
Homogeneous nucleation in a Poiseuille flow

Fuqian Yang

Nucleation in a dynamical environment plays an important role in the synthesis and manufacturing of

quantum dots and nanocrystals. In this work, we investigate the effects of fluid flow (low Reynolds

number flow) on the homogeneous nucleation in a circular microchannel in the framework of the

classical nucleation theory. The contributions of the configuration entropy from the momentum-phase

space and the kinetic energy and strain energy of a microcluster are incorporated in the calculation of

the change of the Gibbs free energy from a flow state without a microcluster to a flow state with a

microcluster. An analytical equation is derived for the determination of the critical nucleus size. Using

this analytical equation, an analytical solution of the critical nucleus size for the formation of a critical

liquid nucleus is found. For the formation of a critical solid nucleus, the contributions from both the

kinetic energy and the strain energy are generally negligible. We perform numerical analysis of the

homogeneous nucleation of a sucrose microcluster in a representative volume element of an aqueous

solution, which flows through a circular microchannel. The numerical results reveal the decrease of the

critical nucleus size and the corresponding work of formation of a critical nucleus with the increase of

the distance to axisymmetric axis for the same numbers of solvent atoms and solute atoms/particles.

1. Introduction

The rapid growth in nanotechnology has stimulated great
interest in synthesizing objects of nanosizes, including
nanoparticles,1–3 quantum dots,4,5 nanowires,6,7 nanotubes
etc.,8,9 for the applications in nanoelectronics and nano-
photonics. Currently, the fabrication of most quantum dots has
been based on the bottom-up approach, which involves nuclea-
tion and growth in a dynamic environment, such as in a flow and/
or agitation environment.10,11 The dynamic environment has
imposed a challenge to the understanding and analysis of the
nucleation and growth behaviors due to the motion of clusters/
nuclei/crystals and monomers.

There are reports12–20 focusing on the analysis of the effect
of shear flow and agitation on homogeneous nucleation. Lothe
and Pound12 suggested the need to include the contributions of
translational and rotational degrees of freedom in the free
energy of formation of clusters in the classical nucleation
theory, while their approach led to significant discrepancy
between their results and experimental results. Reiss et al.13

pointed out that careful analysis is needed to avoid the over-
estimation of molecular configurations and large error in the
nucleation rate. Mokshin et al.14 performed molecular
dynamics (MD) simulation for the nucleation of a single-
component glass-forming system under shear and incorporated

the effect of shear in the effective temperature. They commented
that the classical nucleation theory is applicable to uniformly
sheared systems. Including the kinetic energy for translational
motion and/or rotational motion in the free energy of formation
of a state, Reguera and Rubi15,16 derived the Fokker–Planck
equation from mesoscopic nonequilibrium thermodynamics
for the growth of clusters in a shear flow and revealed the
dependence of the growth and nucleation rates on the flow, as
expected. Assuming that both chemical potential difference and
interfacial energy are dependent on shear rate, Blaak et al.21

performed Brownian dynamics simulation for the analysis of
the effect of shear on homogeneous nucleation in colloidal
suspensions and pointed out the increase of critical nucleus
size with the shear rate. However, they did not provide physical
basis for the dependence of the chemical potential difference
and interfacial energy on the shear rate. Recently, Richard and
Speck22 suggested the need to include the change of interfacial
work due to shear-induced deformation in the classical nuclea-
tion theory in the analysis of the nucleation in a sheared fluid.
They obtained a relation between the pressure difference across
the interface between solid and liquid and the flow-induced
shear stress in the framework of linear elasticity without intro-
ducing surface stress. Their approach is questionable, since this
relation predicts that shear stress can lead to the change of the
pressure difference across the interface.

Considering the importance of the synthesis of nano-objects
and quantum dots in dynamic environments and the important
role of nucleation in controlling the formation of nano-objects
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and quantum dots, we investigate the nucleation of solute
atoms/particles in a fluid/solvent system under Poiseuille flow.
The analysis takes into account the contributions of transla-
tional and rotational motion and the strain energy stored in
clusters and derives an analytical solution of the critical
nucleus size for homogeneous nucleation in a flow system.

