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1 Introduction

We assume that the reader is familiar with basic facts and definitions about van Kampen
(disk and annular (Schupp) diagrams over group presentations. We remind some of it in
Section [5.2 below, see also books [12} 14, 27]).

The Dehn function of a finitely presented group G = (X | R) is the smallest function
f(n) such that for every word w of length at most n in the alphabet X U X!, which
is equal to 1 in G there exists a van Kampen diagram over the presentation of G with
boundaary label w and area at most f(n). It is well known [6, [7] that the Dehn functions
of different finite presentations of the same group are equivalent, where we call two
functions f(n), g(n) equivalent if for some constants A, B,C, D > 1 we have

%f(%) —Cn— D < g(n) < Af(Bn) + Cn + D.

As usual, we do not distinguish equivalent functions.

The Dehn function of a group is an important asymptotic invariant. From the algo-
rithmic point of view, smaller Dehn function means more tractable word problem (see,
for example, the Introduction of [28] for details). Moreover as was shown in [I] a not
necessarily finitely presented finitely generated group has word problem in NP if and only
if it is a subgroup of a finitely presented group with polynomial Dehn function (a similar
result holds for other computational complexity classes [I]). From the geometric point
of view the Dehn function measures the "curvature" of the group: linear Dehn functions
correspond to negative curvature, quadratic Dehn function correspond to zero curvature,
etc.

More precisely, a finitely presented group is hyperbolic if and only if it has a sub-
quadratic (hence linear) Dehn function [6] 2] 15]. In particular, the conjugacy problem
in such groups is decidable [6].

It is also known that groups with quadratic Dehn functions exhibit certain "non-
generic" non-positive curvature behavior as far as geometric and algorithmic properties
are concerned. For example their asymptotic cones are simply connected [24]. For large
classes of groups with quadratic Dehn functions, the conjugacy problem is decidable. In



fact it is true for all known examples of groups with quadratic Dehn functions such as
bi-automatic groups [5], SL,(Z),n > 5 [29, 8], groups acting geometrically on CAT(0)
spaces [4], the R. Thompson group F [0, 0], free-by-cyclic groups [3, 21], etc. The
decidability of conjugacy problem was proved in a completely different way in each of
these cases and it is natural to ask if every group with quadratic Dehn function has
decidable conjugacy problem and there is a uniform proof of that fact. That question
was first formulated by Rips in the early 90s (some of the important results mentioned
above had not appeared yet at that time).

Problem 1.1 (Rips). Does every finitely presented group with quadratic Dehn function
have decidable conjugacy problem?

In fact Rips had a "quasi-proof" showing that the answer should be positive. That
"quasi-proof" first appeared in [2I]. Basically the idea is the following (see details in
[21]). If the conjugacy problem in a group G = (X | R) is undecidable, then for arbitrary
n € N for some pairs of words (u,v) in the alphabet X of length < n, there exists a
minimal area annular diagram A with boundaries labeled by u, v and no path connecting
the two boundaries of length smaller than any given recursive function f(n). Let ¢ be
a simple path connecting the boundaries of A, t = |¢|. Then there are simple closed
paths pi1,...,pp of A surrounding the hole such that p;,...,p; do not intersect if i # j
and m > ¢t for some constant ¢;. The area of A is at least a constant times ) |p;l.
If "many" lengths |p;| are less than clogt where ¢ = ﬁ, then two of the paths p;, p;
(i # j) have the same labels. That allows us to identify p;,p; and remove the annular
subdiagram of A bounded by p;, p;, decreasing the area of A, a contradiction. Therefore
"many" lengths |p;| are at least cglogt for some constant co. Hence the area of A is at
least c3tlogt for some constant c3. If we cut A along the path g, we obtain a disk van
Kampen diagram A’ with boundary path subdivided into four parts ¢1pi1gy 1p2_ 1 where
Ip1l, [p2] < n and the labels of ¢; and ¢y coincide with the label of q. The area of A’
is at least cstlogt. Since the labels of ¢1, g2 are the same, we can glue t/n copies of A’
together to obtain a van Kampen diagram A” with perimeter bounded from above by a
linear function in ¢ and area bounded below by c3t?logt/n since t is bounded below by
any given recursive function in n, n is insignificant compared to t. The diagram A” can
be assumed reduced. So we found a reduced van Kampen diagram of perimeter ~ ¢ and
area ~ t?logt. Hence the Dehn function cannot be smaller than n?logn.

The incorrectness of this "quasi-proof" is in the last phrase. Indeed, there may be
a smaller area van Kampen diagram with the same boundary label as A”. Still there
is a lot of flexibility in choosing A and the path ¢ in it. It looks like it would require
infinite number of relations to ensure that all the boundary paths of various diagrams
A" have feelings with much fewer cells than A”. In particular, if G satisfies some mild
form of asphericity, the proof should work. Rips conjectured that this should be true
for all finitely presented groups. In [2I] we confirmed this conjecture for a wide class of
multiple HNN extensions of free groups. We also constructed in [21I] a multiple HNN
extension of a free group with undecidable conjugacy problem and the minimal possible
Dehn function n?log n.

Nevertheless, in this paper, we give a negative answer to Rips’ question (and hence
disprove Rips’s conjecture as well):

Theorem 1.2. There exists a finitely presented group with undecidable conjugacy problem
and quadratic Dehn function.



As in several of our previous papers (|28 [, 2I], 18] the construction is based on an
S-machine (we call it M) which can be viewed as a computing device with undecidable
halting problem or as a group which is a multiple HNN extension of a free group. S5-
machines were first introduced by Sapir in [28] (see Section below for the definition
used here and [20] for various other definitions).

In order to describe some ideas of our proof in more details, let us start with a simple
example of an S-machine S (That S-machine first appeared in [22]. The corresponding
group was the first example of a group with polynomial Dehn function, linear isodiametric
function and non-simply connected asymptotic cones answering a question of C. Drutu.)
It is a rewriting system [27] with alphabet {a,q,a~!, ¢~} and two "same" rules 6;: ¢ — aq
and their inverses 6, 1. g —a'¢, i =1,2. The rewriting system works with group words
in {a,q}. And applying a rule 9?1 means replacing every letter ¢ (where e = +1 by
(a*1)q)¢ and then reducing the word. The S-machine S can also be viewed as a multiple
HNN extension of the free group (a, q):

<(L, Q791>92 | qei = aqvaei = a7i = 1>2>

(Note that this is far from the only way to interpret an S-machines as groups. We are
using a different interpretation in this paper, and the most complicated one so far was
used in [20]. But the main principle is still the same.)

As the name S-machine suggests, we can also consider S as a kind of Turing machine
with tape letter a, state letter ¢ and commands 61,60y (and their inverses). Then we can
consider computations. Say,

o7t 051

qilaqaq 64 qilaqaaq % qilaqaaaq L qilaqaaq 2 qilaqaq (1.1)

is a reduced computation of S. At the same time if we consider S as an HNN-extension of
the free group, then this computation corresponds the van Kampen diagram on Figure
!

This diagram is called the trapezium corresponding to the computation . Three
things need to be noticed from this diagram.

1. The trapezium looks like a rectangle with the first word and the last word of the
computation on the bottom and top side. All other words of the computation are on the
horizontal paths of the trapezium, and 8’s conjugate each of these words to the next one.

2. The vertical sides of the trapezium are labeled by the same words: the history of
the computation (in the case of (L1 it is 61020, 1605").

3. The trapezia has three types of bands (also called in the literature corridors),
i.e. sequences of cells where each two consecutive cells share an edge with a prescribed
letters: horizontal Gfl—bands, vertical ¢-bands and a-bands. The median lines of these
bands serve as "walls" in van Kampen diagrams over S-machines, provide necessary
rigidity and are crucial for all applications of S-machines.

Now let us continue our description of the construction and proof of Theorem [I.2]

As any S-machine viewed as a group, M5 contains a-letters, g-letters and f-letters.
Some of the words containing only ¢- and a-letters are called input words. Among them,
there is one word Wy which does not contain the a-letters. All other input words are
obtained from W{ by inserting a power of a single letter a into the input sector of Wy.

If we view My as multiple HNN-extension My of a free group, it easily follows from
undecidability of the halting problem by Mj that the group M5 has undecidable conju-
gacy problem (the existence of such S-machines was proved in [28], a similar construction
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Figure 1: The trapezium corresponding to a computation of S.

of groups with undecidable conjugacy problem was suggested by C. Miller [13], but C.
Miller did not use S-machines). Therefore by [21], the Dehn function of Mj5 is at least
n?logn.

But we prove here that most of the area in van Kampen diagrams of large area over
M5 is concentrated in a few standard trapezia which we call big trapezia.

The phenomenon that large area of a van Kampen diagram is concentrated in a
few large standard subdiagrams is interesting. For example, we proved similar facts
for van Kampen diagrams over presentations satisfying the small cancelation condition
C(p) — T'(q) in the the CAT(0) case % + % = % in [23]. In that case the geometric
meaning of existence of large standard subdiagram is very close to a popular topic in
CAT(0) geometry: "every quasi-flat in the universal cover of the presentation complex
is close to a flat" (see a discussion in [21]). In the case of S-machines, we proved similar
facts in [21] and [18], in both cases, as in the present paper, these were crucial steps in
the proofs.

The big trapezia over M5 must correspond to "very long" computations of Ms. The
S-machine Mjy is constructed in such a way that long computations C are "normal", that
is the start word w of C can be reached by the S-machine M3 from some (determined
uniquely by the computation) input word u of M. That is another crucial property of
M.

Then we lower the Dehn function from > n?logn to O(n?). For this goal we embed
My in a larger group G. We extend the machine M5 to M = Mg and add hub relations to
the obtained group M = Mg. The hub is the product of L > 1 copies of the end word; for
convenience, we use two hubs in this paper, but the second hub relation follows from the
other relations of G. (Note that hub relations are usually used in constructions of groups
with undecidable word problem, but the word problem in G is decidable.) The hubs and
the disks (that are hubs surrounded by #-annuli) make the areas of trivial over M words
quadratic with respect of the presentation of G (another important idea). Therefore the




presentation of G is highly non-aspherical: the boundaries of the large normal trapezia
can be filled both by diagrams with ~ n?logn cells are by diagrams with at most ~ n?
cells.

The new S-machine M is obtained by augmenting M5 with a simple S-machine M,
(the union of Steps 1 and 2 in the definition of M given in Subsection which starts
with a specific input word Wy with no tape letters, and produces (nondeterministically)
an arbitrary input word w of My by by inserting the a power of a into the input sector
(by a command similar to #; of S). This augmentation provides us with the property
that arbitrary configuration of a “long computation” of M can be reached with linear
time and space either from W or from the stop configuration of M. Afterwards this
linearity guaranties quadratic estimates of the areas of both disks and big trapezia over
the presentation of G. The linearity is achieved by, in particular, adding many so-called
history sectors where the history of a computation is non-deterministically written before
the actual computation executing that history starts.

In order to connect Mo with the S-machine My and obtain the main S-machine M,
we need one rule, called 6(23) which changes the state letters to the start state letters
of M. However the standard interpretation of M as a group would make the conjugacy
problem decidable in the group M. So the rule 6(23) is interpreted in G as turning
all copies of the input word into identical words (by erasing extra indices). This new
“irregular” interpretation induces the study of some non-reduced computations, i.e. the
history of an “elligible” computation may contain (many) subwords 6(23)6(23)~1.

The proof that G has quadratic Dehn function is much harder than the proof of
undecidability of the conjugacy problem. We use several tools developed in [28] 21}, (17, 18]
and more. As in all our papers where estimates of the Dehn function are produced, we
need to consider diagrams with and without hubs separately. This is done in Sections
[6] and [7] respectively. In both cases, one of the main ideas is to assign to the boundary
of every van Kampen diagram A over the presentation of G a certain numeric invariant
p(A) (the mizture from [I8]) which is bounded from above by a quadratic function in
terms of the perimeter. We had a somewhat similar numeric invariant called dispersion
in [21] but that invariant does not work well for diagrams with hubs.

To obtain a quadratic estimate for diagrams A over M, we have to consider an
artificial G-areas instead of areas, and just at the end of this paper we replace the
diagrams of quadratic G-area over M with diagrams with hubs, having quadratic (usual)
areas over G. The quadratic upper bound for G-area is obtained by induction over the
(modified) perimeter n of A. We perform surgeries on the diagram, so that each surgery
makes the diagram look more "standard" and smaller. Our inductive argument estimates
the G-area in terms of some linear combination of n? and the mixture ;(A). Although
we are not able to choose just one of these two summands for induction, the final upper
bound of the G-area is O(n?), because of the aforementioned quadratic estimate of the
mixture in terms of n.

In the case of diagrams with hubs, we estimate a similar linear combination, but
the inductive parameter is not the (modified) perimeter n but the sum ¥ = n + o(A).
The invariant o(A) = o\(A was invented in [I8]. It is defined by the design formed
by maximal bands of two types in A. The important and non-trivial feature of the o-
invariant is the linear inequality o) (A) = O(n), and so the quadratic upper bound of the
form O(¥?) is also quadratic in terms of the perimeter n.

In fact in both cases (over M or over ), the proof proceeds by taking a minimal
counterexample diagram A and then by performing surgeries trying to find a smaller



counterexample. This provides more and more useful information about A, until finally
one of the surgeries succeeds and we show that A could not have been a minimal coun-
terexample.

For instance, in Section [7| where diagrams with hubs are considered, we need to
remove one of the disks from the diagram. As in our previous papers (starting with [28]
and [16]), we use hyperbolicity of certain graph associated with hubs (hubs are vertices,
g-bands connecting hubs are edges), and find a hub connected to the boundary of the
whole diagram by almost all bands starting on the hub. This gives a subdiagram of
A cousisting of a subdiagram called a clove and a disk. We would like to remove that
subdiagram from A producing a smaller counterexample.

A similar task was solved in [28]. It is one of the most non-trivial parts of [28]. Using
it, we decomposed a diagram in [28] into a few disks of small total perimeter, and a
diagram without hubs, it was called the snowman decomposition. But that task is now
much harder than in [28]. The reason is that in [28], after removing the clove and the
disk, we needed to show that the perimeter of the diagram decreases and the perimeter of
the removed disk (only the disk) is linearly bounded by the difference of the perimeters
of the old and new diagrams. For the quadratic upper bound this is not enough. We
need to get a linear lower bound of the difference in terms of the whole piece that we
cut off (the clove and the disk). That can be achieved not always. If not, we get a new
information about the disk and the clove and remove the disk together with a certain
sub-clove. The mixture and o) invariant help achieve it at the end.

Some estimates used in this paper are very similar to the estimates in [I8] More
precisely for every function f(n) satisfying certain conditions, a finitely presented group
G with Dehn function nf(n)3 (where s > 2) is constructed in [I8]. In particular, if
s =2 and f(n) is a constant, then Gy has quadratic Dehn function. Although the group
Gy in [18] is very different from the group G in this paper, the underlying S-machines
have similar enough properties, so that we could use identical and almost identical proofs
of several lemmas (which indicates that there is a general theory of S-machines for which
this paper and [I8] are applications). For the sake of completeness, we include these
lemmas here.

2 S-machines

2.1 S-machines as rewriting systems

There are several equivalent definitions of S-machines (see [26]) We are going to use the
following definition which is easily seen to be equivalent to the original definition from
[28] (essentially the same definition was used in [21]):

A "hardware" of an S-machine S is a pair (Y, Q), where Q@ = U ,Q; and Y =L} ,Y;
for some n > 1. Here and below U denotes the disjoint union of sets.

We always set V,, = Yy = 0 and if Q,, = Qo (i.e., the indices of Q; are counted
mod n, then we say that S is a circular S-machine.

The elements from @) are called state letters, the elements from Y are tape letters.
The sets Q; (resp. Y;) are called parts of @ (resp. V).

The language of admissible words consists of reduced words W of the form

quLu1G2 - - - Usqs+1, (2.2)



where every ¢; is a state letter from some part Q;t(%), u; are reduced group words in the
alphabet of tape letters of the part Yj(;) and for every i = 1,...;s one of the following
holds:

o If g; is from Qj(;) then g;11 is either from Q;(;y41 or is equal to gt and k(i) =
(i) + 1.

o If g; € Qj_&) then ¢;41 is either from Qj_é)_l or is equal to qi_1 and k(i) = j(7).

Every subword g;u;q;+1 of an admissible word will be called the ;t&) Q]ié +1)—sect0r
"

For every word W, if we delete all non-Y*! letters from W we get the Y-projection of
the word W. The length of the Y-projection of W is called the Y-length and is denoted
by |W|y. Usually parts of the set @ of state letters are denoted by capital letters. For
example, a part P would consist of letters p with various indices.

If an admissible word W has the form 1) W = quiqaus...qs, and ¢; € Qfé),
i =1,...,s, u; are group words in tape letters, Then we shall say that the base of W is the
word Q;ﬂl Qfé)QjEé . Here @Q); are just symbols which denote the corresponding parts
of the set of state letters. Note that, by the definition of admissible words, the base is
not necessarily a reduced word.

Instead of saying that the parts of the set of state letters of S are Qg, @1, ..., @n Wwe
will write that the the standard base of the S-machine is Qg...Qn.

The software of an S-machine with the standard base Q...Q, is a set of rules ©.
Every 6 € O is a sequence [go — aoqpbo, --., ¢n — ang),by] and a subset Y (6) = UY;(6),
where ¢; € Q;, a; is a reduced word in the alphabet Y;_1(#), b; is a reduced word in Y;(0),
Yi(0) C Vi, i=0,....,n (recall that Yo =Y, = 0).

Each component g; — a;¢;b; is called a part of the rule. In most cases the sets Y;(6)
will be equal to either Y; or (. By default Y;(6) =Y.

Every rule

of that word. An admissible word may contain many Q;.té) Qjc( -sectors.

0= [QO — aOQ(/Jb()a vy Qn — anq;«bbn}

has an inverse
-1 ’ ~1_ -1 / -1
9 = [qO aO qObO PREES qn 7 a’n ann]

which is also a rule of S. It is always the case that Y;(~1) = Y;() for every . Thus the
set of rules © of an S-machine is divided into two disjoint parts, ©" and ©~ such that
for every § € ©F, 71 € ©~ and for every # € ©~, = € OF (in particular 7! = O,
that is any S-machine is symmetric).

The rules from ©F (resp. ©7) are called positive (resp. negative).

To apply a rule 0 = [go — aoq(bo, ---, gn — anq,by] as above to an admissible word
PIUIP2UL...Ds where each p; € Q;E(%) means

e check if u; is a word in the alphabet Yj;)41(0) when p; € Q;) or if it is a word in

Yj()(0) when p; € Qj_(%) (t=1,...,s—1); and if this property holds,

e replace each p; = q]i(i

e if the resulting word is not reduced or starts (ends) with Y-letters, then reduce the
word and trim the first and last Y-letters to obtain an admissible word again.

) by (@)@ bic)



For example, applying the rule [g1 — a~'¢{b,q2 — cgbd] to the admissible word
qlb_lquq; 1q1_ ! we first obtain the word

a” gy bb~ eghddd ™ (gy) e 0T (ah) e,
then after trimming and reducing we obtain
qiedrd(aa) " e o) T

If a rule # is applicable to an admissible word W (i.e., W belongs to the domain of
) then we denote the result of application of § to W by W - 6. Hence each rule defines
an invertible partial map from the set of configurations to itself, and one can consider an
S-machine as an inverse semigroup of partial bijections of the set of admissible words.

We call an admissible word with the standard base a configuration of an S-machine.

We usually assume that every part ); of the set of state letters contains a start state
letter and an end state letter. Then a configuration is called a start (end) configuration
if all state letters in it are start (end) letters. As Turing machines, some S-machines
are recognizing a language. In that case we choose an input sector, usually the QoQ1-
sector, of every configuration. The Y -projection of that sector is called the input of the
configuration. In that case, the end configuration with empty Y-projection is called the
accept configuration. If the S-machine (viewed as a semigroup of transformations as
above) can take an input configuration with input u to the accept configuration, we say
that u is accepted by the S-machine. We define accepted configurations (not necessarily
start configurations) similarly.

A computation of length t > 0 is a sequence of admissible words Wy — - -+ — W} such
that for every 0 = 1,....,t — 1 the S-machine passes from W; to W;11 by applying one
of the rules 8; from ©. The word H = 6;...86, is called the history of the computation.
Since W; is determined by W and the history H, we use notation W; = W - H.

A computation is called reduced if its history is a reduced word. Clearly, every com-
putation can be made reduced (without changing the start or end configurations of the
computation) by removing consecutive mutually inverse rules.

Note, though, that in this paper, unlike the previous ones, we consider non-reduced
computations too because these may correspond to reduced van Kampen diagrams under
our present interpretation of S-machines in groups.

The space of a computation Wy — --- — W, is maxi_, ||W;||, where ||W;|| is the
maximal length of W;.

If for some rule 8 = [g0 — aoqhbo, -y @ — angl,bn] € © of an S-machine S the set
Yi+1(0) is empty (hence in every admissible word in the domain of € every @Q;Q;1-sector
has no Y-letters) then we say that 6 locks the Q;Q;y1-sector. In that case we always

assume that b;, a;11 are empty and we denote the i-th part of the rule g; 4 a;q;. If the
Qi Q;iy1-sector is locked by 0 then we also assume that a;41 is empty too.

Remark 2.1. It is easy to see that the substitution [g; 4 aq;, qiv1 — ;41 0] is equivalent
to the substitution [¢;gi+1 — aq.q, 41b]. Thus for the sake of brevity we will allow parts
of rules of the form g;...q; — ag;...q;b. If the rule locks the Q;Qsi1-sector where Qs is

the part of state letters containing g;, q;», then we write g;...q; 4 aqg...q;»b (in that case b
is empty).



The above definition of S-machines resembles the definition of multi-tape Turing
machines (see [28]). The main differences are that every state letter of an S-machines is
blind: it does not "see" tape letters next to it (two state letters can see each other if they
stay next to each other). Also S-machines are symmetric (every rule has an inverse),
can work with words containing negative letters, and words with "non-standard" order
of state letters.

It is important that S-machines can simulate the work of Turing machines. This non-
trivial fact, especially if one tries to get a polynomial time simulation, was first proved
in [28]. but we do not need a restriction on time, and it would be more convenient for us
to use an easier S-machine from [21].

Let My be a deterministic Turing machine accepting a non-recursive language £ of
words in the one-letter alphabet {a}.

Lemma 2.2. ([21]) There is a recognizing S-machine M; whose language of accepted
input words is L. In every input configuration of My there is exactly one input sector,
the first sector of the word, and all other sectors are empty of Y -letters.

We say that two recognizing S-machines are equivalent if they have the same language
of accepted configurations.
We can simplify rules of any S-machine in the obvious way.

Lemma 2.3. Every S-machine S is equivalent to an S-machine S, where

(*) every part ¢; — aqb of an S-rule of S" has ||a|| < 1, ||b]| < 1, i.e., both words a
and b are just letters from Y*1 or empty words;

(**) moreover S' can be constructed so that for every rule 0 = [qo — aoq(bo, - ¢n —
andnbn] of 8', we have 32, ([lasl| + [[bil]) < 1.

For example, a rule [¢ — aq’b] is equivalent to the set of two rules [¢ — aq”], [¢"" — ¢'b]
where ¢’ is a new state letter added to the part containing ¢ and ¢’.
Thus, applying Lemma [2.2] we will assume that the machine M satisfies Property

2.2 Some elementary properties of S-machines

The base of an admissible word is not always a reduced word. However the following is
an immediate corollary of the definition of admissible word.

Lemma 2.4. If the i-th component of the rule 0 has the form q; 4 a;q;, then the base of
any admissible word in the domain of 0 cannot have subwords QZ-QZ-_I or Q;_llQi_,_l.

In this paper we are often using copies of words. If A is an alphabet and W is a word
involving no letters from A*!, then to obtain a copy of W in the alphabet A we substitute
letters from A for letters in W so that different letters from A substitute for different
letters. Note that if U’ and V' are copies of U and V respectively corresponding to the
same substitution, and U’ = V', then U = V, where '=" means leter-by-letter equality of
words. We also use copies of S-machines (defined in the same way).

The following two lemmas also immediately follow from definitions (see details in [18]
Lemmas 2.6,2.7]).
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Lemma 2.5. Suppose that the base of an admissible word W is Q;Q;11. Suppose that
each rule of a reduced computation starting with W = quq;+1 and ending with W' =
qiu'q; ., multiplies the Q;Qiy1-sector by a letter on the left (resp. right). And suppose
that different rules multiply that sector by different letters. Then

(a) the history of computation is a copy of the reduced form of the word vw'u™" read
from right to left (resp. of the word u='u' read from left to right). In particular, if u = u/,
then the computation is empty;

(b) the length of the history H of the computation does not exceed ||ul| + ||u/||;

", 1

(c) for every configuration qju"q; | of the computation, we have

1

[l < max({[ul], [Ju']]).

Lemma 2.6. Suppose the base of an admissible word W is Q;Q;+1. Assume that each
rule of a reduced computation starting with W = qugi11 and ending with W' = qju'q;
multiplies the Q;Q;+1-sector by a letter on the left and by a letter from the right. Suppose
different rules multiply that sector by different letters and the left and right letters are
taken from disjoint alphabets. Then

(a) for every intermediate configuration W; of the computation, we have ||[W;|| <
max(| W], [[W7]])

(b) the length of the history H of the computation does not exceed (||ul| +|[u/]]).
The next statement is Lemma 3.7 from [17].

Lemma 2.7. Suppose the base of an admissible word W of an S-machine S s QZQ;l
(resp., Q;lQi). Suppose that each rule 0 of a reduced computation starting with W =
giug; ' (resp., q; 'ug;), where u # 1, and ending with W' = giu/(¢})™" (resp., W' =
(¢))~*'q) has a part gi — agqiby, where by (resp., ag) is a letter, and for different 0-s
the bg-s (resp., ag-s) are different. Then the history of the computation has the form
Hy B Hy, where k > 0, ||| < win(|Jull,I1|]), |[H1]| < [ull/2, and |[H]| < |[o/]]/2.

Lemma 2.8. Suppose that a reduced computation Wy — Wy — -+ — Wy of an S-
machine S satisfying (*) has a 2-letter base and the history of the form H = HyH}H;
(k > 0). Then for the Y -projection w; of W; (i =0,1,...,t) , we have the inequality

[wil| < [lwol + [fws|| + 2[[H1 || + 3[[ Ha|| + 2| H3]|

Proof. By (*) we have that the absolute value of ||w;|| — ||w;—1]| is at most 2 for every
i =1,...t. Therefore for i < ||H1||, we have ||w;|| < ||wo]| + 2||H1||. Similarly, ||jw;|| <
||we|| + 2||Hs|| for @ > ¢ — ||Hs||. It remains to assume that ||H;|| <i <t — ||Hs]|.

