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(GWR) is a data-borrowing technique, this paper derives ex-
pressions for the amount of bias introduced to local parameter
estimates by borrowing data from locations where the pro-
cesses might be different from those at the regression location.
This is done for both GWR and Multiscale GWR (MGWR). We
demonstrate the accuracy of our expressions for bias through
a comparison with empirically derived estimates based on a
simulated dataset with known local parameter values. By be-
ing able to compute the bias in both models we are able to
demonstrate the superiority of MGWR. We then demonstrate
the utility of a corrected Akaike Information Criterion statistic in
finding optimal bandwidths in both GWR and MGWR as a trade-
off between minimizing both bias and uncertainty. We further
show how bias in one set of local parameter estimates can affect
the bias in another set of local estimates. The bias derived from
borrowing data from other locations appears to be very small.
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Fig. 1. Two different data generating processes.

. Introduction

Although our understanding of the world can be advanced by purely theoretical constructs (the
rediction of as-yet-unobserved sub-atomic particles, for example), perhaps a greater contribution
o this understanding arises from observing aspects of the real world and advancing theories
hich support these observations (the motion of the planets, for example). In following this latter
pproach, an important distinction to be made is that between the data we observe and the
rocesses that have produced these data. Formally, if we state the relationship

yi = f1 (x1i) , f2 (x2i) , . . . , fm (xmi) (1)

the datum we observe at each location i is represented by yi and these values are related to a set of
ovariates x1. . . xm also observed at each location i through a set of processes f1 . . . f m. Much effort is
iven to trying to identify the processes f1. . . f m , which are often unobservable, given measurements
f y, x1. . . xm for each location i. In traditional models of the real world, the processes f1 . . . f m. are
ssumed to be stationary over space: that is, the same set of processes exists at all locations so that
patial variations in yi arise solely from spatial variations in the covariates x1i. . . xmi. This situation
s described in Fig. 1a.

An alternative view of the real world, as described by Fig. 1b, is that spatial variation in yi might
e produced not only by spatial variation in the covariates x1. . . xm but also by variations in the
rocesses f1 . . . f m. That is, the model of the real world described by Eq. (1) should be replaced
ith:

yi = f1i (x1i) , f2i (x2i) , . . . , fmi (xmi) (2)

here the processes are allowed to vary across locations. Several types of what are known as local
odeling frameworks have been proposed based on the view of the world represented in Eq. (2).
xamples included Bayesian spatially varying coefficient models (Gelfand et al., 2003), eigenvector
patial filtering approaches (Griffith, 2008) and geographically weighted regression (Fotheringham
t al., 2002). Here we concentrate on the latter which has seen widespread adoption across many
isciplines (Cahill and Mulligan, 2007; Brown et al., 2012; Miller and Hanham, 2011; Fothering-
am et al., 2015; Zou et al., 2016) and for which a more flexible approach, termed multiscale
eographically weighted regression (MGWR), has recently been developed (Fotheringham et al.,
017).
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2. Geographically weighted regression as a data-borrowing technique

Suppose we want to calibrate a model whose general formula is that given by Eq. (2) and where
we believe the processes that generate our observations on y are spatially varying. If we had suffi-
cient data on y and x1. . . xm at each location, we could calibrate a separate model for each location
and examine the spatial variability of the resulting local parameter estimates. Unfortunately, such
a situation is rare; the more usual situation is one where only a single measurement of y and each
of the covariates x1. . . xm is recorded at each location. The traditional approach would then be to
ignore any possible spatial variation in the processes represented by f1i. . . f mi and to calibrate a
global model which would generate a single estimate of each fj and which would be in effect an
average of the set of the location-specific fji processes which are unobservable. An alternative, which
is provided by the geographically weighted regression (GWR) framework, is to calibrate a separate
model for each location by ‘borrowing’ data from surrounding locations.

Although borrowing data from nearby locations allows the measurement of location-specific
processes (or, rather, proxies for these processes in terms of location-specific parameter estimates),
it clearly introduces bias into the local estimates because the data that are borrowed from other
locations are the product of processes which may be different from those acting at the focal local
for the regression. This bias is mitigated by weighting the data that are borrowed from surrounding
locations from 1 to 0 to reflect their proximity to the regression focal point with data from nearer
locations having a greater weight than data from more distant locations. This weighting is typically
achieved by adopting a continuous distance-based kernel function and determining an optimal
bandwidth (degree of distance-decay) for this kernel from the data. This is the essence of GWR
and its variants.