2. Physical model

Consider a viscous liquid, which consists of solvent and solute
atoms/particles. The viscous liquid flows isothermally in a
circular channel at steady state, as shown in Fig. 1a, and the
nucleation of the solute atoms/particles can occur during
the flow (Fig. 1b). Assume that the Reynolds number for the
viscous flow is small; there are no formations of vortexes during
the flow. For the steady-state flow, we can randomly choose
a small volume in the channel as a representative volume
element (RVE) (Fig. 1c), in which the numbers of solvent atoms
and solute atoms are maintained constant. Note that the RVE
size must be small enough macroscopically and large enough
microscopically to represent average local behavior.

Let N1 and N2 represent the numbers of solvent atoms and
solute atoms in the RVE, respectively. Note that the local
concentration of solute atoms is dependent on spatial variable
and local velocity.23 The difference of the internal energies of the
materials in the RVE between a stationary state and a flow state
without the formation of microclusters can be calculated as

U1 �U0 ¼
XN1

i¼1

1

2
m1Vi

2 þ
XN2

i¼1

1

2
m2Vi

2 þN1ðmf 1 � ms1Þ

þN2ðmf 2 � ms2Þ

(1)

where U1 and U0 are the internal energies of the materials
at the flow state and at the stationary state, respectively,
m1 and m2 are the atomic masses of the solvent atoms and
solute atoms, respectively, and Vi is the velocity of individual
atoms, mf1 and ms1 are the chemical potentials of the solvent
atoms at the flow state and the stationary state, respectively,
and mf2 and ms2 are the chemical potentials of the solute
atoms/particles at the flow state and the stationary state,
respectively.

Assume that there are no internal degrees of freedom for all
the solvent and solute atoms. Under the steady state flow, there
are no spatiotemporal evolution of the system (the solvent and
solute atoms) in the RVE except local fluctuation the same as
the stationary system (Fig. 1c). The thermodynamic state of an
atom is determined by its location in the REV and energy
(kinetic energy). Thus, the entropy of the system consists of
the entropy of mixing, Sm, the entropy associated with the
energy of solvent atoms, SK1, and the entropy associated with
the energy of solute atoms, SK2, as

S = Sm + SK1 + SK2 (2)

Assume that the difference in the entropy of mixing between
the stationary state and the flow state without the formation
of clusters is negligible. The entropy of mixing, Sm, can be
calculated as24

Sm = �N1k ln[g1(1 � x)] � N2k ln(g2x) (3)

with k being the Boltzmann constant, T being absolute
temperature, g1 and g2 being the activity coefficients for the
solvent atoms and solute atoms, respectively, and x = N2/
(N1 + N2). To calculate the entropies associated with the
energies of the solvent atoms and solute atoms, SK1 and SK2,

Fig. 1 Schematic of a Poiseuille flow with solute atoms/particles dispersed in solvent: (a) without microclusters, (b) with a microcluster, and (c)
flow-induced change in local states with and without a microcluster.
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we needs to introduce the phase space with coordinates corres-
ponding to the three components of momentum of
atoms.25,26 Following the approach given by Bhattacharyya
and Dawlaty,26 the entropies associated with the energies of
the solvent atoms and solute atoms, SK1 and SK2, can be calcu-
lated as25

SKi = Nik ln(NiIi) (i = 1, 2) (4)

where the effect of the RVE size is neglected. The parameters of
Ii are

Ii ¼
1

2
mi Vi

2
� �

ði ¼ 1; 2Þ (5)

in which h�i represents average value of the quantity in the
REV. It is evident that the motion of the solvent atoms and
solute atoms in a flow system contributes to the change of the
entropy.

Using eqn (1)–(4), we obtain the difference of the Gibbs free
energies of the materials in the RVE between the stationary
state and the flow state without the formation of
microclusters as

DG1 ¼ U1 �U0 � TDS þ PDV

¼
XN1

i¼1

1

2
m1Vi

2 þ
XN2

i¼1

1

2
m2Vi

2 þN1ðmf 1 � ms1Þ þN2ðmf 2 � ms2Þ

þ PDV � kT ½N1 lnðN1I1Þ þN2 lnðN2I2Þ�
(6)

in which PDV represents the work done to the system in the
RVE. Note that eqn (6) is only valid under the condition that the
difference in the entropy of mixing between the stationary state
and the flow state without the formation of clusters is
negligible.

