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SUMMARY

Quantile regression serves as a popular and powerful approach for studying the effect of re-
gressors on quantiles of a response distribution. However, existing results on quantile regression
were mainly developed when the quantile level is fixed, and the data are often assumed to be
independent. Motivated by recent applications, we consider the situation where (i) the quantile 10

level is not fixed and can grow with the sample size to capture the tail phenomena; and (ii) the
data are no longer independent but collected as a time series that can exhibit serial dependence
in both tail and non-tail regions. To study the asymptotic theory for high quantile regression esti-
mators in the time series setting, we introduce a previously undescribed tail adversarial stability
condition, and show that it leads to an interpretable and convenient framework for obtaining limit 15

theorems for time series that exhibit serial dependence in the tail region but are not necessarily
strong mixing. Numerical experiments are provided to illustrate the effect of tail dependence
on high quantile regression estimators, where simply ignoring the tail dependence may lead to
misleading p-values.

Some key words: Adversarial innovations; double asymptotics; high quantile regression; limit theorems; tail dependent 20

time series

1. INTRODUCTION

Quantile regression (Koenker & Bassett, 1978) has been celebrated as a powerful method for
quantile analysis with given regressors, and tremendous research has been carried out in this
direction; see for example Bai et al. (1992), Gutenbrunner & Jureckova (1992), He (1997), Wu 25

(2007), Zhou & Shao (2013), and the book by Koenker (2005) for additional references. Howev-
er, existing results on quantile regression were mainly developed for fixed quantile levels, which
can potentially limit their applicability to problems that involve the study of tail phenomena; see
for example the analysis of low percentiles of the birthweight distribution by Abrevaya (2001),
the problem of forecasting high percentile wind power by Bremnes (2004), the problem of under- 30

standing temporal trends of strong tropical cyclones by Elsner et al. (2008), and the trend analysis
on temperatures of the coldest days in North America by Rhines et al. (2017). The aforemen-
tioned examples suggest the desirability to study quantile regression in the setting where the
quantile level is not fixed and can grow with the sample size to capture the tail phenomena.

Despite the vast literature on quantile regression, as commented by Wang et al. (2012), rel- 35

atively little has been done for estimating in the high quantile regression setting. In addition,
existing results in this direction were mainly developed for independent data; see for example
Belloni & Chernozhukov (2011), Wang & Li (2013), He et al. (2016a,b), Wang & Wang (2016),
D’Haultfœuille et al. (2018), Zhang (2018) and references therein. The influential work of Cher-
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2 T. ZHANG

nozhukov (2005) considered the possibility of allowing time series data by using the strong mix-40

ing framework of Rosenblatt (1956). To handle high quantiles, however, the mixing condition of
Rosenblatt (1956) itself was not enough in Chernozhukov (2005), and as a result Chernozhukov
(2005) imposed an additional condition to control the joint probability of nearby tail events. Such
a condition can be interpreted as a negligibility condition on tail dependence (Zhang, 2008), and
as a result the asymptotic distribution in Chernozhukov (2005) is the same for dependent and45

independent cases; see also Chernozhukov & Fernández-Val (2011) for the use of a similar con-
dition. Given that many extreme-value data, including the popular moving-maximum process of
Hall et al. (2002), generally do not satisfy such a negligibility condition, we shall here study
the asymptotic theory for high quantile regression estimators when the observed data exhibits
non-negligible serial dependence in its tail and non-tail regions.50

To address the fundamental problem of developing limit theorems for a general class of de-
pendent processes that may exhibit serial dependence in the tail region, in Section 2 we propose a
new framework that exploits the tail adversarial effect of innovations in the causal representation
of Wiener (1958) and does not require the strong mixing condition. In particular, we introduce a
previously undescribed tail adversarial q-stability condition, which interprets the notion of short-55

range tail dependence through measuring the tail effect of adversarial innovations. Unlike the big
blocks small blocks argument commonly used for deriving limit theorems for mixing processes,
the proposed tail adversarial q-stability condition is shown to coordinate well with a lag-m tail
dependent martingale approximation scheme and lead to a convenient and interpretable frame-
work for developing limit theorems for tail dependent time series. Compared with the functional60

dependence framework of Wu (2005) which concerns the dependence across the whole support
of the random variable, our tail adversarial q-stability condition concerns only the tail part and
does not impose any restriction on the dependence structure in the middle range of the underly-
ing distribution. Taking advantage of the newly proposed tail adversarial stability framework, in
Section 3 we study the asymptotic theory of high quantile regression estimators for time series65

data that may exhibit serial dependence in both tail and non-tail regions. It can be seen from our
results in Section 3 that the asymptotic distribution of high quantile regression estimators can
indeed be affected by the existence of non-negligible serial tail dependence and thus be different
from that of independent data.

