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Abstract—Faceted execution is a linguistic paradigm for dy-
namic information-flow control with the distinguishing feature
that program values may be faceted. Such values represent
multiple versions or facets at once, for different security labels.
This enables policy-agnostic programming: a paradigm permit-
ting expressive privacy policies to be declared, independent of
program logic. Although faceted execution prevents information
leakage at runtime, it does not guarantee the absence of failure
due to policy violations. By contrast with static mechanisms
(such as security type systems), dynamic information-flow control
permits arbitrarily expressive and dynamic privacy policies but
imposes significant runtime overhead and delays discovery of any
possible violations.

In this paper, we present the two different abstract inter-
pretations for faceted execution in the presence of first-class
policies. We first present an abstraction which allows one to
reason statically about the shape of facets at each program
point. This abstraction is useful for statically proving the absence
of runtime errors and eliminating runtime checks related to
facets. Reasoning statically about the contents of faceted values,
however, is complicated by the presence of first-class security
labels, especially because abstract labels may conflate more than
one runtime label. To address these issues, we also develop a more
precise abstraction that relies on an analysis tracking singleton
heap abstractions. We present an implementation of our coarse
abstraction in Racket and demonstrate its performance on several
sample programs. We conclude by showing how our precise
domain can be used to verify information-flow properties.

I. INTRODUCTION

Digital systems are used to manage sensitive data more than
ever before. As these systems continue to grow in complexity,
so do their privacy policies. In the wild, these policies are
dynamic, imperfect and evolve over time, yet we still lack the
tools to design software robust to policy evolution. Developers
face daunting (re)engineering efforts in order to ensure sys-
tems correctly implement their stated policies—the program
logic to implement these policies typically being scattered
throughout a codebase, making it hard to gain confidence in
its correctness. Unlike program crashes—which may simply
cause downtime—bugs in policy code is likely to have privacy
implications for millions of users.

There is a vibrant research community built around rea-
soning about the information-flow security of data. These
efforts have culminated in successful programming languages
(e.g., Jif [35]), analysis techniques (e.g., self-composition and
product programs [6], [5]), and core formalisms (e.g., the
dependency core-calculus and decentralized label model [34]).
However, all of these solutions assume a single static privacy
policy will hold forever. As we are reminded—often daily—
this is essentially never the case.
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Policy-agnostic programming [48] allows developers to
write code that interacts with sensitive data without any
additional logic to enforce the data’s privacy policy—the
implementation of such logic is often error-prone and changes
rapidly. Instead, a dynamic monitor is used to ensure the
system respects the data’s privacy policy, regardless of the
functional program logic. This allows data to be guarded by
privacy policies that are written independently but remain as
expressive as the underlying language itself.

In this paper, we present a static analysis methodology for
programs written in the policy-agnostic style. Our technique
works by analyzing the program using a semantics built
on faceted execution—a dynamic monitor for policy-agnostic
programming. Faceted execution [3], [4] represents privileged
data via decision trees, where each node is a policy or privilege
level (keyed on a label), and branches represent views of the
data from two perspectives: one where the nodes policy grants
the privilege, and one where it doesn’t.

As computation progresses, faceted execution normally
must propagate data from both views, versions, or privilege
levels, ensuring that protected data is never leaked to an
unprivileged context other than by means of an explicit obser-
vation (and evidence that the policy holds). We leverage this
faceted semantics and design a static analysis using abstract
interpretation [11] of an abstract machine [43]. The result is a
static analysis for policy-agnostic programs which manipulate
data in a system with dynamic authorization policies.

A core technical problem in designing our abstract inter-
pretation is the choice of abstract domain for faceted values.
As we show, the natural structural abstraction for facets
is unsound, as our abstract interpretation must necessarily
approximate the set of (unbounded) runtime policies in a finite
way. Instead, we present a sound but imprecise abstract domain
for facets which merges the two branches of a facet into a
single branch representing an approximation of both values.
Additionally, we observe that we can distinguish branches as
long as the label guarding the facet is approximated by a
singleton abstraction. Therefore, we present a more precise
representation of facets whose labels can be shown to be
representing exactly one concrete label.

We implemented our abstract interpreter in Racket, scaling
our core formalism to handle k-ary lambdas, built-ins, let
bindings, and conditionals. Our precise abstract domain for
facets relies on abstract counting—a technique to ascertain
whether abstractions of labels in our programs are singletons in
the analysis. Abstract counting [32] is known to be imprecise
using a global heap analysis, so we present a frontier semantics
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for retaining high-precision abstract counting while maintair}-
ing an efficient analysis overall. Our analysis then uses a lazy
count-based facet collapse, so that we can soundly move from
a high-precision analysis when possible to a sound but less
precise abstraction when necessary.

Specifically, this paper makes the following contributions:
first, we present a novel formulation of faceted execution as a
small-step semantics. We develop a sound abstract domain for
faceted values that is precise for the abstract labels guarding
its facets but imprecise for its underlying values—we call thig
a branch-insensitive abstraction. Next, we present a precise
abstract domain for faceted values that retains its sensitivity
to distinct branches but is only sound for singleton abstract
labels. We present an implementation of our coarse abstract
domain in Racket and detail its performance on five benchmark
programs. We conclude by discussing how our precise abstract
domain may be applied to verify information-flow properties.

II. BACKGROUND

To introduce our setting we present the implementation of
Battleship, a small guessing-based board game, using a policy-
agnostic programming paradigm. In this game, each player
has a grided board on which they place tiles (or “ships”). The
players hide their boards from each other as play progresses
in rounds. Each turn, a player guesses the position of a ship
on the other players board. If the guess is successful, that tile
is removed from the board. Play ends once one player’s board
has no remaining tiles, at which point that player loses.

We implement game boards as lists of cons cells represent-
ing the (x,y) coordinates of ships. Board creation yields an
empty list, and adding a piece is implemented using cons:

(define (makeboard) '())
(define (add-piece board x y)
(cons (cons x y) board))

Next, we define mark-hit, which takes a player’s board and
removes a piece if the guessed coordinate is present. We return
a pair of the updated board and a boolean indicating whether
the guess was a hit:

(define (mark—hit board x y)
(if (null? board)
(cons board #f)
(let* ([fst (car board)]
[rst (cdr board)])
(if (and (= (car fst) x)
(= (cdr fst) y))
(cons rst #t)
(let ([rst+b (mark—hit rst x y)1)
(cons (cons fst (car rst+b))
(cdr rst+b)))))))

Although mark-hit will operate on sensitive data (game
boards), it is written without any special machinery to maintain
the secrecy of board. Protecting data w.r.t. policies is instead
handled automatically and implicitly by a runtime monitor.
When Alice and Bob want to play, they both create a label to
protect their game board. A label is a dynamically allocated
predicate that takes an argument, a credential—only if the
predicate returns true for the credential should the value’s
secret branch be observable. Alice’s label is used to annotate
whatever data she wants kept secret. Supposing Alice chooses
to be player 1, she will use the following label:

5 ‘(define alice—label (label [x] (= 1 x)))

Bob would use a similar label (but for player 2 instead of
player 1). At runtime, the label form creates a label £4 and
returns it to the binding for alice-label. When Alice wants to
protect a value, she creates a facet, annotated with her label
and two branches. The positive (left) branch represents the
value as it should appear to her, and the negative (right) to
everyone else:

(define alice—board ( alice-label : (add-pieces
(makeboard) X1 yi .. Xu Yn) © * ))

In the above example, Alice uses x (lazy

CPamily failure) to represent that others parties should
— fail if attempting to observe her data. In
P fF}ie{ls other applications, she might choose a public
p2  ps  default value to reveal to others. She may

even want to create a nested facet. For ex-
ample, in a social-networking application she may want a
nested facet consisting of two labels: {ryicnas and Cramily. She
would present three views of her social-media profile: p; to
her family, containing her phone number, p, to her friends
showing her interests, and p3 to everyone else, showing only
name and email.

