2005) considered the possibility of allowing time series data by using the strong mix-
ing framework of Rosenblatt (1956). To handle high quantiles, however, the mixing condition of
Rosenblatt (1956) itself was not enough in Chernozhukov (2005), and as a result Chernozhukov
(2005) imposed an additional condition to control the joint probability of nearby tail events. Such
a condition can be interpreted as a negligibility condition on tail dependence (Zhang, 2008), and
as a result the asymptotic distribution in Chernozhukov (2005) is the same for dependent and
independent cases; see also Chernozhukov & Ferndndez-Val (2011) for the use of a similar con-
dition. Given that many extreme-value data, including the popular moving-maximum process of
Hall et al. (2002), generally do not satisfy such a negligibility condition, we shall here study
the asymptotic theory for high quantile regression estimators when the observed data exhibits
non-negligible serial dependence in its tail and non-tail regions.

To address the fundamental problem of developing limit theorems for a general class of de-
pendent processes that may exhibit serial dependence in the tail region, in Section 2 we propose a
new framework that exploits the tail adversarial effect of innovations in the causal representation
of Wiener (1958) and does not require the strong mixing condition. In particular, we introduce a
previously undescribed tail adversarial g-stability condition, which interprets the notion of short-
range tail dependence through measuring the tail effect of adversarial innovations. Unlike the big
blocks small blocks argument commonly used for deriving limit theorems for mixing processes,
the proposed tail adversarial g-stability condition is shown to coordinate well with a lag-m tail
dependent martingale approximation scheme and lead to a convenient and interpretable frame-
work for developing limit theorems for tail dependent time series. Compared with the functional
dependence framework of Wu (2005) which concerns the dependence across the whole support
of the random variable, our tail adversarial g-stability condition concerns only the tail part and
does not impose any restriction on the dependence structure in the middle range of the underly-
ing distribution. Taking advantage of the newly proposed tail adversarial stability framework, in
Section 3 we study the asymptotic theory of high quantile regression estimators for time series
data that may exhibit serial dependence in both tail and non-tail regions. It can be seen from our
results in Section 3 that the asymptotic distribution of high quantile regression estimators can
indeed be affected by the existence of non-negligible serial tail dependence and thus be different
from that of independent data.

2. TAIL ADVERSARIAL STABILITY: THE FRAMEWORK

A fundamental problem in statistics is to develop limit theorems for quantities of interest.
Such limit theorems can play an important role in guiding statistical inference, and the devel-
opment of such limit theorems often requires some fundamental assumptions or beliefs about
the observed data. Although the independence assumption has been the most prominent for this
purpose, it typically does not hold for time series data, and as a result frameworks that are ca-
pable of dealing with dependent random variables are desired. In an influential work, Rosenblatt
(1956) introduced the strong mixing condition and obtained a central limit theorem for depen-
dent random variables under that condition; see also Ibragimov (1962), Dehling et al. (1986),
Peligrad (1992), Fan & Yao (2003), Chernozhukov (2005), Bradley (2007) and references there-
in for various limit theorems obtained under the strong mixing condition and its variants. The
strong mixing condition uses the strong mixing coefficient to measure the underlying depen-
dence strength, which involves a supremum over two sigma algebras and is in general difficult to
calculate; see for example the discussion in Wu (2005). Wu (2005) in his seminal work proposed
an alternative framework for asymptotic theory of dependent random variables. Unlike the strong
mixing condition, the framework of Wu (2005) relies on the functional dependence measure, in
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the form of an expected norm, to measure the underlying dependence strength. By exploiting
its connection with the projection operator of Hannan (1979), the functional dependence mea-
sure of Wu (2005) can be used to suggest a martingale approximation of the underlying process
and various limit theorems can be obtained under this framework; see for example Wu & Zhao
(2007), Liu & Lin (2009), Zhang (2013), Berkes et al. (2014) and references therein. Although
the framework of Wu (2005) has been proven to be successful in developing limit theorems for
dependent random variables, the inherited functional dependence measure tends to summarize
the dependence across the whole support of the random variable and as a result may not be
suitable for investigating tail dependence.

