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Avoided quantum criticality in exact numerical simulations of a single disordered Weyl cone
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Existing theoretical works differ on whether three-dimensional Dirac and Weyl semimetals are stable to a
short-range-correlated random potential. Numerical evidence suggests the semimetal to be unstable, while some
field-theoretic instanton calculations have found it to be stable. The differences go beyond method: the continuum
field-theoretic works use a single, perfectly linear Weyl cone, while numerical works use tight-binding lattice
models which inherently have band curvature and multiple Weyl cones. In this work, we bridge this gap by
performing exact numerics on the same model used in analytic treatments, and we find that all phenomena
associated with rare regions near the Weyl node energy found in lattice models persist in the continuum theory:
The density of states is nonzero and exhibits an avoided transition. In addition to characterizing this transition, we
find rare states and show that they have the expected behavior. The simulations utilize sparse matrix techniques
with formally dense matrices; doing so allows us to reach Hilbert space sizes upwards of 107 states, substantially
larger than anything achieved before.

DOI: 10.1103/PhysRevB.102.100201

The stability of phase transitions in the presence of non-
perturbative effects of rare regions is a central question in
modern statistical mechanics [1–3]. These problems fall into
two classes; the first is the case of “clean” critical point
perturbed by disorder, and the second consists of transitions
driven solely by disorder. The latter case is less understood
as both the existence of the transition and the rare region
effects arise from the same origin: randomness. As a result,
rare regions could destabilize one of the two phases turning a
putative transition into a crossover.

The problem of three-dimensional short-range disordered
Dirac and Weyl semimetals [4] is a quintessential example of
a disorder-driven transition that has a nontrivial interplay with
nonperturbative, rare-region effects [3,5–35]. Initial work us-
ing large N [5] and a perturbative renormalization group [6]
found that Dirac and Weyl semimetals are stable to the pres-
ence of weak disorder and possess a quantum phase transition
into a diffusive metal phase; this is indicated by the order
parameter, the density of states at zero energy, becoming
nonanalytic at the transition. On the other hand, rare-region
arguments and mean-field instanton calculations [10] argued
that nonperturbative effects lead to a finite density of states at
the Weyl (or Dirac) node for infinitesimal disorder strength,
thus destabilizing the semimetallic phase.

Confirming the rare-region expectation, extensive nu-
merical simulations on lattice models of Dirac and Weyl
semimetals have found nonperturbative rare eigenstates that
round the perturbative transition into a crossover dubbed
an avoided quantum critical point (AQCP) [24,25,27,30,31]
with an analytic density of states. A phenomenological, field-
theoretic description of the AQCP has been put forth [28], and

additional support for the rare-region scenario comes from
T -matrix calculations of the quasiparticle lifetime [27], con-
ductivity [29], and the prediction of a nonzero density of states
from a continuous distribution of scattering approach [32].
Last, by replacing the randomness by quasiperiodicity, rare
regions are removed entirely from the problem, and a genuine
quantum phase transition between a Weyl semimetal and a
diffusive metal is seen [36], albeit with no randomness in the
model.

Recently, continuum field-theoretic work that considered
fluctuations about the instanton saddle point for a single
Weyl cone have challenged the rare-region scenario [33].
In Ref. [33] the authors find that while rare regions ex-
ist, they do not destabilize the semimetallic phase because
the density of states at the Weyl node remains zero for
nonzero disorder. An immediate conclusion of this sce-
nario is that the perturbative quantum critical point remains
stable to disorder; in the present work, we directly in-
vestigate this question in a numerical realization of a
single Weyl cone. Previous simulations [24,25,27,30,31] have
at least two Weyl cones (due to the fermion doubling theo-
rem [37]), internode scattering, and band curvature effects;
their conclusions, strictly speaking, do not apply to a single
Weyl cone with a linear dispersion at all energies. While some
numerical results exist on the conductance in the limit of a
single Weyl cone [8,15], no rare region effects have been
reported. Additionally, the existing numerical techniques that
have been highly successful in reaching large enough system
sizes to observe rare region effects rely on sparse matrices
(that naturally occur in local lattice models) and efficient
matrix-vector multiplication not directly applicable to treat
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FIG. 1. (a) Density of states ρ(ε) as a function of energy ε for
various different values of disorderW ranging fromW = 0.2 toW =
1.6 in steps of 0.2. The red curve is forW = 0.9 and is close to the
avoided transition. Far enough away from zero energy this behaves
as ρ(ε) ∼ |ε|, consistent with avoided criticality. (b) Depiction of the
fcc momentum space lattice and the rhombic dodecahedron Brillouin
zone.

