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Universal spectral form factor for many-body localization
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We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact
analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well
with numerical results on two models exhibiting many-body localization: a disordered quantum spin chain and
a phenomenological /-bit model based on the existence of local integrals of motion. We also identify a universal
regime that is insensitive to the global density of states as well as spectral edge effects.
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Understanding how thermal equilibrium may or may not
emerge in isolated many-body quantum systems remains a
central question in quantum statistical mechanics. Thermal
systems which are said to exhibit quantum chaos satisfy the
eigenstate thermalization hypothesis (ETH) [1,2] whose sub-
systems equilibrate under their own dynamics. In addition to
being highly entangled, i.e., satisfying a “volume law” scaling
with subsystem size, the eigenspectra of these systems exhibit
long range repulsions that are captured by random matrix
theory and produce universal features in their correlations
measured in their spectral form factor [SFF, defined below
in Egs. (4) and (5)] such as the linear ramp [3-9] (as shown
in Fig. 1). In the presence of strong quenched randomness or
quasiperiodicity, quantum systems can become many-body lo-
calized [10-13] where ETH is violated. In contrast to chaotic
systems, many-body localization (MBL) is characterized by
eigenstates with short-range “area law” entanglement and an
absence of level repulsion. Recent experiments on ultracold
atomic gases [14-16], trapped ions [17], superconducting
qubits [18,19], and nuclear spins [20] have provided evidence
for the existence of the MBL phase.

Instabilities to MBL have been argued to arise in high
dimensions [21] and in the presence of certain symmetries
[22]. More recently however, the very existence of the MBL
phase has been challenged based on a finite size scaling anal-
ysis of the linear ramp of the SFF on approach to the MBL
transition from the chaotic side [23]. A critique of this work
was subsequently presented [24] pointing out the intricacies
involved in finite sized calculations and conclusions drawn
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from them, while further studies have highlighted the diffi-
culty in studying the MBL transition in finite size numerics
[25,26]. Recently, the authors of Ref. [23] pointed out that
their claim of the absence of MBL is due to their choice of
scaling function, which instead should follow a ‘“Kosteritz-
Thouless-like” scaling form as they demonstrate in Ref. [27],
consistent with recent theories of the MBL transition [28-30].
Irrespective of the question of validity of the finite-size nu-
merics in the vicinity of the MBL transition, the question
of how to characterize the MBL phase using the SFF alone
is undoubtedly worthy of further examination. If the MBL
phase indeed exists, it is conceivable that its SFF has its own
universal features to which any putative system exhibiting
MBL should be compared. However, apart from a few hints
[31], the existence of such a form and an understanding of its
features has been lacking thus far.

In this Letter, we investigate the spectral correlations in
MBL systems. We show that the SFF for MBL systems can be
calculated deep in the spectrum due to their convergence with
Poisson levels for which we can derive an exact analytical ex-
pression with a finite number of levels [34] (plotted as a solid
line in Fig. 1). We determine the validity of this expression by
comparing it with numerical simulations of a phenomenolog-
ical [-bit model [35,36] as well as a microscopic disordered
many-body Hamiltonian. In both cases, by focusing on states
in the middle of the many body spectra where the many-body
density of states is nearly flat, we find excellent agreement
between the exact expression and the numerical results. In
the limit of an infinite number of levels, to leading order, our
results reduce to the general expectation of integrable systems
due to Berry and Tabor [37,38]. However, we show that the
leading correction to the SFF beyond that of Berry and Tabor
is universal in an intermediate power-law scaling regime and
is robust to changes in the global density of states as well as
spectral edge effects. Our results provide further support for
the existence of the MBL phase in one dfimension.

Models for many-body localization. To make a detailed
comparison with the properties of the MBL phase, we con-
sider two different models. The first is a quantum spin chain
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FIG. 1. The spectral form factor across the MBL transition. This
is defined in Eq. (4) and computed from N = 20 eigenvalues from the
center of the many-body spectrum at different disorder strengths W
for the Hamiltonian in Eq. (1) with a system size L = 14. Inset: The
adjacent gap ratio, (r) defined in Eq. (3) versus W. The approximate
critical disorder, where the data at different system sizes cross is
given by W, & 7.3, has also been marked. For W > W, in the MBL
phase the level statistics are Poisson (r) = 21n(2) — 1 ~ 0.39 [32].
The dashed black line is the well known GOE expectation from
random matrix theory known to describe the thermal phase, whereas
the solid black line, that matches the numerical data in the MBL
phase well (over the range of W > 10 [33]), is obtained in Eq. (8).
The analytical expressions K9°F(t, N) and K*(z, N) as well as the
data are normalized to set the mean level spacing to unity.