Tail dependence, or extremal dependence, refers to the dependence in the joint extremes of the
underlying distribution. The phenomenon has been studied in the bivariate or finite-dimensional
multivariate setting by Sibuya (1960), Ledford & Tawn (1996), Embrechts et al. (2002), Draisma
et al. (2004), Poon et al. (2004), Zhang (2008) and Balla et al. (2014) among others; see also Joe
(1993), Coles et al. (1999), McNeil et al. (2005) and Zhang (2008) for copula-based approach-
es. In the time series setting, common tools to quantify the tail dependence include the lag-k
tail dependence index (Zhang, 2005) and the extremal index (Leadbetter et al., 1983; Smith &
Weissman, 1994; Ferro & Segers, 2003). The problem of developing a dedicated and convenient
mathematical framework for establishing limit theorems of statistics from tail dependent time
series, however, has been a much less explored area. The problem can be nontrivial, as it in-
volves the challenge of identifying appropriate and interpretable mathematical conditions under
which limit theorems for tail dependent time series can be possibly obtained. For this, the preva-
lent approach in the literature is to use the mixing condition of Rosenblatt (1956) or its variants
such as the S-mixing condition and the p-mixing condition; see for example Drees (2003), Cher-
nozhukov (2005), Davis & Mikosch (2009), Drees & Rootzén (2010), Davis et al. (2018) and
Hoga (2018) among others. Hill (2009) studied limit theorems for functional arrays that can be
well approximated by a sequence that satisfies the mixing condition. Note that in the quantile
regression setting, the mixing condition itself may not be enough to guarantee the desired limit
theorem, in which case it has to be used with an additional condition that bounds the degree of
dependence in the tail part; see for example condition (9.67) of Chernozhukov (2005).

The major goal of this section is to propose an alternative framework for asymptotic theory
of tail dependent time series that does not require the strong mixing condition. For this, con-
sider a row-wise stationary triangular array of random variables Uy ,, . . ., U, whose row-wise
marginal distribution function is denoted by F,,(u) = pr(Uy,, < u),u € R. Let F,,; }(1 —a) =
inf{u: F,(u) >1— a} be the (1 — a)-th quantile of F,,(-), then we say that U, ,, is a tail or
extreme observation at level o if U;,, > F,;1(1 — ). Without loss of generality, we shall here
focus on the upper tail region, as the lower tail region can be similarly handled by working with
the transformed process —Uj , ..., —Uy . To develop a framework for asymptotic theory of
tail dependent time series, we propose to use the causal representation of Wiener (1958) and
study the effect of adversarial innovations on tail observations. To be more specific, assume that
the array (U; ,,) is generated according to

Ui,n - Gn(ﬂ)7 JT'.l — ( <y €61, Ei)v (1)

where €;, j € Z, are independent and identically distributed innovations, and G, is a sequence
of measurable functions such that U; ,, is properly defined. Under (1), we can interpret U; ,, as
the output of the n-th physical system, represented by G,,, with input filtration F;. Wu (2005)
considered the non-array case where GG, = G and argued that such a representation is quite
general and covers a huge class of stationary processes; see also Wiener (1958), Tong (1990)
and Wu (2005) for additional discussions. Let €j be identically distributed as €y and independent
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4 T. ZHANG

of (¢;)jez, then F = (F_1,€(,€1,...,€;) represents the coupled shift process. In this case,
U ,jn = G, (F}) is the associated output of the n-th physical system G,, when the innovation at
time zero is replaced by its independent copy. We propose to consider