2. TAIL ADVERSARIAL STABILITY: THE FRAMEWORK70

A fundamental problem in statistics is to develop limit theorems for quantities of interest.
Such limit theorems can play an important role in guiding statistical inference, and the devel-
opment of such limit theorems often requires some fundamental assumptions or beliefs about
the observed data. Although the independence assumption has been the most prominent for this
purpose, it typically does not hold for time series data, and as a result frameworks that are ca-75

pable of dealing with dependent random variables are desired. In an influential work, Rosenblatt
(1956) introduced the strong mixing condition and obtained a central limit theorem for depen-
dent random variables under that condition; see also Ibragimov (1962), Dehling et al. (1986),
Peligrad (1992), Fan & Yao (2003), Chernozhukov (2005), Bradley (2007) and references there-
in for various limit theorems obtained under the strong mixing condition and its variants. The80

strong mixing condition uses the strong mixing coefficient to measure the underlying depen-
dence strength, which involves a supremum over two sigma algebras and is in general difficult to
calculate; see for example the discussion in Wu (2005). Wu (2005) in his seminal work proposed
an alternative framework for asymptotic theory of dependent random variables. Unlike the strong
mixing condition, the framework of Wu (2005) relies on the functional dependence measure, in85
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the form of an expected norm, to measure the underlying dependence strength. By exploiting
its connection with the projection operator of Hannan (1979), the functional dependence mea-
sure of Wu (2005) can be used to suggest a martingale approximation of the underlying process
and various limit theorems can be obtained under this framework; see for example Wu & Zhao
(2007), Liu & Lin (2009), Zhang (2013), Berkes et al. (2014) and references therein. Although 90

the framework of Wu (2005) has been proven to be successful in developing limit theorems for
dependent random variables, the inherited functional dependence measure tends to summarize
the dependence across the whole support of the random variable and as a result may not be
suitable for investigating tail dependence.

Tail dependence, or extremal dependence, refers to the dependence in the joint extremes of the 95

underlying distribution. The phenomenon has been studied in the bivariate or finite-dimensional
multivariate setting by Sibuya (1960), Ledford & Tawn (1996), Embrechts et al. (2002), Draisma
et al. (2004), Poon et al. (2004), Zhang (2008) and Balla et al. (2014) among others; see also Joe
(1993), Coles et al. (1999), McNeil et al. (2005) and Zhang (2008) for copula-based approach-
es. In the time series setting, common tools to quantify the tail dependence include the lag-k 100

tail dependence index (Zhang, 2005) and the extremal index (Leadbetter et al., 1983; Smith &
Weissman, 1994; Ferro & Segers, 2003). The problem of developing a dedicated and convenient
mathematical framework for establishing limit theorems of statistics from tail dependent time
series, however, has been a much less explored area. The problem can be nontrivial, as it in-
volves the challenge of identifying appropriate and interpretable mathematical conditions under 105

which limit theorems for tail dependent time series can be possibly obtained. For this, the preva-
lent approach in the literature is to use the mixing condition of Rosenblatt (1956) or its variants
such as the β-mixing condition and the ρ-mixing condition; see for example Drees (2003), Cher-
nozhukov (2005), Davis & Mikosch (2009), Drees & Rootzén (2010), Davis et al. (2018) and
Hoga (2018) among others. Hill (2009) studied limit theorems for functional arrays that can be 110

well approximated by a sequence that satisfies the mixing condition. Note that in the quantile
regression setting, the mixing condition itself may not be enough to guarantee the desired limit
theorem, in which case it has to be used with an additional condition that bounds the degree of
dependence in the tail part; see for example condition (9.67) of Chernozhukov (2005).