Denote the words w; with ¢ = [|Hy|| + j||H2||, by uj, 5 = 0,1,...,k and the corre-
sponding words W; by U;. Then there exist two words v;, v, such that for every s from 1
to k, us = vjus—1v, in a free group for some Y-words v; and v, depending on Hy. Hence
uj = vjugvy, where both v; and v, have length at most |[Ha|| by (*).

By [20, Lemma 8.1|, the length of an arbitrary word Uj; then is not greater than
loall o] + 1Uoll + Ukl provided 0 < j < k.

Now we need to estimate the lengths of W; (i = |||H4||,...,t — ||H3]||, such that w;
which are not equal to any u;. Choose j such that the absolute value of ¢ — j||Ha|| does
not ||Ha||/2. Then the absolute value of ||w;|| — ||u;|| does not exceed ||Ha|| by (*), and

11



therefore |[|[W;|| < ||vill + ||vr || + [|Uol| + ||Uk|| + || Hz|. Since ||Up|| < [Jwol| + 2||H1|| and
|Uk]| < [|we]| + 2||H3||, we obtain

[wil| < o[+ |lvr[| + [Jwol| + [[wel| + 2[|Ha[| + 2[| H3]| + [| Ha||
< [[wol 4 [[we]| + 2[[ Hi|| + 2[| H3|| + 3| Hz|]

for every i, as required. O

2.3 The highest parameter principle

In this paper, we estimate length and space of computations of S-machines, and also
areas and other numerical invariants of van Kampen diagrams. The following constants
will be used in the estimates throughout this paper.

MNlesme N<Kgpg<€ag<an<L<aL<g<Les <Ly L K<

2.3
J<dl<eg<er < Np < Ny < Ny < Ny (2:3)

where < means "much smaller".

For each inequality in this paper involving several of these constants, let D be the
biggest constant appearing there. The inequality always can then be rewritten in the
form

D > some expression involving smaller constants.

This highest parameter principle [14] makes the system of inequalities used in this paper
consistent.

3 Auxiliary S-machines and constructions

3.1 Running state letters

For every alphabet Y we define a "running state letters" S-machine LR(Y). We will
omit Y if it is obvious or irrelevant. The standard base of LR(Y) is QY PQ®) where
QW = {¢W}, P={pW,i=1,2}, Q® = {¢?}. The state letter p with indices runs from
the the state letter ¢(?) to the state letter ¢(V) and back. The S-machine LR will be used
to check the "structure" of a configuration (whether the state letters of a configuration
are in the appropriate order), and to recognize a computation by its history.

The alphabet of tape letters Y of LR(Y) is Y U Y®) | where Y® is a (disjoint)
copy of Y. The positive rules of LR are defined as follows.

e (W(a) = [¢M = ¢V, pM — o= 1pMa/ ¢ — ¢, where a is any positive letter
from Y =Y and & is the corresponding letter in the copy Y@ of Y1),

Comment. The state letter p(!) moves left replacing letters a from y® by their
copies o from Y2,

o 12 = [(pM) S5 ¢Dp@) 4@ s 4],

Comment. When p™) meets q(l), p) turns into p@.

12



o (D) =[q"V = ¢W.p® = ap? (@), ¢® — ¢?]

Comment. The state letter p moves right towards ¢(? replacing letters a’ from
Y® by their copies a from Y1),

The start (resp. end) state letters of LR are {¢(1), p() ¢} (resp. {¢V,p?,¢?}).

Remark 3.1. Note that each of the rules (¢/)*!(a), (j = 1,2) either moves the state
letter p left or moves it right, or deletes one letter from left and one letter from right, or
insert letters from both sides of itself. In the later case, the next rule of a computation
must be again ((j)*!(b) for some b, and if the computation is reduced, it again must
increase the length of the configuration by two. This observation implies

Remark 3.2. Note that no rule of LR changes the projection of a configuration onto
the free group with basis Y if the state letters are mapped to 1 and the letters from
Y ) are mapped to their copies from Y1), This will be later referred to as the projection
argument.

Lemma 3.3. Let C: Wy — --- — W} be a reduced computation of the S-machine LR
with the standard base. Then

(1) if |Wily > |Wi_ily for somei=1,...,t —1, then |[Wit1ly > |Wily;

(2) |Wily < max(|Woly,|Wily) for every i =0,1,...t;

(8) if Wy = ¢PupWq@ and W, = ¢Wop@q¢@ for some words u,v, then u = v,
\Wily = |Woly for everyi=0,...,t, t =2k +1, where k = [Wyl|y, and the sector Q)P
is locked in the transition Wy, — Wi1. Moreover if Wy and Wy have the form gWupM g
and ¢MvpP @ | then the history H of C is a copy of the word aC(12)(@')~" where @ is
the mirror image of u and ' is a copy of u. Thus Wy, Wy, H uniquely determine each
other in that case.

(4) if Wo = ¢WupM¢®@ and W, = ¢DopMg®@ for some u,v or Wy = qMup@ g
and Wy = ¢Wop@¢@ then w = v and the computation is empty (t=0);

(5) if Wo = ¢WupMq@ or Wy = ¢WpWug®, or Wy = ¢Wup@ @, or Wy =
¢WpPug? for some word u, then |W;ly > |Woly for everyi=0,...,t.

Proof. For every i = 0, ..., t let W; = ¢Wu;pliv;g? where u; is a word in Y, v; is a word
in Y’ (it is easy to check by induction on 4 that this is true for every i).

Suppose that |W;_1ly < |W;|y for some i. That means that the i-th rule in the
computation is of the form (¢?*)(a))*!. This rule multiplies u;_1 by a letter a*!' on the
right, and multiplies v;_1 by a copy of the inverse of that letter on the left, and these
letters do not cancel in w;, v;. In particular both u; and v; are not empty. Hence ¢(12)
does not apply to W;. Thus the rule in W; — Wi, 1 is (¢ (b))*! (with the same j) and it
multiples u; = u;_1a by b*! on the right and multiples v; by a copy of the inverse of that
letter on the left. Since the computation is reduced, b # a~!. Therefore |W; 1]y > |Wily.
Continuing in this manner, we establish (1).

To establish (2), we can choose the shortest word W; in the computation and apply
(1) to the computation W; — --- — W, and the inverse computation W; — --- — Wj.

Suppose that the assumptions of (3) hold. Then v = v by the projection argument.
Since ¢12) locks Q! P-sector, the p-letter must reach ¢(*) moving always left to change
pM by p@ | and so Wy, = ¢MpM) ... If the next rule of the form ¢ (a)*! could increase
the length of the configuration, we would obtain a contradiction with Property (1). Since
the computation is reduced, the next rule is ¢(!?), and arguing in this way, one uniquely
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reconstructs the whole computation in case (3) for given Wy or Wy, and vice versa, the
history H determines both u and v. Propery (4) holds for same reasons.

By the projection argument, we have |¢(DupMq@ |y = ||u|| < |Wily if the first
assumptions of (5) holds. The other cases of (5) are similar. O

The projection argument also immediately gives:

Lemma 3.4. If Wy — --- = Wy is a reduced computation of LR with base
QUWPP QM) or () 1P PQ?)

and ' '
Wo =g pu(e) ()i = 1,2)

or

Wo = (¢@) 1 (p®)Lo(p®)g@ (i = 1,2)
for some words u, v, then |Wjly > [Wyly for every j =0,...,t.

Remark 3.5. We will also use the right analog RL of LR. The base of RL is Q1 RQs.
The state letter r first moves right from ¢V to ¢ and then left. Lemmas "left-right
dual" to Lemmas [3.3] and as well as Remark are true for RL as well.

Remark 3.6. For every m > 1, we will also need the S-machine LR,,,, that repeats the
work of LR m times. That is the S-machine LR,, runs the state letter p back and forth
between ¢ and ¢ m times. Every time p meets ¢ or ¢(?, the upper index of p
increases by 1 after the application of the rule ¢(»*1) (; =1,...,2m — 1), so the highest
upper index of p is (2m). A precise definition of LR, is obvious and is left to the reader.
(Recall that m is one of the system of parameters used in this paper (see Section [2.3).)

Remark 3.7. The analog of Lemma holds for LR,,. In particular, if
W, = ¢Wopm) ¢

in the formulaion of (3), then t = 2mk + 2m — 1 (the proof is essentially the same and is
left to the reader).

3.2 Adding history sectors

We will add new (history) sectors to our S-machine M. If we ignore the new sectors,
we get the hardware and the software of the S-machine M. The new S-machine My
will start with a configuration where in every history sector a copy of the history H of
a computation of M is written. Then it will execute H on the other (working) sectors
simulating the work of My, while in the history sector, a state letter moves scans the
history, one symbol at a time. Thus if a computation with the standard base starts with
a configuration W and ends with configuration W', then the length of the computation
does not exceed ||W]| + [|[W/||.

Here is a precise definition of Ms. Recall that the S-machine M; satisfies the con-
dition (**) of Lemma and has hardware (Q,Y"), where @ = U} ,@Q;, and the set of
rules ©. The new S-machine My has hardware

QO,rI—lQl,Zl—IQl,rl—IQQ,KUQZ,Tu"'l—lQn,K’ Yh:}/ll—lel—lY2U"'|—|Xn71|—|Yn
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where @Q; ¢ and Q;, (left and right) copies of Q; X; is a disjoint union of two copies of
O7, namely X, and X;,. (The sets Qos, Qn, are empty.) Every letter ¢ from Q; has
two copies ¢¥) € Q0 and ¢ e Qir. By definition, the start (resp. end) state letters of
M, are copies of the corresponding start (end) state letters of My. The Qg Q1 ¢-sectors
are the input sectors of configurations of Mo.

The positive rules 6;, of My are in one-to-one correspondence with the positive rules
0 of My. If 6 = [go — aoqhbo, -, @n — anglby] is a positive rule of M, then each part
¢i — aiq.b; is replaced in 6, by two parts

/ -1
Qi — i ohy;

and
7 /
Qi — ho,id; bis

where hg; (resp., hg;) is a copy of 6 in the alphabet X;, (in X; ., respectively).

If 0 is the start (resp. end) rule of My, then for any word in the domain of 6, (resp.
9;1 all Y-letters in history sectors are from U; X; ¢ (resp. UX;,).

Thus for every rule 6 of My, the rule 8, of My acts in the Q; Q1 ¢-sector in the
same way as 6 acts in the Q;Q;1-sector. In particular, Y-letters which can appear in the
QirQiy1,e-sector of an admissible word in the domain of 6, are the same as the Y-letters
that can appear in the Q;Q;+1-sector of an admissible word in the domain of . Hence if
0 locks Q;Q;+1-sectors, then 60, locks Q; Q41 ¢-sectors.

Comment. Every computation of S-machine My with history H and the standard
base coincides with the a computation of My whose history is a copy of H if one observes
it only in working sectors Q;,Qi+1,;. In the standard base of My the working sectors
QirQiy1,0 alternate with history sectors Q;¢Q; . Every positive rule 6, multiples the
content of the history Q; (Q; -sector by the corresponding letter Egﬂ' from the right and
by letter h;; from the left. Thus if the S-machine Ms executes the history written in the
history sectors, then the history word H in letters from X, gets rewritten into the copy
of H in letters from X, ,. Say, if the copy of the history H was written in a history sector
as hihohg, then during the computation with history H it will transform as follows:

hlhghg — hghgﬁl — hgﬁlﬁg — Elﬁzﬁg.

Let I;(a®) be a start configuration of My (i.e.,a configuration in the domain of the
start rule of M) with o* written in the input sector (all other sectors do not contain
Y-letters). Then the corresponding start configuration I(a®, H) of My is obtained by
first replacing each state letter ¢ by the product of two corresponding letters qWq™),
and then inserting a copy of H in the left alphabet X;, in every history Q; ¢Q; -sector.
End configurations As(H) of My are defined similarly, only the Y-letters in the history
sectors must be from the right alphabet X; ;.

Lemma 3.8. (1) If a word o is accepted by the Turing machine My, then for some
word H, there is a reduced computation Is(a®, H) — -+ — Ag(H) of the S-machine M.

(2) If there is a computation Iy(a¥, H) — --- — Ay(H') of My, then the word o is
accepted by My and H' = H.

Proof. (1) The word o is accepted by the S-machine M; by Lemma If H is the
history of the accepting computation of My, then the computation of My with history H
starting with Io(a*, H) ends with As(H) since My works as M in the working sectors
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and replaces the letters from the left alphabets by the corresponding letters from the
right alphabets in the history sectors.

(2) If Iy(a®, H)-H" = Ay(H') for some history H” of My then the word oF is accepted
by My by Lemma and the fact that My works as M in the working sectors. Note
that both H and H’ must be the copies of H”, because the word I(a*, H) has no letters
from right alphabets, As(H') has no letters from left alphabets, and every rule multiplies
the Y-projection of every history sector by a letter from X i}l (from X;,) on the left
(resp., on the right). 7 O

The sectors of the form QMQ;ZI and QZTIQM (in a non-standard base) are also called
history sectors. History sectors help obtaining a linear estimate of the space of every
computation Wy — --- — Wy in terms of |[Wo|| + ||[We||.

Lemma 3.9. Let Wy — --- — W; be a reduced computation of My with base Q; ¢Q;
and history H. Assume that oll the Y-letters of Wy belong to only one of the alphabets
Xijg or Xi,r- Then HHH < ’Wt‘y and |W0‘y < ’Wt‘y

Proof. Let W; = qviq, i = 0, ...,t, and assume that vp has no letters from X;,. Then
vy = wvou/, where u is a copy of H~! in the alphabet X;, and v’ is a copy of H in X;,.
So no letter of «’ is cancelled in the product uvou’, Therefore |Wy|y > ||| = ||H|| and
\(Wily > [Woly. O

Lemma 3.10. For any reduced computation Wy — --- — Wy of S-machine Ms with
base of length at least 3, we have |Wi|ly < 9(|Woly + [Wily) (0 <i<t).

Proof. Let Qiill . Qil be the base of the computation. We can divide the base into
several subwords of length 3 or 4, each containing one history sector. Thus we can
assume that k is equal to 3 or 4 and that the base contains one history sector. Without
loss of generality, that history sector is either a @); (Q; -sector or a ingQZel—sector or a
Q;:Qi7r—sector.

" Consider two cases.

1. The history sector has the form @Q; /Q; . By Lemma, we have || H|| < 1(|Woly+
|[Wily). Tt follows from property (*) of Lemma that | [Wit1ly — [Wily | < 6 for every
1. Therefore

[Wily < max([Woly, [Wily) + 3|[HI| <

3 5
max(|Woly, [Wily) + §(|W0|Y +[Wily) < §(|W0|Y + [Wily)

2. The history sector is either a QMQZ._’Zl—sector or a Q;}Qw—secmr. Then one can
apply Lemma to the history sector and obtain the factorization H = H;H$Hs, with
¢ 2 0, [[Hy|| < min([|uol], [[uel]), [[H1ll < [|uol|/2, and |[H3|| < [|uq||/2, where ug and u;
are the Y-projections of the history sectors of Wy and Wy, respectively. Since every W;
has at most three sectors, applying Lemma to each of them, we obtain:

(Wily < [Woly + [Wily + 3(2[[Hal| + 3||Ha| + 2|[H3]|) <

|Wo‘y + |Wt‘y + 3’W0|Y + 9min(|Wo‘y, ’Wt|y) + 3|Wt‘y < 9(‘W0’y + |Wt‘y).
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Lemma 3.11. Suppose that a reduced computation Wy — -+ — Wy of the S-machine
My starts with an admissible word Wy having no letters from the alphabets X;; (resp.,
from the alphabets X;,) . Assume that the length of its base B is bounded from above by
a constant No, and B has a history subword Q; ¢Q;. Then there is a constant ¢ = c¢(Ny)
such that |Woyly < c|Wyly.

Proof. Let Vy — --- — V; be the restriction of the computation to the Q; (Q; -sector.
By Lemma [3.9] we have ¢t < |Vi]y and [Vo|y < [Vi]y.
It follows from (*) that

[Woly < [Wily +2Not < [Wily +2No|Vily < (2No + 1)[Wily
It suffices to choose ¢ = 2Ny + 1. O

3.3 Adding running state letters

Our next S-machine will be a composition of Ms with LR and RL. The running state
letters will control the work of M.

First we replace every part @; of the state letters in the standard base of My by
three parts P;Q; R; where P;, R; contain the running state letters. Thus if Q...Qs is the
standard base of My then the standard base of My is

PoQoRoP1Q1 Ry ... PsQs Ry, (3.4)

where P; (resp., R;) contains copies of running P-letters (resp. R-letters) of LR (resp.
RL),i=0,...,s.
For every rule 0 of My, its i-th part [¢; — a;q}b;] is replaced in My with

[p(i)qir(i) — aip(i)q;r(i)bi], (i=0,...,s), (3.5)

where p() e P;,r() ¢ R;) do not depend on 6.

Comment. Thus, the sectors F;Q; and @;R; are always locked. Of course, such a
modification is useless for solo work of My. But it will be helpful when one constructs a
composition of My with LR and RL which will be turned on after certain rules of My
are applied.

If Q;Q;41-sector is a history sector of My, then Q; R;-, R; P;-, P;Q;-sectors are history
sectors of My. Accordingly the QiQi_l—sectors (RiRi_l—sectors, etc.) of admissible words
with nonstandard bases will be called history sectors of My too. (Alternatively, history
sectors of admissible words of M are those sectors which can contain letters from left
or right alphabets.) The RyP;-sectors of admissible words are the input sectors. The
RoRy 1_ and P 1 p,-sectors are also input sectors of admissible words of Ma.

If B is the base of some computation C of My, and UV is a 2-letter subword of B
such that UV-sectors of admissible words in C are history (resp. working, input) sectors,
then we will call UV a history (resp. working, input) subword of B.

3.4 M,

The next S-machine M3 is the composition of the S-machine My with LR and RL. The
S-machine M3 has the input, working and history sectors, i.e. the same base as Mo,
although the parts of this base have more state letters than the corresponding parts of
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M. It works as follows. Suppose that Mj starts with a start configuration of Moy, a
word o in the input RyP;-sector, copies of a history word H in the alphabets X in the
history sectors, all other sectors empty of Y-letters. Then Mj first executes RL in all
history sectors (moves the running state letter from R; in the history sectors right and
left), then it executes the history H of M. After that the Y-letters in the history sectors
are in X, and M3 executes copies of LR in the history sectors (moves the running state
letters left then right). After that M3 executes a copy of H backwards, getting to a copy
of the same start configuration of My, runs RL, executes a copy of the history H of My,
runs a copy of LR, etc. It stops after m times running RL, My, LR, M;l and running
RL one more time.

Thus the S-machine M3 is a concatenation of 4m + 1 S-machines M3 1 — M3 4p41.
After one of these S-machines terminates, a transition rule changes its end state letters
to the start state letters of the next S-machine. All these S-machines have the same
standard bases as Ma.

The configuration I3(a*, H) of M3 is obtained from I»(a*, H) by adding the control
1(1) and p(-l)

,~ according to .

state letters r

Set M3 ; is a copy of the set of rules of the S-machine RL, with parallel work in all
history sectors, i.e., every subword @;_1R;_1P; of the standard base, where ;_1Q); is a
history sector of Mo, is treated as the base of a copy of RL, that is R;_; contain the
running state letters which run between state letters from @;—1 and P;. Each rule of Set
M3 1 executes the corresponding rule of RL simultaneously in each history sector of Ma.
The partition of the set of state letters of these copies of RL in each history sector is
X0 UX;, for some i (that is state letters from R;_; first run right replacing letters from
Xi ¢ by the corresponding letters of X;, and then run left replacing letters from X;, by
the corresponding letters of X ;.

The transition rule x(1,2) changes the state letters by the state letters of start con-
figurations of My. The admissible words in the domain of x(1,2)*! have all Y-letters
from the left alphabets X;,. The rule x(1,2) locks all sectors except the history sectors
R;_1P; and the input sector. It does not apply to admissible words containing Y-letters
from right alphabets.

Set M3 is a copy of the set of rules of the S-machine M.

The transition rule x(2,3) changes the state letters of the stop configuration of My
by their copies in a different alphabet. The admissible words in the domain of y(2,3)*!
have no Y-letters from the left alphabets X; ;. The rule x(2,3) locks all sectors except
for the history sectors R;_1P;. It does not apply to admissible words containing Y-letters
from right alphabets.

Set M3 3 is a copy of the set of rules of the S-machine LR, with parallel work in the
same sectors as Set M3 1 (and the partition of Y-letters in each history sector X, UX; ¢).

The transition rule x(3,4) changes the state letters of the stop configuration of My by
their copies in a different alphabet. The admissible words in the domain of x(3,4)*! have
no Y-letters from the left alphabets X; ;. The rule x(3,4) locks all non-history sectors.

Set M3 4. The positive rules of Set M3 4 are the copies of the negative rules of the
S-machine Ms.

The transition rule x(4,5) changes the state letters of the start configuration of My
by their copies in a different alphabet. The admissible words in the domain of x(4,5)*!
have no Y-letters from the right alphabets X;,. The rule x(4,5) locks all non-history
and non-input sectors.
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Sets M35, ..., M3 g consist of rules that are copies of the rules of the Sets M3 1, ...,
M3 4, respectively.

Sets M3 4m—3, ..., M3 4y, consist of copies of the steps M3 1,..., M3 4, respectively.

Set M3 4,41 is a copy of Set M3 1. The end configuration for Set Mg 441, A3(H),
is obtained from a copy of As(H) by inserting the control letters according to (3.4).

The transition rules x(i,7 + 1) are called x-rules.

We say that a configuration W of the S-machine M3 is tame if every P- or R-letter
is next to some @-letter in W.

Lemma 3.12. Let C: Wy — -+ = W, be a reduced computation of Mg consisting of
rules of one of the copies of LR or RL with standard base. Then

(a) [W;ly < max(|Woly, |[Wely) for every configuration W; of C; moreover, |Wyly <
o < Whly if Wo is tame;

(b) t < ||Wol| + [|Wi|| — 2, moreover, t < 2||W|| — 2 if Wy is tame.

Proof. (a) Let W, be a shortest word of the computation C. Then either |W,|y =
‘Wr—&-l‘Y = ... = ‘Wt’y, or ‘WT’y = ‘Wr—&-l‘Y = - = ‘Ws‘Y < ’Ws+1’y for some s.
It follows that the number of sectors increasing their lengths by two at the transition
Wy — Wiy is greater than the number of the sectors decreasing the lengths by 2. Now
it follows from Lemma (1) that the lengths of the Y-projections will keep increasing:
(Wstily < [Wsgaly <.... Soforevery j > r, we have |W;|y < |W;|y. Similarly, we have
(Wely < [Woly for j < r. If the word Wy is tame, then it is the shortest configuration
by the projection argument.

(b) If the rules do not change the lengths of configurations, then every control letter
runs right and left only one time by Lemma (4), and the inequality follows. If
[|We|| < ||Wy41]| for some r, then every next transition keeps increasing the length by
Lemma (1), and so the inequality holds as well.

O

Lemma 3.13. Let C: Wy — --- = W} be a reduced computation of Ms. Then for every
i, there is at most one occurrence of the rules x(i,i+ 1)* in the history H of C provided
the base of C has a history (R;_1Pj)*!-sector.

Proof. Arguing by contradiction, we can assume that H = x(i,7 + 1)T H'x(i,i + 1)1,
where H' is a copy of the history of a computation of either LR or RL or M. The first
two case contradict Lemma (4). The later case is also impossible. Indeed, consider
any history subword (Rj_le)jEl of the base of the computation. Then the Y-projection
of the (R;_1 P;)*! -sector of W} must be a word either in the X, ¢ or in X, (depending on
the parity of 7). Without loss of generality assume that it is X ,. Then the computation
Wi —,...,— W;_1 multiplies the Y-projection of the (R;_1P;)*! -sector of W; by a
word in X , and a reduced word in Xj,. Hence the (Rj,le)il -sector of W;_1 contains
letters from a right alphabet, hence W;_; cannot be in the domain of x(i,i + 1)*!, a
contradiction. O

Lemma 3.14. Let C: Wy — -+ — Wy be a reduced computation of Ms. Suppose also
that the base of C is standard, then

(a) if the history of C has the form x(i,i+ 1)H'x(i + 4,1+ 5), then the word Wy is a
copy of Wi;
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(b) two subcomputations C1 and Co of C with histories x(i,i+ 1)H'x(i+4,i+5) and
X(7, 7+ D)H"x(5+4,j +5) have equal lengths; moreover a cyclic permutation of Co is a
copy of C1;

(¢c) there is a constant ¢c; = c¢1(Mg) such that |Wjly < ¢y max(|Woly, |Wily) for

J=0,1,....t; moreover, |Wjly < c1|Wily if Wy is a tame configuration. (Recall that ci
1s one of the parameters from Section )

Proof. (a) Without loss of generality we assume that ¢ = 1. Consider the projection H,
of the history H of C onto the alphabet of y-rules of M3. By the definition of Mj, if
x = x(j,7+1)* is aletter in H,, then the next letter in H, is either y ! or x(j —1,7)**
or x(j+1,7+2). By Lemma for the every letter x, the word H, contains at most
one occurrence of xy*!'. This implies that H, = x(1,2)x(2,3)x(3,4)x(4,5)x(5,6).

Therefore the history of C has the form

for some subhistories Hi, Ho, H3, Hy which do not contain y-rules. By the definition
of M3, each H; is the history of a computation of a copy of one of the S-machines:
M;, LR, RL (because rules of any two of these mahines have disjoint domains). This
implies that Hy, Ho, Hs, H4 are histories of computations of copies of My, LR, Ms, RL,
respectively.

Let UV be a history 2-letter subword in the base B of the computation C. The Y-
projection u of the UV -sector of Wi is a word in a left alphabet, while the Y-projection
of the UV -sector of Wi - H; is a word in the corresponding right alphabet. Each rule 8
of Hi multiples the Y-projection of the UV -sector by a letter from the left alphabet on
the left and by a letter from the right alphabet on the right. The two letters correspond
to the rule 6. Therefore v must be a copy of Hi. In particular, this implies that the
Y -projections of all history sectors of W1 and Wy - Hy are copies of Hj.

Applying Lemma (3) to the subcomputation Wy-H;x(2,3) — ..., Wi-Hix(2,3)Hs
and considering the history UV-sector again, we deduce that Hs is a copy of

¢ ()™

where Hj is the mirror image of Hy and Hj is a copy of Hy. Moreover Hs is uniquely
determined by Wi - Hy, hence by W7i.

Similar arguments work for the rest of the computation C: H3 is a copy of H, L and
Hy is a copy of Hi¢("? H}. This implies (a).

(b) follows from the same argument as (a).

(c) If the history H of C does not have y-rules, then C is a computation of a copy of
one of the S-machines My, LR, RL and we can apply Lemmas (b) and .