Ona(k) = sup  pr{lU;y < Fy'(l—a) |Upn > Fy'(1—a)}, a€(0,1), (2)

a€(0,0], N>n

which measures the degree of tail dependence through whether changing the innovation at a
certain time would affect future outputs being tail observations across all tail levels for all large
n. In particular, if Uy, y > Fy'(1 — a) but Uin < Fy'(1 — a), then changing € to its coupled
version €f makes Uy, no longer a tail observation, in which case we call €y an adversarial
innovation. Because (2) measures the degree of tail dependence through adversarial innovations,
we name it the adversarial tail dependence measure. For ¢ > 1, let

oo
@ma,q(m) = Z {en,a(k)}l/q, m > 0,
k=m

which measures the cumulative tail adversarial effect of the current innovation €y on future ob-
servations from time m. In the following we introduce the notion of tail adversarial stability.

DEFINITION 1. A row-wise stationary triangular array Uy p, ..., Upn, n=1,2,..., is said
to be asymptotically tail adversarial g-stable or (U; ,,) € TAS, if
lim li .
lim. 1im_©r.0,4(0) < o0 3)

In the non-array case where ©y,  4(0) = 04 4(0), it reduces to lim, ;o O 4(0) < oo.

The above tail adversarial g-stability condition requires that the current innovation has a fi-
nite cumulative tail adversarial effect on future observations, and can thus be interpreted as a
short-range tail dependence condition. Compared with the strong mixing condition of Rosen-
blatt (1956) and the functional dependence framework of Wu (2005), the current tail adversarial
g-stability condition concerns only the upper tail part and does not impose any restriction on the
dependence structure in the middle range or lower tail of the underlying distribution. In addition,
unlike the strong mixing condition which has to be used along with an additional condition that
bounds the degree of tail dependence in high quantile regression problems (Chernozhukov, 2005;
Chernozhukov & Fernandez-Val, 2011), the proposed tail adversarial ¢g-stability condition direct-
ly leads to the desired limit theorems for high quantile regression estimators as shown in Section
3. We shall here further use the moving-maximum process of Hall et al. (2002) to illustrate the
proposed tail adversarial g-stability condition and make a comparison with the strong mixing
framework. As commented by Hall et al. (2002), the moving-maximum model encompasses a
range of stochastic processes that are of interest in the context of extreme-value data, and in
the same paper it was shown that the moving-maximum process is dense in the class of station-
ary processes whose finite-dimensional distributions are extreme-value of a given type; see also
Zhang & Smith (2004) and Zhang et al. (2017) for additional discussions. Let ¢;, j € Z, be inde-
pendent Fréchet random variables with distribution function F,(z) = pr(e; < z) = exp(—27")
for some v > 0, we consider the moving-maximum process

U; = max aje;_ 1=1,...,n 4
i = Jmax i, yees T, “4)

which is well defined if the nonnegative coefficients satisfy » ;°, a? < o0; see Section 2.2 of
Hall et al. (2002). A similar summability condition was required by Zhang (2005) to define the
M3 process with unit Fréchet innovations. We shall here illustrate the implication of our tail
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adversarial g-stability condition for the moving-maximum process (4). For this, it is not difficult
to derive, with details provided in the supplementary material, that 0, (k) < 2a]/> 72, a/
holds for any « € (0,1/2), and as a result,

[e'e) -1 [e'e]
lim ©,,q.4(0) < 2 (Z a) ) <Z a’ q) .
o0 1=0 k=0

Therefore, the tail adversarial ¢-stability condition (3) is satisfied for the moving-maximum pro-
cess (4) if 32 a) > 0 and 3°°, a)/? < oco. The first condition 3° a] > 0 is essentially a

non-degeneracy condition under which the moving-maximum process (4) is not of a degenerate

type; see for example Zhang (2005). The second condition ), a7/ ? < o0 essentially controls

the degree of tail dependence, and can thus be viewed as a short-range tail dependence con-
dition. Compared to the existence condition )~ a? < oo under which the moving-maximum
process is well defined (Hall et al., 2002), it seems to be reasonable and mild. Note that for a
non-degenerate moving-maximum process, the negligibility condition used in (9.67) of Cher-
nozhukov (2005) is in general not expected to hold, and the task of calculating the strong mixing
coefficient or the S-mixing coefficient can be nontrivial and may possibly lead to stronger con-
ditions on the coefficients.