Now, consider the formation of a microcluster in the RVE, as
shown in Fig. 1b and c. For simplification, we assume that the
microcluster is a spherical particle of a in radius and consists of
m solute atoms. There are (N2 � m) solute atoms and a
microcluster in the RVE. The difference of the internal energies
of the materials in the RVE between the stationary state and the
flow state with a cluster is

U2 �U0 ¼
XN1

i¼1

1

2
m1Vi

2 þ
XN2�m

i¼1

1

2
m2Vi

2 þ EKC

þ ESC þ 4psa2 þN1ðmf 1 � ms1Þ

þ ðN2 �mÞðmf 2 � ms2Þ þmðmm � ms2Þ

(7)

where U2 is the internal energy of the materials in the RVE
at the flow state with a microcluster, EKC and ESC are the
kinetic energy and strain energy of the microcluster associated
with the motion and deformation, s is the specific interface
energy between the microcluster and the liquid in the RVE,
and mm is the chemical potential per atom in the micro-
cluster at the flow state. For a liquid microcluster, which is
referred to as a microcluster that consists of solute atoms,

exhibits non-periodic structure and cannot maintain a
stationary configuration under shear stress, ESC = 0. Note that
eqn (7) is based on the assumption that the presence of the
microcluster has negligible effect on the flow state of the atoms
in the RVE, and the interface energy is a function of local
concentration of the solute atoms.24,27,28 The entropy of
mixing is

Sm = �N1k ln[g1(1 � y)] � (N2 � m)k ln(g2y) (8)

and the entropy associated with the kinetic energy of the
solvent and solute atoms, SK, is

SK = k[N1 ln(N1I1) + (N2 � m)ln[(N2 � m)I2]] (9)

with y = (N2 � m)/(N1 + N2 � m).
It is known that the flow of a viscous fluid can cause

translational and rotational motion of the particles suspended
in the fluid.29 According to the results given by Jeong
and Jang,29 the translational speed of a microcluster is
approximately the same as local fluid speed, VL, and the
angular speed of a microcluster is approximately linearly pro-
portional to local average fluid speed and the distance to
axisymmetric axis for the Poiseuille flow in a circular channel
and inversely proportional to the square of the radius of the
circular channel, r0. Thus, the kinetic energy of the
microcluster is

EKC ¼ mm2

2
VL

2 þmm2

5
a2V2 ar

r02

� �2

(10)

in which V is the average speed of the Poiseuille flow, a is a
proportionality constant between the angular speed and the
local average speed, and r is the distance between the micro-
cluster and the axisymmetric axis.

According to Bretherton,30 the dependence of the
shear stress applied onto the surface of a solid microcluster
in a viscous flow is proportional to local fluid speed
and inversely proportional to the size of the solid micro-
cluster as

t / ZVL

a
(11)

The strain energy stored in a solid microcluster can be
estimated as22

ESC � 4p
3

ba3

2G

ZVL

a

� �2

¼ 2p
3

baðZVLÞ2
G

(12)

Here, Z is the viscosity of the viscous fluid, b is a constant,
depending on the distribution of the shear stress on the surface
of the solid microcluster, and G is the shear modulus of the
microcluster.

Using the results of (7)–(10) and (12), we obtain the differ-
ence of the Gibbs free energies of the materials in the RVE
between the stationary state and the flow state with a
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microcluster as

DG2 ¼
XN1

i¼1

1

2
m1Vi

2 þ
XN2

i¼1

1

2
m2Vi

2 �
Xm
i¼1

1

2
m2Vi

2 þmm2

2
VL

2

þmm2

5
a2V2 ar

r02

� �2

þPDV þ 2p
3

baðZVLÞ2
G

þ ðmm � ms2Þmþ 4psa2

þ kT ½N1 ln½g1ð1� yÞ� þN2 ln½g2y��

� kTðN1 ln½g1ð1� xÞ� þN2 lnðg2xÞÞ

þN1ðmf 1 � ms1Þ þ ðN2 �mÞðmf 2 � ms2Þ

� kT N1 lnðN1I1Þ þ ðN2 �mÞ ln½ðN2 �mÞI2�½ �
(13)

For a small RVE in the Poiseuille flow, we can have Vi E VL =
2V [1� (r/r0)