As gameplay progresses, Alice and Bob both make guesses,
and a driver calls the function mark-hit with each of their
(faceted) game boards. However, because Alice and Bob’s
game boards are both facets, mark-hit cannot be immediately
applied, as the argument board is a facet. Faceted execution
“splits” the execution of the function on faceted arguments,
running it first on the positive branch, then again on the
negative branch. Finally, the results from each branch are
merged again to produce a faceted value:

(mark—hit {(£4 7vt o v7) x y)

T~

(mark—hit v x y)=v (mark—hit v~ x y)=1"

It
(Ly TV oV

Because the applied function could be stateful, faceted
execution also records the current privilege level in a program
counter when splitting evaluation over two branches of a
faceted value. The program counter is used to build new
label-guarded facets when writes are made to the store inside
a privileged context. We expand upon these subtleties in
Section III, where we present a full semantics.

To introspect on faceted values (e.g., the return value
from mark-hit) we must observe them. Facet observation is
performed via the obs form in our semantics, which takes a
label, argument to the label, and potentially-faceted value:

env = {fp > (Ax. (= x 1))}
(obs alice-label 1 (€o ? vt o v7)) ~*
Gf (=1 1) vt v7) ~wyt

(obs 1 v! v2) first executes the predicate associated with
1 using the argument v'. Then, obs will remove all of the
facets from v2, selecting either the positive or negative branch
based on whether the label’s predicate returns true or false. For
example, env(£a)(1) ~* true, so obs select the right side of
the Alice’s facet.



Analyzing Faceted Execution. Faceted execution will
ensure at runtime that no secret information leaks from Alice
to Bob. However, faceted execution cannot guarantee sensible
results (e.g., observing * results in failure). We want to be
able to write code independent of the policy, while retaining
the robustness of dynamic policies. Faceted execution achieves
this at runtime, but doesn’t tell us anything about the policy
statically. Additionally, faceted execution is a fairly heavy-
weight dynamic monitor, imposing significant performance
overhead, especially on code that uses many-faceted values.
Ideally, we want the best of both worlds: the flexibility of
dynamic policies with the ability to verify many of them up-
front. In the case that we cannot verify a policy ahead of time—
as all analyses must concede some degree of imprecision—we
can gracefully degrade to normal faceted execution.

Static analysis has dynamic monitoring to fall back on,
where it fails, so whatever can be learned statically will be of
benefit to optimization and verification with no improvement
being the worst case. This case may arise when complex and
dynamic use of faceted values thwarts analysis by requiring
it to see through many layers of abstraction. Neither the
failures or successes of static analysis will lead to an increased
permissiveness in the compiled application: failures can fall
back on dynamic monitoring, successes correspond to true
proofs that the application code must behave as indicated by
the analysis. Analysis is at odds with dynamic monitoring
in that all relevant code should be available or an analysis
cannot help but yield no information. For example, a system
may allow for security or privacy policies to be updated live,
without rebuilding the application code; in this case, static
analysis can only verify properties that are fully independent
of any information-control policies. Static analysis can only
verify specific properties of code that is available at analysis-
time.

For this example, our static analysis (developed in Sec-
tion IV) tells us that every call to obs selects only the positive
view of a faceted value. This could be used to gain confidence
in the program’s security despite the use of dynamic policies.
It also enables an optimization: as the program never violates
the policy, the negative branch of the facets don’t need to be
computed at all. Inside of a compiler (for programs written in
policy-agnostic languages) this result could be used to elimi-
nate the machinery needed to manage faceted applications.

III. SEmanTICcS oF FacETED EXECUTION

Figure 1 gives the syntax for our source language. Apg
extends the lambda calculus with mutable references and three
new forms unique to faceted execution: label creation, facet
creation, and facet observation. Our implementation (described
in Section V) also includes let bindings, conditionals, various
builtins, k-ary lambdas, and sequencing.

The label form dynamically generates and returns a new
label each time it is evaluated. Such labels uniquely address a
policy predicate comprised of a policy variable x and a policy
body e (closed by parameter x and the current environment).
When a policy is later invoked, the body evaluates to a
boolean that indicates whether to observe the positive or

constants
variables
constants | variables

¢ € const == () | true | false | ...
x e var = (identifiers)
e€ expi=clx

| Ax.ele(e) function creation | application

| ref(e)|!e|e—e reference creation | read | write
| label[x](e) label creation

| (e ?Tece) facet creation

| obs[e@e](e) observing a faceted value

Fig. 1. Syntax of Apg

negative branch of a facet. Facets are created with the form
(e1 7 ey o e3) where the label (address) returned by e; is
allowed to be an expression (as label addresses are first-class).
The expressions es and e3 are the facet’s positive and negative
branches, respectively. To introspect on a faceted value, the
expression obs[e;@es](e3) observes the label ey of faceted
value es. The expression e, is evaluated to a key value and
passed to the policy predicate bound to the label bound to e;—
if the policy predicate returns true, all facets guarded by label
e1 under es are replaced by their positive branch, or negative
branch when the predicate returns false.

We formalize the concrete semantics of Apg as a big-step
reduction relation presented in Figure 2. Our presentation pri-
marily follows that of Austin et al. [3]. The reduction relation
U,‘fc takes an environment (p), store (o), and term (e), to
produce a final value and store. The relation is parameterized
by a current program counter (pc) which is a set of branches:
positive or negative labels. As evaluation splits to evaluate the
positive and negative branches of facets, the program counter
remembers which branches were taken. The program counter
is used for two reasons. First, it avoids doing redundant work
by selecting the left branch of a facet such as (£ ? v ¢ v7)
when +¢ € pc, rather than splitting. Second, it is used during
store update to form facets that remember the label of the
privileged information along the branch.

The rules for constants (Const), variables (Var), and lambda
(Lam) are standard. However, many other rules must be ex-
tended to account for faceted values. For example, application
(App) must handle faceted values being applied. Consider the
application (£ 7 Ax. x o Ax. 0)(1). To handle this, the App rule
calls out to an application relation U;‘C. This reduction splits
execution in the case that a facet with label ¢ is applied to a
value (ApPFACETSPLIT), as long as {4+, —{}Npc = @, indicating
that execution has not yet split on £ (so we cannot be sure if
we have permission for label ¢ yet). The application rule first
considers the positive branch, applying (1x. x,p) to 1 while
extending pc to record the fact that the positive branch was
taken. The AppBASE rule applies unfaceted values to arguments
in the expected way. Next, the negative branch is evaluated
under the extended program counter pc U {—¢}, being careful
to thread through the store produced by the evaluation of the
positive branch. After both branches are evaluated, the rule
facets the results again using label ¢, in this case producing
(€71 ¢ 0). To avoid creating redundant facets, the application
rules do not split execution when a branch is already present in
pc. Instead, the rules AppFaceTLEFT and ApPFACETRIGHT select
the appropriate branch of the facet to apply. Last, ApPSTAR
handles the application of *, a value representing lazy failure,
useful as a default value for store updates.
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Fig. 2. Concrete Big-step Semantics (Selected Rules)

The Facker rule creates a faceted value by calling out to the
{- 7 - ¢ -) meta-operator, which canonicalizes a facet. Facet
canonicalization ensures that all facets exist in a normal form,
and prevents the creation of facets such as (¢ 7 ({ 7 a ¢ b) ¢
(€ o ¢ ¢ d)), collapsing this instead to (£ 7 a o d). Sets of
labels can also be given where (@ 7 v; ¢ vo) = v and ({k} U
pc T vy ove) =Kk ? {pc ? vy o vy) ¢ va). This technique
was first used by Austin et al. [3] to optimize the runtime
of faceted programs, since the semantics is otherwise doing
redundant work. We omit the definition of canonicalization
due to space: the interested reader can refer to Figure 6 in [3].

Labels are created with the LABEL rule. This rule extends the
store with a new closure, and binds it to a fresh label address
¢, returning {. Because the label may be produced under a non-
empty program counter, the label address is faceted under the
current pc, with a default value of x. Unless the label escapes
its enclosing context, it is essentially an unfaceted value, as
the subsequent Oss rule will unfacet £ using the current pc
when checking the policy associated with the label.
let [ = label[x](false) in
let fv=(l? 100 o 200) in
let I = label[x](x) in
obs[l@Qtrue](fv)

Labels in our semantics are
store-allocated, rather than lexi-
cally scoped. This is important
to retain the security of program
values. To understand why, consider the example on the right,

which rebinds the label £. In our semantics, this will result
in the faceted value (¢' ? 100 o 200), not 200—¢' is the

vaddr ¥ label — val |ahe] address generated by the first use of the LaBEL rule (on

line 1). If the semantics for label introduction rebound the
current / from the lexical environment, instead of dynamically
generating a fresh one and returning it as a first-class address,
the program would be able to circumvent the label originally
associated with the facet by simply rebinding to a more
permissive policy (e.g., Ax. true).