Suppose that H contains a y-rule. Then H = Hy;HsHs where Hy, H3 do not contain
x-rules, but Hy starts and ends with x-rules (it is possible that ||Ha|| = 1). Let Wy =
Wy Hi, Wy = Wy - HHHy = Wy - Hg_l. Then Wy is tame being in the domain of a
x-rule. Hence by Lemmas (b) and for every ¢ between 0 and k |W;|y does not
exceed c|Wyly for some constant ¢. The same argument shows that for ¢ between s and
t |Wily does not exceed c¢|Wi|y. The proof of part (a) describes the subcomputation
Wy — -+ — Wy in detail. This description and Lemma imply that for ¢ between k
and s, |W;|y does not exceed a constant times the maximum of |Wj|y and |Ws|y. This
implies (c).

O
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Lemma 3.15. (1) If a word o is accepted by the Turing machine My, then for some
word H, there is a reduced computation I3(a*, H) — --- — A3(H) of the S-machine M.

(2) If there is a computation C: I3(a®, H) — --- — A3(H') of M3, then the word o
is accepted by My and H = H.

Proof. (1) is obvious from the definition of M3 (see the informal definition of M3 at the
beginning of Section : H is a copy of the history of a computation of My accepting
I(a®) (which exists by Lemma (1)).

(2) The word I3(a*, H) is in the domain of a rule from Mj; while I3(H’) is in the
domain of a rule from M3 4y,41. For different 4, j domains of rules from M3 ; and M3 ; are
disjoint and if rules of sets M3 ; and M3 ;1 appear in a computation, the computation
must also contain the x-rule x(i,7 + 1). Therefore the projection of the history of C onto
the alphabet of y-rules must contain a subword x(1,2)x(2,3) Hence C must contain a
subcomputation D with history of the form x(1,2)H;x(2,3), where Hy is the history of
a computation of a copy of My of the form Ir(af, H) — --- — Ao(H") for some ¢, H"
and the rules in C applied before this x(1,2) are from Mj ;. Since rules of M3 ; do not
modify the input sector, k = ¢. Therefore o is accepted by Ms. By Lemma then o
is accepted by Mg and H” = H. The fact that H' = H is proved in the same way as in

Lemma (2). O

3.5 M4 and M5

Let B be the standard base of M3 and Bj be its disjoint copy. By My we denote the
S-machine with standard base Bs(Bj)~! and rules 6(My) = [0, 6], where § € © and ©
is the set of rules of M3. So the rules of ©(My) are the same for Ms-part of My and
for the mirror copy of Ms. Therefore we will denote ©(My) by © as well. The sector
between the last state letter of B3 and the first state letter of (B4)~! is locked by any
rule from ©.

The ’'mirror’ symmetry of the base will be used in Lemma, [7.37]

The S-machine Mj is a circular analog of My. We add one more base letter £ to the
hardware of My. So the standard base B of My it {f}Bs(B5)~!{f}, where the part {f}
has only one letter £ and the first part {t} is identified with the last part. For example,
{t}B3(B})~{t}B3(B5)~! can be a base of an admissible word for M. Furthermore,
sectors involving ! are locked by every rule from ©. The accordingly modified sets
M3 ; are denoted by M5 ;.

In particular, for M5, we have the start and stop words I5(a*, H) and As(H) similar
to the configurations I3(o, H) and Az(H), and the following analog of Lemma can
be proved in the same way as Lemma [3.15

Lemma 3.16. (1) If a word o is accepted by the Turing machine My, then for some
word H, there is a reduced computation of Is(a*, H) — --- — As(H) of the S-machine
M.

(2) If there is a computation C: Is(a®, H) — --- — As(H') of Ms, then the word oF
is accepted by Mg and H' = H.

Definition 3.17. We call the base of an admissible word of an S-machine faulty if

(1) it starts and ends with the same base letter,

(2) ouly the first and the last letters can occur in the base twice
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(3) it is not a reduced word.

Lemma 3.18. There is a constant C = C(Ms), such that for every reduced computation
C: Wy — -+ = Wy of M5 with a faulty base and every j =0,1,....t, we have |Wj|y <
CmaX(‘W()‘y, ‘Wt’y).

Proof. Step 1. One may assume that |W;|y > max(|Wyly, |[Wi|y) for every 0 < r < ¢
since otherwise it suffices to prove the statement for two shorter computations Wy —
coo —= Wy, and W, — --- = W;. Since y-rules do not change the length of configurations,
the history H of C cannot start or end with a y-rule.

Step 2. If the history H of C has no y-rules, then the statement with C' > 18 follows
from Lemmas (a), and [3.10]

Step 3. If there is only one y-rule y in H, then H = H/xT'H", where H' is a
copy of the history of a computation of a copy of LR or RL and H” is the history of a
computation of a copy of My (or vice versa). For the computation W, — --- — Wy with
history (H')™!, we have |W,|]y < [Wy|y by Lemmas (a) and This contradicts
the assumption of Step 1, and so one may assume further that H has at least two x-rules.

Step 4. The base B of the computation C has no history sectors PP~'-, R™!R-,
QQ~ ', or Q7' Q-sectors, since every x-rule locks the PQ- and Q R-sectors of the standard
base.

The same statement is true for the mirror copies of the above-mentioned sectors, and
this stipulation works throughout the remaining part of the proof.

Step 5. Assume that the history H*' is of the form Hyx(i — 1,4)Hax (4,7 + 1)H3
for some i, where Hy is the history of a computation of a copy of My. Since B is not
reduced, there is a 2-letter subword of the base of the form UT'UT! (for some part U of
the set of state letters). By Lemma then this subword must be a history subword
of the form P~'P or RR~! since every sector of the standard base of Ms, except for
history RP-sectors is locked either by x(i — 1,4) or by x(,7 + 1).

Let us consider the case of P~ P since the second case is similar. Depending on the
parity of ¢ either a prefix Hj of Hs is the history of a computation of a copy of LR or
the suffix H] of H; is the history of a computation of a copy of LR. These two cases are
similar so we consider only the first one.

Then between the P-letter of the P~!P-sector of an admissible word in the sub-
computation of C with the history Hj and the corresponding R-letter in that admissible
word, there is always a Q-letter or a P~!-letter, hence the P-letter never meets the cor-
responding R-letter during that subcomputation and no transition rules rules can apply
to any of the admissible words of that subcomputation. Therefore H; = H3 and for the
subcomputation C': Wy — --- — W; of LR with history H3 we have |Wly < |Wi|y by
Lemmas (1) and [3.4] This contradicts Step 1, and so the assumption made in the
beginning of Step 5 was false.

Step 6. Assume that there is a history of a subcomputation of C of the form
HixHox 'Hs, where x is a x-rule, Hy is the history of a computation of a copy of
M. Then we claim that the base of C has no history P~'P- or RR™'-sectors. To prove
this, we consider only the former case since the latter one is similar.

If the subcomputation C’ of C with history Hs starts with an admissible word W
having in the P! P-sector all Y-letters from the right alphabets, then, as in Step 5, H3
corresponds to the work of LR, which gives a contradiction as in item 5.
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If the P~!P-sector of W has all Y-letters from the left alphabet, then the subcom-
putation of C~! with history XH2_1 will conjugate the Y-projection of that sector by a
non-empty reduced word from the right alphabet. Therefore in the last admissible word
of that subcomputation, there will still be letters from both left and right alphabets, and
50 it cannot be in the domain of any y-rule or its inverse, a contradiction.

Together with Step 4, this implies that the base of C has no mutually inverse letters
from history sectors staying next to each other.

Since the base is faulty, it must contain an input P Lp, or RORl_l—sector. This implies
that the base does not contain input (RoP;)*!-sectors since the first and the last letters of
the base are equal (say, positive) and the base has no proper subwords with this property.
In both cases the configuration W, corresponding to the transition y: W,_; — W, is the
shortest one in C since the Y-projection of that word is of the form o, each rule from C
conjugates the Y-projection from the input sector, and ¥ cannot be shortened by any
conjugation. This contradicts Step 1.

Step 7. It follows from items 2,3, 5 and 6 that H = HyxHax'Hs, for two x-rules (or
their inverses). Moreover Hs is the history of a computation Cy of a copy of LR or of
RL and Hi, H3 are histories of computations Cy,Cs of copies of My, i.e.,H has exactly
two x-rules (otherwise H has a subword which is ruled out in the previous steps of the
proof).

Step 8. We claim that we can assume that the admissible words in the computation
C do not have a history (PR)*!-sectors. Indeed, if such a sector exists, then for the
subcomputation C;: Wy — -+ — W, with history Hjy, we have |W,|y < ¢|Wy| by
Lemmal[3.11] A similar estimate is true for the subcomputation with history x’Hs starting
with some Ws. So in order to prove the inequality from the lemma, it suffices to apply
Step 2 to the three subcomputations Cy,Cs.Cs.

Step 9. Suppose that the base of C contains a history subword of the form P~ P.

If the admissible word from C in the domain of x has no letters from the left alphabets,
then Hs is the history of a computation of a copy of LR and the state P-letter will never
meet the corresponding state R- or Q-letter during the computation Co, so an application
X’ is not possible after Cy ends, a contradiction.

Thus we can assume that if the base of C contains a history subword of the form
P~1P, then the last admissible word of Cy (which is in the domain of x) contains letters
from the left alphabet.

Similarly, if the base of C contains a history subword of the form RR™!, then the last
admissible word in Cy contains letters from the right alphabet. This implies, in particular
that the base of C cannot contain both a history subword of the form P~!P, and a history
subword R/(R’)~!. Without loss of generality, we will assume that there are no subwords
R'(R)~1

Step 10. It follows from Steps 4,8 and 9, that there are no unlocked by x history
sectors of the base except for P~!P-sectors, and if there is such a sector UV ,then Cy
is a computation of a copy of RL. Therefore UV may cotain tape letters from a left
alphabet, while every rule 6 of C;° ! multiplies this sector from both sides by letters from
a right alphabet. So 0 increases the lengths of every history sectors by 2. The rule x locks
working sectors (except for the input one), and so by Lemma (**), 6 can decrease
the lengths of every working sector at most by one. Since working sectors alternate with
history ones in any base, we have ||W;|| < ||Wp]|, contrary to Step 1.

Step 11. To complete the proof of the lemma, it remains to assume that there are no
history sectors in the base of C. Then the faulty base of C must contain input subwords of
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the form RoRy L only, because every y-rule locks all sectors of the standard base except
for the input and history sectors. Then any admissible word of C from the domain of
a x-rule in H is the shortest admissible word in C since (as in Step 6) every rule of
the computation conjugates RoRy Lsectors and a word aF cannot be shortened by any
conjugation. The lemma is proved since we can refer to Step 1 again. O

4 The main S-machine M

4.1 The definition of M

We use the S-machine M5 from Section LR, from Section and three more
easy S-machines to compose the main circular S-machine M needed for this paper. The
standard base of M is the same as the standard base of M, i.e.,{t} B3(B5)™!, where B3
has the form . However we will use Qq instead of Qq, R; instead of Ry and so on to
denote parts of the set of state letters since M has more state letters in every part of its
hardware.

The rules of M will be partitioned into five sets (S-machines) @; (i = 1,...,5) with
transition rules 6(i,7 + 1) connecting i-th and ¢ + 1-st sets. The state letters are also
disjoint for different sets ©;. It will be clear that Qg is the disjoint union of 5 disjoint
sets including Qo, R; is the disjoint union of five disjoint sets including Ry, etc.

By default, every transition rule 6(i,7 + 1) of M locks a sector if this sector is locked
by all rules from ®; or if it is locked by all rules from ®;,;. It also changes the end state
letters of ®; to the start state letters of @;41.

Set ©; inserts input words in the input sectors. The set contains only one positive
rule inserting the letter «v in the input sector next to the left of a letter p from P;. It
also inserts a copy of a~! next to the right of the corresponding letter (p')~! (the similar
mirror symmetry is assumed in the definition of all other rules.) So the positive rule of
©; has the form

(90 = a0, = 711 aps e ()T = ()T () TS () T S

The rules of ®; do not change state letters, so it has one state letter in each part of
its hardware.

The connecting rule 6(12) changes the state letters of @1 by their copies in a disjoint
alphabet. Tt locks all sectors except for the input sector RoP; and the mirror copy of this
sector.

Set O, is a copy of the S-machine LR,,, working in the input sector and its mirror
image in parallel, i.e.,we identify the standard base of LR,,, with RyP;Q;. The connecting
rule A(23) locks all sectors except for the input sector RoP; and its mirror image.

Set O3 inserts history in the history sectors. This set of rules is a copy of each of the
left alphabets X;; of the S-machine M. Every positive rule of ®3 inserts a copy of the
corresponding positive letter in every history sector R;Piy; next to the right of a state
letter from R;.

Again, @3 does not change the state letters, so each part of its hardware contains one
letter.

The transition rule #(34) changes the state letters by their copies from Set Ms ;
of Mj5. It locks all sectors except for the input sectors and the history sectors. The
history sectors in admissible words from the domain of #(34) have Y-letters from the left
alphabets X;; of the S-machine Mj.
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Set ©y4 is a copy of the S-machine Ms. The transition rule §(45) locks all sectors
except for history ones. The admissible words in the domain of #(45) have no letters
from right alphabets.

Set ©5. The positive rules from 5 simultaneously erase the letters of the history
sectors from the right of the state letter from R;. That is, parts of the rules are of the
form r — ra~' where r is a state letter from R;, a is a letter from the left alphabet of
the history sector.

Finally the accept rule 6y from M can be applied when all the sectors are empty, so
it locks all the sectors and changes the end state letters of M5 to the corresponding end
state letters of M. Thus the main S-machine M has unique accept configuration which
we will denote by W..

For every i = 1,2, 3,4, we will sometimes denote 6(i,i + 1)~ by 0(i + 1,1).

4.2 Standard computations of M

We say that the history H of a computation of M (and the computation itself) is eligible if
it has no neighbor mutually inverse letters except possibly for the subwords 6(23)6(23)7!.
(The subword 6(23)~16(23) is not allowed.)

Remark 4.1. Clearly the history H~! is eligible if and only if H is. Every reduced
computation is eligible.

Considering eligible computations instead of just reduced computations is necessary
for our interpretation of M in a group.

The history H of an eligible computation of M can be factorized so that every factor
is either a transition rule 6(i, + 1)*! or a maximal non-empty product of rules of one of
the sets @1 — @s. If, for example, H = H'H"H"', where H' is a product of rules from
©®,, H” has only one rule #(23) and H"” is a product of rules from @3, then we say that
the step history of the computation is (2)(23)(3). Thus the step history of a computation
is a word in the alphabet {(1),(2), (3), (4), (5), (12),(23), (34), (45), (21), (32), (43), (54)},
where (21) is used for the rule #(12)~! an so on. For brevity, we can omit some transition
symbols, e.g. we may use (2)(3) instead of (2)(23)(3) since the only rule connecting Steps
2 and 3 is 0(23).

If the step history of a computation consists of only one letter (i), i =1,...,5, then
we call it a one step computation. The computations with step histories (i)(i,7 £ 1),
(1 +£1,4)(¢) and (¢ £ 1,4)(i)(i,i = 1) are also considered as one step computations. Any
eligible one step computation is always reduced by definition.

The step history of any computation cannot contain certain subwords. For example,
(1)(3) is not a subword of any step history because domains of rules from @; and ®3 are
disjoint. In this subsection, we eliminate some less obvious subwords in step histories of
eligible computations.

Lemma 4.2. If the base of a computation C has at least one history subword UV, then
there are no reduced computations C of M with step history

(1) (34)(4)(43) or (54)(4)(45), provided UV = (R;_1P;)*" for some 1,

(2) (23)(3)(32).

Proof. (1) We consider only the step history (34)(4)(43) since the second case is similar.
Let Wy be the first admissible word of C. Suppose that the history H = 6(34)H'6(43) of
C has x-letters. By Lemma each x letter x*! appears in H, only once. Each x-rule
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changes the state letters, and words in the domains of different (positive) y-rules have
different state letters. Therefore W - 0(34)H' has different state letters than Wy, hence
Wy - 0(34)H' is not in the domain of #(43), a contradiction.

If H' has no y-letters, then it is a history of RL, and we obtain a contradiction with
Lemma (4) (and Remark [3.7)).

(2) Suppose the step history of C is (23)(3)(32). Since the history sectors are locked
by 6(23)*!, the history subwords in the base of C must have the form (R;_1P;)*! for some
i. Every rule of @3 inserts a letter next to the left of every P;-letter, different rules insert
different letters, same letter for the same rule. Since at the beginning and at the end of
the subcomputation with step history (3) all history sectors are empty of Y-letters, the
word inserted during the subcomputation must be freely trivial. That contradicts the
assumption that this subcomputation is reduced. O

By definition, the rule #(23) locks all history sectors of the standard base of M except
for the input sector Ry P} and its mirror copy. Hence every admissible word in the domain
of A(23)~! has the form W (k, k') = wia*wy(a’)"F w3, where k and k' are integers and
w1, wy, w3 are fixed words in state letters; w; starts with £. Recall that Wy, is the accept
word of M.

Lemma 4.3. There are no reduced computations of M with the standard base whose step
history is (12)(2)(21) or (32)(2)(23).

Proof. Consider only the step history (12)(2)(12). Thus the history H of the computation
is (12)H'0(21)~! and H' is a computation of a copy of LRy, working in the input sectors
of admissible words of M. The applying Lemma[3.3] (4) and Remark [3.3| we can conclude
that H' is empty, a contradiction. O

Lemma 4.4. Let a reduced computation C: Wy — --- — Wy have the history H of the
form (a) x(i — 1,9)H'x(i,i + 1) (i.e.,the S-machine works as M3 with step history (4))
or (b) OV HICEHY) (e it works as LRy, with step history (2)).

Then the base of the computation C is a reduced word, and all configurations of C are
uniquely defined by the history H and the base of C, [Wyly = |[Wily = -+ = [Wily, and
1| < 2| W)l

Moreover, ||H|| = 2s+3 (resp., ||H|| = s+2), where s is the Y -length of every history
sector (input sector) in case (a) (in case (b), resp.), and H' is the copy of the mazimal
a-word contained in arbitrary history (resp., input) sector of Wy.

Proof. (a) Every history sector of the standard base is locked either by one of the rules
x(i —1,4),x(i,i + 1), or by a rule of H'. Every non-history sector of the standard base
is also locked either by x(i — 1,7) or by x(i,i + 1). It follows from Lemma that
the base of C is a reduced word. By Lemma (3), the histories of the primitive S-
machines subsequently restore the tape words in all history sectors. Since one of the
rules x(z — 1,4), x(7,7 4+ 1) locks all non-history sectors, Lemma applied to C implies
equalities [Wyly = |[Wily = -+ = |Wi]y, and gives the other statements.

(b) The same proof up to change of the history sectors by the input ones. O

Lemma 4.5. The step history of every eligible computation of M with standard base
either

(A) contains one of the words (34)(4)(45), (54)(4)(43), (12)(2)(23), (32)(2)(21) as a

subword or
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(B) is a subword of one of the words
(4)(45)(5)(54)(4), (4)(43)(3)(34)(4), (2)(23)(3)(34)(4),
(4)(43)(3)(32)(2), (2)(21)(1)(12)(2), (2)(23)(32)(2).

Proof. The statement is obvious if there are neither (2) nor (4) in the step history.
Lemmas (1) (Lemma implies that if (4) (resp. (2)) is not the first or the last
letter in the step history then it can occur in a subword of the form (34)(4)(45) or
(45)(4)(34) (resp., (12)(2)(23) or (23)(2)(12)), i.e.,we have Property (A).

If the first letter in the step history is (2) and Property (A) fails, then the same lemmas
give us the longest possible step histories (2)(23)(32)(2), (2)(1)(2) and (2)(23)(3)(34)(4).
The assumption that the last letter in the step history is (2) adds one more possible
longest step history word (4)(43)(3)(32)(2).

Similarly, we may assume that (4) is either the first or the last letter in the step
history and conclude that the step history is a subword of one of the words (4)(5)(4),
(4)(3)(4), (2)(3)(4) and (4)(3)(2) provided Property (A) fails. O

Lemma 4.6. (1) If the word o is accepted by the S-machine My, then there is a reduced
computation of M, W(k, k) — --- — Wy whose history has no rules of ®1 and ©Os.

(2) If the history of a computation C: W(k, k) — --- — Wy of M has no rules of ©
and Oy, then the word o is accepted by M.

Proof. (1) By Lemma there is a computation I5(ag, H) — --- — As(H) of the
S-machine Mj for some H. So we have the corresponding computation of @4:

D: Iﬁ(ak,H) — —>A6<H)

Now the computation of @3 inserting letters in history sectors and a computation of
©®; erasing these letters extend D and provide us with a computation W (k, k) — --- —
Is(ag, H) = -+ — Ag(H) = -+ = W

(2) By Lemma (1), the step history of C begins with (3)(4)(5), and so there is a
subcomputation of Set 4 of the form I5(af, H) — --- — As(H) for some £ and H, where
according to Lemma (2), the word af is accepted by Mjy. Since the computation of
Set 3 does not change the input sector, we have £ = k. O

4.3 The first estimates of computations of M

Lemma 4.7. Let C: Wy — --- — W, be a computation of M satisfying Property (B) of
Lemma or any computation of M with step history of length at most 2. Then for

some constant cy (see Section
(a) [W;ly < comax([Woly, [Wily) for j = 0,1,...t; moreover

’W0|y S C2 max(|Wt\y

if Wo is a tame configuration.
(b) t < 2(||Wol| + [|[Wil]); moreover, t < c3||Wy|| if Wo is a tame configuration.
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Proof. (a) If C is a one-step computation and its step history is (1), (3), or (5), then
Statement (a) follows from Lemma [2.5| (c). For step history (2) (resp. (4) it follows from
Lemma (a) (resp., Lemma (c)).

If there is a transition rule of M in the history H of C, then H can be decomposed in
at most three factors H = HyHyHs, where Ho is a one-step computation of step history
(1), (3) or (5), or Hy = (23)(32) and H;, Hs, if non-empty, are of step history (2) or
(4). Respectively, the computation C is a composition of at most three subcomputations
Co: Wy — o+ =W, Co: W, — -+ - Wy and C3: Wy — --- — W,. Now we can
bound |W,|y and |Ws|y by cmax(|Wply,|W:|y) applying either Lemma (a) (for
step history (2)) or Lemma[3.14] (c) (for step history (4)) to C; and Cs. The same lemmas
applied to subcomputations C;, Co and C3 completes the proof since we can assume that
o > ¢ (see Section [2.3)).

If Wy is a tame configuration, then the same Lemmas linearly bound ||[Wp|| in terms
of ||W||, and the required estimates follow.

(b) It suffices to bound the lengths of at most three one step subcomputations
C':W; — -+ — Wi, where max(|Wjly, [Wkly) < comax(|[Woly, |[Wi|y) by (1). For
step history (1), (3) or (5), the history lengths are bounded by Lemma (b). For (2),
we refer to Lemma (b). The computation with step history (4) has at most 4m
x-rules in the history as follows from Lemma [3.13] So it has at most 4m + 1 maximal
subcomputations of the form W; — --- — Wy, corresponding to one of the 4m+ 1 subsets
M3 ; of the set of rules of M3, where max(|W;ly, |Ws|) < ca max(|Wy|y, |W:|) by part (1)
of the lemma. Hence we have the same upper bound for s — [ by Lemmas (3) (if it is
a computation of LR) and (if it is acomputation of Ms). This completes the proof
of the first inequality since we have ca > m (Section . The tame case is treated in
the same way (the proof is even shorter). O

4.4 Computations of M with faulty bases

Lemma 4.8. For every eligible computation C: Wy — -+ — Wy of M with a faulty base
and every j =0,1,...,t, we have |Wjly < ci max(|Woly, [Wely).

Step 1. As in Step 1 of the proof of Lemma one may assume that |Wjly >
max(|Woly, |[Wily) if 1 < j <t and so the history H of C neither starts nor ends with a
transition rule 6(i,7 4+ 1)*L.

Step 2. If C is a one step computation and (7) is its step history, then the statement
follows from Lemma[2.5] (¢) for ¢ = 1, 3,5, (since ¢; > 2), Lemma[3.12] (a) for ¢ = 2 (since
c¢1 > 2) and Lemma[3.1§| (since ¢; > C). Hence one may assume further that H contains
a transition rule of M or its inverse.

Step 3. Assume that C (or the inverse computation) has a transition rule 6(23),
Wit1 = W - 6(23). Recall that the 0(23) does not lock only the input R0P1 sector and
its mirror copy. So by Lemma we should have an input subword ROR or P 1p
in the faulty base. Moreover, we must have exactly two such input subwords in the base
and no subwords (RoPy)*! since the first and the last letters of the base are equal (e.g.,
positive) and the base has no proper subwords with this property (see Definition [3.17)).

The input sectors of both W; and Wj, 1 have Y-projections of the form ok, and
they are not longer than the corresponding Y-words in the input sectors of any other
W; since af cannot be shortened by conjugation. Tt follows that |Wjly,|Wjiily <
max(|Woly, |Wi|y) contrary to Step 1. Thus, one may assume further that H has no
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letters #(23)*!. In particular, C is a reduced computation.

The same argument eliminates letters #(12)*! from H, and so the letter (1) from the
step history of C. Hence one can assume that the step history contains neither (1) nor
(2).

Step 4. Suppose H (or H~') contains a subhistory H’6(45), where H’ is a maximal
subword of H which is word in ®,4 (which is a copy of the S-machine M5). By Lemma
, the faulty base of the computation C contains one of the history subwords Ri,lle_ll
or Pz‘_lpi for some 7, because all non-history sectors are locked by 6(45).

Suppose the base of C contains a history subword Rj,le_}l for some j. The word H'
must have a suffix which is a word in the alphabet of a copy of RL working in parallel
in the history sectors (see the definition of M3 4;,41). The state letters from Rj,l in
the Rj_le__ll—sector will then never meet a letter from either Qj_l or Pj. Therefore H'
cannot contain the transition rule x(4m, 4m +1)*! or 0(45)~!. Thus H' is a prefix of H,
is a computation of a copy of RL, and by Lemma (a) applied to the subcomputation
of C~1 with history (H')™!, we get a contradiction with Step 1 because admissible words
in the domain of §(45)~! is tame.

Suppose the base of C contains a subword (R;_1P;)*'. Then H has no subword
0(45)" H'0(45) by Lemma [4.2] (1) If H' has neither transition rules nor x-rules, then we
have a contradiction by Lemma[3.12] (a). Hence H has a subword x(4m,4m+1)H"6(45),
but then by Lemma (3), H' has a rule locking all the sectors R; 1 P; of the standard
base, and we get a contradiction with Lemma [2.4]

Finally suppose all history subwords in the base of C have the form ]51»_1]5@-. Then the
rules of a copy of RL from H’ do not change the history sectors of admissible words in
the corresponding subcomputation C’' of C, hence the lengths of all admissible words in
C’ stay the same. Moreover since the state letters in the history sectors do not change
during the subcomputation C, none of the admissible words in that subcomputation is in
the domain of x(4m,4m + 1)T!. Therefore the rules of H’ do not change the lengths of
admissible words, and either H’ is a prefix of H and we get a contradiction with Step 1
or we have the subhistory 6(45)~*H'6(45).