disordered continuum models. Therefore, the important issue
remains open on whether the conflicting conclusions about
the existence of QCP versus AQCP have perhaps been ob-
tained in different models. To resolve this, we employ exact
numerics which necessarily include disorder realizations past
those considered in Ref. [33] as they can contain numerous
rare regions [24].

In the present Rapid Communication, we numerically
study a disordered, single Weyl node by adapting sparse
matrix-vector routines to work in the continuum. Technically,
we achieve this by using fast Fourier transforms to act with the
disorder potential in its diagonal real-space basis (similar to
Ref. [38]). Importantly, the relevant sparse matrix algorithms
which scale with (single-particle) Hilbert space dimension N
only increases from N to N (logN )3 in three dimensions.
To treat the continuum limit, we consider two controlled
ways to discretize momentum space. First, we demonstrate
the existence of rare regions in a model of a disordered, single
Weyl cone. Second, we study the density of states near the
Weyl node. We demonstrate avoidance of the perturbative
transition; the density of states near this avoided transition is
finite and remains an analytic function of energy and disorder
near the Weyl node.

In Fig. 1(a), we show an example of the density of states
ρ(ε) as a function of energy ε and disorder strengthsW across
the AQCPWc. Approaching the AQCP, the ρ(ε) scaling goes
from ∼ε2 to ∼|ε| scaling at the (avoided) transition, consis-
tent with the renormalization group expectation (z = 3/2).
However, this scaling does not persist to zero energy due
to the nonzero density of states at ε = 0. As we track the
zero-energy density of states ρ(0) for W < Wc, we find that
ρ(0) is nonzero (converged with system size) and decreases
in an exponential fashion, thus ruling out the stability of the
semimetal phase. Importantly, all of our conclusions are un-
affected by the discretization of the continuum. We conclude
that AQCP survives the continuum single-cone limit.

Continuum model and numerical implementation. The
model for a single disordered Weyl cone takes the form

H = −ih̄vFσ · ∇ +V (r), 〈V (r + R)V (r)〉 = W 2e−R2/ξ 2
,

(1)
where 〈· · ·〉 represents the disorder average, and V (r) is a
Gaussian random variable with zero mean. Without loss of

generality, we take vF = 1 = h̄ and ξ = 1. For simulation
purposes, we use the momentum space version of the problem
where

Hk,k′ = σ · k(2π )3δ(k − k′) +V (k − k′), (2)

the Gaussian disorder in the potential takes the form [39]

〈V (k)V (k′)∗〉 = W 2π3/2e−(1/4)k2 (2π )3δ(k − k′), (3)

and we define the Fourier transform such that �(k) =∫
d3x�(x)e−ik·x.
To discretize the problem, we construct a grid in momen-

tum space characterized by three lattice vectors b j defined
as columns of a matrix B. Momentum is found by a vector
of integers n via kn = δkB(n + ϕ) where δk = 2π

Na for length
scale a, number of grid points with linear dimension N , and
offset ϕ ∈ [0, 1)3. The length scale a is related to a real-space
lattice spacing, Na to a system size, and we have periodic
boundary conditions in real space. We consider two differ-
ent momentum-space lattices: cubic and face-centered cubic
(fcc). The fcc lattice provides the densest packing of spheres
in three dimensions, allowing us to approximate the contin-
uum more accurately for a given number of momentum-space
grid points. For a cubic (momentum-space) lattice B is the
identity, a is the lattice constant, and L = aN is the system
size, but for a fcc lattice, Bi j = 1/2 if i �= j and Bii = 0, the
real-space lattice is body-centered cubic (bcc) occupying a
rhombohedron with side length L = √