The Oss rule evaluates syntax obs[e;@ez](e3), which intro-
spects on a faceted value es. It first evaluates e; to a label ¢,
ey to a value vy, and e3 to a possibly-faceted value vs, and
calls out to the meta-operator obs(¢, b, vs). This meta-operator
performs the observation, returning the base value in the case
its argument vs is a base value, and the appropriate branch
(based on b) if v is a facet whose label is €. Otherwise (as
the facet being observed may be farther down the tree), obs
recurs to both its branches, rebuilding facets upon its return.

Our semantics allows references, reads, and writes via the
REer, READ, and WRITE rules respectively. The REr rule creates a
new reference cell in the store and initializes it with the result
of the expression e. Crucially, REr must remember the current
pc upon creating a faceted value. For example, consider the
evaluation of (Ax. ref(x))((¢ 7 1 ¢ 0)). During the positive
branch of (¢ 7 1 o 0), we have that pc = {+{}, via the
AppFaceTSpLIT and AppBASE rules. Under this pc, the REr rule
creates a reference to (¢ 7 1 ¢ %), as simply returning a
reference to 1 would strip away the label ¢ and would permit
the exfiltration of sensitive data.

The Reap and WRITE rules are similar, remembering that if
they modify the store they must do so in a way that respects
pc. READ uses the metafunction read, which takes pc as an
argument and uses it to return the correct branch of a faceted
reference cell. For example, read({+¢}, o, (¢ 7 1 ¢ %)) returns
1 and read({-I},0,¢(f 7 1 o %)) returns *. The WRITE rule
is similar, using the value presently in the cell as the default
value in the case of facet construction.

The Projection Property and Noninterference. Austin et
al. [3], [4] demonstrate how faceted execution simulates mul-
tiple concrete runs, one for each combination of branches in
p(branch). This is done via a projection property. Projection
interprets every ¢ € p(branch) as projection of (£ ? v o v7)
to vt if +¢ € g and to v~ if —¢ € g. This is extended to environ-
ments and stores in the expected way. We say that two sets of
branches pc and g are consistent when they do not contradict
on any labels, i.e., =3¢.(+1 € pcA=l € q)V (=l € pc A+ € q).

Theorem III.1 (Projection Theorem). Suppose p,p, e Ugc o’ v.
Then for any q € p(branch) such that pc and q are consistent,

qa(p).q(c).q(e) U7, a(o”).q(v).

As our semantics is largely similar to that in Austin et al. [4]
(which updates the projection theorem to include support for
first-class labels), we elide the proof of the projection theorem.
The projection theorem can be used to immediately prove
termination-insensitive noninterference, as shown in [3], [4].

Small-Step Semantics of Faceted Execution. As a
first step towards abstraction, we reformulate our big-step
semantics in the small-step style using an abstract machine. We
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Fig. 3. Concrete Small-step Syntax and Semantics

assume that expressions in our language have been converted
to A-Normal Form [16], shown in the top of Figure 3. Our
atomic expressions include constants, variables, and lambdas,
which are evaluated using A[-].

The top of Figure 3 also shows the configurations of our
abstract machine. Configurations include environments (p),
stores (0), and program counters (pc)—all with the same
structure as in Figure 2. Additionally, configurations include
stacks, which are lists of frames.

The E and A configurations in our small-step semantics
correspond to the reduction relations Uﬁc and U/;C in Figure 2
respectively. Starting from evaluation of both £ and A, com-
putation terminates with a value in the 7' configuration, which
inspects the continuation and handles it appropriately.

The small-step semantics are shown in Figure 3. Stack
frames track work left to be done once reaching a value. For
example, in the AppFAcETSPLIT rule, the reduction Uﬁc first eval-
uates the positive branch of the facet using the llgcu{ ; reduction,
before then evaluating the negative branch. This corresponds
to the rule for A{{/ 7 v; ¢ v2)...) in the small-step semantics,
which first performs the application of v;, extending pc with
+¢. However, this rule uses the [ 7 O ¢ A{vo, Vv, pc) frame to
remember to apply vo before forming a result using v, and
tracking / to ensure that {-/} is added to pc.

Expression evaluation occurs within the E configuration,
which defers to the other configurations when it encounters
possibly-faceted values. The evaluation of atomic expressions,
reference creation, label creation, reads, and writes are all
analogous to the big-step semantics, and immediately produce
a T state. Application defers to A, which applies the argument
vy to the possibly-faceted function v;. The A configuration
reduces v; to a base value before finally applying it, building
continuations along the way to explore negative branches.

Facet creation defers to E to evaluate the positive branch of
the facet while extending pc with +¢, remembering to go back
and evaluate the negative branch using the (¢ 7 O¢E{es, p, pc))
frame (which must remember ¢ and pc so that eo can be run

where £ = Alla1](p)

vo = Allazll(p) vz = Alasl(p) « = O,o,v3) ik

where +{ € pc
where —{ € pc
where {(+€, -} N pc =@ pc’ = pcU {+¢)}

K =(l700Ava,v,pc)) i k

K) T{v1,0,{{ 7 vy 0n) k) w TL? v 0 va), 0, k)

T{b, o, O(€,0,v) :: k) »> T{obs({,b,v), o, k)

with {—{} U pc). Observation first evaluates each of the label,
parameter, and value to observe to values. It then applies o(¢)
(as ¢ is store-allocated) to the parameter. This application must
result in a boolean, and when it does so, the O(¢, O, v3) frame
will be indicate that an observation should be performed on
v3, reducing the ¢ facet in v3 to its positive or negative branch.

As previously mentioned, the A configuration performs
applications. The base case defers to the E rule using the
closure’s body and extending the environment for the binding.
In the case that v; is a facet, the A configuration will
recursively pull apart facets, via subsequent A forms, and
remembers the negative branch in a continuation. As in the
big-step semantics, if a facet with label ¢ is applied and either
+¢ € pc or = € pc, the appropriate branch of the facet is
taken to avoid redundant splitting.

The T rule decides what to do with a value based on the last
frame in the stack. The (£ ? O ¢ E{e,p, pc)) frame explores
the negative branch e of a facet during facet creation, and
pushes the (¢ ? v ¢ o) frame onto the stack. This frame
remembers to create a facet from ¢, v, and the value in
the value position of the 7 frame. As mentioned previously,
{7 v o A(vy,vq, pc) remembers to jump back to evaluate
the application of a negative branch, remembering to create
the facet upon completion. The O(¢, O, v) frame performs an
observation, by calling out to the obs(, b, v3) meta-operator.

We conclude this section by the statement of a theorem
that stipulates our small-step semantics simulates our big-
step semantics. The full statement of this theorem and its
corresponding proof may be found in a companion tech
report [30]. Our theorem, small-step simulation, establishes
a mapping from each evaluation in the big-step semantics to
a corresponding sequence of steps in our small-step semantics
(nothing is said about the other direction). Given this theorem,
our big-step semantics is approximated by our small-step
semantics, which is in turn approximated by the abstract
interpretation developed in section IV. Taken together, this
gives us soundness for safety properties.