2]. Therefore, the change of the Gibbs free energy of
the system in the RVE from the flow state without a micro-
cluster to the flow state with a microcluster is

DG ¼ DG2 � DG1

¼ mm2

5
a2V2 ar

r02

� �2

þ 8p
3

baZ2V2

G
1� r2

r02

� �2

þðmm � mf 2Þmþ 4psa2

þ kT N1 ln
1� y

1� x
þ ðN2 �mÞ lnðg2yÞ �N2 lnðg2xÞ

� �

� kT N2 ln
N2 �m

N2
�m ln 2ðN2 �mÞm2V

2 1� r2

r02

� �� �� �
(14)

It is evident that there exist contributions from the
rotational motion and deformation of the solid microcluster
as well as the flow-induced change in the configuration
entropy. The effect of the translational motion of the micro-
cluster is negligible due to its small size. The change of the
Gibbs free energy is a spatial function of the flow field. Note
that the nonslip condition is used in the Poiseuille flow, and
the condition of r = r0 is inapplicable to eqn (14).

3. Critical nucleus number and
formation of free energy

For a spherical microcluster of radius a, the relation between the
number of solute atoms,m, in the microcluster and the radius a is

a ¼ 3mO2

4p

� �1=3

(15)

withO2 being atomic volume of the solute atoms. According to the
theory of thermodynamics, the maximum change of the Gibbs
free energy of a system (i.e. zero driving force associated with the
interface energy and the change of volumetric Gibbs free energy)

determines the state, at which a critical nucleus can be formed,
leading to the formation and growth of a crystal. Under the
condition of constant pressure and temperature, there is

@DG
@a

����
T ;P;N1;N2

¼ @DG
@m

����
T ;P;N1;N2

¼ 0 (16)

Substituting eqn (14) in eqn (16) and using eqn (15), we
obtain the critical nucleus number, mc, as

mc
�1=3 ¼ DY1 þ DY2 �

3

8ps
3O2

4p

� ��2=3

DY (17)

with the DY, DY1 and DY2 as

DY = mm � mf2 � kT ln(g2y) (18)

DY1 ¼ �mc
2=3m2

8ps
a2V2 r

r02

� �2

� bmc
�2=3Z2V2

3sG
1� r2

r02

� �2
3O2

4p

� ��1=3
(19)

DY2 ¼ �3kT

8ps
3O2

4p

� ��2=3

1þ ln 2ðN2 �mcÞm2V
2 1� r2

r02

� �� �� �
(20)

Here, DY represents the contribution of the change in the free
energy due to the formation of the nucleus at a stationary
environment, DY1 represents the contribution of the kinetic
energy and strain energy due to the flow-induced rotation and
deformation of the nucleus, and DY2 represents the contribu-
tion from local ‘‘ordered’’ structure due to the viscous flow. Note
that DY1 and DY2 are functions of mc, implying that eqn (17) is
an implicit expression of the critical nucleus number.

According to eqn (17)–(20), it is evident that the critical
nucleus size is dependent on the average velocity of the
Poiseuille flow and the spatial position of the nucleus in the
circular channel. It is interesting to note that the critical
nucleus size is also dependent on the atomic mass of the solute
atoms and the number of solute atoms in the RVE.

For the stationary state, eqn (14) yields

mc
�1=3 ¼ � 3

8ps
3O2

4p

� ��2=3

DY (21)

which is the same as the result of the classical nucleation
theory. Note that eqn (21) is derived from eqn (14) under the
condition that the term from the configurational entropy is set
to be zero. There exists a discontinuity of the change of the
Gibbs free energy between the stationary state and the
flow state.

4. Discussion
Formation of a liquid microcluster

For the formation of a liquid microcluster in a flow system,
there is ESC = 0. Let DmG (= NaDG/N1) be the change of the Gibbs
free energy per mole of the solvent for the system in the RVE
from the flow state without a microcluster to the flow state with
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a microcluster. We have

DmG ¼ 4pNam2a2V2

15N1O2

r

r02

� �2

a5

þ ½mm � m0 � kT lnðg2yÞ�
4pNaa

3

3N1O2

þ 4psa2
Na

N1
þ RT ln

1� y

1� x
þN2

N1
ln

y

x

� �

� RT

N1
N2 ln 1� 4pa3

3N2O2

� �
� 4pa3

3O2

�

� ln 2 N2 �
4pa3

3O2

� �
m2V

2 1� r2

r02

� �2
" #!