In the following we shall take advantage of the proposed tail adversarial stability framework
to study the problem of high quantile regression for tail dependent time series.

3. HIGH QUANTILE REGRESSION UNDER TAIL DEPENDENCE

Suppose we observe the n-th row Y7 5, ..., Y, , from a triangular array, which are response
variables associated with a set of regressors 1y, . .., Tn,n € RP. The quantile regression model
of Koenker & Bassett (1978) assumes that the response quantile has a linear relationship with
the given regressors. In particular, let a,, € (0,1) be a nonincreasing sequence of real num-
bers satisfying o, — 0 as n — oo, then in the array form «,, is associated with the n-th row
Yin,...,Ynn, and the quantile regression model of Koenker & Bassett (1978) can be written as

Yip =2 nBn+ Uip, i=1,...,n, ®)

where T denotes the matrix transpose, 3, € R is the regression coefficient for the (1 — ay,)-th
quantile, and U; , = Y}, — :c;—nﬁn is the auxiliary variable satisfying pr(U; ,, < 0) = pr(Y;, <
x: nBn) =1 — oy, Note that (5) can be viewed as a decomposition of Y; ,, into its (1 — a,)-th
quantile %‘T,nﬁn and a remainder U; ,,; see also Bai et al. (1992), Wu (2007) and Zhou & Shao
(2013). We consider the high quantile regression estimator

n

= axgin 3 1o (i~ T, ©
neRP i1

where ¢1_4, (y) = (1 — an)y™ + an(—y)™ is the check function with y+ = max(y, 0). Let
14 be the indicator function, then the left derivative of ¢1-4, (y) is given by 914, (y) =
(1 — an) — 1gy<oy. Compared with the conventional quantile regression (Koenker & Bassett,
1978; Koenker, 2005), the high quantile regression estimator (6) is different in the sense that the
quantile level 1 — «, is allowed to approach the unit as the sample size increases to capture the
tail phenomena. Motivated by the trend analysis problem in Example 1, we consider the case with
an array-type deterministic design to complement the work of Chernozhukov (2005). The case
with random regressors is also of significant interest, and can be handled by using a conditioning
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6 T. ZHANG

argument to obtain results conditional on the random regressors. Obtaining unconditional results
in the random regressor setting, however, may require a different theoretical treatment and we
shall leave it as a future research topic.

Example 1 (Trend Analysis for High Quantiles). In many applications, an important problem
is to model the change of quantiles with respect to time. For this, a common approach used by
applied scientists is to consider a parametric trend function, such as the linear trend or polyno-
mial trend, and estimate the coefficients by quantile regression. For example, Elsner et al. (2008)
fitted linear trends to high quantiles of tropical cyclone intensities, which corresponds to the
deterministic design z;,, = (1, ti,n)T, where t;,, = i/n, i =1,...,n, denote the time. Zhang
& Wu (2011) considered a quadratic trend and a cubic trend for the central England temper-
ature data, which correspond to the design z;,, = (1,t; 5, tzz’n)T and z;, = (1, tip, 17, tin)T
respectively. Rhines et al. (2017) used the linear design z; 5, = (1, ti,n)T and studied the trend in
different quantiles of the temperature in North America. Besides the polynomial trend, one may

consider the more general setting where
xi,n:g(tim), iz].,...,n,

where g : [0, 1] — RP is a piecewise smooth function. As observed by Zhou & Shao (2013), such
complicated deterministic trend designs can be useful in real applications but are unfortunately
not covered by the random regressor case.