Theorem IIL.2 (Small-step Simulation). The small-step se-
mantics simulates the big-step semantics, that is, the following
are mutually true:
1) For all p, o, e, 0 and v.
If: p,o,e U1E>c o,y
Then for all: «
E(e,p, pc,o, k) ~>* T{(v,0”, k)
2) For all: o, v, vo, 0 and v:
If: oovi(ve) U, o,v
Then for all: «
A(v1, Vo, pc, o, k) w* T(v, 0, k)

Proof. We omit a detailed proof here and defer its details to a
tech report. The proof proceeds by mutual induction on each
of the big-step derivations along with a lemma establishing
simulation for atomic values. O

IV. AN ABSTRACT SEMANTICS FOR FACETED EXEcUTION

We develop a static analysis of this faceted execution
semantics using the framework of abstracting abstract ma-
chines (AAM): a general approach to developing abstract
interpretations of abstract-machine semantics [44]. Abstract
interpretation is a well-explored set of tools and techniques
for approximating the fixed points of a semantic function over
an infinite lattice either by structurally finitizing the lattice
(formalizing a Galois connection between the infinite and finite
lattice) or by accelerating convergence to a fixed point (using
a widening operator), or both [11], [12]. The heart of the
AAM approach is the use of small-step transitions, preparatory
store-allocating transformations shown in section IV-C that
break direct recursion in the state space, and the systematic
derivation of Galois connections for higher-order machine
components (such as abstract stores) by composing Galois
connections for lower-order components (such as abstract
addresses and abstract first-order values).

The problem with structurally abstracting a traditional op-
erational interpreter for the A-calculus lies in the recursive
nature of closures: closures include environments which can
include closures, and so forth to an arbitrary depth. It should
be no surprise as this feature is precisely what makes uni-
versal computation through higher-order recursion possible
with only variable reference, lambda, and application. All
static analyses, however, must voluntarily concede precision
in order to achieve guarantees of computability (and bounded
complexity).

The AAM methodology is to prepare a small-step machine
for abstraction by first store-allocating all values (not just
explicit ref cells). This means that binding environments
map variables to store/heap addresses, and stores map these
addresses to values (e.g., closures, ref addresses, base values).
At this point, the address set, along with the domains for base
values, can be finitized: abstracted to a finite set of abstract
addresses at which an approximation of multiple concrete
values become conflated during analysis. This imprecision in
the store, where a single abstract address can map to many pos-
sible concrete values, goes hand-in-hand with nondeterminism
in the small-step transition relation (e.g., multiple closures can
be bound to f at a call site f(..)).

setup £ mk-pol = Aa. label?[x] (xZa)
alice-pol = mk-pol(ALICE) ; alice-bet = (alice-pol ? TAILS ¢ )
bob-pol = mk-pol(BoB) ; bob-bet = (bob-pol ? HEADS ¢ x)

e1 = let setup in obs[bob-pol@gos|(alice-bet)

1>

eo = let setup in (bob-pol ? alice-bet ¢ x)
(C1) ey ~* 0bs[(B@BOB]((£a 7 TAILS © %)) ~* (o 7 TAILS © *)
(Ul) €= e1 " €= obs[{@QBOB]({¢ ? TAILS ¢ %)) " € = {TAILS, x}
T=9 T={Cr {(Ax. xZ a,{a > ALICE})) O =...unchanged
AAx. x L a,{a — BOB))})
(C2) eo (g T (L T TAILS © %) © %) " ({7 (0 T TAILS © %)

o/(\t’B?*o*))

s

" e = ({7 TAILS ¢ %)

(U2) T=ea " = (7 (7 TAILS 0 *) o *)
T T = ...unchanged

c=0 T={l {(Ax. x £ a,{a — ALICE})
AAx. x £ a,{a — BOB))}}

Fig. 4. An example of concrete and abstract faceted execution. (C1) and (C2)
are concrete executions, and (U1) and (U2) are unsound candidate abstract
executions.

Finitizing the store is fundamentally how AAM cedes preci-
sion in order to gain a finite, computable, and sound analysis,
and the selection of abstract addresses in this process has also
been shown to be a exceptionally broad parameter with which
to tune analysis polyvariance (e.g., context sensitivity) [19].
Once a finite domain for abstract addresses and abstract base
values has been selected, these abstractions (formally Galois
connections) may be systematically lifted to abstractions for
stores, environments, and machine states [31].

A. Challenges Abstracting Faceted Values

As much of the AAM process for a language like ours
is standard, the core issue is our representation for abstract
values—especially abstract faceted values. The representation
of abstract base values is relatively straightforward: we ab-
stract constants with a flat lattice (e.g., L ©— 1 © T, but
1 Z 2 and 2 Z 1). We abstract closures to a powerset of
abstract closures (that is, a syntactic lambda paired with an
abstract environment mapping variables to abstract addresses).
We abstract addresses for ref cells to a powerset of abstract
addresses. Finally, we abstract concrete addresses according to
our desired polyvariance—in the simplest case, this means as-
signing one abstract address to each syntactic variable (called
monovariance or context insensitivity).

We are now faced with our choice of a domain for abstract
faceted values. As a first attempt, we might structurally ab-
stract facets via their components. Unfortunately, this approach
is necessarily unsound if we want to retain any precision in
our abstraction of facet-structure (i.e., the existence of labels
and differentiation of branches).

To understand the issue, consider Figure 4. The top of the
figure shows two examples, e; and e, sharing a common
prologue setup. The setting for our examples is a guessing
game in which Alice and Bob both place bets as to the result of
a coin flip (heads or tails). Both players will use facets to hide
the information from each other. The function mk-pol takes
an argument a and returns a label (capturing a in the closure
encoding the label’s policy) that will reveal its positive branch
only to a user with key a. The label alice-pol uses mk-pol
to generate a label specialized to key auice, and Alice’s bet is



faceted on this label. Similarly, Bob creates a label bob-pol
that reveals its positive branch to himself, and facets his bid
for neabs. The example e; attempts to observe Alice’s facet via
Bob’s label, which should make no change to the faceted value
because {p is not present in it. Second, es forms a facet of
Alice’s bet under Bob’s label, which our concrete semantics
represents as a faceted value encoding a decision tree with
two levels: one for Alice’s label, and one for Bob’s. Only
after successively observing on both of these labels will the
bet become visible.

Directly under the example, we show a concrete execution
(C1) of e; via the small-step semantics (abbreviated somewhat
for presentation). Starting with the initial state for e;, control
will eventually step to the obs form on the last line, in a
configuration where a label {5 was dynamically generated for
alice-pol by the rule for label in Figure 3. In our example, the
labels alice-pol and bob-pol are distinct addresses at runtime,
and so the observation on the last line is simply a no-op. The
rule for facet observation (see obs in figure 2) splits in the
case that the label being observed is different than the one
guarding the facet, and both branches (taws and %) are base
values—which are simply returned when observed. The final
result is the same facet that was originally being observed:
(€p ?taws o ). Similarly, (C2) shows a concrete execution
of e2. As control steps to the facet creation form, alice-bet
will become bound to a faceted value representing Alice’s bet.
Facet creation in the final expression will then create a facet
with Bob’s label, guarding alice-bet, and canonicalization will
reorder the labels. The result is a tree of facets placing the
result Taws under the branch {+¢p,+¢s}. Canonicalization
ensures that labels appear in some sorted order, so Alice’s
label will appear higher than Bob’s in the tree.

Below each concrete execution we demonstrate a trace show-
ing the behavior using the proposed abstract interpretation of
the corresponding example using our naive structural abstrac-
tion. To ensure termination, the abstract semantics conflates
certain values, and in particular must necessarily finitize the
set of labels. A monovariant allocator will generate an abstract
address for each label unique to its program point. In our
concrete semantics, the two distinct calls to mk-pol generate
two distinct labels {4 and {p. By contrast, a monovariant
semantics generates a single abstract label ¢, based on the
program point in mk-pol at which the label is created.

As we execute the prologue setup in an abstract setting,
the first call to mk-pol returns the label £. In the store, this
label maps to a policy closed over the environment {a > aLice}.
Upon executing the third line of the example, mk-pol is called
again, extending ¢ so that its policy also closes over {a — Bos}.

At this point, the abstract semantics cannot differentiate
between what would have been (in the concrete semantics)
{a and {g. Therefore, when control reaches the obs form in
e1, instead of splitting on ¢p (as would have been done in the
concrete semantics), the abstract label for Bob’s bet is now the
same as the label on Alice’s bet being observed. This could
result in the facet protecting Alice’s value to be removed, as
shown in (U1), and yielding the abstract value {Tas, * ).