Despite this mitigation strategy, however, a bias in the resulting local parameter estimates still
exists and the determination of this bias is the focus of this paper. We first describe the calculation
of bias in local parameter estimates for GWR which has a single optimized bandwidth and then we
turn to the more complex MGWR which has covariate-specific optimal bandwidths. Being able to
calculate the bias in the local parameter estimates derived from both GWR and MGWR is important
for several reasons:

(i) To determine the extent of this bias — if it were sufficiently large it would negate the utility
of the data-borrowing framework;

(ii) To examine the extent to which the bias in GWR local parameter estimates is mitigated in
MGWR which contains extra flexibility in allowing covariate-specific bandwidths;

(iii) To investigate the relationship between scale (bandwidth) misspecification and the bias
contained in the local parameter estimates; and

(iv) To examine the role of the bias–variance trade-off in determining the optimal bandwidth.
Currently, we typically use some variant of an information-criterion statistic to determine the
optimal bandwidth which is assumed to measure a trade-off between bias and uncertainty in
the local parameter estimates. By being able to measure the bias directly, we could both test
the efficacy of various information criterion statistics in measuring this trade-off and possibly
replace a single goodness-of-fit criterion with direct measures of both bias and uncertainty.

The paper proceeds as follows. First, the bias in a GWR model is identified and then this framework
is extended to MGWR. In both cases, we derive analytical expressions for the bias and compare these
to the measurement of bias obtained empirically from known local parameter surfaces. Finally, we
compare the bias GWR to that in MGWR and make comments on the utility of our findings.

3. Derivation of the analytical expression for the data-borrowing bias in GWR parameter
estimates

3.1. GWR formulation

Geographically Weighted Regression (GWR) allows parameter estimates from a linear regression
model to vary locally. It calibrates a separate regression model at each location of interest by
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borrowing data from nearby observations and weighting them by their distance from the regression
point. GWR is formulated as

yi =

m∑
j=1

βijxij + εi (3)

where for location i ∈ {1, 2, . . . , n}, yi is the response variable, xij is the jth predictor variable,
∈ {1, 2, . . . ,m}, βij is the jth parameter estimate, and εi is the error term. GWR calibration for the
m, 1) coefficients at location i in matrix form is given by

β̂i =
(
XTW iX

)−1 XTW iy, i ∈ {1, 2, . . . , n} (4)

here β̂i is an m × 1 column vector of parameter estimates at location i, X is the n × m matrix
orm of the predictor variables, y is the n × 1 vector of the response variable, and W i is a diagonal
patial weight matrix that weights each observation in terms of its distance from location i. The
eighting scheme consists of selecting a kernel function and a bandwidth parameter that indicates
he relationship between weight and proximity. A popular data-borrowing scheme is the adaptive
i.e., k-nearest neighbors) bi-square kernel function, which has the advantageous interpretation
hat the bandwidth parameter defines the number of neighbors which have non-zero weights
n the local regression. This bandwidth parameter is typically selected by optimizing a corrected
kaike information criterion (AICc). The AICc penalizes smaller bandwidths to avoid over-fitting
nd maintains a balance between parameter estimate bias and variance and is defined as

AICc = 2n ln
(
RSS
n

)
+ n ln 2π + n

{
n + tr(S)

n − 2 − tr(S)

}
(5)

where n is the number of observations, RSS is the residual sum of squares, and tr(S) is the trace of
the hat matrix and the Effective Number of Parameters (ENP) of the model. This nearest-neighbor
bi-square kernel data-borrowing scheme parameterized via AICc optimization is utilized throughout
this paper.