Besides the desirability of the array-type deterministic design, it can be seen from Example 1
that high quantile analysis can be of significant interest to extreme-value data type, for example
the lifetime maximum wind speed of tropical cyclones (Elsner et al., 2008) and the temperature
of the coldest days in North America (Rhines et al., 2017). Such extreme-value data are often
modeled by the moving-maximum process of Hall et al. (2002) and its variants, which however
is generally not covered by the framework of Chernozhukov (2005) as discussed in Section
2. We shall here take advantage of the tail adversarial framework proposed in Section 2 and
study high quantile regression estimators for a general class of processes that can exhibit serial
dependence in both the tail and non-tail regions. Assume that 3., = n-1 Z;;l a:mm;rn € RP*P
is nonsingular for all large n, then it is more convenient to consider the rescaled model

T .
Yi,n - Zi7n80n + Ui,na 1= 17 e, N,

where z; , = Z;lmxm satisfies n ! Z?:l zmzzTn = Ixp, the p X p identify matrix, and ¢,, =
Z}/ Zﬁn. The problem of studying the asymptotic behavior of Bn is then equivalent to studying
that of p,, = 2711/ 2 Bn, which solves the minimization problem

n
Gn = argmin ¥ _ ¢1-a, (Yin — 2,7). (7)
neRP i
Following the notation in Section 2, let F},(-) be the row-wise marginal distribution of (U; ,,),
and denote its right end point by F; 1 (1) which can be +oo if the support is not bounded from
above. We assume the following regularity conditions.

(C1) The triangular array (U; ,,) € TAS, for some ¢ > 2.
(C2) There exists an « € (0,1) such that F),(-) is continuously differentiable with uniformly

240

bounded and strictly positive derivative f,,(-) in its upper tail (F;1(1 — ), F;1(1)) with
liminf, o |[F;1(1) — F;1(1 — a)| > 0 for all large n.

(C3) The rescaled design satisfies max;<;<y, |2in| = 0{(nay)'/?}.
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Condition (C1) is the tail adversarial ¢-stability condition; see Section 2 for its detailed discus-
sion. Condition (C2) is a mild regularity condition concerning the tail smoothness of the under-
lying distribution, and is satisfied by many commonly used distributions such as the uniform,
normal, exponential, Pareto, and many others. Condition (C3) is essentially the Lindeberg-type
condition in this triangular array setting, and is satisfied by most trend analysis designs consid-
ered in Example 1. Theorem 1 provides the estimation consistency of the high quantile regression
estimator and its convergence rate.

THEOREM 1. Assume (C1)—(C3), o, — 0 and no,, — oo. If

1/2 fn(o) - OO, (8)

™ = (new) T TR )

maxi<i<n |%in| = o(,), and

fn(TrL_lzInn) - fn(o)

max sup —0 )
1<isn|p|<c In (0)
holds for any ¢ < oo, then ¢, — @, — 0 in probability and
Pn = on = Op( ). (10)

By Theorem 1, =/ Q(ﬁn — Bn) = Op(7,,; 1), and therefore the actual convergence rate of high
quantile regression estimators can be affected by the design matrix. However, in most ap-
plications the design matrix is either chosen or standardized so that the p x p matrix %, =
n~t Yoy xmeT ,, and its inverse are both bounded, making the convergence rate of 3,, the same
as that of ,,. We shall here provide a brief discussion on conditions (8) and (9). By (10), the
quantity in (8) determines the convergence rate of the high quantile regression estimator. Recall
from the definition in (5) that the auxiliary variable Uj ,, is centered so that its (1 — o, )-th quan-
tile is £, (1 — a,,) = 0, and thus zero belongs to the tail region of the underlying distribution.
Then by (8) and (10) we can see that the convergence rate of the high quantile regression estima-
tor, unlike in the conventional setting, depends on not only a common factor (nan)l/ 2 but also
the tail behavior of the underlying distribution. Therefore, for certain families of distributions
such as the uniform distribution, the convergence rate of high quantile regression estimators can
even exceed the conventional n'/2-parametric rate. Since max; <i<n |%in| = o(7y,) indicates that
SUp|y < 17 lziT N — 0, condition (9) essentially requires that the underlying density function
fn(+) is smooth in the tail region for all large n, which is satisfied for many common distributions.
In the following we shall further illustrate the meaning of conditions (8) and (9) for distributions
with different tails using the simple intercept model. For two sequences of real numbers (a,,)
and (b,), we say that a,, ~ by, if a,,/b, — 1 as n — oc.