The major goal of this section is to propose an alternative framework for asymptotic theory 115

of tail dependent time series that does not require the strong mixing condition. For this, con-
sider a row-wise stationary triangular array of random variables U1,n, . . . , Un,n whose row-wise
marginal distribution function is denoted by Fn(u) = pr(U1,n ≤ u), u ∈ R. Let F−1

n (1− α) =
inf{u : Fn(u) ≥ 1− α} be the (1− α)-th quantile of Fn(·), then we say that Ui,n is a tail or
extreme observation at level α if Ui,n > F−1

n (1− α). Without loss of generality, we shall here 120

focus on the upper tail region, as the lower tail region can be similarly handled by working with
the transformed process −U1,n, . . . ,−Un,n. To develop a framework for asymptotic theory of
tail dependent time series, we propose to use the causal representation of Wiener (1958) and
study the effect of adversarial innovations on tail observations. To be more specific, assume that
the array (Ui,n) is generated according to 125

Ui,n = Gn(Fi), Fi = (. . . , ϵi−1, ϵi), (1)

where ϵj , j ∈ Z, are independent and identically distributed innovations, and Gn is a sequence
of measurable functions such that Ui,n is properly defined. Under (1), we can interpret Ui,n as
the output of the n-th physical system, represented by Gn, with input filtration Fi. Wu (2005)
considered the non-array case where Gn ≡ G and argued that such a representation is quite
general and covers a huge class of stationary processes; see also Wiener (1958), Tong (1990) 130

and Wu (2005) for additional discussions. Let ϵ⋆0 be identically distributed as ϵ0 and independent
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of (ϵj)j∈Z, then F⋆
k = (F−1, ϵ

⋆
0, ϵ1, . . . , ϵk) represents the coupled shift process. In this case,

U⋆
k,n = Gn(F⋆

k ) is the associated output of the n-th physical system Gn when the innovation at
time zero is replaced by its independent copy. We propose to consider

θn,α(k) = sup
a∈(0,α], N≥n

pr{U⋆
k,N ≤ F−1

N (1− a) | Uk,N > F−1
N (1− a)}, α ∈ (0, 1), (2)

which measures the degree of tail dependence through whether changing the innovation at a135

certain time would affect future outputs being tail observations across all tail levels for all large
n. In particular, if Uk,N > F−1

N (1− a) but U⋆
k,N ≤ F−1

N (1− a), then changing ϵ0 to its coupled
version ϵ⋆0 makes U⋆

k,N no longer a tail observation, in which case we call ϵ0 an adversarial
innovation. Because (2) measures the degree of tail dependence through adversarial innovations,
we name it the adversarial tail dependence measure. For q ≥ 1, let140

Θn,α,q(m) =

∞∑
k=m

{θn,α(k)}1/q, m ≥ 0,

which measures the cumulative tail adversarial effect of the current innovation ϵ0 on future ob-
servations from time m. In the following we introduce the notion of tail adversarial stability.

DEFINITION 1. A row-wise stationary triangular array U1,n, . . . , Un,n, n = 1, 2, . . ., is said
to be asymptotically tail adversarial q-stable or (Ui,n) ∈ TASq if

lim
α↓0

lim
n→∞

Θn,α,q(0) <∞. (3)

In the non-array case where Θn,α,q(0) = Θα,q(0), it reduces to limα↓0Θα,q(0) <∞.145

The above tail adversarial q-stability condition requires that the current innovation has a fi-
nite cumulative tail adversarial effect on future observations, and can thus be interpreted as a
short-range tail dependence condition. Compared with the strong mixing condition of Rosen-
blatt (1956) and the functional dependence framework of Wu (2005), the current tail adversarial
q-stability condition concerns only the upper tail part and does not impose any restriction on the150

dependence structure in the middle range or lower tail of the underlying distribution. In addition,
unlike the strong mixing condition which has to be used along with an additional condition that
bounds the degree of tail dependence in high quantile regression problems (Chernozhukov, 2005;
Chernozhukov & Fernández-Val, 2011), the proposed tail adversarial q-stability condition direct-
ly leads to the desired limit theorems for high quantile regression estimators as shown in Section155

3. We shall here further use the moving-maximum process of Hall et al. (2002) to illustrate the
proposed tail adversarial q-stability condition and make a comparison with the strong mixing
framework. As commented by Hall et al. (2002), the moving-maximum model encompasses a
range of stochastic processes that are of interest in the context of extreme-value data, and in
the same paper it was shown that the moving-maximum process is dense in the class of station-160

ary processes whose finite-dimensional distributions are extreme-value of a given type; see also
Zhang & Smith (2004) and Zhang et al. (2017) for additional discussions. Let ϵj , j ∈ Z, be inde-
pendent Fréchet random variables with distribution function Fϵ(z) = pr(ϵj ≤ z) = exp(−z−γ)
for some γ > 0, we consider the moving-maximum process