Two Broken Interpretations for Abstract Facets. There
are two naive ways we may interpret {taws,«}. First, we

might interpret the abstract value {ais, x} as simply the set
of concrete values {raws, x}. In other words, we may take the
view that an abstract base-value is definitely not faceted, and
that an abstract facet is definitely not a base value. However,
this concretization does not include the faceted layer gener-
ated by the concrete semantics, and thus incorrectly “proves”
(unsoundly) that a base value results from the observation.

Alternatively, we might interpret all abstract values as
possibly faceted or not. If we were to take this approach,
we would achieve a sound result, concretizing {fas, *} as
(€7 {raws, x} o {ras, %} ) U {raws, %}, (really, under all possi-
ble concrete ¢) which includes the result in the concrete run.
However, if we interpret abstract values in this manner, we lose
all precision for facet structure (retaining only information
for base values), as we must interpret any faceted value
(£?7VvT o ¥ ) as VT UV and vice-versa.

An abstract execution of e using the proposed semantics is
also an issue. In this case, as shown in (U2), the facet creation
form now acts as a no-op since alice-pol and bob-pol share
the abstract label ¢. Instead of creating a decision tree with
two levels, the comparison proceeds to create a single facet
guarded by an abstract label representing the disjunction of
Alice’s label or Bob’s label. If we take the first approach in
interpreting this abstract value, we would view it as definitely
faceted on ¢, over the concretization of each branch (i.e.,
{raiLs, % }), but would not know if it were actually faceted on €4,
{p, or both. If we interpret the concretization of abstract labels
disjunctively, Bob’s bet could appear visible to Alice (or the
reverse); if we interpret the concretization conjunctively, Bob’s
bet could appear opaque to himself. In either case our analysis
is unsound. On the other hand, the naive, sound interpretation
treats any abstract value (explicitly faceted or not) as being
potentially faceted by arbitrary further labels (or not at all),
which is useless for verifying security policies.

In fact, this situation is worse than it first appears: any aspect
of our concrete semantics that compares labels can no longer
be relied on (to be—to any degree—both sound and precise)
in the abstract setting. For example, many the rules in Figure 3
decide whether or not to split based on whether a particular
label is in pc. In our abstract semantics, this inclusion check
can no longer make such determinations for abstract labels.
Representing an abstract facet (¢ ?vt o ¥ ) is sound as long
as ¢ is not an abstraction of multiple concrete labels; once this
happens however, the branches v and v* can no longer be
soundly kept distinct. This necessitates that the negative facet
of one concrete label must be conflated with the positive facet
of the other and vice-versa. We leverage this specific insight to
develop a sound and precise solution to the branch sensitivity
problem in Section IV-D.

B. Toward a Sound Abstract Domain for Facets

As a first step toward sound and precise abstract facets, we
formulate a sound abstraction which is precise for the most
essential aspect of facet structure: the abstract labels that are
associated with a faceted value. A key is to observe that faceted
values are a decision tree, and the problem of representing
the abstract labels that may—and that must—facet the value,
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exists at each level of this tree. We construe this problem
as orthogonal to branch sensitivity (keeping positive facets
soundly distinct from negative facets) and present an abstract
domain for precisely representing the abstract labels that may
and must exist for a value.

For the moment, we give up on branch sensitivity and
conflate all positive and negative facets. Instead, we represent
faceted values as a label over the join of both branches,
(¢ 7 vt uV). Although this abstraction of facets does not
allow us to distinguish branches in faceted values, it still
provides us with a sensible result: is the value reaching a
program point faceted and, if so, what base values are being
faceted. For example, we can envision using this analysis in
an optimizing compiler for faceted programs that drops the
dynamic machinery for performing faceted application in the
case that only base values reach a particular application form.

In defining an abstract domain, we must also define a join
operator (L) for abstract facets. This leads to an immediate
question: how should base values be joined into abstract
facets—in other words, if we represent abstract facets as
(é’ ? V), how should we perform the join bv L (f ?7W? It is
natural to simply define LI such that bv U €77y is equal to
(¢ ?vUbv) or equal to vU bv, but, as we’ve discussed, is
unsound if we want precision for facet structure. Consider the
following example (using monovariant allocation) which leads
to such a conflation:

let id(x) =

let v = 1id(( £ 71 0 2))
let vo = id(3)

obs[¢{ @ true] vo

A concrete execution of this program will result in an error:
the obs form does not work for faceted values. Because id
is called twice, the abstract value for x will be the join of
abstractions (¢ 7 1 U 2) and 3. If we define U to distribute 3
inside of the facet, the abstraction of x will be a faceted value
(¢ 7 T) (as we use a flat lattice to abstract constants, the join
of two different constants is T). Instead, we generalize our
domain for abstract values to be product of base values and
faceted value (see val in figure 5). This allows us to directly
represent values which must be a base value (bv x 1), must
be faceted (L x ), or could be either (bv x m). With this
encoding, the abstraction for x in the above example can be
represented: 3 X (1 7 T).

There is one last subtlety in defining LI, which relates how
to merge facets with different labels. We might be tempted to
merge faceted values using canonicalization. To see why this
is incorrect, consider the following example:

let f(x) = obs[bob-label@bob](x)
f({ bob—label 7 X o Y ))
f(( alice—label ? X o Y ))

In a concrete execution, the first call to f returns a
base value, while the second returns a faceted value. How-
ever, if we use a canonicalizing join, the abstract execution
merges the two facets (€7 X o Y) and (€A7X<> Y) to
produce (€A7(€B7X<> XuYyo (€B7Y|_|X<> Y)). As a
result, both calls to f produce a facet guarded by g, incorrectly

“proving” that the first call to f returns a facet.

We could avoid both of these issues by identifying facets
with base values, essentially interpreting (£ 7 V' o¥v") as

vt UV. However, we believe this would significantly hinder

the usefulness of our analysis, as we could no longer use the
analysis to tell us whether any given value was a facet or a
base value representing the join of its branches.

A Branch-insensitive Abstraction for Facets. Our
complete abstraction for branch-insensitive abstract facets is
presented in the top right of Figure 5. For base values we
assume a standard join, which can be tuned alongside the
abstraction for base values to recover the desired precision. We
also assume an injector | bv | for base values that takes concrete
values and injects them into an abstract representation, bv.

Abstract faceted values are represented by v, and comprise
a pair of a bv € base-val and a i € facet-ir map—necessary
to avoid the unsoundness of conflating facets and base values.
We represent abstract facets with a partial map (fac&?nap),
as opposed to a pair of label and underlying value, to avoid
the issues disjoining abstract faceted values with different
abstract labels. This map generalizes a single facet (with
a single collapsed branch) disjunctively to a set of labels
and their associated collapsed branches. That is, (€7 V)
would be represented by {£ v} and (€1 TVviyu (52 ? Vo) by
{(51 — V1), (2 > Vo))

To accommodate our abstract domain for branch-insensitive
facets, we must make corresponding updates to the metafunc-
tions that interact with facets. First, facet creation ({- 7 -))—
which only takes one branch in our coarse abstract domain—
must be updated to form abstract facets via maps.

Store read separately considers the addresses contained in
the base-value component, the labels in l)'jc, and the facets in
the map. For each ¢ € pc, read unfacets ¢ from the facet map
by projecting it, calling read again to push one level down
in the facet map, and rebuilds the result as a facet. This may
seem surprising at first, as our concrete semantics unfacets
labels in pc. However, this is crucial to retain soundness, as we
must remember that £ could concretize to an facet of arbitrary
depth. Separately, read unwraps each label in the facet map
to perform a read and rebuilds the results as a facet map.
The rule for store write is similar, separately considering the
set of base values and faceted values contained the abstract
value. Last, obs joins both the projection of ¢ and a facet map
containing its projection (along with the rest of the values in
the facet map). That obs includes both the projection and a a
facet of the projection is crucial to soundness, again because
abstract depth does not predict concrete depth.

Finally, we define LI on abstract values. Join for abstract
values distributes pointwise both for values and for facet maps
(the domain of two facet maps is joined by set union); e.g.:
<bV1»{€A - Vi) U <bV2v{€B = Vo)) = (bvy U bva, {ly -
V;,\{’B = Vo)) but (b1l - 7)) U Do, (€4 > T}y =
(bvy U bvso, {€4 = Vi UVs}). We present a Galois Connection
for our abstract domain in Section IV-E.