Example 2 (The Intercept Model with Different Tail Distributions). Consider the simple in-
tercept model

Yi,nzﬁn‘i‘Ui,m i=1,...,n,

where (3, is the (1 — o,)-th quantile of Y; ,, and U; ,, is the auxiliary variable that represents
the remainder term. In this case, ¥,, = 1, z;, = ;, = 1, and ¢,, = 3,,. Let Fy be the marginal
distribution of (Y ;,), then the distribution function of (U; ,,) is given by F},(u) = Fy (u + f3p).
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s (a) Normal Distribution. If Fy-(y) follows a standard normal distribution with derivative fy (y) =

280

285

290

295

300

305

(2m)~1/2 exp(—y2/2), y € R, then by the calculation in the supplementary material we have
Tn ™~ (nan)lm{QIOg(O‘;l)}l/Q — 00,

and conditions (8) and (9) are automatically satisfied.

(b) Generalized Pareto Distribution. Consider the generalized Pareto family indexed by a shape

parameter \, namely Fy (y) = 1 — (1 4+ Ay) " if A # 0 and Fy (y) = 1 — exp(—y) if A =
0. The support of the distribution is [0, c0) if A > 0 and [0, —1/A] if A < 0. As special cases, it
covers the uniform distribution (A = —1), the exponential distribution (A = 0), and the heavy-
tailed Pareto distribution (A > 0). Then by the calculation in the supplementary material,

T = (nakt?)1/2,

and therefore condition (8) is satisfied if na’*?* — oo as n — oco. Note that (na,,)"/? — oo

as n — oo, condition (9) is automatically satisfied with details in the supplementary material.

Therefore, the asymptotic behavior of high quantile regression estimators can be intrinsically
different from their conventional counterparts. In particular, when the quantile level 1 — o, =
1 —a € (0,1) is treated as fixed as in the conventional setting, the associated quantile regression
estimator usually follows the universal nt/ 2_parametric convergence rate. However, in the current
high quantile regression setting where the quantile level 1 — a,, — 1 as n — oo, it can be seen
from Example 2 that the convergence rate of the associated high quantile regression estimator
in this case is no longer the universal n'/2 or (na,)'/? but can depend critically on the tail
behavior of the underlying distribution. In general, distributions with heavier tails typically result
in slower convergence rate of high quantile regression estimators. In certain situations such as
the generalized Pareto distribution with A < —1/2 as in Example 2 (b), the convergence rate of
high quantile regression estimators can even exceed the n'/2-parametric rate.

Recall that the auxiliary variable Uj , is centered so that its (1 — o, )-th quantile is given by
F.Y(1 — ) = 0. In the following we shall provide a central limit theorem for the high quantile
regression estimator.