3aN and angle between
sides α = arccos(−1/3). Similarly, the constructed grid de-
termines the momentum space cutoff 	 by half the size of
the linear dimension. For cubic discretization, 	 = π

a with
a cubic cutoff around k = 0 while for the fcc discretization
	 = π√

2a
with a rhombic dodecahedron cutoff around k = 0,

as depicted in Fig 1(b).
To discretize the Hamiltonian, we consider its action on a

wave function

H� =
∫

d3k′

(2π )3
Hk,k′�(k′) ≈

∑
n′

Hnn′ψn′ , (4)

where Hnn′ ≡ det(B)
(Na)3 Hkn,k′

n
and ψn ≡ �(kn). Discretization

affects the Dirac delta function such that δ(kn − kn′ ) ≈
(Na)3

(2π )3 det(B)δnn′ . This simplifies the kinetic term and discretizes
the correlator in Eq. (3),

〈VnV ∗
n′ 〉 = W 2π3/2e−(1/4)(δkBn)2 (Na)3

det(B)
δnn′ , (5)

where Vn ≡ V (δkBn). This correlator is achieved by [40]

Vn = Wzn

√
(Na)3

det(B)
π3/2e−(1/4)(δkBn)2 , (6)

where zn are Gaussian independent and identically distributed
random complex numbers with 〈zn〉 = 0 and 〈z∗n′zn〉 = δnn′ .
To ensure V is Hermitian, we find the inversion operator for
our lattice P and identify zn = z∗Pn and make sure inversion
symmetric points are real valued. We also impose V0 = 0 to
avoid random spatially uniform shifts in the potential.

The discretized Hamiltonian is

Hnn′ = δk σ · B(n + ϕ)δnn′ + det(B)

(Na)3
Vn−n′ . (7)
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This matrix as written is dense, but to take advantage of
numerical techniques that only require matrix-vector multi-
plication, we consider how this acts on a vector ψn. First,
the kinetic part is block diagonal, but the potential acts as a
convolution. To implement a convolution, we need the three-
dimensional Fourier transform of Vn. The result is a linear
operator

det(B)

(aN )3
∑
n′

Vn−n′ψn′ = det(B)

a3
F[F−1[Vn]F−1[ψn]], (8)

where F is a three-dimensional fast Fourier transform (FFT).
The FFT is, in a sense, returning us to real space where the
potential is diagonal, but for our purposes, we consider it a
tool for the application of the convolution. As Lanczos and
the kernel polynomial method (KPM) [41] based approaches
for sparse matrices scale like ∼N (for matrix size N ) the
inclusion of the FFT only increases the computational cost to
N (logN )3, which keeps the algorithm sufficiently fast. Thus,
our approach provides an efficient way to utilize matrix-vector
routines to study inhomogeneous continuum models.

Using an FFT introduces a notion of Brillioun zones (BZs).
For any finite BZ there is a discontinuity in the kinetic energy
at the edge of the BZ due to the fermion doubling theorem:
There ought to be a second Weyl fermion at the BZ edge with
infinite velocity (but our finite grid never picks it up). Further,
the convolution acts across the BZ, connecting k points that
are far from each other in the continuum but close in a periodic
BZ. We expect that this only affects the high-energy behavior
and does not affect the low-energy regime of interest that we
are probing near E = 0. To confirm this, we compare two
models with different cutoff physics—(1) the cubic lattice
and (2) the fcc lattice—and we find that there is qualitatively
no difference in the low-energy physics we study [39]. We
illustrate the fcc lattice in Fig. 1(b).

Finally, if we stochastically sample ϕ, we reproduce the
continuous density of states for the continuum system; all
finite size effects are then from the discretization of V (k).
Physically, a nonzero ϕ is usually associated with twisted
boundary conditions in real space.

Defining H as a linear operator allows us to take advantage
of numerical techniques that only involve matrix-vector multi-
plication such as Lanczos and the KPM [41]. Lanczos is used
to obtain eigenvectors near zero energy ε = 0, and we obtain
averaged density of states

ρdis(ε) =
〈

1

2N3

∑
n

δ(ε − εn)

〉
, (9)

with the KPM. To relate the density of states of the discretized
Hamiltonian to its continuum counterpart, a measure factor
is required from d3k ≈ (δk)3 det(B) which leads to ρ(ε) =
det(B)
a3 limL,	→∞ ρdis(ε) for fixedW .
The KPMmethod uses a Chebyshev expansion to orderNC ,

leading to a density of states ρNC (ε) [39] which behaves as a
convolution of the exact ρdis(ε) with a Gaussian of width δε =
π�
NC

and bandwidth � of H . We probe the scaling of ρNC (0)
with NC to assess the low-energy behavior of ρ(ε). Precisely,
assuming the density of states is analytic, we Taylor expand