C. An Abstract Interpretation for Faceted Execution

We now present an imprecise but sound abstract interpre-
tation for faceted execution. Our abstract semantics extends
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Fig. 5. Coarse Abstract Small-step Syntax, Metafunctions and Semantics

the concrete small-step semantics presented in Section III,

but redirects all sources of infinite structure through the store
in the standard AAM methodology. Crucially, this means all
values are store allocated so that environments are no longer
directly recursive, and that stacks/continuations are likewise
store allocated as a linked list—this permits stack frames to
be conflated at abstract memory locations and for cycles to be
directly represented.

The abstract domains for our machine are shown in Figure 5.

Our abstract machine is parameterized on the choice of an

allocator, determined by the function alloc, and three address
spaces. The first is the abstract address space for values
(used for variable bindings and ref cells), represented by
vaddr. Labels have their own address space, lgk;l, so that
label polyvariance is tunable, independent of the choice for
value polyvariance—as we’ll see in the next section, this
tuning is particularly crucial for obtaining precision in a
faceted language. Last, we have a separate address space for
continuations, xaddr. We achieve perfect call-return matching
(pushdown precision [15], [45]) in our semantics by leveraging



the “pushdown for free”” (P4F) technique for allocating abstract
continuations precisely [20]. In the P4F approach, continu-
ation addresses are a source expression (e) paired with an
abstract binding environment (p). This means, each polyvariant
(context sensitive) binding environment and procedure entry
point, has its own set of abstract continuations. That is: two
continuations are only conflated during analysis, if they are the
respective continuations of two dynamic function calls that are
conflated under the current value-space polyvariance (abstract
value-space allocator). P4F achieves optimal precision without
any complexity overhead and permits us to vary analysis
sensitivity without concern for proper call-return matching.

Abstract closures in our semantics are expressions paired
with abstract environments (p), which map variables to either
value addresses (@) or labels (), both of which are permitted
in the domain of the abstract value store o. The store maps
abstract labels and value addresses to abstract values (val), and
disjointly, maps continuation addresses (k@) to sets of stacks
(i.e., continuations). A continuation is a stack frame paired
with an address referencing the tail of the stack (reaching a
HALT frame terminates execution along that path). Abstract
values use the abstraction developed in Section IV-B.

Specific to faceted execution, our abstract semantics tracks
an abstract program counter, pc. Our abstract program counter
pc is a set of labels, rather than a set of branches. This reflects
the fact that while we know we have branched on each abstract
label ! € pc, we do not know w,l\lether we are in the positive
or negative branch of any given /. As sketched in the previous
section, abstract faceted values are either abstractions of base
values or they are collapsed facets {/ : V).

Our abstract store, o, maps value addresses (v@r) and
labels (ZEIEZ) to abstract values, and continuation addresses
(KchEr) to sets of abstract contexts—pairs of stack frames and
another continuation address.

Atomic-expression evaluation A[-] proceeds similarly to
our concrete semantics, taking an atom, abstract environment
p, and abstract store o. Base values (including constants,
addresses, labels, and closures) are injected into the abstract
domain via |-]. Variable lookup is redirected through the store.
Last, abstract closures are formed in the expected way, pairing
an expression with the abstract environment.

Figure 5 shows the small-step rules for our abstract seman-
tics. Similar to our concrete semantics, the E frame handles
expression evaluation. All of the rules are largely unchanged
from the concrete small-step semantics, the major difference
being that we join values to form a collapsed facet. The
notation {¢ | [£] T 7V} selects the set of abstract labels
from the base-value component of v. Because abstract values
now contain sets of labels rather than a single label, the set
{€| €] £V} is joined with pc.

As in the concrete semantics, the A configuration evaluates
the application of possibly-faceted values. The first rule han-
dles application of *. The second considers the application of
base values, represented by a set of closures inside bv. Applica-
tion is performed by allocating for the argument and jumping
to an E frame. In our abstract semantics, we represent facets
by facet-maps, and so A must be nondeterministic over the
domain of the facet-map. The last rule for A handles this case,

decomposing the facet map into its individual components and
jumping to another A frame, storing a continuation to build the
result. Unlike the corresponding rule in the concrete semantics,
the continuation never needs to evaluate the right side of a
facet, as all facets have been collapsed.

Last, the 7 configuration inspects the continuation and
handles it appropriately. As continuations will be conflated
in the store, this rule is nondeterministic over the set of
elements at o (ka). The first T rule begins to explore the right
hand side of a facet expression (not to be confused with a
faceted value, all of which have been collapsed in our coarse
abstraction). The second forms a (collapsed) facet from an
already-evaluated left side. The third forms a facet from the
value in the atom position. Last, the O frame performs the
observation via the obs meta-operation.

D. A Branch-sensitive Abstraction via Singleton-analysis

In section IV-A, we observed several challenges in achieving
both soundness and precision in an abstraction for faceted val-
ues. First, there is the challenge of conflating base values and
facets (i.e., faceted values of differing height). Second, there is
the challenge of conflating facets with different abstract labels
without nesting one under the other as would occur according
to the concrete semantics. Last, there is what we called the
branch sensitivity problem: because abstract labels can be
approximating two (or any number) dynamically generated
concrete labels, we are unable to keep the positive and negative
branches soundly apart.

Our branch-insensitive abstraction for abstract faceted val-
ues overcomes the first two challenges, preserving facet struc-
ture in a sound manner. The third is more difficult, requiring a
more fundamental enhancement to the analysis. The problem
is that if an abstract label ¢ can represent two different dynamic
labels ¢; and {5, a branch-sensitive abstract faceted value
approximating ({1 7 VIL o VYUt ? v;r ¢ v3) would nec-
essarily be

(€797 UV, UV UV, o VT UV, UV, UT)
conflating both branches regardless. This is required for sound-
ness because a successful observation of £; may be an unsuc-
cessful observation of {5 and vice-versa. Short of proving all
policies for an abstract label extensionally equivalent, interac-
tions with either branch for £; may need to pollute the opposite
branch of ¢y and the converse.lf, however, we know that at
a given point in the program, ¢ is a singleton abstraction—
meaning it represents only a single exact concrete label—we
can keep its positive and negative branches distinct, retaining
the precision of branches.

Abstract counting is a technique from Might and Shiv-
ers [32] that augments an abstract interpreter to track a
conservative overapproximation of how many concrete objects
an abstract object is an abstraction of, at a certain point in the
program’s execution. The core idea is to extend the abstract
store so that—for each address «@ in the abstract store—there
is a corresponding address count(@) representing how many
times @ has been allocated: 0, 1, or >1.

The crucial observation then, as it applies to faceted values,
is that it is sound to represent an abstract facet without merging
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Fig. 7. Galois Connection for our Abstract Facet Domain

its branches as long as its label has abstract count of 1.
This is because—as long as we know an abstract label is
an abstraction of only a single dynamic label—the equality
checks on abstract labels in our semantics can be both sound
and precise.

Figure 6 shows how we expand our abstract domain to
account for precise facets. The idea is to represent abstract
facets as branch-insensitive facets (é’ ?7 V) when €’s count is
>1 and branch-sensitive facets (5 ? vt o V) otherwise. Instead
of placing labels inside of pc (as in Sections IV-A and IV-C),
we add branches +¢ and -¢ when ¢ is _singleton and +
otherwise to represent that we must treat £ as non-singleton.
Our metafunctions for store read, write, and update include
all of the same functionality as they did in our coarse domain,
but additionally exploit abstract counting for branch-sensitive
facets. For example, observation of branch-sensitive facets
simply projects the correct branch, rather than losing precision
and reforming a facet (as in Section IV-B). Recall that for
branch-insensitive facets, we had to reform facets alongside
their projections, as abstract depth for branch-insensitive facets
does not correspond to concrete depth.