THEOREM 2. Assume conditions of Theorem 1. If the limits

n—|k|
= lim cor(1 1 ), Y= lim l Z 202
pk N0 {U07n>0}7 {Uk,n>0} ) k n-soo m < - 1,N z+\k|,n
1=

exist for each k € 7, then the matrix
r= Z P Tk
keZ

is positive semi-definite with bounded eigenvalues. If in addition the eigenvalues of I" are bound-
ed away from zero, then we have the central limit theorem

Tn(Pn — ¢n) —a N(0,T). (1T)

By Theorem 2, I 38l Q(Bn — Bn) =4 N(0,T), and thus the asymptotic distribution can in-
deed be affected by serial tail dependence and be different from that for independent data. In
particular, for independent data or dependent data but with negligible tail dependence as consid-
ered in Chernozhukov (2005) and Chernozhukov & Fernandez-Val (2011), by the result in Zhang
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(2005), we have p; = 0 for k& #£ 0 and thus by (11),

Tnzflz/Q(Bn - Bn) = Tn(@n - (Pn) —d N(Oy Ip><p)-

For the general case where the underlying process exhibits a non-negligible amount of tail de-
pendence, the asymptotic covariance matrix I' is typically different from the tail independent
To = I,x, due to the appearance of p;, Y. We shall here illustrate the calculation of T, for the
trend analysis design considered in Example 1 that has been popularly used in real applications.

Example 3 (Trend Analysis for High Quantiles, Continued). As illustrated in Example 1, a
popular approach used by statisticians and applied scientists to study the trend of high quan-
tiles is through a polynomial high quantile regression model. In this case, the design takes the
formx;, = (1,tip,. .. ,tf ;1)T for some p > 1, where p = 1 corresponds to the intercept model

considered in Example 2. Since ¢;,, = i/n,i = 1,...,n, for each fixed k € Z we have

n—|k|

1
lim — Tind,, = 24t ={G+5-—1)" _
nsoo 1 Zz; LN+ kln </0 I<ig<p {( J ) }1§17]§p

where (a; j)1<i, j<p denotes the p x p matrix with a; ; being its (¢, j)-th entry. Then by elemen-
tary calculation, with details provided in the supplementary materials, we have Y, = I,.,,. For
the general setting where x; , = g(t; ), one can show that T}, = I,,»,, will continue to hold if
the function g : [0, 1] — RP is continuous.

Our results in Theorems 1 and 2 provide an asymptotic theory for high quantile regression
estimators of a general class of tail dependent processes. Although the problem of high quantile
regression has been studied in the literature, existing results were mainly developed for indepen-
dent data or dependent data but with negligible dependence in the tail part; see for example the
important works of Chernozhukov (2005) and Wang et al. (2012) and the discussions in Section
1. This is particularly due to the lack of a convenient and rigorous framework that one can use to
obtain limit theorems for a general class of dependent processes that may exhibit non-negligible
dependence in both tail and non-tail regions. The tail adversarial stability framework proposed
in Section 2 aims to make the first step toward this fundamental gap, and it can be seen from
our results in Theorems 1 and 2 that it successfully leads to the desired limit theorems for high
quantile regression estimators. We also remark that our assumptions only concern the tail part
and do not impose any restriction on the middle range of the underlying distribution. Therefore,
as long as the tail adversarial stability condition (C1) is satisfied, our results can be applicable
to processes with an arbitrary degree of dependence in the middle range that are otherwise not
directly covered by the conventional frameworks of Rosenblatt (1956) and Wu (2005).

4. NUMERICAL EXPERIMENTS

4.1. A Simulation Study
Compared with existing results on high quantile regression, a distinctive feature of our results
developed in Section 3 is the allowance of tail dependence. We shall here conduct a small simu-
lation study to examine the effect of tail dependence on high quantile regression estimators, and
make a comparison with the approach that ignores the tail dependence. For this, we consider the
quantile regression model (5) with the trend analysis design z; , = (1, tm)—r and

U’i,n - HlaX(Ei, 6171) — Qn, (12)
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Fig. 1. Q-Q plots of the high quantile regression estimator

(2 against the normal approximation that ignores the tail

dependence (left) and the developed central limit theorem

(middle for 95% and right for 99%). The dashed lines in
all plots have unit slope and zero intercept.