Ui = max
0≤l<∞

alϵi−l, i = 1, . . . , n, (4)

which is well defined if the nonnegative coefficients satisfy
∑∞

l=0 a
γ
l <∞; see Section 2.2 of165

Hall et al. (2002). A similar summability condition was required by Zhang (2005) to define the
M3 process with unit Fréchet innovations. We shall here illustrate the implication of our tail
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adversarial q-stability condition for the moving-maximum process (4). For this, it is not difficult
to derive, with details provided in the supplementary material, that θn,α(k) ≤ 2aγk/

∑∞
l=0 a

γ
l

holds for any α ∈ (0, 1/2), and as a result, 170

lim
α↓0

Θn,α,q(0) ≤ 2

( ∞∑
l=0

aγl

)−1( ∞∑
k=0

a
γ/q
k

)
.

Therefore, the tail adversarial q-stability condition (3) is satisfied for the moving-maximum pro-
cess (4) if

∑∞
l=0 a

γ
l > 0 and

∑∞
l=0 a

γ/q
l <∞. The first condition

∑∞
l=0 a

γ
l > 0 is essentially a

non-degeneracy condition under which the moving-maximum process (4) is not of a degenerate
type; see for example Zhang (2005). The second condition

∑∞
l=0 a

γ/q
l <∞ essentially controls

the degree of tail dependence, and can thus be viewed as a short-range tail dependence con- 175

dition. Compared to the existence condition
∑∞

l=0 a
γ
l <∞ under which the moving-maximum

process is well defined (Hall et al., 2002), it seems to be reasonable and mild. Note that for a
non-degenerate moving-maximum process, the negligibility condition used in (9.67) of Cher-
nozhukov (2005) is in general not expected to hold, and the task of calculating the strong mixing
coefficient or the β-mixing coefficient can be nontrivial and may possibly lead to stronger con- 180

ditions on the coefficients.
In the following we shall take advantage of the proposed tail adversarial stability framework

to study the problem of high quantile regression for tail dependent time series.

3. HIGH QUANTILE REGRESSION UNDER TAIL DEPENDENCE

Suppose we observe the n-th row Y1,n, . . . , Yn,n from a triangular array, which are response 185

variables associated with a set of regressors x1,n, . . . , xn,n ∈ Rp. The quantile regression model
of Koenker & Bassett (1978) assumes that the response quantile has a linear relationship with
the given regressors. In particular, let αn ∈ (0, 1) be a nonincreasing sequence of real num-
bers satisfying αn → 0 as n→ ∞, then in the array form αn is associated with the n-th row
Y1,n, . . . , Yn,n, and the quantile regression model of Koenker & Bassett (1978) can be written as 190

Yi,n = x⊤i,nβn + Ui,n, i = 1, . . . , n, (5)

where ⊤ denotes the matrix transpose, βn ∈ Rp is the regression coefficient for the (1− αn)-th
quantile, and Ui,n = Yi,n − x⊤i,nβn is the auxiliary variable satisfying pr(Ui,n ≤ 0) = pr(Yi,n ≤
x⊤i,nβn) = 1− αn. Note that (5) can be viewed as a decomposition of Yi,n into its (1− αn)-th
quantile x⊤i,nβn and a remainder Ui,n; see also Bai et al. (1992), Wu (2007) and Zhou & Shao
(2013). We consider the high quantile regression estimator 195

β̂n = argmin
η∈Rp

n∑
i=1

ϕ1−αn(Yi,n − x⊤i,nη), (6)

where ϕ1−αn(y) = (1− αn)y
+ + αn(−y)+ is the check function with y+ = max(y, 0). Let

1{·} be the indicator function, then the left derivative of ϕ1−αn(y) is given by ψ1−αn(y) =
(1− αn)− 1{y≤0}. Compared with the conventional quantile regression (Koenker & Bassett,
1978; Koenker, 2005), the high quantile regression estimator (6) is different in the sense that the
quantile level 1− αn is allowed to approach the unit as the sample size increases to capture the 200

tail phenomena. Motivated by the trend analysis problem in Example 1, we consider the case with
an array-type deterministic design to complement the work of Chernozhukov (2005). The case
with random regressors is also of significant interest, and can be handled by using a conditioning



6 T. ZHANG

argument to obtain results conditional on the random regressors. Obtaining unconditional results
in the random regressor setting, however, may require a different theoretical treatment and we205

shall leave it as a future research topic.