(22)

Eqn (22) represents the change of the Gibbs free energy per
mole of the solvent for the local nucleation of a liquid micro-
cluster in a finite system in a Poiseuille flow.

For N1 much larger than N2, eqn (22) is reduced to as

DmG ¼ 4pNam2a2V2

15N1O2

r

r02

� �2

a5 þ 4pNaDYa3

3N1O2
þ 4psa2

Na

N1
(23)

It is evident that the only contribution to the change of the
Gibbs free energy is the kinetic energy from the rotational
motion of the microcluster. At r = 0, i.e. the axisymmetric axis
of the flow channel, eqn (23) gives

DmG ¼ 4pNaDYa3

3N1O2
þ 4psa2

Na

N1
(24)

which is the same as the result of the classical nucleation
theory. Such a result is in accord with that the spherical
microcluster at the axisymmetric axis of the flow channel does
not experience rotational motion.

Using eqn (23) and taking the derivative with respect to a, we
obtain the following equation

m2a2V2

3O2

r

r02

� �2

a3 þ DY
O2

aþ 2s ¼ 0 (25)

in which the first and second terms represent the contributions
of the kinetic energy due to the rotation of the microcluster and
the change of chemical energy due to the phase change,
respectively. The solutions of eqn (25) for r a 0 are

ak ¼ 2

ffiffiffiffiffiffiffi
�p

3

r
cos

1

3
arccos

3q

2p

ffiffiffiffiffiffiffi
�3

p

s !
� 2kp

3

 !

k ¼ 0; 1; 2

(26)

with

p ¼ 3DY
m2a2V2

r

r02

� ��2

and q ¼ 6sO2

m2a2V2

r

r02

� ��2

(27)

The critical nucleus size, ac, is the smallest, positive root of
eqn (26). For r = 0, the critical nucleus size, ac, for the

nucleation of a critical nucleus at the axisymmetric axis is

ac ¼ �2sO2

DY
(28)

Formation of a solid microcluster

To analyze the formation of a solid microcluster, we focus on
the homogeneous nucleation of a sucrose microcluster in an
aqueous solution, which flows through a circular channel.
Define l as the ratio of the contribution of the kinetic energy
from the rotation of the microcluster to the homogeneous
nucleation of a sucrose crystal to the contribution of the change
of chemical energy from the phase change to the homogeneous
nucleation of a sucrose crystal in a viscous flow through a
circular microchannel. From eqn (18) and (19), we have

l ¼ m2a2V2

3DY
r

r02

� �2

a2 (29)

Here, a is B1.5, as estimated from the results given by Jeong
and Jang.29

The solubility of sucrose in water at 25 1C is 207 g in 100 g of
water (67.47 g in 100 g solution),31 and the molecular weight of
sucrose is 342.3 g mol�1.31 Using the result given by Saska and
Myerson,32 the specific interface energy between a sucrose micro-
cluster and a sucrose-saturated aqueous solution is approximated
to be 782.97 mJ m�2. The enthalpy of solution for the dissolution
of sucrose in water is 16.7 kJ mol�1,33 which gives DY E
�16.7 kJ mol�1. Using the molecular weight (342.3 g mol�1)
and density (1.587 g cm�3) of sucrose,31 the molar volume of
sucrose is found as 215.69 cm3 mol�1. Assume that the radius of
the circular microchannel is 0.8 mm,5 and the average velocity of
the flow in the circular microchannel is 2.76 mm s�1.5

Fig. 2 shows the variation of the ratio, l, at r = r0 with the size
of a sucrose microcluster in the microchannel. It is evident that
increasing the microcluster size increases the ratio, suggesting
the increase of the contribution of the kinetic energy due to the
rotation of the microcluster to the critical nucleus size of the

Fig. 2 Variation of the ratio, l, at r = r0 with the size of a glucose
microcluster in a microchannel under a Poiseuille-flow.
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glucose microcluster. However, the magnitude of the ratio, l, is
less than 2 � 10�16 for the microcluster size being up to 1 mm,
indicating that the effect of the kinetic energy due to the
rotation of the microcluster on the critical nucleus size is
negligible. Since the ratio, l, is independent of the RVE size,
as can be found from eqn (29), the contribution of the kinetic
energy due to the rotation of the microcluster to the nucleation
of a sucrose microcluster in a finite system is negligible.