In the latter case, we consider the maximal subhistory H” of type 5 following after
the rule 6(45) (or before #(45)~1). All the admissible words of the corresponding sub-
computation C” have equal lengths since the base has no letters R;. Arguing in this way
we see that the history of C has Steps 4 and 5 only, and all the admissible words in C
have equal length, which proves the inequality of the lemma.

We can conclude that H does not contain 6(45)*!. By Step 2, (5) is not in the step
history of C and the only possible transition rules of M in H are §(34)%.

Step 5. Assume that there is a subhistory of H of the form H16(34)H260(34)" ! Hs,
where Ho is the history of M5. Then the base of C has no history sectors of the form
R;R; ! (since, as before, the machine RL starting with 6(34) would never end with x(12)).

If there is a history subword R;_1 P; in the faulty base, then Hy cannot follow by the
transition rule 6(34)~!, by Lemma if Hy contains y-rules and by Lemma (4)
otherwise, a contradiction.

Thus the base of C has no R-letters from history sectors. It also has no P;-letters
from input sectors, because otherwise the base would contain the letter R; of the history
sector next to the input sector since the sectors PQ; and Q1R; are locked by 6(34).

Thus, all history sectors have the form ]—z’i_lpi in the faulty base of C, and so H cannot
have the rule x(1,2)*! (for the same reason the rule y(4m,4m+1) was eliminated in Step
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4). But without x(1,2)*!, one cannot get a rule in H changing hlstory sectors Pi_lpi
since the rules of ®3 leave such sectors unchanged. The input sectors RORO of the base
of C (if any) cannot be shorten by a subcomputation since no conjugation shortens a
power of one letter in a free group. therefore the rules 6(34)*! are applied to the shortest
admissible word of C, contrary to Step 1.

So our assumption was wrong.

Step 6. If there is only one transition rule §(34) in H*!, then H*!' = H'0(34)H",
where H” is the history of Ms. If H” is the history of a copy of RL, starting with an
admissible word W, then |W,|y < |Wiy by Lemmas (a) and contrary to Step
1. Otherwise we have a subhistory 0(34)Hyx(1,2), and by Lemma (3), there are no
history subsectors of the form RZR;l or Pflpi in the base of C. If there is a history
sector R;_1P;, then one can linearly bound |Wer|y in terms of |[W|y applying Lemmas
(b) and several times, namely at most 4m + 1 times by Lemma [3.13] Since
c1 > C,c1 > m (see Section one consider two subcomputations of C can divide C:
Wo — -+ — W, and W, — --- — W, and reduce the proof to Step 2.

Thus, one may assume that the base of C has no letters P and R from history sectors.
This also eliminates the letter P; of the input sector and gives the inequality

[Wely < max(|Woly, [Wily),

contrary to Step 1. Therefore the assumption of Step 6 was wrong.

Step 7. It remains to consider the case when H*! is of the form H16(34)~' H20(34) H3,
where Hy is the history of ®3, H; and Hj are histories of ®4, and it suffices to repeat
the argument of Step 6 with decomposition of C in the product of three subcomputaions,
because we did not use there that the subword H,6(34) was absent.

The lemma is proved.

4.5 Space and length of M-computations with standard base

Let us call a configuration W of M accessible if there is a W-accessible computation, i.e.,
either an accepting computation starting with W or a computation s (M) — --- — W,
where s1(M) is the start configuration of M (i.e., the configuration where all state letters
are start state letters of ©1 and the Y-projection is empty).

Lemma 4.9. If W is an accessible configuration, then for a constant cg = c3(M), there
is a W-accessible computation C of length at most c3||W || whose step history is either a
suffix of (4)(5) or a prefix of (1)(2)(3)(4). The Y -length of every configuration of C does
not exceed ca|Wly. (Recall that ca,c3 are parameters in Section[2.3)

Proof. Assume that a W-accessible computation C has (4) in its step history and its
history H has a rule x(i¢,7 + 1) with 1 < i < 4m. Since C is accessible, we have by
Lemma [3.14] (b), a subcomputation W; — -+ — W with history of the form (a) (4,7 +
D)H'x(i+1,i+2) or (b) x(i,i+ 1) H’ (z —1,i)~!, where H' is a history of a canonical
computation of Ms. By Lemma [f.4] we also conclude that every history sector of W; and
of W, is a copy of H'. It makes possible to accept W, using erasing rules of Set 5 in case
(a) or to construct a computation of type (1)(2)(3) starting with s;(IM) and ending with
Wi in case (b).

It follows now from Lemma that one can choose a accessible computation C
having no subhistories of type (34)(4)(45) or (45)(4)(34), and so Set 4 can occur only in
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the beginning or at the end of H. In the first case H has to have type (4)(5), and the
required inequalities follow from Lemma (.7 since c3 > co.
In the second case, the step history ends with (3)(4), and the connection

0(34): Wk,1 — Wk

provides us with copies in all history sectors and in all input sectors since W, is accessible.
Hence one may assume that the step history has the form (1)(2)(3)(4). Here |Wi|y <
c1|Wly by Lemma (c). The canonical computation with step history (1)(2)(3) does
not decrease the lengths of configurations. Now the required estimates follows from
Lemma for four one-step subcomputations since we chose cg after cs.

One obtains even better estimates than the required iequalities if C has no Set 4 in
the step history since it has one of the types (5) or (1)(2)(3), or (1)(2) or (1). O

For any accessible word W we choose an accessible computation C(W) according to
Lemma A9

Lemma 4.10. Let Wy be an accessible word, C: Wy — --- — Wy be an eligible computa-
tion of M and Hy, H; be the histories of C(Wy) and C(Wy), respectively. Then for some
constants ca,cs5 (see Section[2.5) either

(a) ¢ < camax(([Woll, [ WHI]) and [[W;1] < cs mas(|[Woll, IWill), for every j =0,
or

(b) ||Hol| + ||He|| < t/500 and the sum of lengths of all subcomputations of C with
step histories (12)(2)(23), (23)(2)(12), (34)(4)(45) and (45)(4)(34) is at least 0.99¢.

Proof. One may assume that ¢ > cq max(||Wo||, ||W¢||), because otherwise Property (a)
holds for sufficiently large c5 since an application of every rule can increase the length of
a configuration by a constant depending on M. Hence by Lemma [4.9}

[Hol| + || Ey]| < 2¢5 max(||Woll, [Wil[) < ¢/500.

The computation C is not a B-computation by Lemma [4.7]since co < ¢4. Therefore it
is a computation satisfying Property (A) of Lemma and one has a maximal subcompu-
tation C”: W, — --- — W starting and ending with subcomputations with step histories
2 or 4, which where listed in part (A) of that lemma. We have C = C'C"C", and ap-
plying Lemma |4.7/to (C")~1 and C", we have max(||[W.,||, ||[Ws||) < co max(||[Wol|, ||Wil|)
and the lengths I and I"" of C' and C"” do not exceed cq max(||Wpy|, ||[W:]])/1000 since
¢4 > 1000c2cs. Therefore I + 1" < t/500.

Lemma implies that the subcomputation C” is a product C1D; ...Cr_1Dg_1Cy,
where k& > 1, every C; has one of the four step histories from item (a) of that lemma,
and every D; is a subcomputation having type 1 or 3, or 5, or just empty if the history
H(i) of C; ends with 6(23) and H (i + 1) starts with 6(23)"!. Let K (i) be the history
of D;. Below we will prove that || K (7)|| < (||H(¢)|| + [|H (i 4+ 1)||)/1000. In turn, this
will imply that >, ||[H(¢)]| > 500, || K (7)||, and the last claim of the lemma will follow
since I’ + 1" < ¢/500.

So, let D;: Wy, — --- — W,. Then on the one hand, ||K;|| < |V;|y +|Vy|y by Lemma
(b); here V; — --- — V}, is the restriction D; to a sector with base of lengths two,
where the rules of D; insert/delete letters. On the other hand, ||[H(7)|| > 2m|V,|y, as
it follows from Remark (if C; has type 2) and from Lemmas (3), (a)
and the definition of Set 4 (if C; has type 4). Similarly we have ||H (i + 1)|| > 2m|V, |y,
whence [[H(3)|| + ||H (i + 1)]|)/1000 > m(|Vz|y + |Vy|)/500 > ||K(i)|| by the choice of
m. U

31



We call a base B of an eligible computation (and the computation itself) revolving if
B = xvx for some letter x and a word v, and B has no proper subword of this form.

If v = vizvy for some letter z, then the word zwvoxwviz is also revolving. One can
cyclically permute the sectors of revolving computation with base zvz and obtain a
uniquely defined computation with the base zvoxvy 2z, which is called a cyclic permutation
of the original computation. The history and lengths of configurations do not change
when one cyclically permutes a computation.

Lemma 4.11. Suppose the base B of an eligible computation C: Wy — -+ — Wy is
revolving. Then one of the following statements hold:

(1) we have inequality ||W;|| < ca max(||Wol|, ||Wi|]), for every j =0,...,t or

(2) we have the following properties:

(a)the word xv or vz~ is a cyclic permutation of the standard base of M and

(b) the corresponding cyclic permutations W and W/ of the words Wy and Wy are
accessible words, and

(c) the step history of C (or of the inverse computation) contains a subword (12)(2)(23)
or (34)(4)(45); moreover, the sum of lengths of corresponding subwords of the history is
at least 0.99t and

(d) we have ||H'|| + ||H"|| <t for the histories H' and H" of C(Wy) and C(Wy).

Proof. 1f the computation is faulty, then Property (1) is given by Lemmald.8]since ¢4 > ¢;.
If it is non-faulty, then we have all sectors of the base in the same order as in the standard
base (or its inverse), and we obtain Property (2a). Therefore we may assume now that
the base zv is standard and Property (1) does not hold.

If C is a B-computation, we obtain a contradiction with Lemma [4.7] since ¢4 > co.
Therefore we assume further that C is an A-computation. So it (or the inverse one)
contains a subcomputation with step history (12)(2)(23) or (34)(4)(45). In case of
(34)(4)(45), we consider the transition §(45): W; — Wj;1. By Lemma the words
in the history sectors R;_1P; are copies of each other. Therefore they can be simultane-
ously erases by the rules of Set 5, and so W41 and all other configurations are accepted.
Similarly one applies Lemma in case (12)(2)(23) and concludes that Property (2b)
holds.

Now the second part of (2¢) and (d) follow from Lemma [.10] O

4.6 Two more properties of standard computations

Here we prove two lemmas needed for the estimates in Subsection The first one says
(due to Lemmal[t.3](2)) that if a standard computation C is very long in comparison with
the lengths of the first and the last configuration, then it can be completely restored if
one knows the history of C, and the same is true for the long subcomputations of C. This
makes the auxiliary parameter o) (A) useful for some estimates of areas of diagrams A.
The second lemma is also helpful for the proof of Lemma in Subsection

Lemma 4.12. Let C: Wy — --- — Wy be a reduced computation with standard base,
where t > camax(||[Wo|, ||Wil]). Suppose the word Wy is accessible. Then the history of
any subcomputation D: W, — --- — Wy of C (or the inverse for D) of length at least
0.4t contains a word of the form (a) x(i — 1,49)H'x(i,i+ 1) (i.e.,the S-machine works as
Ms at Set 4) or (b) ¢~V H'CH L (ie. it works as LR, at Set 2).
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Proof. By Lemma that the sum of lengths of all subcomputations C’ of C with step
histories (12)(2)(23), (23)(2)(12), (34)(4)(45) and (45)(4)(34) is at least 0.99¢. Therefore
D has to contain a subcomputation D’ of type 2 or 4, which is a subcomputation of some
C', and ||K'|| > 0.3||H’|| for the histories K" and H' of D" and C’, respectively.

It suffices to show that such a subcomputation D’ of a computation C’ with step
history (34)(4)(45) (with (12)(2)(23)) contains a subcomputation of the form (a) (form
(b), resp.) For C’ of type (34)(4)(45), this follows from Lemma (b) since m > 10.
For C' of type (12)(2)(23), the same property holds since the S-machine LR, has to
repeat the cycles of LR m times by Lemma (3,4). O

Lemma 4.13. Let a reduced computation C: Wy — --- — W, start with a accessible word
Wo, have standard base and have step history of length 1. Assume that for some index
J, we have |Wjly > 3|Wy|. Then there is a sector QQ' such that a state letter from Q or
from Q' inserts an a-letter increasing the length of this sector after any transition of the
subcomputation Wj — -+ — Wi,

Proof. First of all we observe that the a-words in all history sectors (in all input sectors)
of any configuration W; are copies of each other, because Wy is accessible. Also inducting
on ¢ one can assume that |[Wily > |[Wply.

I we have one of the Sets 1, 3, 5, then inequality |[Wy|y < |Wily implies |Wily <
|[Wa|y < ... since the second rule cannot be inverse for the first one, and so on, i.e., we
obtain the desired property of any input sector for Set 1 or of any history sector for Sets
3 or d.

If we have Set 2, then the statement for any imput sector follows from Lemma |3.3
(1) .
Let the step history be (4). Recall that the rules of Set 4 are subdivided in several sets,
where each set copies the work of either LR or M3. If a PM-rule of the subcomputation
D: Wy — --- — W increases the length of a history sector, then we refer to Lemma
(1) as above. So one may assume that no PM-rules of D increase the length of history
sectors.

Assume now that D has an Mga-rule increasing the length of history sectors. It has
to insert a letter from X;, from the left and a letter from X, from the right. Since the
obtained word is not a word over one of these alphabets, the work of M3 is not over, and
the next rule has to increase the length of the sector again in the same manner since the
computation is reduced. This procedure will repeat until one gets W;. This proves the
statement for any history sector.

It remains to assume that there are no transitions in D increasing the lengths of history
sectors and the first transition Wy — Wy is provided by a rule 6 of M3. It cannot shorten
history sectors (by 2). Indeed can 6 change the length of working sectors of neighbor
working sectors at most by 1 (see Lemma (3)), which implies |Wply > [Wily, a
contradiction. It follows that no further rules of M3 can shorten history sectors. Then
Lemma implies that all history sectors in all configurations of D have equal lengths.

By Lemmal[2.6|(b) the lengths of the history of the maximal subcomputation £: Wy —
-+ — Wy of M3 in D does not exceed h, where h is the Y-length of all history sectors of
the configurations from D.

Every rule of the subcomputation £ can change the length of any working sector at
most by 1. (See Lemma (2)). Hence if its length inWy is ¢, its length in W is at
most ¢ + h. Tt follows that |[Ws|y < 3|Wyly, because the working sectors of My and its
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history sectors alternate in the standard base; and the same inequality |W, |y < 3|Wyly
holds for any configuration W, of £. Hence s # j and the subcomputation & follows in
D by a subcomputation F of PM, which does not change the length of configurations
by Lemma [3.12]

So F has to follow in D by a maximal subcomputation G of M3 again. Since we have
the canonical work of M3 in history sectors, a prefix of the history of G~! is a copy of the
entire H(E)™!, where H () is the history of £. (G cannot be shorter than £ since otherwise
the configuration W} would have a copy in &, whence |W;|y < 3|Wply, a contradiction.)
It follows that a configuration W; of G is a copy of Wy, and so |W|y = |Wpl|y. Since the
subcomputation W; — --- = W; — --- — W; is shorter than C, we complete the proof
of the lemma inducting on ¢. O

5 Groups and diagrams

5.1 The groups

Every S-machine can be simulated by a finitely presented group (see [28], [20], [21],
etc.). Here we apply a modified construction from [28] to the S-machine M. To simplify
formulas, it is convenient to change the notation. From now on we shall denote by N the
length of the standard base of M.

Thus the set of state letters is Q = LN 'Q; (we set Qn = Qo = {t}) Y = UN,V;,
and O is the set of rules of the S-machine M.

The finite set of generators of the group M consists of g-letters, a-letters and 0-letters
defined as follows.

For every letter ¢ € @ the set of generators of M contains L copies ¢ of it, i =
1,..., L, if the letter g occurs in the rules of ®; or ®3. (The number L is one of the
parameters from Section [2.3]) Otherwise only the letter ¢ is included in the generating
set, of M.

For every letter a € Y the set of generators of M contains a and L copies a(® of it.

For every § € ©F we have N generators 6p,...,0y in M (here O = 6p) if 0 is a
rule of Set 3 (excluding 6(23)) or Set 4, or Set 5. For 6 of Set 1 or 2 (including 0(23)),
we introduce LN generators 9?), where j =0,...,N,t=1,...,L and 9%) = 9((;“) (the
superscripts are taken modulo L).

The relations of the group M correspond to the rules of the S-machine M as follows.
For every rule 0 = [Uy — Vj,...Unx — Vy]| € O of Set 1 or 2, we have

ui6l), = Wv 004 = a6 j=0,..N, i=1,...L,  (56)
for all a € Y;(6), where UJ@ and Vj(l) are obtained from U; and V; by addiing the
superscript ¢ to every letter.

For 6 = 6(23), we introduce relations

g

0% = 0](2)‘/;’ a(l)ej(l) = 0<i)a’ (57)

J

i.e.,the superscripts are erased in the words U ]@ and in the a-letters after an application

of (6.7).

For every rule 0 = [Uy — Vj,... Uy — Vy] € ©F of Set 3 or 4, or 5, we define
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UjOjt1 = 0V, abj = bja (5.8)
The first type of relations - will be called (0, q)-relations, the second type -

(0, a)-relations.
Finally, the required group G is given by the generators and relations of the group
M and by two more additional relations, namely the hub-relations

=1 an ) =1, .
wl Wl =1 and Wee): =1 5.9

where the word WS(Z) is a copy with superscript (i) of the start word Wy (of length N)
of the S-machine M and W, is the accept word of M.

Remark 5.1. The main difference of the construction of M and the groups based on .S-
machines with hubs from our previous papers|28, 20, 21] 18] and others, is that relations
are defined differently for different rules of the S-machine. We also use two hub
relations instead of just one, although it is easy to see that one hub relation follows from
the other (and other relations).

Note also that, as usual, M is a multiple HNN extension of the free group generated
by all a- and g-letters.

5.2 Van Kampen diagrams

Recall that a van Kampen diagram A over a presentation P = (A|R) (or just over the
group P) is a finite oriented connected and simply-connected planar 2-complex endowed
with a labeling function Lab: E(A) — A% where E(A) denotes the set of oriented edges
of A, such that Lab(e™!) = Lab(e)~!. Given a cell (that is a 2-cell) IT of A, we denote by
OII the boundary of II; similarly, OA denotes the boundary of A. The labels of 01l and
OA are defined up to cyclic permutations. An additional requirement is that the label
of any cell IT of A is equal to (a cyclic permutation of) a word R*!, where R € R. The
label and the combinatorial length ||p|| of a path p are defined as for Cayley graphs.

The van Kampen Lemma [12] 4], 27] states that a word W over the alphabet A*!
represents the identity in the group P if and only if there exists a diagram A over P such
that Lab(0A) = W, in particular, the combinatorial perimeter [|[0A|| of A equals ||[W]|.
([12], Ch. 5, Theorem 1.1; our formulation is closer to Lemma 11.1 of [14], see also [27,
Section 5.1]). The word W representing 1 in P is freely equal to a product of conjugates
to the words from R*!. The minimal number of factors in such products is called the
area of the word W. The area of a diagram A is the number of cells in it. The proof
of the van Kampen Lemma [14] 27| shows that Area(W) is equal to the area of a van
Kampen diagram having the smallest number of cells among all van Kampen diagrams
with boundary label Lab(0A) = W.

We will study diagrams over the group presentations of M and G. The edges labeled
by state letters ( = g-letters) will be called g-edges, the edges labeled by tape letters (=
a-letters) will be called a-edges, and the edges labeled by 6-letters are 6-edges.

We denote by |ply (by |plg, by |plq) the a-length (resp., the 6-length, the g-length)
of a path/word p, i.e., the number of a-edges/letters (the number of #-edges/letters, the
number of g-edges/letters) in p.

The cells corresponding to relations are called hubs, the cells corresponding to
(0, q)-relations are called (6, q)-cells, and the cells are called (6, a)-cells if they correspond
to (6, a)-relations.
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A Van Kampen diagram is reduced, if it does not contain two cells (= closed 2-cells)
that have a common edge e such that the boundary labels of these two cells are equal if
one reads them starting with e (if such pairs of cells exist, they can be removed to obtain
a diagram of smaller area and with the same boundary label).

5.2.1 The superscript shift of a van Kampen diagram over M or G

Remark 5.2. If one changes all superscripts of the generators of M or G by adding the
same integer k: (i) — (i + k) (modulo L) in all letters having a superscript, then one
obtains the relations again, as it is clear from formulae - . Therefore similar
change A — A(+K) of the edge labels transforms a (reduced) diagram A to a (reduced)
diagram A*) Let us call such a transformation superscript shift (or k-shift) of A.

5.2.2 Bands

To study (van Kampen) diagrams over the group G we shall use their simpler subdiagrams
such as bands and trapezia, as in [16], [28], [I], etc. Here we repeat one more necessary
definition.

Definition 5.3. Let Z be a subset of the set of letters in the set of generators of the
group M. A Z-band B is a sequence of cells mq, ..., 7, in a reduced van Kampen diagram
A such that

e Every two consecutive cells 7; and ;41 in this sequence have a common boundary
edge e; labeled by a letter from Z*!,

e Each cell m;, i = 1,...,n has exactly two Z-edges in the boundary Jm;, e;ll and
e; (i.e.,edges labeled by a letter from Z*1) with the requirement that either both
Lab(e;—1) and Lab(e;) are positive letters or both are negative ones.

e If n =0, then B is just a Z-edge.

The counter-clockwise boundary of the subdiagram formed by the cells 71, ..., 7, of B
has the factorization eflqlqu_1 where e = g is a Z-edge of 71 and f = e,, is an Z-edge
of m,. We call q; the bottom of B and q2 the top of B, denoted bot(5) and top(B). The
trimmed top/bottom label are the maximal subwords of the top/bottom labels starting
end ending with g¢-letters.

Top/bottom paths and their inverses are also called the sides of the band. The Z-
edges e and f are called the start and end edges of the band. If n > 1 but e = f, then
the Z-band is called a Z-annulus .

If Bis a Z-band with Z-edges ey, ..., e, (in that order), then we can form a broken
line connecting midpoints of the consecutive edges ey, ..., e, and laying inside the union
of the cells from B which will be called the median of B.

We will consider g-bands, where Z is one of the sets ); of state letters for the S-
machine M, 0-bands for every 6 € O, and a-bands, where Z = {a,a(l), e ,a(L)} cy.
The convention is that Y-bands do not contain (6, g)-cells, and so they consist of (0, a)-
cells only.

Lemma 5.4. Let e_1q1fq2_1 be the boundary of a 0-band B with bottom q1 and top qo
m a reduced diagram.
(1) If the start and the end edges e and f have different labels, then B has (0, q)-cells.
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(2) For every (0, q)-cell m; of B, one of ils boundary q-edges belongs in q1 and another
one belongs in qo.

Proof. (1) If every cell m; of Bis a (6, a)-cell, then both -edges of the boundary Om; have
equal labels, as it follows from the definition of (6, a)-relations. Then the definition of
band implies that Lab(e) = Lab(f), a contradiction.

(2) Proving by contradiction, we have that that m; and 7; (i # j) share a boundary
g-edge g. We may assume that the difference j — ¢ > 0 is minimal, and so the subband
formed by m;11,...,mj—1 has no (0, q)-cells. It folows from (1) that m; and 7; have the
same boundary labels if one read then starting with Lab(g), contrary to the assumption

that the diagram is reduced.
O

Remark 5.5. To construct the top (or bottom) path of a band B, at the beginning
one can just form a product x; ...x, of the top paths x;-s of the cells 7y, ..., m, (where
each m; is a Z-bands of length 1). No 6-letter is being canceled in the word W =
Lab(xy)...Lab(x,) if B is a ¢- or Y-band since otherwise two neighbor cells of the band
would make the diagram non-reduced. By Lemma (2), there are no cancellations of
g-letters of W if B is a #-band.

If B is a #-band then a few cancellations of a-letters (but not ¢-letters) are possible in
W. (This can happen if one of m;, ;41 is a (6, ¢)-cell and another one is a (6, a)-cell.) We
will always assume that the top/bottom label of a #-band is a reduced form of the word
W. This property is easy to achieve: by folding edges with the same labels having the
same initial vertex, one can make the boundary label of a subdiagram in a van Kampen
diagram reduced (e.g., see [14] or [28]).

We shall call a Z-band mazimal if it is not contained in any other Z-band. Counting
the number of maximal Z-bands in a diagram we will not distinguish the bands with
boundaries eflqlqu_ Land fq, le=1qy, and so every Z-edge belongs to a unique maximal
Z-band.

We say that a Z1-band and a Z9-band cross if they have a common cell and 21 N2y =
0.

Sometimes we specify the types of bands as follows. A g-band corresponding to one
of the letter Q of the base is called a Q-band. For example, we will consider ¢-band
corresponding to the part {f}.

Our previous papers (see [28], [1], etc.) contain the proof of the next lemma in a
more general setting. The difference caused by different simulation of the S-machine M
by defining relations of M does not affect the validity of the proof since the proof uses
the properties mentioned in Lemma [5.4] and Remark [5.5] To convince the reader, below
we recall the proof of one the following claims.

Lemma 5.6. A reduced van Kampen diagram A over M has no q-annuli, no 0-annuli,
and no a-annuli. Every 0-band of A shares at most one cell with any q-band and with
any Y -band.

Proof. We will prove only the property that a #-band 7 and a ¢-band Q cannot cross
each other two times. Taking a minimal counter-example, one asuumes that these bands
have exactly two common cells 7 and 7/, and A has no cells outside the region bounded
by 7 and Q. Then Q has exactly two cells since otherwise a maximal 6-band starting
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Figure 2: A @Q-band intersects a 6-band twice.

with a cell 7" of Q, where 7" ¢ {7, n'}, has to end on Q, bounding with a part of T a
smaller counter-example.

Thus, the boundaries of m and 7’ share a g-edge.

For the similar reason, 7 has no (6, ¢)-cells except for 7 and 7/, and by Lemma
(1), these cells have the same pairs of §-edges in the boundaries. This makes the diagram
non-reduced, a contradiction. O

If W = x1...7,, is a word in an alphabet X, X’ is another alphabet, and ¢: X —
X'U{1} (where 1 is the empty word) is a map, then ¢(W) = ¢(x1)...¢(x,,) is called the
projection of W onto X’. We shall consider the projections of words in the generators of
M onto © (all #-letters map to the corresponding element of ©, all other letters map to
1), and the projection onto the alphabet {Qo U --- LU Qn_1} (every g-letter maps to the
corresponding @;, all other letters map to 1).