1 2 3

−13
−11
−9

−7

−
−

FIG. 2. Properties of a rare wave function computed with the
fcc model with L = 25

√
3, 	 = π√

2
, and a disorder strength be-

low the AQCP W = 0.7 < Wc(	) ≈ 0.9. The energy of the state
is ε = 0.0168 but can made to pass smoothly through zero energy
with a small perturbation of the disorder potential [39]. Left: The
probability density of a rare wave function for a cut through the
real-space bcc lattice where â1 [â2] is in the (1, −1, 1) [(−1, 1, 1)]
direction and r = n1a1 + n2a2 + 22a3. Right: A scatter plot of the
wave function as a function of the distance to its maximum value
demonstrating a clear power-law decay with |ψ (r)| ∼ 1/r1.94 for this
rare state.

ρ(ε) to find

ρNC (0) = ρ(0) + 1

2
ρ ′′(0)

(
π�

NC

)2

+ · · · , (10)

and at the perturbative critical point, if we have ρ(ε) ∼ |ε|,
then

ρNC (0) ∼ 1

NC
and ρ ′′

NC
(0) ∼ NC . (11)

We also numerically compute ρ ′′
NC
(0) directly from the KPM

expansion [25].
Finding rare states. We begin by finding a low-energy rare

state in the weak disorder regime, i.e., below the avoided
transition. We use Lanczos on H2 to find states that are not
in the perturbative “Dirac peaks” [24]; such an example is
shown in Fig. 2 that is power-law bound to the region (at
r0) of uncharacteristically high disorder strength. The rare
wave function decays like ψ (r) ∼ 1/|r − r0|α , where α =
1.94 in excellent agreement with the analytic prediction at the
saddle point α = 2. In summary, the rare wave function we
have found here shares all of the same characteristics as in
lattice model simulations, and we find that they are not any
more difficult to find.

Behavior of the density of states. We now turn to a detailed
analysis of the density of states. To get accurate results we
average over a large number of disorder samples ranging from
2500 to 25 000 and analyze the zero-energy density of states
following Eq. (10) to extract NC-independent estimates of
ρ(0) and ρ ′′(0) [39]. We use ρ ′′(0) to determine whether the
density of states becomes nonanalytic, which would imply
ρ ′′(0) → ∞. In addition to the NC-independent estimate of
ρ ′′(0) we also compute it directly at fixed NC within the
KPM [25] which we denote as ρ ′′

NC
(0). Note that, if the crit-

ical point exists it implies the scaling ρNC (0) ∼ 1/NC and
ρ ′′
NC
(0) ∼ NC . We test for this scaling by plotting NCρNC (0)

vsW ; if it holds, then different NC curves should intersect at
one common point. However, as shown in Fig. 3(a), we find
that no such crossing occurs; instead, each increasing pair of
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FIG. 3. Demonstrating the avoided transition and finite density of states. (a) From lightest to darkest each curve represents NC = 28 to
213 in multiples of two (	 = π/

√
2 and L = 160

√
3). Other measures of the avoided criticality put Wc = 0.9 but we see that there is no

saturation of NCρNC (0) as we would expect from scaling with NC at the quantum critical point. (b) We fit ρNC (0) to Eq. (10) to extract ρ(0)
and ρ ′′(0) in the NC → ∞ limit [39]. We find for each cutoff studied, a peak in ρ ′′(0) saturated in system size (all gray curves are smaller
system sizes L	

√
2/π = 32

√
3, 64

√
3, 128

√
3 and for 	 = π/

√
2 we include L = 160

√
3). (b) Inset: Normalized with respect to the peak

value (Wc = 0.8, 0.9, 1.2 left to right), the peaks line up well with each other, displaying a weak cut-off dependence. (c) We find ρ(0) is well
fit by the rare-region form in Eq. (12) over approximately four orders of magnitude (gray lines). The data as plotted are converged in system
size, as the gray curves indicate in (b) and as expanded upon in the Supplemental Material for (c) [39]. The inset shows the same data on a
linear scale.