Yu et al. (2018) express the GWR formulation from Eq. (1) as a Generalized Additive Model (GAM)
s

y =

m∑
1

f j + ε (6)

here the response variable y is expressed as a linear combination of m smooth terms f 1...m
nd an i.i.d error term, ε. The jth smooth term f j is comprised of the GWR data-borrowing
cheme, also known as a smoothing function, applied to the jth predictor variable. In GWR a single
moothing function is applied to all of the predictor variables, which means the same bandwidth
arameter or data-borrowing range is associated with each covariate and associated local parameter
stimate surface. Multi-scale GWR (MGWR) (Fotheringham et al., 2017) provides a more generalized
xtension of this framework in which each smoothing function, f j , has its own data-borrowing
cheme and bandwidth parameter. As a result, each parameter estimate surface is free to vary with
unique degree of spatial smoothness, and is therefore more appropriate for capturing processes
perating at different spatial scales.
In the following sections, we derive analytical expressions for the bias in the local param-

ter estimates generated by GWR and MGWR and decompose this bias into covariate-specific
ontributions.

.2. Data-borrowing bias in GWR parameter estimates

In this section, we derive the analytical form of the bias γij for each GWR parameter estimate
ˆ of the jth covariate at location i. For convenience, let e be the jth row of the (m, m) identity
ij j
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matrix, so that

ej = (0, 0, 0, . . . , 0  
j−1

, 1, 0, 0, . . . , 0  
m−j

) (7)

and

β̂ij = ej β̂i (8)

here β̂i is a column vector of parameter estimates with dimensions (m, 1) at location i. Us-
ng Eqs. (7) and (8), the conditional expectation of the parameter estimate β̂ij on bandwidths vector
bw = (bw1, bw2, . . . , bwm) can be written as

E
(
β̂ij
⏐⏐bw) = E

(
ej β̂i

⏐⏐bw) = E
(
ejP iy

⏐⏐bw)
= E

(
ejP i

(
m∑
1

f k + ε

) ⏐⏐bw) = E

(
ejP i

m∑
1

f k
⏐⏐bw)+ E

(
ejP iε

⏐⏐bw) (9)

where

P i =
(
XTW iX

)−1 XTW i (10)

So, given the assumption that error ε is independent of X , so E[ε
⏐⏐X ] = 0, and we have

E
(
β̂ij
⏐⏐bw) = E

(
ejP i

m∑
1

f k
⏐⏐bw) = ejP i

m∑
1

f k (11)

Then we add and subtract the same βij to Eq. (11) to give

E
(
β̂ij
⏐⏐bw) = ejP i

m∑
1

f k = ejP i

m∑
1

f k + βij − βij (12)

nd

E
(
β̂ij
⏐⏐bw) = βij −

(
βij − ejP i

m∑
1

f k

)
= βij − γij (13)

here the bias of parameter estimate β̂ij can be analytically expressed by

γij = βij − E
(
β̂ij
⏐⏐bw) = βij − ejP i

m∑
1

f k (14)

.3. A covariate-specific decomposition of the data-borrowing bias in GWR parameter estimates

From Eq. (14) we can see that γij is dependent on not only the jth term f j but also on the
ther terms f i̸=j . Therefore, we would like to decompose γij into covariate-specific contributions
o parameter estimate bias. Rewriting equation (8), we have

β = e β = e Iβ = e
(
XTW X

)−1 (XTW X
)
β = e P Xβ (15)
ij j i j i j i i i j i i
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and substituting (15) into (14) we then have the bias of the local parameter estimate β̂ij as

γij = ejP i

(
Xβi −

m∑
1

f k

)

= ejP i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm

⎞⎟⎟⎠
⎛⎜⎜⎝

βi1
βi2
...

βim

⎞⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
k=1

x1kβ1k

m∑
k=1

x2kβ2k

...
m∑

k=1

xnkβnk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ejP i

⎛⎜⎜⎝ m∑
k=1

⎛⎜⎜⎝
x1kβik
x2kβik

...

xnkβik

⎞⎟⎟⎠−

m∑
k=1

⎛⎜⎜⎝
x1kβ1k
x2kβ2k

...

xnkβnk

⎞⎟⎟⎠
⎞⎟⎟⎠

= ejP i

m∑
k=1

⎛⎜⎜⎝
x1k (βik − β1k)
x2k (βik − β2k)

...

xnk(βik − βnk)

⎞⎟⎟⎠

=

m∑
k=1

ejP i

⎛⎜⎜⎝
x1k (βik − β1k)
x2k (βik − β2k)

...

xn(βik − βnk)

⎞⎟⎟⎠ =

m∑
k=1

θijk

(16)

where

θijk = ejP i

⎛⎜⎜⎝
x1k (βik − β1k)
x2k (βik − β2k)