with quenched disorder whose Hamiltonian is

H = ZJI Sl it ;Szy-i—l + ASszZJrl) + wiS;
+ ZJz SISE, + SISY, + ASTST,). (1)

S§% are spin operators that can be written in terms of Pauli
matrices as S¢ = 50 and the random couplings w; are drawn
from a uniform distribution [—W, W]. Variants of this model
have been previously studied [23,39,40] and are known to
have a thermal phase at weak disorder and an MBL phase at
strong disorder. Following Ref. [23], we set J; = J, = 1.0 and
A =0.55.

Deep in the MBL phase, any local Hamiltonian such as
Eq. (1) can be described by a complete set of emergent local
integrals of motion [35,36]. This means that there should
exist a finite depth unitary circuit U that can recast H into
a diagonal form, UHU " = Hy:

1 2 3
Hypie = Z‘]i( )Kiz + ZJ( Vil z ZJZ(jk)KZ 2, z .
i i,j

i,j,k

@)
where «; are the so called /-bit Pauli operators with localized
support on the Hilbert space near site i/, whose eigenvalues
represent the locally conserved quantities and the magnitudes
of Ji' , fall off exponentially with distance. The second
model we consider is a truncated version of the above phe-
nomenological /-bit model, Eq. (2), where we retain only up
to ten spin nearest neighbor interactions with all couplings
drawn from a uniform distribution 119 e [—1, 1].

Characterizing spectral correlations of quantum systems. A
popular diagnostic used to distinguish MBL and chaotic sys-
tems via their spectral correlations is the adjacent gap ratio
(r) [32]. This is defined in terms of successive gaps §; =
E; 1 — E; of an ordered energy spectrum {E;} as follows:

_ min;, 8i1). )
max(;, 8i+1)
For chaotic systems, the value of (r) (where (---) denotes
averaging over samples and energy) can be computed from an
appropriate random matrix ensemble. For example, the Gaus-
sian orthogonal ensemble (GOE), appropriate for systems
with time-reversal symmetry, gives (r) ~ 0.53, while Poisson
levels, applicable for MBL systems, give (r) =21In(2) — 1 =
0.39 [32]. As shown in the inset of Fig. 1, by tracking (r),
we can see that the Hamiltonian of Eq. (1) supports a thermal
phase for small W and an MBL phase for large W with the
critical disorder strength somewhere near W, &~ 7.3, where
the curves for different system sizes cross, consistent with
previous work [23].

The adjacent gap ratio captures the repulsion of neighbor-
ing levels, and thus only probes local spectral correlations. It
does not measure long-range spectral correlations, which have
important and useful information. A more comprehensive di-
agnostic is the spectral form factor (SFF) [3], which is the
main tool of analysis in this Letter and is defined in terms of
eigenvalues {E;} as follows:

N
K(t,N) = < > el’f(Em—En>>, 4)

m,n=1

where N is the total number of eigenvalues in consideration.
Also useful is the connected SFF defined as

N N
K(t,N) = < 3 eif(EmEn>> _ <Zeif5m>
1 m=1

The information about long-range correlations is contained in
the form of K(t, N) interpolating the early and late T values
of N2 and N respectively [0 and N for K.(z, N)]. For chaotic
systems, just like (r), the SFF can also be computed from an
appropriate random matrix ensemble. For instance, as seen in
Fig. 1, the SFF for the Hamiltonian Eq. (1) with weak disorder
strength (W) exhibits a clear ramp and matches that of the
GOE ensemble, whose approximate expression (plotted as a
dotted line) is known [3-9].

As we increase the disorder strength, as shown in Fig. 1,
the SFF qualitatively changes as the model passes through the
MBL transition with the disappearance of the ramp. Deep in
the MBL phase (i.e., where (r) ~ 0.39), the SFF again takes
on a new stable form K”(, N) (plotted as a solid black line in
Fig. 1). The expression for K”(r, N) as well as the connected
version KCP (r, N) we obtain are presented in Egs. (8) and (9).
We will show in the following section that they correspond to
energy levels drawn from a Poisson process.

Contrasting features between KS°F and K* can be seen at
intermediate 7 values, in the regime where the SFF is expected
to be universal (this occurs in the range #L <t < 1/p for

KYCE and J;T < 1 < 1/u for KP [33]), where D = uN is
the many-body bandwidth of the chosen levels and u is the
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mean level spacing. For KGOF, this corresponds to the “ramp”

region [3-9]. On the other hand, as expected, K*(r, N) lacks
the ramp but exhibits a universal subleading power-law form
that will be discussed later.