Definition 5.7. The projection of the label of a side of a ¢g-band onto the alphabet © is
called the history of the band. The step history of this projection is the step history of the
g-band. The projection of the label of a side of a §-band onto the alphabet {Qo, ..., Qn_1}
is called the base of the band, i.e., the base of a #-band is equal to the base of the label
of its top or bottom

As in the case of words, we will use representatives of @);-s in base words.

If W is a word in the generators of M, then by W we denote the projection of this
word onto the alphabet of the S-machine M, we obtain this projection after deleting all
superscripts in the letters of W. In particular, w9 = W, if there are no superscripts in
the letters of W.

We call a word W in ¢-generators and a-generators permissible if the word W is
admissible, and the letters of any 2-letter subword of W have equal superscripts (if any),
except for the subwords (qf)*!, where the letter ¢ has some superscript (i) and ¢® € Qn_1;
in this case the superscript of the letter £ must be (i + 1) (modulo L).

Remark 5.8. It follows from the definition that if V is #-admissible for a rule 6 of
{6(23)"11UO3U{6(34)} UO,U{6(45)} U O3, then there is exactly one permissible word
W such that W? = V, namely, W = V. If 6 is a rule of ®; U {0(12)} U ®, U {0(23)},
then the permissible word W with property W% = V exists and it is uniquely defined if
one choose arbitrary superscript for the first letter (or for any particular letter) of W.
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q2

Trapezium a1

Figure 3: Band and Trapezium

Lemma 5.9. (1) The trimmed bottom and top labels W1 and Wy of any reduced 6-band
T containing at least one (0,q) — cell are permissible and Wg) = Wlm - 0.

(2) If W is a 0-admissible word, then for a permissible word Wy such that Wlw =W
(given by Remark@) one can construct a reduced 0-band with the trimmed bottom label
W1 and the trimmed top label Wy, where Wg) =wl.e.

Proof. (1) By Lemma (2), we have W = qfdulqéd . ..ukqlil, where qj-ﬂ and q;—jrll
are the labels of g-edges of some cells 7(j) and 7(j+1) such that the subband connecting
these cells has no (6, ¢)-cells. Therefore by Lemma (1), all the f-edges between 7(7)
and w(j + 1) have the same labels. It follows from the list of (6, a)-relations that all
a-letters of the word wu; have to belong in the same subalphabet. In particular, if we have
the subword g;ju;gj+1, then the projection of this subword is a subword of Wlw satisfying
the first condition from the definition of admissible word. Similarly one obtains other
conditions if g; or/and g;41 occur in Wi with exponent —1. Hence the word WP (and
W2® ) are admissible, and the words Wi, Wy are permissible since again the condition on
2-letter subwords follows from Lemma, [5.4] and the relations -B.g).

fx=x1...x, (¥ =Yy1...¥n ) is the product of the top paths x;-s (bottom paths
yi-s) of the all cells 71,...,m, of T, as in Remark , then the transition from the
trimmed label of x to the trimmed label of y with erased superscripts, is the application
of 6, as it follows from relations - b.§). Since by definition, the application of 6
automatically implies possible cancellations, we have WQ@ = Wlw -0 for the reduced words
W1 and W, as required.

(2)Since W is f-admissible, there is an equality W/ = W-6. Therefore we can simulate
the application of 8 to every letter of W as follows. We draw a path p = ej ... e, labeled
by Wi and attach a cell m; corresponding to one of the defining relations of M to every
edge e; of p from the left. Since the word Wi is permissible, the 6-edges started with
the common vertex of m; and ;11 must have equal labels, and so these two edges can
be identified. Finally, we obtain a required #-band. It is reduced diagram since the
permissible word W is reduced. O

5.2.3 Trapezia

Definition 5.10. Let A be a reduced diagram over M, which has boundary path of the
form pl_lqlpng_l, where p; and p2 are sides of ¢g-bands, and qi, qo are maximal parts
of the sides of #-bands such that Lab(q;), Lab(qz) start and end with g-letters.
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Then A is called a trapezium. The path qp is called the bottom, the path qo is called
the top of the trapezium, the paths p; and po are called the left and right sides of the
trapezium. The history (step history) of the g-band whose side is pg is called the history
(resp., step history) of the trapezium; the length of the history is called the height of the
trapezium. The base of Lab(qy) is called the base of the trapezium.

Remark 5.11. Notice that the top (bottom) side of a #-band 7 does not necessarily
coincides with the top (bottom) side g2 (side q1) of the corresponding trapezium of height
1, and g2 (q) is obtained from top(7) (resp. bot(7)) by trimming the first and the last
a-edges if these paths start and/or end with a-edges. We shall denote the trimmed top
and bottom sides of T by ttop(7) and tbot(7). By definition, for arbitrary #-band T,
ttop(7) is obtained by such a trimming only if 7 starts and/or ends with a (6, ¢)-cell;
otherwise ttop(7) = top(7). The definition of tbot(7) is similar.

By Lemma [5.6] any trapezium A of height A > 1 can be decomposed into #-bands
T1, ..., Tp, connecting the left and the right sides of the trapezium. The analog of the
following lemma is false for Turing machines. (See [19] for a discussion.)

Lemma 5.12. (1) Let A be a trapezium with history H = 0(1)...0(d) (d > 1). Assume
that A has consecutive mazimal 0-bands Ti,...Tq, and the words U; and V; are the
trimmed bottom and the trimmed top labels of T;, (j = 1,...,d). Then H is an eligible
word, Uj, V; are permissible words,

V=0 601), Ua=Wvi, ..., Us=Vy, VP=0U" 0(d)

Furthemore, if the first and the last q-letters of the word U; or of the word V; have
some superscripts (i) and (i), then the difference i' — i (modulo L) does not depend on
on the choice of U; or Vj.

(2) For every eligible computation U — -+ — U -H =V of M with ||H|| =d > 1
there exists a trapezium A with bottom label Uy (given by Remark such that U{B =U,
top label Vy such that VI = V', and with history H.

Proof. (1) The trimmed top side of one of the bands 7; is the same as trimmed bottom
side of Tj11 (j = 1,...,d — 1), and the equalities Uy = Vi,...,Uy = V4 follow. The
equalities Vj@ =U; (j =1,...d) are given by Lemma (1). By the same lemma the
words U; and V; are permissible.

Assume that there is a cancellation: 6(i +1) = 0(i)~!. Since A is a reduced diagram,
any pair of (6, q)-cells 7 € T; and 7’ € T;11 with a common g-edge e are not cancellable.
Hence the relations given by these cells are not uniquely defined by the g-letter Lab(e)
and the history letter 6(i). It follows from the list of defining relations - that
Lab(e) has no superscripts while other labels of the boundary edges of these two cells
do have superscripts. Thus, these relations are in the list and 6(i) = 0(23), which
prove that the history H is eligible.

Since by Lemma [5.6| every maximal ¢-band of A connects the top and the bottom
of A, it suffices to prove the last claim under assumption that the base of A is a word
QT (Q")*'of length 2. Then by definition of permissible word, i’ — i = 0, except for the
base Qn_1Qn (or the inverse one) with ' — ¢ = 1 modulo L (resp., i’ — i = —1 modulo
L). Since all the words U; and V; have equal bases, the last statement of (1) is proved.

(2) We can obtain the 6(1)-band 7; by Lemma (2). By induction, there is a
trapezium A’ of height d — 1 with bottom label Uy = U; an top label V' such that
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Ul = 0% 6(1) and de = V, such that the union A of 7; and A’ has history H. If A
is not reduced then we have a pair of cancellable cells 7 € 77 and 7’ € 73. Then as in
item (1) we conlude that 6(1) = 0(23), and so the top q of 77 has no superscript in the
boundary label. Therefore one can replace A’ with its subscript shift (A’)*!in A. After
such a modification, A becomes a reduced diagram since for any pair cells 7 and 7" with
common boundary edge from q, the other edges have now different superscripts in their
labels. Since Vd@ does not change under the superscript shift, the lemma is proved. [

5.2.4 Big and standard trapezia

Using Lemma[5.12] one can immediately derive properties of trapezia from the properties
of computations obtained earlier.

If H' = 0(i) ... 0(j) is a subword of the history H from Lemmal5.12| (1), then the bands
Ti, ..., T; form a subtrapezium A’ of the trapezium A. This subtrapezium is uniquely
defined by the subword H' (more precisely, by the occurrence of H' in the word 6 ... 6y,),
and A’ is called the H'-part of A.

We say that a trapezium A is standard if the base of A is the standard base B of
M or B7!, and the history of A (or the inverse one) contains one of the words (a)
x(i—1,i)H'x(i,i+1) (i.e.,the S-machine works as @) or (b) (‘"L H/¢HHL (i.e. it works
as ©3).

Definition 5.13. We say that a trapezium I" is big if

(1) the base of A or the inverse word has the form xvz, where zv a cyclic shift of the
L-s power of the standard base;

(2) the diagram I' contains a standard trapezium.

Lemma 5.14. Let A be a trapezium whose base is xvx, where x occurs in v exactly L —1
times and other letters occur < L times each. Then either A is big or the length of a side
of every 0-band of A does not exceed c5(||W|| + ||W'||), where W, W' are the labels of its
top and bottom, respectively.

Proof. The diagram A is covered by L subtrapezia I'; (i = 1,..., L) with bases xv;x.

Assume that the the step history of A (or inverse step history) contains one of the
subwords x(i — 1,i)H'x(i,i + 1) or (b) ("M H'¢%*1. Then by Lemma [{.4] (and [5.12),
the base of A has the form (zu)lz, where zu is a cyclic shift of the standard base (or
the inverse one). Since A contains a standard subtrapezia, it is is big,.

Now, under the assumption that the step history has no subwords mentioned in the
previous paragraph, it suffices to bound the the length of a side of every 6-band of
arbitrary T'; by < e4(||[V]y + ||V’]]), where V and V' are the labels of the top and the
bottom of T;.

Assume that the word xv;x has a proper subword yuy, where u has no letters y, and
any other letter occurs in u at most once. Then the word yuy is faulty since v; has no
letters . By Lemma we have |Ujly < ¢i max(|Uply, |Usly) for every configuration
U; of the computation given by Lemma (1) restricted to the base yuy. Since ¢4 > ¢q,
it suffices to obtain the desired estimate for the computation whose base is obtained by
deleting the subword yu from zv;x. Hence inducting on the length of the base of I';, one
may assume that it has no proper subwords yuy, and so the base of I'; is revolving. Now
the required upper estimate for I'; follows from Lemma (see (1) and (2c) there). O
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6 Diagrams without hubs

6.1 A modified length function

Let us modify the length function on the words and paths. The standard length of a word
(a path) will be called its combinatorial length. From now on we use the word ’length’ for
the modified length. We set the length of every g-letter equal 1, and the length of every
a-letter equal a small enough number ¢ so that Jo < 1.

We also set to 1 the length of every word of length < 2 which contains exactly
one f-letter and no g-letters (such words are called (0, a)-syllables). The length of a
decomposition of an arbitrary word in a product of letters and (6, a)-syllables is the sum
of the lengths of the factors. The length |w| of a word w is the smallest length of such
decompositions. The length |p| of a path in a diagram is the length of its label. The
perimeter |0A| of a van Kampen diagram is similarly defined by cyclic decompositions
of the boundary 0A.

The next statement follows from the above definitions and from the property of (6, q)-
relations and their cyclic shifts: the subword between two g¢-letters in arbitrary (6, q)-
relation is a syllable.

Lemma 6.1. Let s be a path in a diagram A having ¢ 0-edges and d a-edges. Then
(a) |s| > max(c,c+ (d — ¢)d);
(b) |s| = c if s is a top or a bottom of a q-band.
(¢) For any product s = s1s2 of two paths in a diagram, we have

|s1] + |s2 > [s] = [s1] + |s2] = & (6.10)

(d) Let T be a 0-band with base of length . Let ly be the number of a-edges in the
top path topp(T). Then the length of T (i.e., the numer of cells in T ) is between ly —
and ly + 3.

6.1.1 Rim bands

Let e_lqlfqglthe factorization e_lqlfqg1 be the standard factorization of a band. If
the path (e 'qif)*! or the path (qu_lefl)il is the subpath of the boundary path of A
then the band is called a rim band of A.

From now on we shall fix a constant K

K > 2Ky = 4LN (6.11)

The following easy basic facts about #-bands are [I8, Lemmas 6.2, 6.3] (see also [21]
Lemma 4.5]). These facts will allow us to remove short enough rim bands from van
Kampen diagrams (see Lemma below).

Lemma 6.2. Let A be a van Kampen diagram whose rim 0-band T has base with at most
K letters. Denote by A" the subdiagram A\T. Then |0A| — [0A'| > 1.

Proof. Let s be the top side of 7 and s C dA. Note that the difference between the
number of a-edges in the bottom s’ of 7" and the number of a-edges in s cannot be greater
than 2K, because every (6, ¢)-relator has at most two a-letters. Hence |s'| — |s| < 4LNJ.
However, A’ is obtained by cutting off 7 along s/, and its boundary contains two 6-edges
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fewer than A. Hence we have [sg| — |sg| > 2 — 2§ for the complements sy and s’y of s
and s, respectively, in the boundaries A and A’. Finally,

OA| — [OA] > 2 — 26 — 2K§ — 45 > 1

by and . O

We call a base word w tight if

(1) for some letter x the word w has the form uzvz, where the letter  does not occur
in u and x occurs in v exactly L — 1 times,

(2) every proper prefix w’ of w does not satisfy property (1).

Lemma 6.3. ([18], Lemma 6.3). If a base w of a 0-band has no tight prefizes, then
l|w|| < Ko, where Ky = 2LN.

Proof. The hub base includes every base letter L times. Hence every word in this group
alphabet of length > Ky + 1 includes one of the letters L 4+ 1 times. O

6.1.2 Combs

Definition 6.4. We say that a reduced diagram I' is a comb if it has a maximal g-band
Q ( the handle of the comb), such that

(C1) bot(Q) is a part of O, and every maximal §-band of T" ends at a cell in Q.

If in addition the following properties hold:

(Cs) one of the maximal f-bands 7 in I" has a tight base (if one reads the base towards
the handle) and

(C3) other maximal #-bands in I" have tight bases or bases without tight prefixes

then the comb is called ¢ight.
The number of cells in the handle Q is the height of the comb, and the maximal length
of the bases of the 6-bands of a comb is called the basic width of the comb.

Notice that every trapezium is a comb.

Lemma 6.5. (j21], Lemma 4.10) Let | and b be the length and the basic width of a comb
T and let Ti,...T; be consecutive 0-bands of T' (as in Figure [f]). We can assume that
bot(T1) and top(T;) are contained in OI'. Denote by o = |0T'|y the number of a-edges in
the boundary of ', and by oy the number of a-edges on bot(Ty). Then « + 2lb > 2aq,
and the area of T' does not exceed cobl® +2al for some constant co = co(M) . (Recall that
co s one of the parameters from Section )

We say that a subdiagram I' of a diagram A is a subcomb of A if I' is a comb, the
handle of I" divides A in two parts, and I' is one of these parts.
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Figure 4: Comb.

Lemma 6.6. Let A be a reduced diagram over G with non-zero area, where every rim
0-band has base of length at least K. Assume that

(1) A is a diagram over the group M or

(2) A has a subcomb of basic width at least K.

Then there exists a mazimal q-band Q dividing A in two parts, where one of the parts
s a tight subcomb with handle Q.

Proof. Let T be a rim band of A (fig]5). Its base w is of length at least K, and therefore
w has disjoint prefix and suffix of lengths K since K > 2K, by (6.11)). The prefix of
this base word must have its own tight subprefix wi, by Lemma [6.3| and the definition
of tight words. A g-edge of Ty corresponding to the last g-letter of w; is the start edge
of a maximal ¢g-band Q" which bounds a subdiagram I containing a band 7 (a subband
of To) satisfying property (C2). It is useful to note that a minimal suffix wy of w, such
that w, * is tight, allows us to construct another band Q" and a subdiagram T" which
satisfies (C3) and has no cells in common with T”.

Thus, there are Q and I' satisfying (C3). Let us choose such a pair with minimal
Area(T"). Assume that there is a 6-band in I" which does not cross Q. Then there must
exist a rim band 77 which does not cross Q@ in I". Hence one can apply the construction
from the previous paragraph to 77 and construct two bands Q; and Qs and two disjoint
subdiagrams 'y and TI's satisfying the requirement (C3) for I'. Since I'y and T’y are
disjoint, one of them, say I'1, is inside I'. But the area of I'1 is smaller than the area of
I', and we come to a contradiction. Hence I' is a comb and condition (C1) is satisfied.

Assume that the base of a maximal 6-band 7 of I" has a tight proper prefix (we may
assume that 7 terminates on Q), and again one obtain a ¢-band Q' in T', which provides
us with a smaller subdiagram I of A, satisfying (C5), a contradiction. Hence I" satisfies
property (C3) as well.

(2) The proof is shorter since a comb is given in the very beginning. O

6.2 The mixture

We will need a numerical parameter associated with van Kampen diagrams introduced
in [I7], it was called mizture.
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Let O be a circle with two-colored (black and white) finite set of points (or vertices)
on it. We call O a necklace with black and white beads on it.

Assume that there are n white beads and n’ black ones on O. We define sets P; of
ordered pairs of distinct white beads as follows. A pair (01,02) (01 # 02) belongs to the
set P; if the simple arc of O drawn from o7 to 0z in the clockwise direction has at least j
black beads. We denote by p;(O) the sum ijl card(P;) (the J-mizture of O). Below
similar sets for another necklace O" are denoted by P’;. . In this subsection, J > 1, but
later on it will be a fixed large enough number J from the list (2.3)).

Lemma 6.7. ([17], Lemma 6.1) (a) ps(O) < J(n? —n).

(b) Suppose a necklace O' is obtained from O after removal of a white bead v. Then
card(P;) — n < card(P’;) < card(P;) for every j, and pj(O) — Jn < py(0) < py(0).

(c) Suppose a necklace O' is obtained from O after removal of a black bead v. Then
card(P’;) < card(P;) for every j, and pj(O") < ps(O).

(d) Assume that there are three black beads vy,va,vs of a necklace O, such that the
clockwise arc v —vs contains vy and has at most J black beads (excluding v1 and vs), and
the arcs vi — vy and vy — v3 have my and my white beads, respectively. If O' is obtained
from O by removal of vy, then puy(0) < py(O) — mima.

For any diagram A over G, we introduce the following invariant pu(A) = py(0A)
depending on the boundary of A only. To define it, we consider the boundary 9(A), as a
necklace, i.e., we consider a circle O with ||0A|| edges labeled as the boundary path of A.
By definition, the white beads are the mid-points of the f-edges of O and black beads are
the mid-points of the g-edges O. Then, by definition, the mizture of A is u(A) = p;(0).

6.3 Quadratic upper bound for quasi-areas of diagrams over M.
6.3.1 The G-area of a diagram over M

The Dehn function of the group M is super-quadratic (in fact by [2I] it is at least
n?logn because M is a mulltiple HNN extension of a free group). However we are going
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to obtain a quadratic Dehn function of G, and first we want to bound the areas of the
words vanishing in M with respect to the presentation of G. For this goal we artificially
introduce the concept of G-area, as in [I8]. The G-area of a big trapezia can be much
less that the real area of it in M. This concept will be justified at the end of this paper,
where some big trapezia are replaced by diagrams with hubs, but having lesser areas.

Definition 6.8. The G-area Areag(I') of a big trapezium I' is, by definition, the mini-
mum of the half of its area (i.e., the number of cells) and the product

csh(|[top(T)|[ + [[bot(T)|]),

where h is the height of T and c5 is the constant from (2.3]).

To define the G-area of a diagram A over M, we consider a family S of big subtrapezia
(i.e.,subdiagrams, which are trapezia) and single cells of A such that every cell of A
belongs to a member ¥ of this family, and if a cell II belongs to different ¥; and X,
from S, then both 31 and Y9 are big subtrapezia of A with bases zviz, xvex, and II is
a (6, x)-cell. (In the later case, the intersection ¥; N X9 must be an z-band.) There is
such a family ’covering’ A, e.g. just the family of all cells of A.

The G-area of S is the sum of G-areas of all big trapezia from S plus the number
of single cells from S (i.e.,the G-area of a cell II is area(Il) = 1). Finally, the G-area
Areag(A) is the minimum of the G-areas of all 'covering’ S as above.

It follows from the definition that Areag(A) < Area(A) since the G-area of a big
trapezium does not exceed a half of its area.

Lemma 6.9. Let A be a reduced diagram, and every cell m of A belongs in one of
subdiagrams Ay, ..., Ay, where any intersection A; N A either has no cells or it is a

q-band, Then Areac(A) < >, Areag(A;).

Proof. Consider the families S1,...,S,, given by the definition of G-areas for the dia-
grams Ay, ..., A,,. Then the family S = S; U---US,,, 'covers’ the entire A according to
the above definition. This implies the required inequality for G-areas, O

6.3.2 Combs of a potential counterexample

We want to show that for some constants N1, Ny the G-area of any reduced diagram A
over M with perimeter n does not exceed Non? + Nyu(A). (Using the quadratic upper
bound for p(A) from Lemma (a), one then deduces that the G-area is bounded by
N'n? for some constant N’.) Roughly speaking, we are doing the following. We use
induction on the perimeter of the diagram. First we remove rim 6-bands (those with one
side and both ends on the boundary of the diagram) with short bases. This operation
decreases the perimeter and preserves the sign of Non? + Nju(A) — Areag(A), so we can
assume that the diagram does not have such bands. Then we use Lemma and find a
tight comb inside the diagram with a handle C. We also find a long enough ¢-band C’ that
is close to C. We use a surgery which amounts to removing a part of the diagram between
C' and C and then gluing the two remaining parts of A together. The main difficulty
is to show that, as a result of this surgery, the perimeter decreases and the measure
and the mixture change in such a way that the expression Non? + Nyu(A) — Areag(A)
does not change its sign. In the proof, we need to consider several cases depending on
the shape of the subdiagram between C’ and C. Note that neither Non? nor Nju(A)
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nor Areag(A) alone behave in the appropriate way as a result of the surgery, but the
expression Non? + Nju(A) — Areag(A) behaves as needed.

So, we want to prove that the G-area of a reduced diagram A over M does not exceed
Non? + Niu(A), where n = |[0A|. Arguing by contradiction in the remaining part of this
section, we consider a counter-example A with minimal perimeter n. Of course, its
G-area is positive, and, by Lemma we have at least 2 0-edges on the boundary 0A,
and so n > 2.

Lemma 6.10. (1) The diagram A has no two disjoint subcombs 'y and Ty of basic widths
at most K with handles By and By such that some ends of these handles are connected
by a subpath x of the boundary path of A with |x|, < N.

(2) The boundary of every subcomb T' with basic width s < K has 2s q-edges.

Proof. We will prove the statements (1) and (2) using simultaneous induction on A =
Area(I';) + Area(I'y) (resp., on A = Area(I')). Arguing by contradiction, we consider a
counter-example with minimal A.

(1) Since the area of I'; (¢ = 1,2) is less than A, we may use Statement (2), and so
we have at most 2K ¢ edges in JI;.

Let hy and hsy be the lengths of the handles B; and By of I'y and I'y, resp. Without
loss of generality, we assume that hy < hy. Denote by y;z; the boundaries of T'; (i = 1, 2),
where z; is the part of A and y; is the side of the handle of T'; (so y1xys> is the part of
the boundary path of A, see fig. [6] (1)). Then each of the #-edges e of y; is separated in
OA from every f-edge f of ys by less than 4K + N < J ¢-edges. Hence every such pair
(e,f) (or the pair of white beads on these edges) makes a contribution to u(A).

Let A’ be the diagram obtained by deleting the subdiagram I'y from A. When passing
from OA to A, one replaces the §-edges from z; by the #-edge of y; belonging to the
same maximal #-band. The same is true for white beads.

But each of the hiho pairs in the corresponding set P’ of white beads is separated in
OA’ by less number of black beads than the pair defined by A. Indeed, since the handle
of I'1 is removed when one replaces A by 0A’, two black bead at the ends of this handle
are removed, and therefore

u(A) = (&) = hhs (6.12)

by Lemma (d).
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Let a be the number of a-edges in 9'y. It follows from Lemmal6.5) that the area, and
so the G-area of I'1, does not exceed C1(h1)? + 2ahy, where C1 = oK.

Remark 6.11. The constants C1, Ca, C12, C3 are not included in the list (2.3 since their
values chosen here make sense only in the present subsection.

Since the boundary of A’ has at least two g-edges fewer than A and |z1| = hy < |y1],
we have [0A'| < |0A| — 2. Moreover, we have from Lemma [6.1| (a) and Lemma [5.6| that
|OA| — [0A'| > v = max(2, §(a — 2h1)) (6.13)

because the top/the bottom of B; has at most h; a-edges.
This inequality, inequality (6.12), and the inductive assumption related to A’ imply
that the G-area of A’ is not greater than

No(n — )% + Nyp(A) — Nihihg
Adding the G-area of I'; we see that the G-area of A does not exceed
NQTL2 — Noyn + Nljﬁ(A) — Nihihg + Clh% + 2ah;.

Since hy < hg and ¢(n) > 1, this will contradict the choice of the counter-example A
when we prove that
— Noyn — N1h? + C1h? + 2ahy < 0 (6.14)

If & < 4hy, then inequality (6.14]) follows from the inequalities v > 2 and
Ny >y +8 (6.15)

Assume that o > 4hy. Then by 1D we have v > %5(1 and Nayn > 2ah; since
n > 2h; by Lemma [5.0] and

Ny > 2571, (6.16)
Since N1h? > C1h3 by (6.15), the inequality (6.14) follows.

(2) If there are at least two derivative subcombs of I', then one can find two of them
satisfying the assumptions of Statement (1), and Area(I'1) + Area(I'2) < Area(I') = A,
a contradiction. Therefore there is a most one derivative subcomb I in T' (fig[f] (2)). In
turn, I has at most one derivative subcomb I'”, and so one. It follows that there are no
maximal g-bands in I except for the handles of IV, T, ..., Since the basic width of T" is
s, we have s maximal g-bands in I'; and the lemma is proved. O

Lemma 6.12. There are no pair of subcombs I' and I in A with handles X and X' of
length ¢ and ¢ such that T' is a subcomb of T', the basic width of T' does not exceed Ky
and V' < /2.