The elastic modulus of crystalline sucrose is 32.3 GPa.34

Assuming that the Poisson ratio of crystalline sucrose is 0.3, we
obtain G = 12.42 GPa. The viscosity of a saturated, aqueous
sucrose solution is 76.9 MPa s.31 Using eqn (18) and (19), we
can calculate the ratio of the contribution of the flow-induced
strain energy in the microcluster to the homogeneous nucleation
of a sucrose crystal to the contribution of the change of chemical
energy from the phase change to the homogeneous nucleation of
a sucrose crystal in a viscous flow through a circular microchan-
nel. Using the above data, the ratio is found to be �3.12 � 10�26.
Such a small ratio suggests that the contribution of the flow-
induced strain energy in the microcluster to the change of the
Gibbs free energy is negligible in comparison to the contribution
from the change of chemical energy due to the phase change.

From the above analysis, we can conclude that the contribu-
tions of the kinetic energy and the flow-induced strain energy
are negligible in the analysis of the homogeneous nucleation of
sucrose crystals in the Poiseuille flow in a circular micro-
channel. It needs to be pointed out that such a conclusion is
applicable to the homogeneous nucleation of most crystalline
materials in microchannels, since they possess large moduli
and the viscosities of the corresponding aqueous solutions are
generally less than the viscosity of a saturated, aqueous sucrose
solution. Thus, the change of the Gibbs free energy per mole of
the solvent for the system in the RVE from the flow state
without a microcluster to the flow state with a microcluster
can be approximately expressed as

DmG ¼ mm � m0 � kT lnðg2yÞ½ �4pNaa
3

3N1O2
þ 4psa2

Na

N1

þ RT ln
1� y

1� x
þN2

N1
ln

y

x

� �
� RT

N1
N2 ln 1� 4pa3

3N2O2

� ��

� 4pa3

3O2
ln 2 N2 �

4pa3

3O2

� �
m2V

2 1� r2

r02

� �2
" #!

(30)

Note that the ratio of N2/N1 is associated with the concen-
tration of the solute atoms (= N2/(N1 + N2)). To have nucleation
and growth of a new phase, a supersaturated solution is
needed, i.e. N2/N1 being larger than the critical ratio of
(N2/N1)c corresponding to the solubility of the new phase in
the solvent at given conditions (temperature and pressure).

5. Numerical illustration

Consider the homogeneous nucleation of a sucrose micro-
cluster in an aqueous solution, which flows through a circular

microchannel of 0.8 mm in radius. Assume that the size of an
RVE for the formation of a sucrose microcluster in the micro-
channel is 1� 1 � 1 mm3 and the degree of local supersaturation
is 2 times of the solubility of sucrose in water at 25 1C (207 g in
100 g of water). We have (N1, N2) = (14.519, 3.158) � 109. Fig. 3
presents the variation of the change of the Gibbs free energy per
mole of the solvent for local nucleation of a sucrose microcluster
with the microcluster size for the same values of N1 and N2 and
the average flow speed of 2.76 mm s�1. Similar to the classic
nucleation theory, increasing the microcluster size causes the
change of the Gibbs free energy to increase first, reach max-
imum, and then decrease for large microcluster size. The
microcluster size corresponding to the largest change of the
Gibbs free energy, which is referred to as the work of formation
of a critical nucleus (DGmax), is the critical nucleus size. There
exists spatial dependence of the change of the Gibbs free energy,
which is associated with the spatial distribution of the flow field.
The larger the distance to the axisymmetric axis, the smaller is
the work of formation of a critical nucleus.

Using the results in Fig. 3, we can calculate the work of
formation of a critical nucleus and the corresponding critical
nucleus size for the homogeneous nucleation of a sucrose nucleus
at different spatial positions in the radial direction. Fig. 4 shows
the dependence of the work of formation of a critical nucleus and
the corresponding critical nucleus size on the spatial position
in the radial direction for the same values of N1 and N2. Both the
critical nucleus size and the corresponding work of formation of a
critical nucleus decrease with the increase of the distance to the
axisymmetric axis, revealing the dependence of the critical
nucleus size on local flow field. The smaller the distance to the
axisymmetric axis, the larger is the critical nucleus size. The
relative difference of the critical nucleus size is 12.1%.