Example 1 (Trend Analysis for High Quantiles). In many applications, an important problem
is to model the change of quantiles with respect to time. For this, a common approach used by
applied scientists is to consider a parametric trend function, such as the linear trend or polyno-
mial trend, and estimate the coefficients by quantile regression. For example, Elsner et al. (2008)210

fitted linear trends to high quantiles of tropical cyclone intensities, which corresponds to the
deterministic design xi,n = (1, ti,n)

⊤, where ti,n = i/n, i = 1, . . . , n, denote the time. Zhang
& Wu (2011) considered a quadratic trend and a cubic trend for the central England temper-
ature data, which correspond to the design xi,n = (1, ti,n, t

2
i,n)

⊤ and xi,n = (1, ti,n, t
2
i,n, t

3
i,n)

⊤

respectively. Rhines et al. (2017) used the linear design xi,n = (1, ti,n)
⊤ and studied the trend in215

different quantiles of the temperature in North America. Besides the polynomial trend, one may
consider the more general setting where

xi,n = g(ti,n), i = 1, . . . , n,

where g : [0, 1] → Rp is a piecewise smooth function. As observed by Zhou & Shao (2013), such
complicated deterministic trend designs can be useful in real applications but are unfortunately
not covered by the random regressor case.220

Besides the desirability of the array-type deterministic design, it can be seen from Example 1
that high quantile analysis can be of significant interest to extreme-value data type, for example
the lifetime maximum wind speed of tropical cyclones (Elsner et al., 2008) and the temperature
of the coldest days in North America (Rhines et al., 2017). Such extreme-value data are often
modeled by the moving-maximum process of Hall et al. (2002) and its variants, which however225

is generally not covered by the framework of Chernozhukov (2005) as discussed in Section
2. We shall here take advantage of the tail adversarial framework proposed in Section 2 and
study high quantile regression estimators for a general class of processes that can exhibit serial
dependence in both the tail and non-tail regions. Assume that Σn = n−1

∑n
i=1 xi,nx

⊤
i,n ∈ Rp×p

is nonsingular for all large n, then it is more convenient to consider the rescaled model230

Yi,n = z⊤i,nφn + Ui,n, i = 1, . . . , n,

where zi,n = Σ
−1/2
n xi,n satisfies n−1

∑n
i=1 zi,nz

⊤
i,n = Ip×p, the p× p identify matrix, and φn =

Σ
1/2
n βn. The problem of studying the asymptotic behavior of β̂n is then equivalent to studying

that of φ̂n = Σ
1/2
n β̂n, which solves the minimization problem

φ̂n = argmin
η∈Rp

n∑
i=1

ϕ1−αn(Yi,n − z⊤i,nη). (7)

Following the notation in Section 2, let Fn(·) be the row-wise marginal distribution of (Ui,n),
and denote its right end point by F−1

n (1) which can be +∞ if the support is not bounded from235

above. We assume the following regularity conditions.

(C1) The triangular array (Ui,n) ∈ TASq for some q ≥ 2.
(C2) There exists an α ∈ (0, 1) such that Fn(·) is continuously differentiable with uniformly

bounded and strictly positive derivative fn(·) in its upper tail (F−1
n (1− α), F−1

n (1)) with
lim infn→∞ |F−1

n (1)− F−1
n (1− α)| > 0 for all large n.240

(C3) The rescaled design satisfies max1≤i≤n |zi,n| = o{(nαn)
1/2}.
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Condition (C1) is the tail adversarial q-stability condition; see Section 2 for its detailed discus-
sion. Condition (C2) is a mild regularity condition concerning the tail smoothness of the under-
lying distribution, and is satisfied by many commonly used distributions such as the uniform,
normal, exponential, Pareto, and many others. Condition (C3) is essentially the Lindeberg-type 245

condition in this triangular array setting, and is satisfied by most trend analysis designs consid-
ered in Example 1. Theorem 1 provides the estimation consistency of the high quantile regression
estimator and its convergence rate.