Proof. Proving by contradiction, one can choose IV so that ¢ is minimal for all subcombs
in T and so I has no proper subcombs, i.e. its basic width is 1 (fig. . It follows from
Lemma [6.5] that for a = |TV|,, we have

Areag(IV) < Area(T") < co(I')? + 2ad’ (6.17)
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Let A’ be the diagram obtained after removing the subdiagram I” from A. The
following inequality is the analog of (6.13) (where hy is replaced by ¢')

|OA| — [0A'| > v = max(2, §(a — 21")) (6.18)

The g-band X contains a subband C of length I’. Moreover one can choose C so that
all maximal #-bands of ' crossing the handle X’ of T”, start from C. These 6-bands form
a comb I'” contained in I, and in turn, I'” contains I''. The two parts of the compliment
X\C are the handles of two subcombs E; and Es formed by maximal #-bands of I'; which
do not cross X’. Let the length of these two handles be ¢1 and /s, respectively, and so
we have [y + 1o =1 —1" > 1. (E; or Ey can be empty; then Iy or Iy equals 0.)

It will be convenient to assume that I' is drawn from the left of the vertical handle
X. Denote by yz the boundary path of of I', where y is the right side of the band X.
Thus, there are I; (resp., l2) 6-edges on the common subpath x; (subpath x3) of z and
8E1 (and 6E2)

By Lemmal6.10](2), the path z contains at most 2K, g-edges, because the basic width
of I is at most K.

Consider the factorization z = xoxx1, where x is a subpath of 9I". It follows that
between every white bead on x; (i.e. the middle point of the f-edges on x;) and a
white bead on x we have at most 2K, black beads (i.e. the middle points of the g-
edges of the path x). Since J is greater than 2Ky, every pair of white beads, where
one bead belongs in x and another one belongs in x; (or, similarly, in x2) contributes 1
to u(A). Let P denote the set of such pairs. By the definition of E; and Fs, we have
card(P) =1I'(Iy + o) = U'(1 = I') > (I")2.

When passing from dA to A’, one replaces the left-most 6-edges of every maximal
f-band from I"” with the right-most 6-edges lying on the right side of X’. The same is
true for white beads. But each of the I'(I — ') pairs in the corresponding set P’ of white
beads is separated in A’ by less number of black beads since the ¢g-band X’ is removed.
Therefore every pair from P’ gives less by 1 contribution to the mixture, as it follows
from the definition of mixture. Hence u(A) — u(A’) > I'(1 —1') > (I)?. This inequality,
inequality , and the inductive assumption related to A’, imply that the G-area of
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Figure 8: Rim 6-band

A’ is not greater than
Na(n —7)" + Nip(A) = Ni(¢')?

Adding the G-area of T” we see that the G-area of A does not exceed
Non? 4+ Nip(A) — Noyn — Ny(1)? 4 co(1')? + 2ad’.
This will contradict the choice of the counter-example A when we prove that
— Noyn — N1 (1) 4 ¢o(I')? 4 2ad’ < 0, (6.19)

Consider two cases.
(a) Let v < 4l’. Then inequality (6.19) follows from the inequalities v > 2 and

Ny > o + 8. (6.20)

(b) Assume that o > 4I’. Then by we have v > %50( and Noyn > 2al’ since
n > 20 > 41’ by Lemma 5.6} and (6.16)

Since N1(1')? > co(I')? by (6.20), the inequality follows.

Thus, the lemma is proved by contradiction. O

6.3.3 Removing rim #-bands
Recall that K > 2Ky =4LN.

Lemma 6.13. A has no rim 0-band whose base has s < K letters.

Proof. Assume by contradiction that such a rim 6-band T exists, and top(7) belongs in
d(A) (figlR). When deleting T, we obtain, by Lemmal6.2] a diagram A’ with |0A’| < n—1.
Since top(7T) lies on OA, we have from the definition of the length , that the number of
a-edges in top(T) is less than 6~!(n — s). By Lemma the length of T is at most
35+ 6 1(n—s) < 6 'n. Thus, by applying the inductive hypothesis to A’, we have that
G-area of A is not greater than No(n — 1)2 + Nyu(A) + 6~ 'n because u(A') < u(A) by
Lemma (b). But the first term of this sum does not exceed Nan? — Non and so the
entire sum is bounded by Non? + Nju(A) provided

Ny > 61 (6.21)

This contradicts to the choice of A, and the lemma is proved. O
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Figure 9: Lemma [6.14]

6.3.4 The quadratic estimate
The next lemma is one of the main ingredient in our proof.

Lemma 6.14. The G-area of a reduced diagram A over M does not exceed Non? +
Nip(A), where n = |0A].

Proof. We continue studying the hypothetical minimal counter-example A. By
Lemma now we can apply Lemma (1). By that lemma, there exists a tight
subcomb I' C A. Let 7 be a #-band of I with a tight base.

The basic width of I is less than Ky by Lemma Since the base of I is tight, it is
equal to uxvx for some x, where the last occurrence of x corresponds to the handle Q of
', the word u does not contain x, and v has exactly L — 1 occurrences of z. Let Q' be
the maximal z-band of I" crossing T at the cell corresponding to the first occurrence of
z in uzvz (fig. [9 (a)).

We consider the smallest subdiagram I of A containing all the 6-bands of T crossing
the z-band Q'. It is a comb with handle Q> C Q. The comb I" is covered by a trapezium
I'; placed between Q' and Q, and a comb I'y with handle @'. The band Q" belongs to
both I'y and T'y. The remaining part of I' is a disjoint union of two combs I's and T’y
whose handles Q3 and Q4 contain the cells of O that do not belong to the trapezium I'.
The handle of T is the composition of handles Q3, Qo, Q4 of I's, I” and I'4 in that order.

Let the lengths of Q3 and Q4 be I3 and Iy, respectively. Let I’ be the length of the
handle of IV. Then by Lemma we have

I'>1/2 and 1=1+13+14 (6.22)
For i € {3,4} and «o; = |01';|4, Lemma [6.5] gives inequalities
A; < C112 4 2041, (6.23)

where A; is the G-area of I';. (We take into account that G-area cannot exceed area.)

Let ps,p4 be the top and the bottom of the trapezium I's. Here pgl (resp. p4_1)
shares some initial edges with OI's (with OT'4), the rest of these paths belong to the
boundary of A. We denote by d3 the number of a-edges of p3 and by dj the number of
the a edges of ps which do not belong to I's. Similarly, we introduce d4 and d.
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Let Ao be the G-area of I'y. Then by Lemma and the definition of the G-area
for big trapezia, we have

Ay < C'Ql/(dg +dy+1) (6.24)

for some constant Cy < 61, because the basic width of I'y is less than K.

The first and the last base letters of the base of the trapezium I'y differ by their
superscripts. Therefore the last statement of Lemma (1) implies that the ¢g-band Qo
is a superscript shift of Q' since the superscripts of two g-letters of every (6, ¢)-relation

determine the superscripts of other letters. Therefore there is a superscript shift I‘(1+k) of
the comb T'; such that the handle (Q')(+*) of ka is a copy of Qy. This makes possible
to identify (Q)(+*) and @ when one construct the diagram Ag.

This makes the following surgery possible. The diagram A is covered by two subdia-
grams: I" and another subdiagram Aj, having only the band in common. We construct a
new auxiliary diagram by attaching of FSHC) to Aj with identification of the of the band
Q' of I'; and the band Q3. We denote the constructed diagram by Ag.

Ay is a reduced diagram because every pair of its cells having a common edge, has a

copy either in I'; or in A1 U Q. Now we need the following claim.

Lemma 6.15. The G-area Ag of Ag is at least the sum of the G-areas of I'1 and Ay
minus 1.

Proof. Consider a minimal covering S of Ay from the definition of G-area, and assume
that there is a big trapezium E € S, such that neither I‘§+k) nor Ay contains it. Then E
has a base ywy, where (yw)*! is a cyclic permutation of the L-th power of the standard
base, and the first y-band of F is in I‘ngk), but it is not a subband of Q.

Since the history H of the big trapezium F is a subhistory of the history of I'2, and H
uniquely determines the base starting with given letter by Lemma [£.4] we conlude that
Iy is a big trapezium itself, and therefore (zv)*! is an L-th power of the standard base.
Since the first y occurs in uxvx before the first x it follows that we have the (L + 1) —th
occurrence of y before the last occurrence of z in the word uxvz. But this contradicts
the definition of tight comb T

Hence every big trapezium from S entirely belongs either in Fg+k) or in Aj. Therefore
one can obtain ’coverings’ S” and S” of these two diagrams if (1) every X from S is assigned
either to S’ or to S” and then (2) one add at most I’ single cells since the common band
Q' in Ag should be covered twice in disjoint diagrams F§+k) and Ay. These construction
complete the proof of the lemma. O

Let us continue the proof of Lemma [6.14]

By Lemma [6.9) the G-area of A does not exceed the sum of G-areas of the five
subdiagrams 'y, T'e, I's, I'y and Ay. But the direct estimate of each of these values is
not efficient. Therefore we will use Lemma to bound the G-area of the auxiliary
diagram Ag built of two pieces 'y and Aj.

It follows from our constructions and lemmas that

Areag(A) < Ay + Az + Ay + Ap + U (6.25)

Let p? be the segment of the boundary 0T's that joins Q and I's along the boundary
of A (fig. [9] (b)). It follows from the definition of ds, dj, I3 and s, that the number of
a-edges lying on p? is at least ag — (d3 — d}) — I3.
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Let us3 be the part of OA that contains p? and connects Q with Q. It has I3 #-edges.
Hence we have, by Lemma [6.1], that

luz| > max(l3, I3 + 6(|p%|a — I3)) > max(l3, I3 + 0(as — (d3 — dy) — 213)).

Since ug includes a subpath of length df having no #-edges, we also have by Lemma
(c) that |ug| > I3+ 6(dy — 1).

One can similarly define p* and uy for I'y. When passing from A to dA, we replace
the end edges of @', ug and uy by two subpaths of 9Q having lengths I3 and l4. Let
no = |0Ap|. Then it follows from the previous paragraph that

n—ng > 2+0(max(0, d5—1, az—(dz—ds) —2l3)+max (0, dj—1, g — (dg—dj ) —2l4)) (6.26)
In particular, ng < n — 2. By the inductive hypothesis,
Ag < Nang + N1pu(Do) (6.27)

We note that the mixture u(Ag) of Ag is not greater than u(A) —1'(1 —1’) . Indeed,
by Lemma (2), one can use the same trick as in Lemma as follows. For every
pair of white beads, where one bead corresponds to a 6-band of I'y and another one to
a 0-band of I's or I'y, the contribution of this pair to u(Ap) is less than the contribution
to A. It remains to count the number of such pairs: I'(I3 +14) = 1(1 = U').

Therefore, by inequality (6.27)), the G-area of A is not greater than

Non? + Nip(A) — Non(n —ng) — NyU'(1 = 1) 4+ Ay + A3 + Ay + 1/ (6.28)
In view of inequalities (6.24)), (6.23) and (6.25)), to obtain the desired contradiction,

it suffices to prove that
NQTL(TL — ’n()) + Nll/(l — l/) > Clgl/(dg +ds + 1) + Cu(l% + li) + 2a3l3 + 200414 + I (6.29)

where C12 = max(Cy, Cs).
Since | =1’ + I3 + l4, it suffices to prove that

Non(n —ng) + Nil'(1 = 1) > C3l'(d3 + dy + 1) + C5(13 +13) + 2a3l3 + 204y (6.30)

where C3 = (19 + 1.
Note that we can assume that
C3 >>1. (6.31)

First we can choose N; big enough so that N1I'(1 —1')/3 > Cs(l5 +14)? > C3(13 +13).
Indeed, by , we obtain %l’(l =) > %(lg +14)(I3 + 1), so it is enough to assume
that

Ny > 3C5. (632)

We also have that

N

7271(71 —ng) > Csl’ (6.33)

because n —ng > 2, n > 2" and Ny > C3 by (6.32)).
It remains to prove that

N 2N
7271(??, — no) + Tll,(l — l/) > Cgl/(dg + d4) + 2a3l3 4+ 20u4ly. (6.34)
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We assume without loss of generality that ag > a4, and consider two cases.

(a) Suppose ag < 2C5(1 —1').
Since d; < oy + d} for i = 3,4, by inequality (6.26]), we have

d3+dy < agtoagtdyt+dy < 4C3(1—1)+6"(n—ng)+2-26"1 < 4C3(1—1")+5" (n—np).
Therefore

N N.
?11’(1 —I)+ 7271(71 —ng) > AC2 (1 —1') + C30 ' (n — no)l' > Csl'(ds + dy)  (6.35)

since we can assume that

Ny > 1203, Ny/2 > C36 L. (6.36)
We also have by (6.22)):
N N N
D) > Dl 1) (s L) > 28X Y S Sauly + 204l (6.37)
3 3 3 4Cs
since we can assume that
Ny > 24C5. (6.38)

The sum of inequalities (6.35]) and (6.37) gives us the desired inequality (6.34)).

(b) Assume now that ag > 2C5(l — I'). Then, applying Lemma to the comb TI's,
we obtain

1 5
ds — dg < 50[3 + Kylg < 60[3 (639)
since I3 < -1 < %”3 and
Cs > 3K,. (6.40)

We also have ds — dﬁl < %a4 + Koly < %Ctg. These two inequalities and inequality 1'
lead to

5}
ds +dy < §a3+5_1(n—n0) (6.41)
It follows from (§6.39)) that
2
ag — (dg — dy) — 213 > 673~ 50,8 > a3,
since I3 <1 —1' < 5 and C3 > 42 by 1’ Therefore, by lb
1
n—mngy> ?5a3. (6.42)
Thus, by (6.41),

ds + dy < 13671 (n — ng). (6.43)

Since 2! < n and n — ng > 2, inequality (6.43) implies

N
?277,(77, - 77,0) > Cgl,(dg + d4) (6.44)
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because we can assume that
Ny >> O35 ! (6.45)
(N > 21C36 ! is enough).
Inequalities (6.42)), (6.45), s > g, and 4(l3 + l4) < n give us
N2 7 -1
?n(n —ng) > 5035 (n —mng)n > 2as(ls + 14) > 2asls + 2a4ly (6.46)

The inequality (6.34)) follows now from inequalities (6.44), and (6.46]). O

7 Minimal diagrams over GG

7.1 Diagrams with hubs

Given a reduced diagram A over the group G, one can construct a planar graph whose
vertices are the hubs of this diagram plus one improper vertex outside A, and the edges
are maximal £-bands of A.

7.1.1 Eliminating pairs of hubs connected by two {-bands

Let us consider two hubs II; and IIy in a reduced diagram, connected by two neighbor
t-bands C; and C;;1, where there are no other hubs between these £-bands. These bands,
together with parts of 0II; and JIly, bound either a subdiagram having no cells, or a
trapezium ¥ of height > 1 (fig. [10).

The former case is impossible. Indeed, in this case the hubs have to correspond the
same hub relation since the relations have no common letters. Hence the diagram
is not reduced since a cyclic shift of a hub relation starting with a fixed copy of the letter
{ is unique.

We want to show that the latter case is not possible either if the diagram A is chosen
with minimal number of hubs among the diagrams with the same boundary label.

Indeed, by Lemma (1), the £-band C;41 is a k-shift of C; In fact, k = 41 since the
superscripts of the letters in W change by one after every f-letter. One may assume
that £ = 1. So if we construct a 1-shift ¥y of ¥; = W, then the first maximal ¢-
band of Wy is a copy of Ciy1 (the second #-band in W1). Similarly one can construct
Uy = \Ilgﬂ) = \IISH), LU= \IIYFL). Let us separately construct an auxiliary diagram
Aj consequently attaching the bottoms of W1, Wo, ... Uy toIl; and identifying the second
t-band of ¥; with the first -band of ¥, (indices modulo L). This is possible since the
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L-shift of any diagram is equal to itself. Now we can attach Il to the tops of W;-s in Ay
and obtain a spherical diagram Ay. The diagram As contains a copy of the subdiagram
I' of A formed by I3, IIy and W. Hence the boundary label of I' is equal to the boundary
label of the compliment I of (the copy of) the subdiagram T' in As. Thus, one can
replace I' with I in A decreasing the number of hubs, contrary to the choice of A.

7.1.2 Disks

Definition 7.1. A permissible word V is called a disk word if V? = WL for some
accessible word W. The cyclic permutations of W and W~! are also disk words by
definition.

Lemma 7.2. FEvery disk word V is equal to 1 in the group G.

Proof. Assume there is an eligible computation Wg — - - — W, where V9 = WL, Then
the computation W% — --- — WP with the same history is eligible too. By Lemma
(2), one can construct a trapezium A with bottom label Ws(tl) o WS(tL) and top label V'
such that (V/)? = V% and so V' is a cyclic shift of the word V. The two sides of A
have equal labels since the L-shift preserves superscripts. So one can identify these sides
and attach the obtained annulus to the hub cell labeled by Ws(tl) e Ws(tL ). Since V' is
the boundary label of the obtained disk diagram, we have V' =1 in G, and so V =1,
as required. If there there is an eligible computation W — - -+ — W), then the proof is
similar with bottom label of A equal to WZ. O

Remark 7.3. In fact, for the disk word W, we have built a van Kampen diagram using
one hub and L trapezia corresponding to an accessible computation for W.

We will increase the set of relations of G by adding the (infinite) set of disk relation
V for every disk word V. So we will consider diagrams with disks, where every disk cell
(or just disk) is labeled by such a word V. (In particular, a hub is a disk.)

Again, if two disks are connected by two #-bands and there are no other disks between
these £-bands, then one can reduce the number of disks in the diagram. For this aid, it
suffices to apply the trick exploited above for a pair of hubs.

Definition 7.4. We will call a reduced diagram A minimal if

(1) the number of disks is minimal for the diagrams with the same boundary label as
A and

(2) A has minimal number of (6, t)-cells among the diagrams with the same boundary
label and with minimal number of disks.

Clearly, a subdiagram of a minimal diagram is minimal itself.

Thus, no two disks of a minimal diagram are connected by two {-bands, such that
the subdiagram bounded by them contains no other disks. This property makes the disk
graph of a reduced diagram hyperbolic, in a sense, if the degree L of every proper vertex
(=disk) is high (L > 1). Below we give a more precise formulation (proved for diagrams
with such a disk graph, in particular, in [28], Lemma 11.4 and in [16], Lemma 3.2).

Lemma 7.5. If a a minimal diagram contains a least one disk, then there is a disk 11
in A such that L — 3 consecutive mazimal t-bands By, ... Br_3 start on Ol , end on the
boundary OA, and for any i € [1, L — 4], there are no disks in the subdiagram T'; bounded

by Bi, Bi+17 81‘[, and OA (ﬁg .
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Figure 11: Lemma [7.5]

A maximal ¢g-band starting on a disk of a diagram is called a spoke.
Lemma [7.5] implies by induction on the number of hubs:

Lemma 7.6. (see [I7]], Lemma 5.19) If a reduced diagram A has m > 1 hubs, then the
number of t-spokes of A ending on the boundary OA, and therefore the number of t-edges
in the boundary path of A, is greater than mLN/2 .

7.1.3 The band moving transformation

Recall the following band moving transformation for diagrams with disks, exploited earlier
in [16], [28]. Assume there is a disk II and a 6-band 7 subsequently crossing some spokes
Bi, ..., Bj which start (say, counter-clockwise) from II. Assume that & > 2 and there are
no other cells between II and the bottom of 7, and so there is a subdiagram I' formed
by IT and 7.

We describe the (see, e.g., [28]) as follows. By Lemma (1), we have a word
V= W) ew)HED @) FE=2)(+E=1) wwritten on the top of the subband T7 of T,
that starts on By and ends on Bj. The bottom qo of 7’ is the subpath of the boundary
path qoqs of II (fig. , its label is a part of a disk word, and so is V' by Lemma .

Therefore one can construct a new disk II with boundary label

EW)EW)ED () D)

and boundary s189, where Lab(s;) = V. Also one construct an auxiliary band 7" with
top label (W1~ 1)(HL=1) (W) ER) (W1 (+(E=1) and attach it to sy ', which
has the same label. Finally we replace the subband 7’ by 7" (and make cancellations in
the new 6-band T if any appear). The new diagram I' formed by II and 7 has the same
boundary label as I.

Remark 7.7. After the band moving, the first (6,t)-cells of f-spokes By, ..., By are
removed and the total number of common (6, t)-cells of the new spokes By, ..., By, of IT
and T is less than the number of common (,t)-cells of By, ..., By and T at least by k.
In particular, if & > L — k, then the number of (6, t)-cells in T is less than the number of
(0,t)-cells in I'. This observation implies
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Figure 12: The band moving transformation of a 6-band and a disk

Lemma 7.8. Let A be a minimal diagram.

(1) Assume that a 0-band To crosses k t-spokes By, ..., By, starting on a disk 11, and
there are no disks in the subdiagram Ag, bounded by these spokes, by To and by II. Then
k<L/2.

(2) Assume that there are two disjoint 0-bands T and S whose bottoms are parts of
the boundary of a disk I1 and these bands correspond to the same rule 0 (if their histories
are read towards the disk) and 0 # 6(23). Suppose T crosses k > 2 t-spokes starting on
OTl and S crosses { > 2 t-spokes starting on OI. Then k + £ < L/2.

(8) A contains no 6-annuli.

(4) A 0-band cannot cross a mazimal g-band (in particular, a spoke) twice.

Proof. (1) Since every cell, except for disks, belongs to a maximal 6-band, it follows from
Lemma that there is a 6-band T such that T crosses all By,..., B, and Ag has no
cells between 7 and II. If k > L/2, then by Remark the band moving 7 around
IT would decrease the number of (,t)-cells in A, a contradiction, since A is a minimal
diagram.

(2) As above, let us move the band 7 aroud II. This operation removes k (6, t)-cells
but add L — k new (6,t)-cells in 7. However £ (0,t)-cells of S and ¢ (6,t)-cells of T will
form mirror pairs, because for 6 # 6(23), the boundary label of a (6, g)-cell 7, considered
as a 6-band, is uniquely determined by the history 6 and the label of the top g-edge of .
So after cancellations one will have at most L — k — 2¢ new (0, t)-cells. This number is
less than k if k+ ¢ > L/2 contrary to the minimality of the original diagram. Therefore
k+0<Lj2.

(3) Proving by contradiction, consider the subdiagram A’ bounded by a f-annulus. It
has to contain disks by Lemmal[5.6] Hence it must contain spokes By, ..., Br_3 introduced
in Lemma But this contradits to item (1) of the lemma since L — 3 > L/2.

(4) The argument of item (3) works if there is a subdiagram A’ of A bounded by an
g-band and a #-band. O

The band moving will be used for removing disks from quasi-trapezia.

7.1.4 Quasi-trapezia

Definition 7.9. A quasi-trapezium is the same as trapezium (Definition [5.10]), but may
contain disks. (So a quasi-trapezium without disks is a trapezium.)
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Lemma 7.10. Let a minimal diagram U be a quasi-trapezium with standard factorization
of the boundary as pl_lqlpgqgl. Then there is a diagram I such that

(1) the boundary of " is (p}) " diph(qy) ', where Lab(p';) = Lab(p;) and Lab(q;) =
Lab(qy) for j = 1,2;

(2) the numbers of hubs and (0, q)-cells in T’ are the same as in T';

(3) the vertices (p'1)— and (p'y)— (the vertices (p)+ and (p'y)+) are connected by a
simple path s1 (by s2, resp.) such that we have three subdiagrams T'1,T5,T's of I”, where
[y is a trapezium with standard factorization of the boundary (p’l)*lslp’gs;1 and all cells
of the subdiagrams I'y and I's with boundaries q’lsf1 and s2(q}y) ™t are disks;

(4) All maximal 0-bands of T' and all mazimal 0-bands of Ty have the same number
ot (0,t)-cells (equal for T' and T'z) .

Proof. Every maximal 6-band of I" must connect an edge of p; with an edge of po; this
follows from Lemma (3). Hence we can enumerate these bands from bottom to top:
Ti,...,Tn, where h = |p1| = |p2|-

If I has a disk, then by Lemma , there is a disk II such that at least L — 3 #-spokes
of it end on q; and g2, and there are no disks between the spokes ending on ¢; (and on
q2). By Lemma (2), at least L — 3 — L/2 > 2 of these spokes must end on q; (resp.,
on q).

If 1T lies between 7; and Tj4+1, then the number of its {-spokes crossing 7; (crossing
Tj+1) is at least 2. So one can move each of the two §-bands around II. So we can move
the disk toward qi (or toward qz2) until the disk is removed from the quasi-trapezium.
(We use the fact that if k f-spokes B, ..., By of II end on qp, then after band moving,
we again have k f-spokes Bi,..., B} of II ending on qy. - See the notation of Remark
73)

No pair 7; and 7,41 corresponds to two mutual inverse letters 00~! of the history if
6 # 6(23). This follows from Lemma [5.12) (1) if there are no disks between these 6-bands.
If there is a disk, then this is impossible too by Lemma (2) since one could choose a
disk IT as in the previous paragraph. So the projection of the label of p; on the history
is eligible.

Let us choose i such that the number m of (6, ¢)-cells in 7; is minimal. It follows that
I" has at least hm (0, t)-cells.

If the disk II lies above 7;, we will move it upwards using the band moving transfor-
mation. So after a number of iterations all such (modified) disks will be placed above the
f-band number h and form the subdiagram I';. Similarly we can form I's moving other
disks downwards.

In the resulting diagram I's lying between I'y and I's, every 6-band is reduced by the
definition of band moving. The neighbor maximal #-band of I's cannot be mirror copies
of each other since the labels of p; and p) are equal and Lab(py) is a reduced word by
Remark 5.5 It follows that the diagram Ty (without disks) is a reduced diagram, and so
it is a trapezium of height h.

The 6-band 7; did not participate in the series of band moving transformations above.
Therefore it is a maximal #-band of I's. Hence the trapezium I'y contains exactly mh
(0, t)-cells, which does not exceed the number of (6,t)-cells in I'. In fact these two numbers
are equal since I' is a minimal diagram. So every maximal #-band of I' and every maximal
f-band of I'y has m (6, t)-cells.

O
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Figure 13: Lemma [7.12]

7.1.5 Shafts

We say that a history word H is standard if there is a standard trapezium with history
H.

Definition 7.11. Suppose we have a disk II with boundary label (tW)* and B be a
t-spoke starting on II. Suppose there is a subband C of B, which also starts on IT and has
a standard history H, for which the word tW is H-admissible. Then we call the £-band
C a shaft.

For a constant A € [0;1/2) we also define a stronger concept of A-shaft at IT as follows.
A shaft C with history H is a A-shaft if for every factorization of the history H = Hy HoH3,
where ||Hi|| + ||Hs|| < A||H||, the middle part Hj is still a standard history. (So a shaft
is a 0-shaft).

Lemma 7.12. Let II be o disk in a minimal diagram A and C be a A-shaft at 11 with
history H. Then C has no factorizations C = C1C2Cs such that

(a) the sum of lengths of C1 and C3 do not exceed \||H|| and

(b) A has a quasi-trapezium I such that top (or bottom) label of I has L+1 occurrences
of t-letters and Cy starts on the bottom and ends on the top of I.