Mokshin et al.14 revealed the increase of the effective
temperature with the increase of shear rate in the MD simula-
tion of the nucleation of a single-component glass-forming

Fig. 3 Dependence of the change of the Gibbs free energy on the
microcluster size at different spatial positions in the radial direction for
the same values of N1 and N2 (r0: 0.8 mm, V: 2.76 mm s�1).
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system under a uniform shear rate. It is known that the
nucleation behavior can be expressed by the Arrhenius relation
with the energy barrier being the work of formation of a critical
nucleus. The increase of the effective temperature with the
increase of shear rate from the work given by Mokshin et al.14

suggests that increasing shear rate reduces the work of for-
mation of a critical nucleus. Liu and Rasmuson20 observed the
decrease of the induction time for the nucleation of butyle
paraben in ethanol with the increase of shear rate in a Taylor–
Couette flow system. They assumed that the induction time is
inversely proportional to the nucleation rate and observed the
linear correlation between the logarithm of the induction time
and the temperature term. Such a correlation reveals that
increasing shear rate resulted in the decrease of the energy
barrier for the nucleation of butyle paraben.

For the Poiseuille flow of VL = 2V[1 � (r/r0)
2] in a circular

microchannel, local shear rate is 4Vr/r0
2 and increases with the

increase of the distance to the axisymmetric axis. The results
shown in Fig. 4 indicates that increasing the shear rate leads to
the decrease of the work of formation of a critical nucleus. Such a
trend is in consistence with that reported by Mokshin et al.14 and
Liu and Rasmuson.20 It needs to be pointed out that there exists
spatial distribution of the solute concentration, as revealed by
Taylor,23 in the radial direction of the circular microchannel. Such
a spatial distribution of the solute concentration reduces the
extent of oversaturation, likely leading to the changes in local
critical nucleus size and the corresponding work of formation of a
critical nucleus due to the dependence of the change of the Gibbs
free energy on local concentration of solute atoms/particles.

From Fig. 3 and 4, we note that the critical nucleus size
decreases with the increase of the distance to the axisymmetric
axis, i.e. the critical nucleus size decreases with the increase of
the shear rate. This trend is in contrast to the result obtained by
Blaak et al.21 that the critical size increases with increasing the
shear rate. Such different behavior is likely due to that Blaak
et al.21 assumed linear dependences of the chemical potential
difference and interfacial energy on the square of shear rate in

their analysis, leading to the increase of the change of the
Gibbs free energy with the increase of shear rate, as shown in
Fig. 2 in their work. However, Blaak et al.21 stated ‘‘this
observation should not be considered as evidence that the
shear rate can really be considered as a thermodynamic vari-
able’’. Thus, it remains elusive whether one can include the
contribution of shear rate to the interfacial energy.

Fig. 5 depicts the variation of the change of the Gibbs free
energy with the microcluster size at axisymmetric axis for the same
values of N1 and N2 under different average flow speeds. It is
evident that there exists the dependence of the change of the Gibbs
free energy on the average flow speed of the Poiseuille flow in a
circularmicrochannel. The variation of the change of the Gibbs free
energy with the microcluster size is similar to the classical nuclea-
tion theory, independent of the magnitude of average flow speed.

Using the results in Fig. 5, we calculate the work of for-
mation of a critical nucleus and the corresponding critical
nucleus size for the homogeneous nucleation of a sucrose
nucleus at the axisymmetric axis for different average flow
speeds. Fig. 6 presents the dependence of the work of for-
mation of a critical nucleus and the corresponding critical
nucleus size on the average flow speed at the axisymmetric axis
for the same values of N1 and N2. Both the critical nucleus size
and the corresponding work of formation of a critical nucleus
increase with the increase of the average flow speed, revealing
the effect of the flow speed on the critical nucleus size and the
corresponding work of formation of a critical nucleus. The
larger the flow speed, the larger are the critical nucleus size and
the corresponding work of formation of a critical nucleus. It
needs to be pointed out that there is no effect of the shear rate,
since the shear rate is zero at the axisymmetric axis.