SFF for Poisson levels. The single-particle spectrum of the
Anderson insulator [41] deep in the localized phase can sim-
ply be described by a set of uncorrelated random numbers (the
values of random chemical potentials). In this case, on scales
smaller than the single-particle bandwidth, the spectrum looks
like a Poisson process [3,42]. For example, the distribution of
the level spacings is exponential, P(§) = ﬁ exp (—%). Consis-
tent with the hypothesis of emergent integrability in localized
systems, this is identical to the distribution of level spacings
in point particle systems with integrable classical trajectories
conjectured by Berry and Tabor [37,38] and has been verified
in several systems [43,44].

The many body levels of the Anderson insulator, on the
other hand, are a weighted sum of the single particle eigen-
values. For a system of size L, the ~O(L) random numbers
present in the Hamiltonian are used to generate ~2° many-
body eigenvalues and are no longer completely uncorrelated.
How the spectrum further changes in the presence of inter-
actions for MBL systems is less obvious. However, extensive
work [32,45-48] has provided evidence that the Poisson na-
ture continues to persist in the many-body levels of MBL
systems on energy scales smaller than the many-body band-
width [32]. To compute the SFF, we need more information
than local statistics such as the level spacing distribution: we
need the joint distribution of eigenvalues P(E,, n; E,,, m), i.e.,
the likelihood of the nth level to be E, when the mth level is
E,,. For Poisson process, this is [33,49] (assuming m > n)

P(E,,n;E,,m) = p(E,,n)p(E,, — E,,m—n), (6)

where p(Ey, k) is the well known Poisson distribution

E k) = F (B 7
b= i) v

Using this, we can exactly obtain the expressions for the
Poisson SFF [33]:
2 1 : 1-N 1—i 1-N
KP(t.N) =N + 2_( +int) +(2 inT) ,
(nt) (nt)
(®)

L+ oY
KP(z,N)=N -
TN =N+ w2

— A +ipn) ™ = (1 —ip) ™. )
Ut

Note that these expressions have been also obtained by the
authors of [34] as a special case of a more general result
applicable to spectra with uncorrelated gaps. Our focus is on
the application of these results to the MBL spectrum where the
Poisson nature is emergent and not intrinsic. We now proceed
to understand various limiting regimes of the above expres-
sions. In the limit of N — oo we obtain the expected result
of Berry-Tabor, limy_, .o K*(t, N)/N = 1 4+ 8(z). If D = uN
is the bandwidth of the selected eigenvalues with mean level
spacing u, the early t behavior (7 < ﬁ) is largely deter-
mined by the Poisson density of states (DOS) [33] which is

K (1, N)
N2
1 -
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FIG. 2. SFF for Poisson levels. Above: The SFF for Poisson
levels for various values of N. The reduced SFF K.(t) — N exposes
the universal form (dashed lines) which sets in after a time ut = ﬁ
(marked for each N) is shown in the inset. Below: The various
universal and nonuniversal T regimes are shown for the connected
SFF.

nontrivial only at the edges, and is not a universal feature. Just
as in the case of RMT, the interesting part is at intermediate

- 1 1 : .
values. of T, 1.§., 75 <T<u (.see Fig.2 an.d [33] for details
of various universal and non-universal t regimes), where we
have

P _ 1 1
K (t,N)=N + ) +0<N), (10)

and the disconnected part behaves similarly, K P(z, Ny—N ~
2/(ut)?. The leading N is merely the large T value and is fre-
quently quoted as the SFF signature of Poisson spectra. More
interesting is the subleading (u+)z term that is N independent.
This suggests that if we subtract the dominant trivial value
and consider K.(t, N) — N, which we dub the reduced SFF,
it should assume a (u+)2 form that survives the N — oo limit
and is universal in the same way that the ramp is universal
to RMT, i.e., the form is robust to effects from spectral edges
arising from a finite bandwidth as well as nontrivial global
density of states [4]. Note that similar timescales as well as
scaling forms were also obtained in [34] even though their
notion of universality (independence of underlying gap distri-
bution) is different from ours [33]. We verify this using the
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physical models mentioned before where non-negligible edge
and DOS effects are expected.