...

xnk(βik − βnk)

⎞⎟⎟⎠ (17)

Here θijk is the contribution to the bias γij of parameter estimate β̂ij from the parameter surface βk . If
βk were a flat surface where the true parameters are constant across space, then θijk would be zero.
This indicates that a flat parameter surface with an asymptotically infinite bandwidth does not bias
estimates of the other parameters. However, when βk is not constant, θijk is non-zero indicating
that βk will cause bias in the estimates of the other parameters. Eq. (13) also demonstrates that
the GWR parameter estimate β̂ij is often biased, since γij can only be zero if all covariates have
asymptotically infinite bandwidths; a situation where GWR is equivalent to OLS.

4. An example of the data-borrowing bias in GWR parameter estimates

A simulated dataset is used to examine the data-borrowing bias in GWR based on the analytical
solution given above. Three known parameter surfaces are generated from Eqs. (18)–(20).

β0 = 3 (18)

β = 1 +
1

(u + v) (19)
1 12
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b
d

Fig. 2. Known parameter surfaces of three synthesized processes.

Fig. 3. GWR parameter estimates from model Eq. (21).

Fig. 4. Empirical bias in parameter estimates by taking difference of Figs. 2 and 3.

β2 = 1 +
1

324
[36 − (6 −

u
2
)2][36 − (6 −

v

2
)2] (20)

where u and v are the x and y coordinates of a 25 by 25 grid. These known parameter surfaces are
displayed in Fig. 2.

Then a synthetic response variable y∗ is constructed using known parameter surfaces β0, β1, and
β2 with randomly drawn predictor variables X1 and X2 from normal distribution of N (0, 1 ) as well
as a randomly drawn error from N(0, 0.5) as described in Eq. (21).

y∗
= β0 + β1X1 + β2X2 + ε (21)

A GWR model is calibrated based on this simulated dataset using an adaptive bi-square kernel
which generates an optimal bandwidth of 50 nearest neighbors when using AICc as the optimization
criterion. The local parameter estimates from Eq. (21) are shown in Fig. 3. By taking the difference
etween Figs. 2 and 3, the bias in the local parameter estimates is shown in Fig. 4 whereas Fig. 5
epicts the analytical bias computed from Eq. (14).
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Fig. 5. Analytically-derived GWR bias computed from Eq. (14).

Fig. 6. Comparison of the analytically derived parameter bias from Eq. (21) and the mean of the errors in each local
stimate from 10,000 GWR calibrations based on different drawings of yi .

It can be seen from Figs. 4 and 5 that the bias is close to zero for most locations and is relatively
andom compared to the magnitude and spatial patterning of the true parameter values in Fig. 2.
he one exception to this is on the β2 surface where there is clearly an edge effect that causes bias
o be higher around the border of the study area. This analytical bias was confirmed via Monte Carlo
imulations of 10,000 realizations of yi values with an added random error drawn from N(0,0.5) to
he model in Eq. (21). The results showing the relationship between the analytical bias from Eq. (21)
nd the mean of the 10,000 simulations for each of the 625 local estimates of the three parameters
re shown in Fig. 6.
The results above are based on the optimal bandwidth of 50 nearest neighbors being selected

y minimizing a corrected AIC statistic as shown in Fig. 7.
However, given that the data-borrowing bias in GWR local parameter estimates can be computed

rom Eq. (21) for any bandwidth value, we can use this to examine the sensitivity of the bias
o variations in the bandwidth and also to examine the efficacy of using AICc as an optimizing
riterion. In Fig. 8 we demonstrate the sensitivity of both bias and uncertainty (variance) in local
arameter estimates to variations in the bandwidth. For each bandwidth, Fig. 8 displays the mean
ercentage bias in the local parameter estimates averaged over the three sets of estimates for all
25 locations (blue line) and the equivalent mean standard error as an indicator of the uncertainty
ttached to the local parameter estimates. (green line). As expected, as the bandwidth increases and
ore data are borrowed from increasingly distant locations, the bias increases and the variance
ecreases. However, while the bias increases steadily as the bandwidth increases, the variance
lattens out relatively quickly. The optimal bandwidth selected on the basis of AICc minimization
eems reasonable — it provides a set of local parameter estimates with both low bias and low
ariance. It is tempting to suggest that the optimal bandwidth should be where the lines cross
somewhere around 40 nearest neighbors) but this has no basis statistically and is a graphical
icety only. A bandwidth of 40 instead of 50 would produce less bias but at the cost of increasing
ncertainty.
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Fig. 7. The relationship between AICc and bandwidth. The optimal bandwidth that minimizes AICc in the model calibration
s 50 nearest neighbors.