Proof. Proving by contradiction, we first replace I" by a trapezium I’ according to Lemma
[7.1I0] The transpositions used for this goal do not affect neither II nor C since C crosses
all the maximal #-bands of I". Also one can replace IV by a trapezium with shorter base
and so we assume that the base of it starts and ends with letter ¢.

For the beginning, we assume that C is a shaft (i.e.,A = 0). Then it follows from
the definition of shaft and Lemma that bot(I”) is labeled by a word V't such that
VP = (tW)L, where the word tW has standard base. Now it follows from Remark
and Lemma [5.12fhat V' is the boundary label of II. One can remove the last maximal
{-band from I” and obtain a subtrapezium I' whose boundary label coincides with the
label of OII (up to cyclic permutation), and O shares a t-edge with OII (fig[13] with
A = 0). It follows that the subdiagram A’ = ITUT” has boundary label freely equal to
Lab(top(I')). However Lab(top(I'"’) = V', where V' = V - H by Lemma and so
there is a disk II’ with boundary label V’. Therefore the subdiagram A’ can be replaced
by a single disk. So we decrease the number of (6, t)-cells contrary to the minimality of
A.

Now we consider the general case, where C = C1C2C3. As above, we replace ' by a
trapezium I and obtain a trapezium I'" after removing of one £-band in I''. To obtain
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Figure 14: Design

a contradiction, it suffices to consider the diagram A’ = TTUC1Co UT” (forgetting of the
complement of A’ in A) and find another diagram A” with one disk and fewer (6, t)-cells
such that Lab(0A”) = Lab(0A’) in the free group.

Since both histories H and Hy (and so HyHj) are standard, one can enlarge I and
construct a trapezium I with history Hy Hs. (The added parts Fy and Es are dashed in
figure 13| with A > 0). Note that we add < A|[|H||L new (0,t)-cells since every maximal
f-band of I has L such cells. As in case A = 0, this trapezium I’ and the disk IT can
be replaced by one disk II'. However to obtain the boundary label equal to Lab(9A), we
should attach the mirror copies 3; and 33 of Ey and Es to IT'. The obtained diagram A’
has at most A||Hy||L (0,t)-cells, while A’ has at least ||Ha||L > (1 — \)||H]|| (0, t)-cells.
Since A < 1 — A, we have the desired contradiction. O

7.1.6 Designs

As in [18], we are going to use designs.

Let D be the Euclidean unit disk and T be a finite set of disjoint chords (plain lines
in fig. and Q a finite set of disjoint simple curves in D (dotted lines in fig. . We
assume that a curve is a non-oriented broken line, i.e., it is built from finitely many finite
line segments. To distinguish the elements from T and Q, we will say that the elements
of Q are arcs.

We shall assume that the arcs belong to the open disk D, an arc may cross a chord
transversally at most once, and the intersection point cannot coincide with one of the
two ends of an arc.

Under these assumptions, we shall say that the pair (T, Q) is a design. The number
of elements in T and Q are denoted by #T and #Q.

By definition, the length |C| of an arc C' is the number of the chords crossing C. The
term subarc will be used in the natural way. Oviously one has |D| < |C| if D is a subarc
of an arc C.

We say that an arc Cy is parallel to an arc Cy and write C; || C2 if every chord
(from T') crossing C also crosses C. So the relation || is transitive (it is not necessarily
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symmetric). For example, the arc of length 2 is parallel to the arc of length 5 in fig. [14]

Definition 7.13. Given A € (0;1) and an integer n > 1, the property P(\,n) of a
design says that for any n different ars C1,...,C),, there exist no subarcs D1,..., Dy,
respectively, such that |D;| > (1 — \)|Cj| for every i = 1,...,nand Dy || Dz || --- || Dn.

By definition, the length ¢(Q) of the set of arcs Q is defined by the equality

(Q)=>_I[C| (7.47)

CeQ

The number of chords will be denoted by #T. Here is the main statement about
designs from [18].

Theorem 7.14 (Theorem 8.2 [I8]). There is a constant ¢ = c¢(\,n) such that for any
design (T, Q) with property P(A\,n), we have

0(Q) < c(#T) (7.48)

7.1.7 Designs and the o) invariant

Let A € [0,1/2). For every -spoke B of a minimal diagram A, we choose the A-shaft of
maximal length in it (if a A-shaft exists). If B connects two disks II; and IIs, then there
can be two maximal A-shafts: at II; and at II;. We denote by o (A) the sum of lengths
of all A-shafts in this family.

Lemma 7.15. There is a constant ¢ = ¢(\) such that ox(A) < c|0A| for every minimal
diagram A over the group G.

Proof. Let us associate the following design with A. We say that the median lines of the
maximal f-bands are the chords and the median lines of the maximal A-shafts are the
arcs. Here we use two disjoint median lines if two maximal A-shafts share a (6, f)-cell.
By Lemma (3), (4), we indeed obtain a design.

Observe that the length |C| of an arc is the number of cells in the A-shaft and #T <
|0A|/2 since every maximal 6-band has two 6-edges on OA.

Thus, by Theorem it suffices to show that the constructed design satisfies the
condition P(A,n), where n does not depend on A.

Let n = 2L + 1. If the property P(\,n) does not hold, then we have n maximal A-
shafts Ci,...,C, and a subband D of Cy, such that |D| > (1 — \)|Cy|, and every maximal
6-band crossing D must cross each of Ca,...,Cp. (Here |B| is the length of a #-band B.)
It follows that each of these f-band crosses at least L + 1 maximal £-bands. (See Lemma
7.8 (3,4). Here we take into account that the same f-spoke can generate two arcs in the
design.) Hence using the A-shaft C; one can construct a quasi-trapezium of height |D|,
which contradicts Lemma [[.12] O

7.2 Upper bound for G-areas of diagrams over the group G.
7.2.1 The area of a disk is quadratic

By definition, the G-area of a disk 11 is just the minimum of areas of diagrams over the
presentation (5.6l5.9) of G having the same boundary label as II.
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Lemma 7.16. There is a constant cg such that both area and the G-area of any disk does
not exceed cg|OIT|?.

Proof. By Remark a disk with boundary label V' can be built of one hub and L
trapezia corresponding to a accessible computation C for W, where Wt = V% By Lemma
(1.9 the length of C can be bound by c|[W|| and the length of every configuration of
C does not exceed ¢;||W|| Hence by Lemma the area and the G-area of the disk is
bounded by cg|0TI|? since the constant cg can be chosen after c1, co and 4. O

By definition, the G-area of a minimal diagram A over G is the sum of G-areas of
its disks plus the G-area of the compliment I'. For the compliment, as in subsection [6.3]
we consider a family S of big subtrapezia and single cells of I' such that every cell of
I" belongs to a member X of this family, and if a cell II belongs to different 3; and 39
from X, then both 3; and 39 are big subtrapezia of I' with bases xviz, zvox, and II is
an (0, z)-cell.) Hence the statement of Lemma [6.9) holds for minimal diagrams over G as
well.

We want to prove that for big enough constants N3 and Ny, Area(A) < Ny(n +
ox(A))2+ N3u(A) for every minimal diagram A with perimeter n. For this goal, we will
argue by contradiction in this section and study a counter-example A with minimal
n+ ox(A).

7.2.2 Getting rid of rim bands with short base

Lemma 7.17. The diagram A has no rim 0-bands with base of length at most K.

Proof. The proof of Lemma works for the minimal counter-example over G. It
suffices to replace Ny and N by N4 and Ns, replace n by n+ o0, (A), and notice that the
value of o) does nor increase when passing from A to A, O

7.2.3 The cloves

By Lemma [6.14] A has at least one disk. Using Lemma [7.5] we fix a disk IT in A such
that L — 3 consecutive maximal #-bands By, ... Br_3 start on A , end on the boundary
OI1, and for any i € [1, L — 4], there are no disks in the subdiagram bounded by B;, B;41,
OII, and OA. (See fig. [11])

We denote by ¥ = cl(II, By, Br—3) the subdiagram without disks bounded by the
spokes By, Br_3 (and including them) and by subpaths of the boundaries of A and TI,
and call this subdiagram a clove. Similarly one can define the cloves ¥;; = cl(IL, B;, B;)
ifl1<i<j<L-3.

7.2.4 A clove cannot contain certain subcombs

Lemma 7.18. The clove ¥ = cl(I1, By, Br—3) has no subcombs of basic width at least
K.

Proof. Proving by contradiction, we may assume that there is a tight subcomb I' by
Lemma (2). Then contradiction appears exactly as in the proofs of Lemmas [6.10

. It suffices to replace N2 and N; by N4 and Njs, replace n by n+ o) (A), and notice
that the value of o) does nor increase when passing from A to Ag since no #-band of T
is a part of a spoke. O
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Below we use the following analog of Lemma (with identical proof):

Lemma 7.19. (1) The counter-example A has no two disjoint subcombs 'y and T'y of
basic widths at most K with handles C1 and Co such that some ends of these handles are
connected by a subpath x of the boundary path of A with |x|, < N.

(2) The boundary of every subcomb T' with basic width s < K has 2s q-edges.

]

7.2.5 0O-bands in a clove

Lemma 7.20. (1) Every maximal 0-band of ¥ crosses either By or Br_i. (2) There
exists r, L/2 —3 < r < L/2, such that the 6-bands of ¥ crossing Br—_s do not cross B,,
and the 6-bands of U crossing By do not cross Byi1;

Proof. (1) If the claim were wrong, then one could find a rim #-band 7 in ¥, which
crosses neither By nor Br_3. By Lemma the basic width of T is greater than K.
Since (1) a disk has LN spokes, (2) no g-band of W intersects 7~ twice by Lemma [5.6] (3),
T has at least K g-cells, and (4) K > 2Ky + LN, there exists a maximal ¢g-band C’ such
that a subdiagram I" separated from ¥ by C’ contains no edges of the spokes of IT and
the part of 7 belonging to I has at least Ko g-cells (fig. [L5)).

If T is not a comb, and so a maximal #-band of it does not cross C’, then I'" must
contain another rim band 77 having at least K g¢-cells. This makes possible to find a
subdiagram I'” of I"” such that a part of 77 is a rim band of I containing at least K
g-cells, and T does not contain C’. Since Area(I”) > Area(I') > ... , such a procedure
must stop. Hence, for some 7, we obtain a subcomb I'" of basic width > Ky, contrary
to Lemma

(2) Assume there is a maximal #-band 7 of U crossing the spoke B;. Then assume
that 7 is the closest to the disk II, i.e. the intersection of 7 and B is the first cell of
the spoke By. If By, ..., B, are all the spokes crossed by T, then 7 < L/2 by Lemma6.3]
Since the band T does not cross the spoke B,11, no other 6-band of ¥ crossing B; can
cross Byy1. and no 6-band crossing the spoke By_3 can cross B,. The same argument
shows that r +1 > L/2 — 2 if there is a 6-band of ¥ crossing the spoke By, _s. O
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Figure 16: Boundaries of ¥ and ¥’

For the clove ¥ = cl(m, By, B—3) in A, we denote by p(¥) the common subpath of
OV and OA starting with the f-edge of B; and ending with the #-edge of By,_3. Similarly
we define the (outer) path p;; = p(¥);; for every smaller clove ¥;;.

7.2.6 The clove ¥ and related subdiagrams.
Lemma 7.21. Every path pii+1 (i=1,...,L —4) has fewer than 3K, g-edges.

Proof. Let a maximal g-band C of ¥ starts on p; ;41 and does not end on II. Then is has
to end on p; ;41 too. If I' is the subdiagram without disks separated by C, then every
maximal #-band of I" has to cross the g-band C since its extension in ¥ must cross either
Bi or Br—3 by Lemma [7.20] Therefore I" is a comb with handle C.

Consider the g-bands of this kind defining maximal subcombs I'1,I'g, ... T'; in ¥; ;4 1.
The basic width of each of them is less than Ky by Lemma Therefore k < 1 since
otherwise one can get two subcombs contradicting to Lemma (1), because there
are at most N + 1 maximal ¢-bands starting on III in ¥;;;. By Lemma (2),
such a subcomb has at most 2Ky g-edges in the boundary. Hence there are at most
2K + N < 3Ky g-edges in the path p; 1. O

We denote by A the subdiagram formed by II and ¥, and denote by p the path
top(Bl)u_lbot(B)Zig, where u is a subpath of 91, such that p separates A from the
remaining subdiagram ¥’ of A (fig. [16).

Similarly we define subdiagrams Ayj, paths P, ; = top(Bi)ui_jlbot(B)
is a subpath of 9II, and the subdiagrams Wi,.

We denote by Hi,...,Hy_3 the histories of the spokes By, ...,Br_3 (read starting
from the disk II) and by hi,...,hr_3 their lengths, i.e., the numbers of (6,t)-cells. By
Lemma [7.20] these lengths non-increase and then non-decrease as follows:

-1

i where u;;

hi>hy > >hp; hpy1 <--- < hp g (L/2-3<r<L/2), (7.49)
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and therefore H;;q is a prefix of H; (H; is a prefix Hjqq) for i =1,...,r — 1 (resp., for
j=r+1,...,L—4).

Recall that by Definition the boundary label of OII is a disk word V, where
VP = WL, where W is a accessible word.

Lemma 7.22. We have the following inequalities
Pijl < hi+hj+(L—j+i)|W[-1
and, if it <r and j >r+1, then
IPij| > [pijlo + |Pijlg = hi +hj + (G — )N +1

Proof. The first iequality follows from Lemma (b) since the path u;; has L—j+i—1
t-edges. To prove the second inequality, we observe that the path |p;;| has (j — )N +1
g-edges and it has h; + h; 6-edges by Lemma [7.20] O

Lemma 7.23. If j—i > L/2, then we have (A) — u(¥3;) > —2Jn(h;+hj) > =2Jn|ps]-

Proof. The number of g-edges in the path p;; (or in the path u;;) does not exceed the
similar number for p;; provided j —¢ > L/2. Therefore any two white beads o, 0" of the
necklace on OA, provided they both do not belong to p;j, are separated by at least the
same number of black beads in the necklace for A as in the necklace for \Ifgj (either the
clockwise arc o — o includes p;; or not). So such a pair contributes to p(A) at least
the amount it contributes to p(W};). Thus, to estimate u(A) — u(¥;;) from below, it
suffices to consider the contribution to u(¥’) for the pairs o, o', where one of the two
beads lies on p;;. The number of such (unordered) pairs is bounded by n(h; +h;) Taking
into account the definition of p for diagrams and inequalities , we get the required
inequality. O

Lemma 7.24. If j —i > L/2, then the following inequality holds: |pi;| < (1 + ¢)|Py;l,
1 _
where e = N, *. Moreover, we have |pij| + ox(Aij) < (1+¢€)[P;l-

Proof. It suffices to prove the second statement. Let d be the difference
Ipij| + oa(Aij) — |Pij| and assume to contradiction that d > ¢|p;;|. Then
d > |pij| + oa(Aj) — e~ 1d, whence

1N — — g — I
d> (1+e 1) H|pij| + or(Ayy)) > 5(\Pz‘j| +oa(Ay)) > ?yv (7.50)

where by definition, y = |pi;| + ox(As;).

We have (|0A[ + ox(A)) — (|0%};] + o(¥};)) > d > 0, because [0A| — [0F};] >
Pij| — [Pij| and oA(Aj) + oA(V];) < 0x(A). Therefore for = n + 0x(A), we obtain
from the minimality of the counter-example A that

Areag(V};) < Ny(z — d)? + Nap(W};) < Nyz? — Nyzd 4 Nap(A)
+ 2N3Jn|pi;| < Naz? + N3p(A) — Nyzd + 2N3Jny (7.51)

by Lemma and inequality o (¥};)) < oa(A). By Lemma [7.22} [pi;| < [py;| + [011],
and so the perimeter |0W;;| is less than 2|p;;| + |0II]. Since |0II] < L|p;;| < L(|pij| +
oA(Aij)), we have

|0W,;| < (2+ L)|pij| + Loa(Aij) < (L +2)y (7.52)
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By the inequalities No > Ny, (7.52), lemmas and (a), the G-area of W¥;; does
not exceed

No(2 4 L)%y + Nyp(Ty5) < No(J + 1)(2 + L)%y (7.53)

By Lemma the G-area of IT does not exceed cg|01I|? < c(L + 2)%y?, and so there
is a constant c; = c7(L) such that Areag(Il) < c7y?.

This estimate and give the inequality Areag(A;;) < Na(J+1)(2+ L)%y +cry?,
and we obtain with that

Areag(A) < Nyz? + N3pu(A) — Nyzd + 2NsJny + No(J + 1)(2 + L)?y? + cry?

To obtain the desired contradiction, it suffices to show that here, the number T =
Nazd/3 is greater than each of the last three summands. Recall that z > n, d > cy/2
by , €= N4_1/2, and so T > 2NsJny if N4 is large enough in comparison with
N3 and other constant chosen earlier. Also we have T > No(J + 1)(2 + L)?y?, because
T =n+0x(A) > pij|+0or(Aij) =y, and so zd > zey/2 > ey?/2. Finally, T > cry? since

zd > zey/2 > yPe/2
O

For every path p;;y1 we will fix a shortest path q; ;11 homotopic to p;;+1 in the
subdiagram W;;, such that the first and the last t-edges of q; ;41 coincide with the first
and the last ¢-edges of p; ;1. For j >4+ 1 the path q;; is formed by Q; 41, ... qj—1,-

Lemma 7.25. If i <r and j >r+1, then
laij| > laijlo + |dijlg = hi +hj + (G — )N +1

The proof is similar to the second part of Lemma [7.22]
Let \Il%- (let U0, AY) be the subdiagram of W;; (of ¥, of A) obtained after replacement
of the subpath p;; (of p ) by q;; (by 9 = qi,1—3, resp.) in the boundary.

Lemma 7.26. (1) The subdiagram \Il?j has no mazximal q-bands except for the q-spokes
starting from OIL. (2) Every 6-band of \II% is crossed by the path q;; at most once.

Proof. Assume there is a g-band Q of \Ilgj starting and ending on q;; Then j =7+ 1 and
dii+1 = uevfw, where Q starts with the g-edge e and ends with the g-edge f. Suppose
that Q has length ¢. Then |v| > ¢ since every maximal #-band of \I/?J»_H crossing Q has
to end on the subpath v. So one has |evf| = ¢ + 2, and replacing the subpath evf by
a side of Q of length ¢ one replaces the path q;;11 with a shorter homotopic path by
Lemma, This contradicts the choice of q;;4+1, and so statement (1) is proved. The
proof (2) is similar. O

It follows from Lemma that between the spokes B; and By (1 <j <r—1),
there is a trapezium I'; of height h;,1 with the side t-bands . Similarly, we have trapezia
I'jforr+1<j<L—4 ByLemma (2), every trapezium I'; is contained in both
\I/j7j+1 and \Ij?,j+1' 5

The bottoms y; of all trapezia I'; belong to JII and have the same label Wt. We will
use z; for the tops of these trapezia. Since I'; and I';_; (2 < j < r — 1) have the same
bottom labels and the history Hj is a prefix of H;_1, by Lemma[5.12] h; different 6-bands
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B C

Figure 17: Lemma [7.27]

of I';_1 form the copy F;- of the trapezium I'; (more precisely, a copy of a superscript
shift F§+(i1))) with top and bottom paths z; and y’; = y;_1.

‘ We denote by E; (by E]Q ) the comb formed by the maximal §-bands of ¥; ;1 (of
\I/QJ-_H, resp.) crossing the {-spoke B; but not crossing Bji1 (1 < j < r — 1, see fig.
. Its handle C; of height hj — hj;1 is contained in B;. The boundary 0F; (resp.,
(?E;-J) consists of the side of this handle, the path z; and the path p; ;1 (the path q; 1,
respectively).

Assume that a maximal Y-band A of E? (2 <j <r—1) starts on the path z; and
ends on a side a-edge of a maximal g-band C of E?. Then A, a part of C and a part z of
z; bound a comb V.

Lemma 7.27. There is a copy of the comb V in the trapezium I' = Fj_l\F;». It s a
superscript shift of V.

Proof. The subpath z of z; starts with an a-edge e and ends with a g-edge f. There is
a copy z' of z in zj starting with €’ and ending with f’. Note that the 0-cells 7 and 7’
attached to f and to f/ in V and in I' are copies of each other since they correspond to
the same letter of the history. Now moving from f to e, we see that the whole maximal
f-band T; of V containing m has a copy in I'. Similarly we obtain a copy of the next
maximal 6-band T3 of V, and so on. O

7.2.7 Bounding the number of Y-bands in a sector of a clove

Lemma 7.28. At most N Y -bands starting on the path y; can end on the (0, q)-cells of
the same 0-band. This property holds for the Y -bands starting on z; too.

Proof. We will prove the second claim only since the proof of the first one is similar.
Assume that the a-bands Ay, ..., A, start from z; and end on some (6, q)-cells of a 6-
band 7. Let Ty be the minimal subband of 7, where the a-bands As, ..., As;_1 end and
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Z; be the minimal subpath of z;, where they start. Then by Lemma , every maximal
g-band starting on Z; has to cross the band 7y and vice versa. Hence the base of 7y is
a subbase of the standard base (or of its inverse). Since every rule of M can change at
most N — 2 a-letters in a word with standard base, all (0, q)-cells of Ty have at most
N — 2 a-edges, and the statement of the lemma follows. O

Without loss of generality, we assume that
h = hLo-i-l > hL—LO—S- (7.54)

(Recall that Lg is one of the parameters used in the paper, a number between c5 and L,
Section [2.3])

7.2.8 Estimating the sizes of trapezia I';

Lemma 7.29. If h < L3|W|y, then the number of trapezia T'; with the properties |zj|y >
\Wly/esN forj€[Lo+ 1,7 —1) orj € [r+1,L— Lo — 5], is less than L/5.

Proof. Consider T'; as in the assumption of the lemma with j € [Lo + 1,7 — 1]. The
subcomb E? has at most N maximal ¢-bands by Lemma . So there are at most N
maximal a-bands starting on z; and ending on each of the -bands of E?. Proving by
contradiction, we have at least L|W|,/5¢5N such a-bands for all j € S, where S the set
of integers in [Lo+ 1,7 —1]U[r+1, L — Lo — 5|; denote this set of a-bands by A. But the
number of maximal #-bands in all such subcombs E;-) does not exceed 2h. Therefore at
least L|W|q/5¢s N —2hN bands from A end on the subpaths q; ;41 for j € S. Therefore
by Lemmas [7.25] and we have

|PLo+1,L—Lo—5] > |Aro+1,0-Lo—5] = hrg+1 + hr—ro—5 + LN/2 4+ 6(L|W|,/5¢5s N — 2hN)

> hro+1 +hr—ro—5 + LN/2+ 6L|W|,/10c5 N (7.55)

since 2hN < 2LEN|W|, < L3|W|./10c5 N < L|W|,/10c5N by the choice of Ly and L.
Also by Lemma [7.22] we have

Pro+1,L-Lo—5] < hrgr1 +ho—ry—5 +3LoN 4 3Lod|W|,

< hLo+1 + thLofE) + 3LoN + (5L|W|a/2005N, (756)

because by the choice of L, 3Ly < L/20c5N. Since hro+1 + hr—r,—5 < 2h < 2L%|W|a <
L|W|q, L is chosen after cs N, and € = N4_1/2 is chosen after L, the inequality

|PLo+1,L—Lo—5] S

= >1+ >14¢
|PLo+1,L—Lo—5 20cs N
follows from (7.55} [7.56)), contrary to Lemma The lemma is proved by contradiction.

O

Lemma 7.30. If h < L|Wy/|, then the histories Hy and Hp_3 have different first letters
unless these letters are 6(23)71.

Proof. Let T and S be the maximal 6-bands of W crossing By and By,_3, respectively, and
the closest to the disk II. Let they cross k and ¢ spokes of II, respectively. By Lemma
[729 k+¢> L—L/5—3Ly > 2L/3, and also k,¢ > 2 since L/2—3 < r < L/2. Tt follows
from Lemma (2) that the first letters of Hy and Hjy_3 are different. O
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Lemma 7.31. We have h > L3|W|y.

Proof. If this inequality is wrong, then by Lemma there are at least L—L/5—3Ly >
0.7L trapezia I'; with |z;]y < |W|y/esN, and one can choose two such trapesia I'y, and
I'y such that k <r, £ >r+1and £ —k > 0.6L. Since Hy,1 (resp. Hy) is a prefix of H;
(of Hp—3), it follows from Lemma[7.30] that the first letters of Hy1q and Hy are different
unless they are equal to (23)71.

Since the bottoms of I'y, and I'y (which belong in JA) have the same label, up to a
superscript shift, one can construct an auxiliary trapezium F identifying the bottom of a
copy of I'y, and the bottom of a mirror copy of I'y. The history of E is H[1Hk+1, which
is an eligible word if the first letters of Hy and H, are different.

If both first letters are 6(23)~!, then the word H, ' Hj1 also eligible by definition. If
the bottom #-bands of I'y, and I'; are just copies of each other then the above constructed
diagram F is not reduced. However one can modify the construction replacing 'y, by an
auxiliary superscript shift Fl(:rl). By the definition of relations , the bottom labels of

Fl(jl), I'y and I'; are all equal, but the top labels of the first -bands of Fl(:rl) and I'; are
not mirror copies of each other (they differ by 1-shift), and so the diagram F obtained
by identifying the bottom of a copy of F,(:rl) and the bottom of a mirror copy of I’y is
reduced, i.e.,we can obtain the trapezium FE in any case.

The top and the bottom of E have Y-lengths less than |W|y/csN. Without loss of
generality, one may assume that hy4q1 > hy, and so hgiq > t/2, where ¢ is the height of
E.

Note that the difference of Y-lengths |W|y — |W|y/es N > |W]y /2, and so
hk+17 hz > ’W‘y/?N (757)

since the difference of Y-lengths for the top and the bottom of every maximal #-band of
E does not exceed N. Therefore ¢t > |W|y /N, and the computation corresponding F
satisfies the assumption of Lemma [.12]

So for every factorization H'H”H" of the history of Ty, where ||H'|| + [[H"|| <
A|H'H"H"||, we have ||[H"”|| > 0.4¢, since A < 1/5. Therefore by Lemma [4.12] the spoke
Bry1 is a A-shaft.

Using Lemma [7.22] we obtain:

IPrt1,] + oa(Dri1,0) = hgegr + he + 0.6LN + hypq (7.58)
By inequality (7.57), we have 0L|W |y < 2LNdhyi+1 < hgpy1 by the choice of § and

by Lemma [7.22]
|ﬁk+1,£’ < hgy1+he+04LN + 0.4L5\Wly < hgaq + he + hgi1/2 (7.59)

The right-hand side of the inequality ((7.58)) divided by the right-hand side of ([7.59)
is greater than 1.1 (because hyy1 > hy), which contradicts to Lemma Thus, the
lemma, is proved. O

Lemma 7.32. We have h; > 6~ for everyi=1,..., L.