NC’s intersects at smaller values ofW , indicating the absence
of a transition at the lowest energy scales.

Our second piece of evidence for the avoided transition is
the strongly rounded peak in ρ ′′(0), as shown in Fig. 3(b).
We find that ρ ′′(0) is converged in system size (gray curves
indicate smaller system sizes), not singular, and weakly de-
pendent on the cutoff. Thus, we find that the density of states
remains an analytic function of W and ε at the Weyl node,
except for an expected essential singularity at W = 0 due to
the nonperturbative disorder effects. The location of the maxi-
mum of the peak provides an accurate estimate of the avoided
transition Wc(	) [24,25] that also agrees with the estimate
based on the apparent scaling ρ(ε) ∼ |ε|.

Tracking the zero-energy density of states for decreasingW
below the avoided transition, we converge the NC-independent
ρ(0) in system size [39] to an exponentially small but nonzero
value. As shown in Fig. 3(c), we find that the converged value
of ρ(0) is well described by the results of the saddle-point
instanton expectation [10],

ρ(0) = a(	) exp[−b(Wc(	)/W )2]. (12)

Impressively, the data fit to this form extends over three to
four orders of magnitude in ρ(0) depending on the cutoff.
We find that all of the results share a common slope (with
the fitted value ranging from b = 8.3 ± 0.7 to b = 8.9 ± 1.1
where the error is mostly due to Wc error) and the offset
[i.e., the prefactor a(	)] is cut-off dependent. Thus, as ρ(0)
is converged in system size [Fig. 3(c)] and NC , it is finite in
the thermodynamic limit and increases with increasing cutoff.
These results imply that rare regions have induced a nonzero
density of states for any finite value of W and below the
avoided transition, Eq. (12) describes it.

Finally, we present ρ ′′
NC
(0) directly computed from the

KPM expansion to demonstrate any rounding from perform-
ing fits to Eq. (10) is weak and the lack of divergence of ρ ′′(0)
is intrinsic to the problem. As shown in Fig. 4(a) we find that
the peak in ρ ′′

NC
(0) grows with NC but at the largest NC’s the

increase is minor, demonstrating saturation with NC . For clar-
ity and to test the critical scenario ρ ′′

NC
(0) ∼ NC , we plot the

peak value of ρ ′′
NC
(0) as a function of NC in Fig. 4(b). We find

that the peak is saturating with NC (independent of the kind of
discretization of the continuum) and does not come close to
the critical scaling expectation. It is useful to contrast the rise
in ρ ′′

NC
(0) with the quasiperiodic limit of the model [36], which

has an actual transition and the divergence in ρ ′′
NC
(0) manifests

as an increase over six orders of magnitude. In contrast, in
the present model, the peak barely rises over one order of
magnitude. The transition is strongly avoided.

Discussion. The physical role of rare states in causing
a nonzero density of states appears unchanged from lattice
models [24,25,27,30,31], and stands in contrast to analytic
results [33]. The analytic work suggests that a single spherical
potential (e.g., one rare state) cannot lead to a density of states
at zero energy. However, the exact numerics have configu-
rations with multiple rare states, which produce long-range
tunneling matrix elements that are inversely proportional to
the square of the distance between them [10,24]. On the other
hand, to make a direct comparison of a single rare event
(Fig. 2) and those of Ref. [33] the vector of angles ϕ (used
in simulations) ought to be physically considered; it can be

FIG. 4. Convergence of the peak of ρ ′′
NC
(0) at the AQCP. (a) NC

dependence of the second derivative of the density of states for the
fcc model. (b) A plot of the peak saturated ρ ′′

NC
(0) data for both fcc

and cubic data. Data at fixed NC are converged in system size [39].
We see that they do not match the scaling we would expect from
a true quantum critical point ρ ′′

NC
(0) ∝ NC (gray line). The fcc data

has 	 = π/
√
2 and L = 160

√
3 while the cubic data has 	 = π and

L = 160.
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mapped exactly to a Bloch wave vector where the disorder po-
tential on an N × N × N lattice is repeated infinitely in space.
In this paradigm, even single rare states map to an infinite
band of rare states, and the saturation of density of states with
system size indicates that this band does not become sparser
for larger supercells (i.e., larger N). Therefore, the density of
rare states participating in these bands remains constant.
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