THEOREM 1. Assume (C1)–(C3), αn → 0 and nαn → ∞. If

τn = (nαn)
1/2 fn(0)

1− Fn(0)
→ ∞, (8)

max1≤i≤n |zi,n| = o(τn), and 250

max
1≤i≤n

sup
|η|≤c

∣∣∣∣∣fn(τ−1
n z⊤i,nη)− fn(0)

fn(0)

∣∣∣∣∣→ 0 (9)

holds for any c <∞, then φ̂n − φn → 0 in probability and

φ̂n − φn = Op(τ
−1
n ). (10)

By Theorem 1, Σ1/2
n (β̂n − βn) = Op(τ

−1
n ), and therefore the actual convergence rate of high

quantile regression estimators can be affected by the design matrix. However, in most ap-
plications the design matrix is either chosen or standardized so that the p× p matrix Σn =
n−1

∑n
i=1 xi,nx

⊤
i,n and its inverse are both bounded, making the convergence rate of β̂n the same 255

as that of φ̂n. We shall here provide a brief discussion on conditions (8) and (9). By (10), the
quantity in (8) determines the convergence rate of the high quantile regression estimator. Recall
from the definition in (5) that the auxiliary variable Ui,n is centered so that its (1− αn)-th quan-
tile is F−1

n (1− αn) = 0, and thus zero belongs to the tail region of the underlying distribution.
Then by (8) and (10) we can see that the convergence rate of the high quantile regression estima- 260

tor, unlike in the conventional setting, depends on not only a common factor (nαn)
1/2 but also

the tail behavior of the underlying distribution. Therefore, for certain families of distributions
such as the uniform distribution, the convergence rate of high quantile regression estimators can
even exceed the conventional n1/2-parametric rate. Since max1≤i≤n |zi,n| = o(τn) indicates that
sup|η|≤c |τ−1

n z⊤i,nη| → 0, condition (9) essentially requires that the underlying density function 265

fn(·) is smooth in the tail region for all large n, which is satisfied for many common distributions.
In the following we shall further illustrate the meaning of conditions (8) and (9) for distributions
with different tails using the simple intercept model. For two sequences of real numbers (an)
and (bn), we say that an ∼ bn if an/bn → 1 as n→ ∞.

Example 2 (The Intercept Model with Different Tail Distributions). Consider the simple in- 270

tercept model

Yi,n = βn + Ui,n, i = 1, . . . , n,

where βn is the (1− αn)-th quantile of Yi,n and Ui,n is the auxiliary variable that represents
the remainder term. In this case, Σn = 1, zi,n = xi,n ≡ 1, and φ̂n = β̂n. Let FY be the marginal
distribution of (Yi,n), then the distribution function of (Ui,n) is given by Fn(u) = FY (u+ βn).
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(a) Normal Distribution. If FY (y) follows a standard normal distribution with derivative fY (y) =275

(2π)−1/2 exp(−y2/2), y ∈ R, then by the calculation in the supplementary material we have

τn ∼ (nαn)
1/2{2 log(α−1

n )}1/2 → ∞,

and conditions (8) and (9) are automatically satisfied.
(b) Generalized Pareto Distribution. Consider the generalized Pareto family indexed by a shape

parameter λ, namely FY (y) = 1− (1 + λy)−1/λ if λ ̸= 0 and FY (y) = 1− exp(−y) if λ =
0. The support of the distribution is [0,∞) if λ ≥ 0 and [0,−1/λ] if λ < 0. As special cases, it280

covers the uniform distribution (λ = −1), the exponential distribution (λ = 0), and the heavy-
tailed Pareto distribution (λ > 0). Then by the calculation in the supplementary material,

τn = (nα1+2λ
n )1/2,

and therefore condition (8) is satisfied if nα1+2λ
n → ∞ as n→ ∞. Note that (nαn)

1/2 → ∞
as n→ ∞, condition (9) is automatically satisfied with details in the supplementary material.

Therefore, the asymptotic behavior of high quantile regression estimators can be intrinsically285

different from their conventional counterparts. In particular, when the quantile level 1− αn ≡
1− α ∈ (0, 1) is treated as fixed as in the conventional setting, the associated quantile regression
estimator usually follows the universal n1/2-parametric convergence rate. However, in the current
high quantile regression setting where the quantile level 1− αn → 1 as n→ ∞, it can be seen
from Example 2 that the convergence rate of the associated high quantile regression estimator290

in this case is no longer the universal n1/2 or (nαn)
1/2 but can depend critically on the tail

behavior of the underlying distribution. In general, distributions with heavier tails typically result
in slower convergence rate of high quantile regression estimators. In certain situations such as
the generalized Pareto distribution with λ < −1/2 as in Example 2 (b), the convergence rate of
high quantile regression estimators can even exceed the n1/2-parametric rate.295

Recall that the auxiliary variable Ui,n is centered so that its (1− αn)-th quantile is given by
F−1
n (1− αn) = 0. In the following we shall provide a central limit theorem for the high quantile

regression estimator.