Proof. By inequalities (7.54) and (7.49)), we have h; > hy_r,—3. Proving by contradic-
tion, we obtain |W|, < h; < 7! by Lemma Then

’I—)i,L—Lo—3| < h; + hL—Lo—B + 3L0(N + 5715) < h;+ hL—Lo—B +4LgN
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by Lemma , and |pi,L—L0—3‘ > h; + hL—Lo—B + LN/Q. Since h; + hL—L0—3 < 251
and 4Ly N < LN/4, we see that IpiL—ro-al > 1406 > 1+¢ contrary to Lemma/[7.24] The

[Pi,— -3l
lemma, is proved by contradiction. O

7.2.9 Bounding shafts in a clove and obtaining corollaries.

Lemma 7.33. None of the spokes B, ..., Br, contains a \-shaft at I of length at least
oh.

Proof. On the one hand, by Lemmas and [7.31],
PLo+1,0-Lo—3] < hLot1+hi—ro—3+3Lo(N+38|W|a) < hrgi1+hi—ro—3+3Lo(N+6Ly>h)

(7.60)
On the other hand, by Lemma [7.22

|PLo+1..—Lo—3] > hro+1 +hr—r,—3+ (L —3Lo)N (7.61)

If the statement of the lemma were wrong, then we would have oy(A) > &h, and
inequalities ((7.60)) and (7.61)) would imply that

IPrLot1.L—Lo-3| — |Prot1.0—1o-3] +0x(A) > (L —6Lo)N — 3Ly 6h + 6h > LN/2 + 6h/2

The right-hand side of the last inequality divided by the right-hand side of (7.60)) is
1

greater than € = N4_§, because h > hr,4+1,hr—1,—3, which would contradict to Lemma
7.24] Thus, the lemma is proved. O

Lemma 7.34. For every j € [1, Lo — 1], we have |z;|y > hjq1/cs.

Proof. 1f |2|q < hjt1/cs, then the computation C : Wy — - -+ — W, corresponding to the
trapezium I'; satisfies the assumption of Lemma , since t = hjt1 > ¢5|Wila = c5)2jlq
and by Lemma t = hjy1 > LEWola > c5|W], since Ly > c5. Hence Bji is a
A-shaft by Lemma since A < 1/2. We obtain a contradiction with Lemma since
0h < h < hjy1. Thus, the lemma is proved. O

Lemma 7.35. For every j € [1, Lo — 1], we have hji1 < (1 — ﬁ)h]u

Proof. By Lemma we have |zj|, > hjy1/cs. Let us assume that hji; > (1 —
ﬁ)hj, that is the handle C; of E; has height at most h;/10cs N. By Lemma ,
at most h;/10cs maximal a-bands of E; starting on z; can end on the (6, g)-cells of E
Hence at least

‘Z]"a — hj/lOCg, > |Zj|a — 2hj+1/1065 > 0.8hj+1/65 > O.?hj/Cg)

of them have to end on the path p; ;1.
The path p; ;1 has at most m};ﬁ f-edges. Hence by Lemma

’pj7j+1’ > hj — hj+1 + 5(0.7hj/65 — hj/1005N> > hj — hj+1 + 0.6(5}1]'/65,
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and therefore by Lemma (7.22] |p; r—r,—3| > LN/2+ hj + hr_r,—3 + 0.66h;/c5. On the
other hand by Lemma [7.22] we have

|I_)j,LfLof3| < hj + hL,L0,3 +3NLg+ 3L05‘W|a < hj + thLofg +3NLy+ 3L61(5h]’+1

by Lemma (7.31| and inequality A < hjiq. Hence IPj.L-rg—3l > (1 4+ 6/10¢s5) since

[Pj,L—Lo—3l
hp—ry—3 < hrg+1 < hjp1 < hjand Lo >> c5. We have a contradiction with Lemma
since 0/10c5 > . The lemma is proved by contradiction. O

The proof of the next lemma is similar.

Lemma 7.36. For every j € [2, Lo — 1]. we have |zj]y < 2Nh;,

Proof. Assume that |z;|, > 2Nh;. By Lemma , at most Nh; maximal a-bands of
E; starting on z; can end on the (0, ¢)-cells of Ej. Hence at least |zj|, — Nh; > Nh; of
them has to end on the path p; ;1. The path p; ;i1 has at most h; 0-edges. Hence by
Lemma |pj,j+1| > hj — hj+1 + 5(Nh] — hj) = hj — hj+1 + 5(N — 1)hj and therefore
by Lemma |Pjr—r1o-3] > LN/2+4 hj+ hr_r,—3+ 6(N — 1)h;. On the other hand
by Lemmas and [7.31] we have

36h;

1PjL—10—3] <hj+hr—r,—3+3NLo+3Lod|Wlq < hj+hp_r,—3+3NLo+ To

because h < hj. Since hj > h > hp_r,_3, we have % > (1+¢), a contradiction
J,L—Lo—
by Lemma [7.24] O

7.2.10 Certain subtrapezia with one step history do not exist

Lemma 7.37. There is no i € [2,Lg — 3] such that the histories H;—y = H;H =
H; . 1H"H' = H;\oH"H"H' and the computation C with history H; corresponding to the
trapezium I';_1 satisfy the following condition:

(*) The history H" H"H' has only one step, and for the subcomputation D with this
history, there is a sectors Q'Q such that a state letter from Q or from Q' inserts a letter
increasing the length of this sector after every transition of D.

Proof. Recall that the standard base of M is built of the standard base B of My and its
inverse copy (B’)~! (plus letter t). Due to this mirror symmetry of the standard base,
we have mirror symmetry for any accepting computation, in particular, for C and D.
Therefore proving by contradiction, we may assume that the a-letters are inserted from
the left of Q.

Let Q be the maximal g-spoke of the subdiagram E? C TI'; corresponding to the
base letter ). If Q' is the neighbor from the left ¢g-spoke for Q (the spokes are directed
from the disk II), then the subpath x of z; between these two g¢-spokes has at least
hiy1 — hiy2 = [[H"|| a-letters. Indeed, I'; contains a copy I'j,; of I';y1, the bottom
of the trapezium I';\I'} | is the copy zj,; of z;y1 and the top of it iz z;, and so the
subcomputation with history H” has already increased the length of the Q'Q-sector.
Thus, by lemmas [7.35] and the choice of Ly > 100c5 N, we have

|X‘a > hi+1 —h hi—i—l > 10L0’W‘a (762)

o>
2= 10 N
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Note that an a-band A starting on x cannot end on a (6, q)-cell from Q. Indeed,
otherwise by Lemma there is a copy of this configuration in the diagram T';_q,
i.e. the copy of A ends on the copy of Q contrary the assumption that the rules of
computation with history H” H” H' do not delete a-letters.

Let us consider the comb bounded by Q, @', x and the boundary path of A° (without
the cells from Q). If the lengths of Q and Q' are s and §', repectively, then there are
x| + s maximal a-bands starting on x and Q and ending either on Q' or on A since
the comb has no maximal g-bands by Lemma At most s’ < s of these a-bands can
end on Q'. Therefore at least |x| + s — s’ of them end on the segment of the boundary
path of A lying between the ends of Q' and Q.

Since this segment has s — s’ 6-edges, its length is at least s — s’ + d|x|, by Lemma

[6.1] This inequality, Lemma and inequality (7.62]) imply

o

|Pi.L—r1o—3] > |dir—1o—3] > LN/2+ hi + hr_1,—3 + mhi-H

> LN/2+ h; + hi—ro—3+ 106 Lo|W 1,
Therefore

76
hiv1 > 3LoN + h; + hL,Lofg + 35L0|W|a > |I_)i,L7L073’a (763)

’Pz’,LfLof3| - m =

by Lemma [7.22] and since A is a minimal counter-example, we have

76
Areac (Wi, 1 r,-3) < Na(n+ox(D) - thl)Q + N3p(V5 1 1,-3)
< Na(n+ or(A)2 = Na—2" i) + Napu(! ) (7.64)
= IVq A 4 100¢s N i+1 SHAY L—10-3 :

By Lemma [7.31] |W|, < Lg?h;, and by Lemma [7.32] h; > §=1 > 100LoN, whence
PiL—Lo-3| < 2hi +3LoN 4 30Lo|Wla < (24 0.03 + $2)h; < 2.1h; and by Lemma [7.24)
we have

IPi.L—Lo—3| < (1+€)|PiL—rLo-3| <22k (7.65)

By lemmas and (a) and inequalities ((7.65)) and (7.63), the G-area of ¥; 11,3

does not exceed
Na(2[Pi,r—ro-3])" + Nups(Wi,p-10-3) < Na(4J +4)|Pi,r—ro-3|° < 5No(4J +4)h7 (7.66)

By Lemma [7.16] the G-area of II is bounded by ¢gF'(|0I1]). The inequalities ((7.63))
and (7.65)) implies the inequality |OII| < L|Pj r—r,—3| < L|pi,L—1,—3| < 3Lh;. Therefore
one may assume that the constant ¢; is chosen so that

Areag(IT) < cg|OTI|* < crh? =< crh? (7.67)

(Recall that h; < n/2 here since h; is the number #-bands crossing B;; they start and

end on OA.) It follows from (7.66)) and ([7.67)) that
Areag(Ai’L_Lo_g) § 5N2(4J + 4)hz2 + wh?g(n) (7.68)

We need an estimate for u(\I/;H I—Lo—3)— (¥, ;o) now. To obtain it, we observe
) 0 1, 0
that by Lemma the common g-edge f of the spoke B; and JA separates at least
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B g,

Figure 18: u(\I/£+17L,LO,3) - M(‘I/;,L—Lofis)

hi—1 — h; = m f-edges of the path p;—1; and mo ones lying on p;—r,—3, where
mg = hi+h; 1—r,-3 (see fig. . Since the number of g-edges of p is less than 3KyL < J
by Lemma one decreases (Wi, ; ; 3) at least by mimo when erasing the black
bead on f in the necklace on 8‘I/;-+17L_L0_3 by Lemma (d,b,c). Hence

(i1 11o-3)) — (i1 r,-3) = mimy
1
= (hi—1 — hi)(hi + hp—r,—3) > —=hi—1(hi + hp—1,—3)
C5N
by Lemma [7.35] This inequality and Lemma applied to W41 1_1,—3, imply

p(A) = (W5 ro-3) = —2Jn(hit1 + hp_ry-3) hi—1(hi + hr—ry—3)

* 1OC5N
Note that (hjt1 + hr—r,—3) < 2hi+1 by (7.49) and (7.54). Hence

N:

1OC5N
It follows from (7.68|, 7_69|, 7.64) that

Areag(A) < Areaq (V] ;. 3) + Areag(Ajr_ry—3) <

7on
< N4(n + UA(A))Q - N4m

hist + Nap(W 1 _po—3) + 5N2(4J + 4)h? + crh?

7on N3
hig1 — ——
100c5s N 10cs N

+4N3Jnhiy1 + 5No(4J + 4)h? + c7h?

< Na(n + 0a(A))? + Nap(A) — Ny

hi—1(hi + hp—r,—3)

We come to a contradiction since we obtain inequality Areag(A) < Ny(n+ox(A))2+

N3u(A), because N4ﬁ > 4N3J and mjgﬁ > 5No(4J +4) + 7. O
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7.2.11 A clove with a disk can be removed and no counterexample exists

Lemma 7.38. There exists no counter-example A, and therefore Areag(A) < Ny(n +
oA(A))2 + N3u(A) for any minimal diagram A with |0A| = n.

10c5s N
and by lemmas and [7.36] we have inequalities |z;|y > hj+1/505 and |z;ly < 2Nhy.

One can choose an integer p = p(M) (it depends on the S-machine M only as ¢5 and N)

so that (1 — ﬁ)p < ﬁ, and so hjt1 > 6Ncshy if k—j —1 > p. Hence

Proof. Recall that for j = 1,..., Lo — 1, we have hj1 < (1 — 752+ )h; by Lemma ,

|2ily > hji1/cs > 6Nhy > 3|z

If Ly is large enough, say Lo > 2000p, one can obtain 1000 indices j; < jo < -+ <
J1000 < Lo such that for ¢ = 2,...,1000, one obtains inequalities

’Zji—l‘ > B‘Zji’ and hji—l > hjz‘—l-‘rl > 6C5Nhji (770)

Let C: W =Wy — --- — Wy be the computation corresponding to the trapezium
I'j,. Since it contains the copy F}ZH of I'j,+1, which in turn contains a copy of I'j, 12 and
so on, we have some configurations W (k) in C (k =1,...,999), that are the labels of some
z;, (but without superscripts) and |W (k+1)|y > 3|W (k)|y for k =1,...,998. If for some
k we were obtain one-step subcomputation W (k) — --- — W (k +4), then the statement
of Lemma4.13| would give a subcomputation W (k+1) — - -+ — W (k+4) contradicting to
the statement of Lemma Hence no five consecutive words W (k)-s are configuration
of a one-step subcomputation, and so the number of steps in W (1) — --- — W(999) in
at least 100.

It follows now from Lemma that the step history of I';,\I', where I" is the copy of
I'r, in I'j,, has a subword (34)(4)(45) or (45)(4)(34), or (12)(2)(23), or (23)(2)(12).

Let us consider the case (34)(4)(45) (or (45)(4)(34)). Then the history Hj, 41 of I';,
can be decomposed as H'H"H"  where H" has form x(i — 1,i)H x(i,i + 1) (the S-
machine works as M3) and ||H'|| > h since the height of T is at least h. Moreover, by
Lemma [3.14] (b), one can choose i so that ||[H’|| > ||H”|| since the number of cycles m is
large enough.

Since hj 41 > 2hy, by (7.70), the history Hj 41 of T'j, has a prefix H'H” H*, where
|H*|| = ||H'|| > ||H"||, and so the #-spoke Bj,+1 has a {-subband C starting with Il
and having the history H' H" H*.

For any factorization C = C1C2Cs with ||C1||+]|C2|| < ||C]|/3, the history of Ca contains
the subhistory H”, since ||H*|| = ||H'||| > ||H"||. It follows that C is a A-shaft, because
A < 1/3. The shaft has length at least ||H’|| > h contrary to Lemma [7.33]

The case of (12)(2)(23) (of (23)(2)(12)) is similar but H” = =Y H/¢HHL (the S-
machine works as LR,,,) and the cycles of LR,,, have equal lengths by Lemma (3).
We come to the final contradiction in this section. O

8 Proof of Theorem 1.2

8.1 The Dehn function of the group G

Lemma 8.1. For every big trapezia A, there is a diagram A over G with the same
boundary label, such that the area of A does not exceed 2Areag(A).
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Proof. Consider the computation C: Vy — --- — V; corresponding to A. According
to Definition one may assume that Areag(A) = csh(||Vo|| + ||Vi]|) since otherwise
A=A

A is the covered by L trapezia Aq,...,Ar with base zvx, where zv (or the inverse
word) is a cyclic shift ot the standard base of M. By Lemmas and all Aq,..., AL
are superscript shifts of each other. Let us apply Lemma to any of them, say to
A1, whose top and bottom have labels Wy and W;. If we have Property (1) of that
lemma, then the area of Ay does not exceed c4h(||Vo|| + ||V4|]) since every maximal 6-
band of A; has at most cg(||Vo|| + ||V4]|) cells in this case. Hence area of A does not
exceed Leah(|[Vol[ +[[Vill) < 2eah(|[Wol[ +[[Will) < esh([[Wol| +[[Wil]) = Areag(A), i,
A = A in this case too.

Hence one may assume that Property (2) of Lemma holds for A;. By that
Lemma, items (b,d), the corresponding cyclic shifts (W})? and (W;)? are accessible,
and so removing the last letters x from Vy and V; we obtain disk words V{ and V}.
For the histories H' and H” of C((W})?) and C((W})?), Lemma gives inequality
1| + [ H)| < ¢,

Denote by A_ the diagram A without maximal rim z-band. So A_ has the boundary
P1q1P; 'q; |, where Lab(p1) and Lab(pz) are disk words and Lab(q)1) = Lab(q)2) since
the first and the last maximal two xz-bands of A are L-shifts of each other.

If we attach disks IT; and IIy (of radius < t each) along their boundaries to the top
and the bottom of A_, we obtain a diagram, whose boundary label is trivial in the free
group. Hence there is a diagram E with two disks whose boundary label is equal to the
boundary label of A_, and the area is less than < 3eit(||V{|| + ||V/|| by Lemma If
we attach one z-band of length ¢ to E, we construct the required diagram A(i) of area
at most < 3ert(|[Vol| + |[Vill) < est(|[V (DI + [[V(2)I]) O

Lemma 8.2. The Dehn function d(n) of the group G is O(n?).

Proof. To obtain the quadratic upper bound for d(n) (with respect to the finite presenta-
tion of G given in Section []), it suffices, for every word W vanishing in G with ||[W|| < n,
to find a diagram over G of area O(n?) with boundary label W. Since |W| < ||W|],
van Kampen’s lemma and Lemma provide us with a minimal diagram A such that
Areag(A) < Ny(n + oz(A))? + N3u(A) for some costants N3 and Ny depending on the
presentation of G. By Lemmas [7.15] (a) and the definition of p(A), the right-hand
side does not exceed Ny((1+c¢)n)? + N3Jn?, and we conclude that Areag(A) < Con? for
some constant Cj.

Recall that in the definition of G-area, the subdiagrams, which are big trapezia
[,T/,..., can have common cells in their rim g-bands only. By Lemma [8.1] any big
trapezia I' from this list with top p; and bottom po can be replaced by a diagram r
with (combinatorial) area at most 2Areac(I"). When replacing all big trapezia I', TV, ...,
in this way, we should add g-bands for the possible intersection of big trapezia, but for
every I' of height h, we add at most 2h new cells. So the area of the modified diagram
E is at most 3Areag(A) < 3Coyn?. Hence the required diagram is found for given word
w. O

8.2 The conjugacy problem in G

Recall that the rule #(23) locks all sectors of the standard base of M except for the input
sector RoP; and its mirror copy. Hence every 0(23) !-admissible word has the form
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W(k, k') = wia*wa(a’) % ws, where k and k" are integers and wy, ws, w3 are fixed word
in state letters; w starts with £.

Lemma 8.3. A word W (k, k) is a conjugate of the word W, in the group G (and in the
group M ) if and only if the input o is accepted by the Turing machine My.

Proof. Let the S-machine My accept of. Then by Lemma , we have an accepting
computation C of M starting with W (k, k) and ending with Ws.. By Lemma one
can construct a corresponding trapezium A. Since the computation C uses neither the
rules of Step 1, nor the rules of Step 2, nor the rules #(23)*?, the labels of the edges of A
have no superscripts. Hence the bottom of A is labeled by W (k, k), the top label is W,
and the sides of A have equal labels since the S-machine M have cyclic standard bases.
It follows from van Kampen Lemma that the words W (k, k) and W, are conjugate in
the group M, as required.

For the converse statement, we assume that the words W (k, k) and Wy, are conjugate
in G. Recall that the definition of annular diagram A over a group G is similar to
the definition of van Kampen diagram, but the compliment of A in the plane has two
connected components. So A has two boundary components. By van Kampen-Schupp
lemma (see [12], Lemma 5.2 or [I4], Lemma 11.2) there is a annular diagram A whose
boundary components p; and ps have clockwise labels W (k, k) and Wy.. As for van
Kampen diagrams (see Subsection , one may assume that A is a minimal diagram
and there are no two disks in A connected by two f-spokes B and C provided there are
neither disks nor boundary components of A between B and C. This property makes the
disk graph of A hyperbolic as in Subsection [7.1.2} if A has a disk, then there is a disk
with at least L/2 spokes ending on A (see Corollary 10.1 in [I4]).

However each of p; and ps has only one f-edge, and it follows that A has no disks
since L/2 > 2. Hence the unique maximal f-band B of A has to connect these f-edges.
Cutting A along a side q of B, we obtain a reduced van Kampen diagram I' over the
group M. Tts boundary path is p1QP2_1q'71, where Lab(q') = Lab(q). The maximal
f-bands of I' connect q and g since they cannot cross a g-band twice by Lemma [5.6]
Hence I is a trapezium with top p; and bottom ps. The base of I' is standard since the
top/bottom labels have standard base.

The equality Lab(q') = Lab(q) implies that the side edges have no superscripts
because Lab(q') has to be a +1-shift of Lab(q). It follows from Lemma and the
definition of (0, ¢)-relations that I" corresponds to a reduced computation C: W(k, k) —
-+« — Wy having no rules of Steps 1,2 and no 6(23)*!. Therefore the word o is accepted
by My by Lemma (2).

O

Proof of Theorem[1.2 Since the Turing machine My accepts a non-recursive language,
the conjugacy problem is undecidable for the group G by Lemmal[8.3] The Dehn function
of G is at most quadratic by Lemmal8.2] To obtain a lower quadratic estimate, it suffices
to verify that if a f-letter 6 and a-letter a commute, then by Lemmas and the
area of the word a"0"a="0~" is equal to n? (or to use [2]: every non-hyperbolic finitely
presented group has at least quadratic Dehn function). The theorem is proved. O
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area of a word,

band,
a-band,

annulus,
base of a f-band,
bottom path bot(B5),
crossing bands,
history of a g-band,
maximal band,
median,
¢-band,
rim band,
sides,
start and end edges,
step history of a ¢g-band,
6-band,
trimmed,
trimmed bottom and top paths:
tbot, ttop,
{-band,
top path top(B),
band moving transformation,

clove,
clove ¥ = ¢l(m, By, Br—3) of the minimal
counterexample from Section
6.5]
A the subdiagram formed by II and

v,

:

(resp. Eg): the comb formed by
the maximal 0-bands of W, ;1
(resp.of \IJ;)JH),

I';j subtrapezia between B; 1 and B;,
67

hj+1 the hight of Fj,

\IJ% (resp. W0 A% is the subdia-
gram of W;; (resp. of ¥, of A)
obtained after replacing the sub-
path p;; (of p ) by qij (resp. by
q = q1,7-3) in the boundary,

Pij = top(Bi)ui_jlbot(B)j_l, where
u;; is a subpath of OII,

p(¥) the common subpath of oW
and OA starting with the #-edge

E;
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of By and ending with the f-edge
of BL_3,
pij (V) the common subpath of 0¥
and OA starting with the f-edge
of B; and ending with the f-edge
of Bj,
dii+1: a shortest path homotopic
to pii+1 in the subdiagram W,;,
such that the first and the last
t-edges of q;;+1 coincide with
the first and the last f-edges of
Pi,i+1, [07]
Qij = Qiitl,---9j-1,5 if 7 > 1+1,
67
r: the 6-bands of W crossing By _3 do
not cross B, and the #-bands of
U crossing B; do not cross B,41
,[64]
y; the bottom path of T';,
z; the top path of I';,
comb,
basic width,
handle,
height,
tight,
combinatorial length of a path,
copy of a word in a different alphabet,

design,

arcs, [6]]
chords,

length of an arc,

parallel arcs,
disk word,

equivalent S-machines,
G-area,

the highest parameter principle,

history, working and input subwords of
the base of a computation of My
and M3,

hub,

group M,
generators of the group M,



relations of the group M,

mixture pu(A) of a diagram,

necklace,

beads,
J-mixture,

”J(O%
sets Pj,

parameters used in the paper,

co - the parameter controlling the
area of a comb (see Lemma6.9)),
43l

c1 - the parameter controling the
space of a computation of Mg
(see Lemma [3.14)),

co -parameter controlling the space
and length of computations of
M satisfying Property (B) (see
Lemma ,

c3 - parameter controlling the length
of an accessible computations of
M whose step history is either
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(1)(2)(3)(4) (see Lemmal[4.9),

c4,c5 - parameters controlling the
length of accessible computa-
tions of M (see Lemma4.10)),

c¢ - the parameter controlling the
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perimeter (see Lemma [7.16)),
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J - the parameter of the mixture of
a van Kampen diargam over G,
it is between K and 61,

K - the length of a rim #-band
which can be removed from a di-
agram, it is between L and J,
K > 2Ky =4LN (see and
Lemma ,

L - the number of generators ¢(*) of
the group G for each state letter
q of M, the order of W, in G,
341

Lo - a number satisfying ¢5 < Lo <
L,
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A - the parameter of A-shafts (see
Definition ,

N - the length of the standard base
of the S-machine M,

Ni, No - parameters controling the
G-area of a van Kampen dia-
gram in terms of its perimeter
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N3,N, - parameters controlling the
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ox(A),

permissible word,
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quasi-trapezium, [5§|

S-machine,
admissible words of an S-machine,
base of an admissible word,
faulty base of an admissible word,
21
sector of an admissible word,
circular,
computation of an S-machine, [9]
history of computation, 9]
length of a computation, [9]
reduced, [9]
space of a computation, @]
configuration of an S-machine, [9]
end configuration of an S-machine, 9]
end state letter of an S-machine, [9]
hardware of an S-machine,
LR,
parallel work of LR or RL in sev-
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LR,
M,
accessible computation of M,
accessible configuration of M,
eligible computation of M,
eligible history of computation of
M,
one step computation of M,
s1(M) - the start configuration of

M,
transition rules 6(i,i + 1),



Wae, the accept word of M,
M17

I (o) - a start configuration of
M;,
M,,
As(H) - an end configuration of
M,,
history sector of a configuration of
M,,
I(oF, H) - a start configuration of
M,,
input sector of a configuration of
M,,
working sector of a configuration
of Mg,
M,,
history sectors of My,
input sector of My,
M;3,
x-rules of M3,
tame configuration of Mg,
My,
M;,

parts of state and tape letters of an
S-machine,
RL,
recognizing a language, [9]
accept configuration of an S-
machine recognizing a language,
O
accepted configuration of an S-
machine, [9]
accepted input word, [
input of a configuration of an S-
machine recognizing a language,
8]
input sector of an admissible word
of an S-machine, [9]
rule of an S-machine,
application of a rule,
domain of a rule, 9]
locking a sector, [9]
part of a rule,
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software of an S-machine,
standard base of an S-machine,
start configuration of an S-machine,
i8]
start state letter of an S-machine, [9]
state letters of an S-machine,
tape letters of an S-machine,
ox(A) - the oy-invraiant of a diagram,
62]
shaft,
A-shaft,
standard history,
superscript shift or k-shift,

(0, a)-cell,
(95 Q)_Ceua

trapezium, {0

base,
big,

bottom,

H'-part of a trapezium where H' is
a subhistory,

height,

history,

left and right sides,

standard,

step history,

top, B0
Turing machine My,

van Kampen diagram,

area, [35]
boundary 9(A),

cell,
labeling function,

reduced,

W (k, k') - a word in the domain of 6(23),
26|

X s, a left alphabet,
X r, a right alphabet,

Y-length of a word,
Y -projection of a word,
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