6. Discussion

The above analysis has been focused on a single microcluster in
spherical shape. In general, multi-microclusters of nonspherical

Fig. 4 Dependence of the critical nucleus size and the corresponding
work of formation of a critical nucleus on the spatial position in the radial
direction for the Poiseuille flow in a circular microchannel for the same
values of N1 and N2 (r0: 0.8 mm, V: 2.76 mm s�1).

Fig. 5 Variation of the change of the Gibbs free energy with the micro-
cluster size at axisymmetric axis for the same values of N1 and N2 under
different average flow speeds (r0 : 0.8 mm).
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shapes, such as cube and cylinder, can be present. The above
analysis can be extended to study the nucleation of new phases
of nonspherical shapes and poly-nucleation.

For isotropic interfacial energy, both the surface area and
volume of a nonspherical microcluster need to be calculated;
for anisotropic interfacial energy, integration over the surface
of the nonspherical microcluster is needed in the calculation of
the interfacial energy. The numbers of the solute atoms on the
surface of the microcluster and those enclosed by the micro-
cluster can be calculated from the surface area and volume of
the nonspherical microcluster. Following the same approach,
we can find the change of the Gibbs free energy in a flow field
and determine the critical number of solute atoms for the
nucleation of a critical nucleus of nonspherical shape.

There are two approaches to analyze polynuclear scenario. One
is based on simultaneous nucleation, and the other is based on the
kinetic approach developed by Zeldovich.35 For the simultaneous
nucleation, there is only a limited number of solvent and solute
atoms confined in a finite space (domain) for the formation of a
nucleus. Introducing the domain size and fixed numbers of the
solvent and solute atoms in the corresponding domain and
following similar approach presented in previous section, the effect
of the domain size on the change of the Gibbs free energy can be
formulated and the dependence of the critical nucleus size on the
domain size can be determined. We can also use the kinetic
approach developed by Zeldovich35 to determine if ‘‘simultaneous’’
nucleation can occur. In this approach, the nucleation barrier (the
work of formation of a critical nucleus) as derived in the above
analysis can be used in the calculation of the nucleation rate and in
the determination of the critical nucleation rate. Using the critical
nucleation rate and the critical nucleus size, we can determine the
time interval for the occurring of two consecutive nucleation events
and the presence of mono-nucleation or poly-nucleation.

7. Conclusion

The success in the synthesis of objects of nanosizes in dynamic
environments has stimulated great interest in understanding

the effects of fluid flow on the nucleation processes under fluid
flow and agitation. Using the result given by Barsky,25 we have
determined the configuration entropy associated with the
kinetic energies of the solvent and solute atoms and incorpo-
rated the configuration entropy as well as the kinetic energy
and strain energy of a microcluster in the calculation of the
change of the Gibbs free energy of a REV between a flow state
without the microcluster and the corresponding flow state with
the microcluster for the Poiseuille flow in a circular micro-
channel. The change of the Gibbs free energy is a function of
the average flow speed and the spatial position in the radial
direction.

Following the approach used in the classic nucleation
theory, we have derived the analytical expression for the deter-
mination of the critical nucleus size. For the formation of a
critical liquid nucleus, the liquid nucleus cannot sustain shear
deformation, and the contribution from the strain energy to the
change of the Gibbs free energy is null. We have obtained
analytical solution of the critical nucleus size. For the for-
mation of a critical solid nucleus, the contributions from both
the kinetic energy and the strain energy are generally negligible
in comparison to the chemical energy associated with the phase
change from individual monomers/particles in a solution to a
solid nucleus. The configuration entropy associated the kinetic
energies of the solvent and solute atoms determines the
difference of the change of the Gibbs free energy between a
stationary state and a flow state for the formation of a solid
nucleus.

The numerical results for the homogeneous nucleation of a
sucrose microcluster in a REV of an aqueous solution, which
flows through a circular microchannel, shows that both the
critical nucleus size and the corresponding work of formation
of a critical nucleus decrease with the increase of the distance
to the axisymmetric axis for the same values of N1 and N2.
Increasing average flow speed leads to the increases in the
critical nucleus size and the corresponding work of formation
of a critical nucleus at the axisymmetric axis under the same
values of N1 and N2.
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