THEOREM 2. Assume conditions of Theorem 1. If the limits

ρk = lim
n→∞

cor(1{U0,n>0},1{Uk,n>0}), Υk = lim
n→∞

1

n

n−|k|∑
i=1

zi,nz
⊤
i+|k|,n

exist for each k ∈ Z, then the matrix300

Γ =
∑
k∈Z

ρkΥk

is positive semi-definite with bounded eigenvalues. If in addition the eigenvalues of Γ are bound-
ed away from zero, then we have the central limit theorem

τn(φ̂n − φn) →d N(0,Γ). (11)

By Theorem 2, τnΣ
1/2
n (β̂n − βn) →d N(0,Γ), and thus the asymptotic distribution can in-

deed be affected by serial tail dependence and be different from that for independent data. In
particular, for independent data or dependent data but with negligible tail dependence as consid-305

ered in Chernozhukov (2005) and Chernozhukov & Fernández-Val (2011), by the result in Zhang



High Quantile Regression for Tail Dependent Time Series 9

(2005), we have ρk = 0 for k ̸= 0 and thus by (11),

τnΣ
1/2
n (β̂n − βn) = τn(φ̂n − φn) →d N(0, Ip×p).

For the general case where the underlying process exhibits a non-negligible amount of tail de-
pendence, the asymptotic covariance matrix Γ is typically different from the tail independent
Υ0 = Ip×p due to the appearance of ρkΥk. We shall here illustrate the calculation of Υk for the 310

trend analysis design considered in Example 1 that has been popularly used in real applications.

Example 3 (Trend Analysis for High Quantiles, Continued). As illustrated in Example 1, a
popular approach used by statisticians and applied scientists to study the trend of high quan-
tiles is through a polynomial high quantile regression model. In this case, the design takes the
form xi,n = (1, ti,n, . . . , t

p−1
i,n )⊤ for some p ≥ 1, where p = 1 corresponds to the intercept model 315

considered in Example 2. Since ti,n = i/n, i = 1, . . . , n, for each fixed k ∈ Z we have

lim
n→∞

1

n

n−|k|∑
i=1

xi,nx
⊤
i+|k|,n =

(∫ 1

0
ti+j−2dt

)
1≤i,j≤p

=
{
(i+ j − 1)−1

}
1≤i,j≤p

,

where (ai,j)1≤i,j≤p denotes the p× p matrix with ai,j being its (i, j)-th entry. Then by elemen-
tary calculation, with details provided in the supplementary materials, we have Υk = Ip×p. For
the general setting where xi,n = g(ti,n), one can show that Υk = Ip×p will continue to hold if
the function g : [0, 1] → Rp is continuous. 320

Our results in Theorems 1 and 2 provide an asymptotic theory for high quantile regression
estimators of a general class of tail dependent processes. Although the problem of high quantile
regression has been studied in the literature, existing results were mainly developed for indepen-
dent data or dependent data but with negligible dependence in the tail part; see for example the
important works of Chernozhukov (2005) and Wang et al. (2012) and the discussions in Section 325

1. This is particularly due to the lack of a convenient and rigorous framework that one can use to
obtain limit theorems for a general class of dependent processes that may exhibit non-negligible
dependence in both tail and non-tail regions. The tail adversarial stability framework proposed
in Section 2 aims to make the first step toward this fundamental gap, and it can be seen from
our results in Theorems 1 and 2 that it successfully leads to the desired limit theorems for high 330

quantile regression estimators. We also remark that our assumptions only concern the tail part
and do not impose any restriction on the middle range of the underlying distribution. Therefore,
as long as the tail adversarial stability condition (C1) is satisfied, our results can be applicable
to processes with an arbitrary degree of dependence in the middle range that are otherwise not
directly covered by the conventional frameworks of Rosenblatt (1956) and Wu (2005). 335

4. NUMERICAL EXPERIMENTS

4.1. A Simulation Study
Compared with existing results on high quantile regression, a distinctive feature of our results

developed in Section 3 is the allowance of tail dependence. We shall here conduct a small simu-
lation study to examine the effect of tail dependence on high quantile regression estimators, and 340

make a comparison with the approach that ignores the tail dependence. For this, we consider the
quantile regression model (5) with the trend analysis design xi,n = (1, ti,n)