where (¢;) is a sequence of independent exponential random variables and a,, = — log{1 — (1 —
) '/?} serves as the shift that centers the auxiliary variable so that pr(U; , > 0) = a,; see for
example Koenker & Bassett (1978). The process (12) has a non-negligible degree of tail depen-
dence with 3", .7 pr = 2 > po and f,(0) = 2(1 — a,,)/?{1 — (1 — a,)'/2}. Let n = 1000 and
B = (1, 5)T, we consider constructing confidence intervals for 32, the coefficient of ¢; ,,, in the
high quantile regression setting (6), and the results are summarized in Figure 1 based on 5000
realizations for each scenario. Note that for high quantile levels 1 — «,, = 0.95 and 0.99, tail
data sizes are noy, = 50 and 10 respectively. It can be seen from Figure 1 that ignoring the tail
dependence as in the left panel causes a systematic bias, which can lead to misleading p-values
and erroneous conclusions. In contrast, the normal approximation based on the developed cen-
tral limit theorem seems to work reasonably well, as it matches the empirical quantiles of 35 by
accommodating the effect of tail dependence. Therefore, it seems desirable to understand theo-
retically the impact of tail dependence on high quantile regression estimators as considered in
the current paper.

4.2.  An Application to Temperature Data

We shall here further use the global temperature series to illustrate the developed results. The
data is available at https://www.metoffice.gov.uk/hadobs/index.html, which
contains global temperature anomalies in Celsius from January 1850 to June 2019, and a time
series plot is given in Figure 2. Wu & Zhao (2007) performed a nonparametric test on the data
and found that a quadratic polynomial is sufficient for the mean trend; see also Rust (2003), Wu
et al. (2001), Zhou & Wu (2009), Zhang (2015), Zhang (2016) and references therein for oth-
er contributions. However, existing analyses typically rely on results developed for the mean or
fixed quantiles, while we shall here follow Chernozhukov (2005) and consider the problem in the
high quantile regression setting. Specifically, we are interested in determining if a higher order
polynomial, such as a cubic fit, is in need for high quantiles of the temperature series, or if the
quadratic polynomial as used by Rust (2003) and Wu & Zhao (2007) will continue to be suffi-
cient. For this, we consider applying the high quantile regression model (6) with the polynomial
trend analysis design as illustrated in Example 1 to the 95% and 99% quantiles. The results are
summarized in Table 1, where we apply the developed results in Section 3 to test if a cubic trend
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Fig. 2. Monthly global temperature anomalies in Celsius
from January 1850 to June 2019.

95% quantile 99% quantile
Tail dependence Adjusted Ignored Adjusted Ignored
Cubic Coefficient Estimate 1.211 1.211 3421 3.421
p-value 0.270 0.008 0.002 0.000

Table 1. High quantile regression estimators for the cubic coefficient and their associated p-
values for testing a zero null hypothesis against a two-sided alternative.

can be statistically reduced to a quadratic one. The asymptotic variance I' in (11) is estimated
by the banding technique (Xiao & Wu, 2012), which relates to the lag-window estimator of Liu
& Wu (2010) and Politis (2011) with a rectangle kernel, and details can be found in the supple-
mentary material. It can be seen from Table 1 that, for the 95% quantile, the p-value is 0.270
indicating that there is no need to pursue a cubic fit in addition to a quadratic one. However, if
we ignore the tail dependence, then the p-value becomes 0.008, indicating that ignoring the tail
dependence in high quantile regression models can indeed lead to misleading p-values as illus-
trated in our simulation study in Section 4.1. On the other hand, for the 99% quantile, the p-value
is 0.002, indicating that the temporal trend in the 99% quantile, when compared with that in the
95% quantile, can be more complicated and thus may require a higher order polynomial.
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SUPPLEMENTARY MATERIAL

The supplementary material contains calculation details for the moving-maximum process in
Section 2 and examples in Section 3, technical proofs of our results in Section 3, and details on
banded covariance estimation as used in Section 4.2.
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