Comparison with numerical calculations. We now numer-
ically check the analytical results of the previous section by
focusing on the two models defined in Eqgs. (1) and (2). Both
models possess a global U (1) spin rotation symmetry which
allows us to focus on half-filling, i.e., the total S* = 0 sector.
We will perform our analysis by shifting the N chosen eigen-
values by the smallest one so as to make them non-negative.
For ease of comparison with the analytical results as well as
across system sizes, after averaging over disorder samples,
we rescale T by the mean level spacing u, effectively setting
u = 1. Depending on system size, our analysis is performed
using disorder samples ranging from 10 000 to 50 000 [33].

It is a well known challenge to compare exact random ma-
trix theory predictions with numerics on microscopic models
due to the difference in their DOS, particularly at the edges
of the spectral bandwidth. The early t behavior of the SFF in
particular deviates from the RMT prediction due to this, and a
better agreement can be obtained by a careful unfolding of the
spectrum [3,50]. However, as the authors of Ref. [5] point out,
at intermediate values of t, the ramp is robust to these effects
and can be observed even without unfolding. Coming to our
Poisson case, the situation is similar: the early 7 behavior is af-
fected by the overall DOS of the microscopic models and thus
deviates from the analytical form of K”(z, N) in Eq. (8). For
a fixed number of eigenvalues N, these deviations are reduced
by increasing the system size L (and thus the total Hilbert
space Np). In the thermodynamic limit (L — oco) when the
parameter { = N/N vanishes for any finite N, we expect
any deviations to completely vanish and the analytical results
to match exactly [33]. Nevertheless, as suggested previously,
even for large values of N when the early T form deviates
significantly, the SFF matches at intermediate-t values where
the SFF is universal and is best seen by in the reduced SFF,
K.(t,N)—N.

We start with the /-bit model of Eq. (2). Since it is already
diagonal, the eigenvalues are generated easily and, as a result,
we are able to reach relatively large system sizes. As seen in
Fig. 3 (top panel), the numerical SFF, K(t, N), matches the
analytical one for Poisson levels, K*(z, N) of Eq. (8) (dotted
lines), very well with negligible deviations for small values of
N. For N ~ 1000, deviations start becoming visible at short
7. The universal intermediate-t form is very clearly seen at
large N in the reduced SFF (inset, top panel) as this expands

. . 1 1
the universal temporal regime — < 17 < —.
p g 7D m

We now turn to the microscopic Hamiltonian, Eq. (1), and
focus deep in the MBL phase at W = 25, where (r) ~ 0.39
is nicely Poisson at the accessible L. Here, we are rela-
tively limited in the system sizes that we can reach and the
presence of complex microscopic details further impacts the
finite sized numerical results more severely than in the case
of the idealized /-bit model. Nevertheless, as seen in Fig. 3
(lower panel), for small values of N (20,40), the numerical
SFF matches the analytical equation (8) (dotted lines) very
well. For larger values of N ~ 80, deviations start becoming
visible at short t values. Again, the universal intermediate-t
form is very clearly seen at large N (inset, bottom panel).
Although we have only presented the analysis for W = 25,
we find that all these results remain virtually unchanged for a
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FIG. 3. Comparing the SFF for Poisson levels with models of
MBL. The SFF for the [-bit model of Eq. (2) (above) and the
microscopic Hamiltonian in Eq. (1) deep in the MBL phase with
W = 25 (below) for various system sizes (L) and small numbers of
eigenvalues (N) drawn from the middle of the many-body spectrum
are compared with the analytical curves K”(z, N) of Eq. (8). De-
viations appear at short T but are absent in the universal regime at
intermediate t. Reduced SFF values are shown for large values of N
for the L = 26 [-bit model (inset, above) and L = 18 Hamiltonian
H(W) (inset, below) that clearly demonstrate the universal 1/7>
behavior at intermediate 7.

wide range of disorder strengths, W > 10 [33]. This strongly
supports the notion that MBL is a robust phase in disordered
one-dimensional isolated quantum many-body systems.

Conclusion. In this Letter, we have derived an exact ex-
pression for the spectral form factor of Poisson levels and
identified a universal regime. We have shown that this de-
scribes the SFF in the many body localized phase well through
a detailed comparison with numerical results on two separate
physical models. The analytic expression of the spectral form
factor obtained here is expected to apply to any integrable
many-body quantum system. In particular, we conjecture that
in the SFF of integrable models the universal power-law
correction should be observed as a refined version of the
Berry-Tabor conjecture.

Note added in proof. Recently, we became aware of
a recent mathematical physics paper [34] which also
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comprehensively discusses the spectral form factor for spec-
tra with uncorrelated spacings in a distinct context. We
were also recently made aware of Ref. [51], which has
some overlapping results presented in the Supplemental
Material [33].
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