⊤ and

Ui,n = max(ϵi, ϵi−1)− an, (12)
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Fig. 1. Q-Q plots of the high quantile regression estimator
β̂2 against the normal approximation that ignores the tail
dependence (left) and the developed central limit theorem
(middle for 95% and right for 99%). The dashed lines in

all plots have unit slope and zero intercept.

where (ϵi) is a sequence of independent exponential random variables and an = − log{1− (1−
αn)

1/2} serves as the shift that centers the auxiliary variable so that pr(Ui,n > 0) = αn; see for
example Koenker & Bassett (1978). The process (12) has a non-negligible degree of tail depen-345

dence with
∑

k∈Z ρk = 2 > ρ0 and fn(0) = 2(1− αn)
1/2{1− (1− αn)

1/2}. Let n = 1000 and
β = (1, 5)⊤, we consider constructing confidence intervals for β2, the coefficient of ti,n, in the
high quantile regression setting (6), and the results are summarized in Figure 1 based on 5000
realizations for each scenario. Note that for high quantile levels 1− αn = 0.95 and 0.99, tail
data sizes are nαn = 50 and 10 respectively. It can be seen from Figure 1 that ignoring the tail350

dependence as in the left panel causes a systematic bias, which can lead to misleading p-values
and erroneous conclusions. In contrast, the normal approximation based on the developed cen-
tral limit theorem seems to work reasonably well, as it matches the empirical quantiles of β̂2 by
accommodating the effect of tail dependence. Therefore, it seems desirable to understand theo-
retically the impact of tail dependence on high quantile regression estimators as considered in355

the current paper.

4.2. An Application to Temperature Data
We shall here further use the global temperature series to illustrate the developed results. The

data is available at https://www.metoffice.gov.uk/hadobs/index.html, which
contains global temperature anomalies in Celsius from January 1850 to June 2019, and a time360

series plot is given in Figure 2. Wu & Zhao (2007) performed a nonparametric test on the data
and found that a quadratic polynomial is sufficient for the mean trend; see also Rust (2003), Wu
et al. (2001), Zhou & Wu (2009), Zhang (2015), Zhang (2016) and references therein for oth-
er contributions. However, existing analyses typically rely on results developed for the mean or
fixed quantiles, while we shall here follow Chernozhukov (2005) and consider the problem in the365

high quantile regression setting. Specifically, we are interested in determining if a higher order
polynomial, such as a cubic fit, is in need for high quantiles of the temperature series, or if the
quadratic polynomial as used by Rust (2003) and Wu & Zhao (2007) will continue to be suffi-
cient. For this, we consider applying the high quantile regression model (6) with the polynomial
trend analysis design as illustrated in Example 1 to the 95% and 99% quantiles. The results are370

summarized in Table 1, where we apply the developed results in Section 3 to test if a cubic trend
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Fig. 2. Monthly global temperature anomalies in Celsius
from January 1850 to June 2019.

95% quantile 99% quantile
Tail dependence Adjusted Ignored Adjusted Ignored
Cubic Coefficient Estimate 1.211 1.211 3.421 3.421
p-value 0.270 0.008 0.002 0.000

Table 1. High quantile regression estimators for the cubic coefficient and their associated p-
values for testing a zero null hypothesis against a two-sided alternative.

can be statistically reduced to a quadratic one. The asymptotic variance Γ in (11) is estimated
by the banding technique (Xiao & Wu, 2012), which relates to the lag-window estimator of Liu
& Wu (2010) and Politis (2011) with a rectangle kernel, and details can be found in the supple-
mentary material. It can be seen from Table 1 that, for the 95% quantile, the p-value is 0.270 375

indicating that there is no need to pursue a cubic fit in addition to a quadratic one. However, if
we ignore the tail dependence, then the p-value becomes 0.008, indicating that ignoring the tail
dependence in high quantile regression models can indeed lead to misleading p-values as illus-
trated in our simulation study in Section 4.1. On the other hand, for the 99% quantile, the p-value
is 0.002, indicating that the temporal trend in the 99% quantile, when compared with that in the 380

95% quantile, can be more complicated and thus may require a higher order polynomial.
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SUPPLEMENTARY MATERIAL 385

The supplementary material contains calculation details for the moving-maximum process in
Section 2 and examples in Section 3, technical proofs of our results in Section 3, and details on
banded covariance estimation as used in Section 4.2.
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