_We change the codomain of facet maps to a disjoint union of
val and val x val, with the first representing branch-insensitive
facets and the second representing branch-sensitive facets.
We must maintain the invariant that—whenever m(¢) is a
product, £’s count is 1. To do this, we assume that the label
allocator performs eager count-based facet collapse: whenever
a label’s count grows to >1, the store is traversed to collapse
facets whose labels are no longer singleton. As discussed in
section V, our implementation artifact uses a more involved
lazy fixing approach that we eschew here for simplicity of
presentation and soundness proofs.

We show updates to the metafunctions in the Figure 6. In
particular the join operator LI changes to perform the join
of maps at each point ¢ such that ¢ is non-singleton, and
distributes across the pair in the same manner in the case that
¢ is singleton.

E. Correctness via Galois Connections

We formalize the correctness of our precise abstract domain
by constructing a Galois connection between concrete faceted
values and abstract faceted values. We then use this Galois
connection to state and prove several soundness lemmas. Our

Galois connection for abstract facets is shown in Figure 7. The
abstraction side of our Galois connection is given in 7-form,
which necessarily induces « as the join over . We induce the
concretization function y from 7 as well—this construction is
standard, and allows the construction of any adjoint maps «
and y from any n [36].

The abstraction function 1 abstracts concrete facets to a
single-branch facet when there may be other concrete facets
which abstract to the same label, written |y(r(€))|. When the
concrete label is the only one contained in its abstraction, a
precise double-branch facet is created. The Galois connection
uses the abstract canonicalization metafunctions - : -) and
{ 7 - o -y in its definition. Abstract canonicalization is
therefore not sound per-se—rather it is part of the specification
for soundness.

The join operator - LI - for abstract facets is used explicitly
in the definition of «, and implicitly in the definition of v, in
that the partial order for facets is induced by the join. The
join is trivially sound, as it is used in the definition of the
Galois connection. However, we still must show it is a proper
join operator, that is, associative, commutative, and idempotent.
This is done in Appendix A.

Finally, we use these lemmas to prove soundness of the
abstract interpretation. The formalization follows from the
standard recipe for soundness via AAM and is sketched in
Appendix A. As our precise domain (Section IV-D) degrades
gracefully to the coarse abstract domain (Section IV-B) in the
absence of abstract counting, we present only a formalization
of the precise abstract domain.

V. IMPLEMENTATION AND EVALUATION

We have evaluated our ideas in several ways. First, we
have implemented both concrete and abstract interpreters for
Agg. Our implementation mirrors (where possible) the coarse
abstract domain presented in Section IV-C, however it adds
several features useful for writing more realistic programs
(such as k-ary lambdas, builtins, let binding, and condition-
als). Our abstract interpreter also uses global store-widening
(developed for CFA by [41]) to avoid the exponential blowup
incurred with per-state stores, and is roughly 1,600 lines
of Racket source. Global store-widening moves the store
from being a component of configurations to instead being
a top-level component of the fixpoint. We have evaluated
our abstract interpreter on five small example programs that
make use of facets. Last, we briefly present an example of
how our fine-grained abstract domain may be used to verify
noninterference.

Evaluation Programs We wrote five small but emblematic
benchmark programs. Each of these example programs uses
facets in a slightly different way. The programs are listed
on the left hand side of in Table I, with their corresponding
line count (LOC) directly to the right. We implemented two
benchmarks, noninterfl and noninterf2, which test basic
reasoning about information flow. The next three benchmarks
use facets to design a secure auction (securing bids), a grading
system (securing submissions), and our Battleship example.
Each of our benchmark programs includes one use obs.



(o NS SO SR

TABLE 1
DETAILS OF OUR BENCHMARK PROGRAMS
Analysis Obs

Program LOC | # States Time (ms) | Elim?
noninterf1 8 72 12 v
noninterf2 8 82 18 X
auction 31 876 747 X
grades 32 327 447 v
battleship 56 514 743 v

Performance of the coarse-grained domain We ran our
abstract interpreter on each benchmark program and report
the number of states and time (in milliseconds) taken by
the analysis in the center columns of Table I. For each of
the benchmarks, we verified our abstract interpreter produced
sound results via manual inspection of the state space assisted
via a visualization tool we built for the task.

To assess the precision of our coarse domain, we looked at
the results of the analysis for each benchmark and determined
whether we could statically eliminate the obs forms included
in each. The right side of Table I indicates a check (V)
whenever we can either statically determine that both sides of
an observed facet are equal (which we can do in benchmark
noninterf1) or whenever we know that one a single side
of the facet will be observed (as we can do in benchmarks
grades and battleship). We observed that, even though our
coarse domain does not reason precisely about the contents of
facets, it was still able to eliminate obs checks in three of our
benchmarks. The other two were not able to be eliminated
because our coarse analysis loses precision. For example,
noninterf2 branches on a facet to create another facet, which
ends up merging branches and losing the precision necessary
to eliminate the obs form.

Worked Example: Verifying Information Flow We now
demonstrate how our precise abstract domain offers a basis
for verification of information flow properties. We illustrate
this by showing how we can check noninterference for the
following example:

(let* ([x (secret)] [y (ref 0)] [z (ref 0)1)
(if (= x 0)
(begin (y « 0) (z « -1))
(begin (y « 1) (z « 1)))
(begin (y « (+y 1)) (z « (x z 2)))
(output y z))

In this example, the call to output leaks (the zeroness of)
the secret variable x through the variable y, while the variable
z is safe. To check this, we treat the call to secret as creating
a facet over some arbitrary “secret” label ¢, and returning a
facet (¢ 7 T ¢ T). This has the effect of using the analysis to
explore all possible pairs of program paths (as is traditional
in checking noninterference) by leveraging the semantics of
faceted execution to pull the branching from the state space
into the value space. Checking noninterference is then reduced
to checking whether both branches of each of the facets for
y and z are equal once they reach the call to output. When
analyzed using a path-sensitive abstraction and the constant
propagation value lattice, our precise domain is able to keep
the facet in y precise, allowing us to derive a counterexample

wherein y contains a reference to the facet (¢ 7 1 ¢ 2), while
z always contains a reference to the facet (€7 1 o 1).

VI. RELATED WORK

To our knowledge, we are the first to present an abstract
interpretation for faceted execution. There are several threads
of related work in dynamic information flow, static analysis
thereof, and programming paradigms for information flow.

Information-flow was first formalized by Denning [13]. In
her seminal work on a lattice model for information flow,
she outlined challenges and solutions to static information-
flow checking. Subsequently, Goguen and Meseguer [21]
defined noninterference, formalizing the idea that privileged
data should not influence public outputs. Clarkson and Schnei-
der [9] later recognized that information-flow properties could
not be characterized by a single trace of a program, but rather
a set of traces, and called these hyperproperties.

Since their original definitions, there has been much work on
statically checking information-flow properties. Barthe’s work
on self-composition copies the program twice and asserts a
relational property to check noninterference [6]. This idea was
later extended to what the authors call product programs, and
certified using a relational program logic [5]. Other work has
used model checking to check noninterference [28] along with
more general hyperproperties [10].

Of the mechanisms for static information flow, security
type systems have gained the most use. First introduced by
Volpano and Smith [46], these type systems augment the
binding environment to track privilege of variables and prevent
writes that would violate noninterference. Myers leveraged this
idea to produce Jif, a variant of Java with an information-
flow type system [33]. Security type systems have been sub-
sequently extended to accommodate concurrent programs [49]
and flow sensitivity [23]. Faceted execution does not require
adding type annotations, but at the expense of losing a static
characterization of the program’s security in its type system.

Devriese and Piessens [14] first introduced secure multi-
execution as a dynamic enforcement technique for information
flow. Secure multi-execution runs 2* copies of a program in
parallel, where each run represents a subset of P(Prin), where
Prin is a set of principals. For example, if the principals are
Alice and Bob, multi-execution executes four copies of the
program: one that replaces all secret inputs by L, one that
replaces Bob’s input by L but Alice’s input by the true input,
one for Bob’s input, and one with access to all privileged
information. When external effects are made (e.g., writing to
disc), the runtime can select which variant to use. Secure multi-
execution prevents information flow violations at runtime by
ensuring that observations which violate the information-flow
policy receive a view of the data computed without access to
the secret inputs. Secure multi-execution has been extended in
a variety of ways, e.g., scaling to its implementation in web
browsers [7], adding declassification in a granular way [38],
and even preventing side-channel attacks [25].

As the number of principals increases, secure multi-
execution’s overhead increases exponentially, unnecessarily
duplicating work not influenced by secret inputs. Austin et



al. introduced faceted execution as an optimization of secure
multi-execution in [3]. Instead of treating the whole program
as a potentially-secret computation, faceted execution realizes
that influence can be tracked and propagated in a granular way
using facets. Notably, Austin et al.’s work does not include
first-class labels, as it was simulating secure multi-execution,
where the principals could not be dynamically generated. More
recently, Schmitz et al. [39] have harmonized both of these
ideas into a unifying framework (Multef) that allows mixing
both faceted and secure multi-execution.

Yang et al. first implemented Jeeves, a language allowing
policy-agnostic programming [47]. Policy-agnostic program-
ming takes the view that programs should be written without
regard to a particular privacy policy, because as the policy
changes, correctly updating program logic is cumbersome
and error-prone. Policy-agnostic programming was first imple-
mented in the domain-specific language Jeeves, using an SMT
solver to decide which view of secret data to reveal based on
a policy. Later, both authors collaborated to implement Jeeves
using faceted execution. [4]. This formulation includes first-
class labels, and is the basis for our concrete semantics. This
semantics was the motivation for Micinski et al.’s recent work
on implementing faceted execution via an expressive macro
system [29]. We envision that our analysis of faceted execution
might enable future languages based on facets by allowing
more optimal compilation and static checking of facets.

Several other efforts into dynamic analysis for information
flow are worth noting. Stefan et al [42] first presented LI0—a
monad (with implementation in Haskell) that tracks privilege
of the current program counter and forbids effects that would
violate the security policy. It might be surprising that LIO
works well for Haskell programs, given that faceted execution
is more precise than LI0—allowing values to become faceted
rather than halting the program. One key difference is that
Haskell programs emphasize purity while languages such as
JavaScript (the original target of faceted execution) does not,
so much of the machinery for faceted execution’s effect on
the store is less interesting. Several authors have implemented
related systems to LIO, including variants of faceted execution
[40] and variants of LIO that extend its power to arbitrary
monad transformers [37]. We believe that it would be possible
to implement a variant of our technique that would give similar
insights to programs using LI0, though much of the interesting
machinery for handling state may be unnecessary.

Our precise abstract domain for facets relies upon cardi-
nality analysis. Hudak first proposed an abstract domain for
approximating a value’s reference count in the presence of
sharing [22]. This reference count abstraction is useful for
understanding when destructive updates can be performed
statically. Cardinality analysis was a direct inspiration for
Might and Shivers [32] to produce the abstract counting ap-
proach we build on. Independently, Jagannathan [24] presented
an analysis for higher-order languages that tracks whether
abstract locations are singletons, which enables a number
of optimizations such as lightweight closure-conversion and
strong updates on reference cells.

Last, there have been several exciting recent efforts in
the development of static analyses for hyperproperties and

information flow. Assaf et al. [1] disuss how correct-by-
construction dynamic security monitors using a technique
based on abstract interpretation. In a similar direction, Assaf
et al. [2] explored “hypercollecting semantics” and abstract
interpretation for hyperproperties via a set of sets transformer
which allows using Galois connections for hyperproperties
alongside a traditional trace-based semantics. Mastroeni and
Pasqua [26], [27] study abstract interpretation for subset-
closed hyperproperties. Giacobazzi et al. [17], [18] present ab-
stract non-interference, developing a framework which allows
extremely flexible specification of information flow properties
parameterized on observations, principals, and the observa-
tional abilities of external observers. Chudnov et al. [8] study
how relational logic properties can be checked by way of inter-
preting a dynamic monitor’s state as an abstract interpretation
over sets of program executions.

VII. ConcLusION

We have presented the first sound and precise abstraction for
faceted execution in the presence of first-class security policies.
This required formulating two abstractions: a precise abstract
domain that preserves facet structure, and a coarse domain
(to which the fine-grained domain gracefully degrades) that
collapses the branches of facets but still allows reasoning about
facet structure (differentiating between faceted and unfaceted
values). We see this as a central challenge in the verification
and optimization of policy-agnostic programs.

Faceted execution, along with other dynamic information-
flow monitors, present exciting opportunities, but there are
many questions about how we may use these techniques to
design languages and systems. We believe that one particularly
promising use of dynamic information flow is in its piecemeal
application to potentially-insecure pieces of programs, with
powerful static analyses to verify when heavyweight machin-
ery may be elided. We believe that powerful static analysis for
dynamic information-flow monitors will be useful not just for
efficiency, but also so that programmers may gain confidence
that security checks will not fail in unexpected ways at runtime.
We see this work as a foundational step toward that goal
in enhancing our understanding of systems utilizing faceted
execution.
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APPENDIX
Proors oF CORRECTNESS VIA GALOIS CONNECTIONS

We now sketch several lemmas necessary to prove the
soundness of our abstract interpretation. We first show that
our abstract join is a proper join operator. Next, we justify
the soundness of our meta-operations. Last, we demonstrate
how these can be used to show the soundness of our abstract
interpretation from Section IV.

Lemma A.1 (Abstract Facet Join Proper). The join operation
-U- is associative (vi U (vaLiIv3) = (v1 Lva) LIVs)) commutative
(vi Uve =Vo LUVY) and idempotent VUV =V,

Proof. A simple calculation. Most of the functionality of - LI -
are operations either on the lattice of underlying base values
(for which these properties hold) or by joining finite maps, for
which these properties also hold. O

We turn next to the meta-operations read, write and obs,
which implement the functionality of slicing some operation
through a tree of facets. These operations are sound when the

concrete interpretations are contained in the concretization of
the abstract interpretations.

Lemma A.2 (Abstract Meta-operators Soundness).

1) read(pe, o, v) € y(read(n(pe), n(a),n(v))),
2) write(pc, o, v1,ve) € y(n(o)Uwrite(n(pe), n(vi
3) obs(¢,b,v) € y(obs(n(l),n(b),n(v))).

Proof. The proof for each of (1-3) are similar; we only sketch
the proof for (2). It suffices to show n(write(pc, o, vi,v2))
n(o) U write(n(pc),n(v1),n(v2)). By induction on vy, which
is either a base value or a facet. In the case it is a base value,
we have:
n(write(pc, o, @, v))
n(ola - {pc?voo(a ) ")
n(or) Uin(e) = (nlpe) 7 n(v)
n(or) U write(n(pe), n(a), 77("))
When it is a faceted Value and |y(n(€))] > 1:
n(write(pc, o, € ? v1 o Vi), v2)
= n(write(pc U {-{}, write(pc U {+¢}, o, v1+, V2),v],v2))
{ Induction Hypothesis §
L write((pe) U
n(@) u erte(
n(pc)
C (o )Uwrlte(n(pC)

):1(v2)))
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Finally, we turn to the abstract small-step semantics for Agg.
The transition rules are a straightforward structural abstraction,
following the abstracting abstract machines methodology. As
a consequence, we prove an abstraction theorem, which uses
the prior lemma. Before we present the proof, we posit an
alternative presentation of the concrete small-step semantics
which store-allocates arguments to functions in the obvious
way, and simulates the non-allocating concrete semantics. The
proof is then a direct application of the AAM proof recipe:
composition of step-wise abstraction of the store-allocating
concrete semantics with simulation of the natural concrete
semantics by the store-allocating one. We notate transitions
in the store-allocating semantics ¢ w7 ¢, and the natural
semantics ¢ ~»7 ¢. Because the AAM recipe is straightforward
and standard, we omit a detailed proof.

Theorem A.3 (Abstract Semantics Soundness).
o~

¢w7¢" = 3¢ An(s’). n(s) » ¢ .

SIMULATION OF B1G-STEP BY SMALL-STEP (DEFINITIONS)

Our companion tech report includes 9 more figures which
show the full syntax and semantics for both the direct-
style/big-step model, as well as the A-normal-form/small-step
model [30]. Following the figures is a proof of simulation
between the two semantics for A-normal-form terms.