Fig. 8. Bias–Variance (Blue–Green) tradeoff at different bandwidths. The vertical red line shows the optimal bandwidth
using AICc as the selection criterion. . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Finally, Eq. (17) shows how the bias in one set of local parameter estimates depends in part on
he bias in the estimates of the other local parameters. Formally, from Eq. (17) θijk is the contribution
o the bias γij of parameter estimate β̂ij from the parameter surface βk and these values are displayed
n Fig. 9 for each of the three sets of parameters across a range of bandwidths. The results indicate
hat the bias in one set of local estimates derived from bias in the other sets of local parameter
stimates is negligible and this is the case across all bandwidths. The bias in the local intercept
s always very low whereas the bias in β2 increases rapidly as the bandwidth increases because
he pattern of the true values of β2 exhibits relatively large spatial heterogeneity. The bias in the
stimates of β1 tends to increase less dramatically as the bandwidth increases because the pattern
f the true values of β exhibits less spatial heterogeneity than that of the true values of β .
1 2
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Fig. 9. The contributions to the bias in one set of local parameter estimates from the bias in the other local parameter
estimates in the model at different bandwidths computed from Eq. (17).

5. Derivation of the analytical expression for the data-borrowing bias in MGWR parameter
estimates

5.1. MGWR formulation

Compared to classic GWR model which assumes bandwidth to be the same across covariates,
MGWR (Fotheringham et al., 2017) relaxes this assumption and allows covariate-specific band-
widths to be optimized. The formulation of MGWR is the same as the GAM formulation of GWR
in Eq. (6) except that each component of the smoothing function f j is calibrated with a covariate-
specific bandwidth bwj. Then the response variable y can be expressed as the sum of spatially
varying surface components with different degrees of smoothness in each.

y =

m∑
1

f bwj + ε (22)

The calibration process of MGWR follows the traditional back-fitting in GAM (Hastie and Tibshirani,
1990; Buja et al., 1989). It starts by initializing the parameter estimates from a GWR model, then
successive univariate GWR models GWR{f̂ j + ε̂ ∼ X j} are calibrated using the current fitted
component plus the current partial residual regressed against the current covariate. This is done
successively across each of the covariates to complete one iteration of the calibration procedure.
The second iteration begins using the updated values of the fitted components and the back-fitting
algorithm iterates in such a way until parameter estimates do not change between iterations.

5.2. Data-borrowing bias in MGWR parameter estimates

Because MGWR is calibrated by a back-fitting process, the derivation of an analytical expression
for the data-borrowing bias in MGWR parameter estimates is more complex than in GWR. To begin
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with, we express the expectation of the fitted term f̂ j as

E
(
f̂ j
⏐⏐bw) = E

⎛⎜⎜⎜⎝
x1jβ̂1j

x2jβ̂2j
...

xnjβ̂nj

⏐⏐⏐⏐⏐⏐⏐⏐⏐ bw
⎞⎟⎟⎟⎠ = E

⎛⎜⎜⎝
x1j(β1j − γ1j)
x2j(β2j − γ2j)

...

xnj(βnj − γnj)

⏐⏐⏐⏐⏐⏐⏐⏐ bw
⎞⎟⎟⎠

= E

⎛⎜⎜⎝
x1jβ1j − x1jγ1j
x2jβ2j − x2jγ2j

...

xnjβnj − xnjγnj

⏐⏐⏐⏐⏐⏐⏐⏐ bw
⎞⎟⎟⎠ = fj − τ j

(23)

where τ j is a column vector of covariate xij times the bias γij for location i ∈ {1, 2, . . . , n}

τ j =

⎛⎜⎜⎝
x1j
x2j
...

xnj

γ1j
γ2j
...

γnj

⎞⎟⎟⎠
nx1

(24)

In the MGWR back-fitting procedure, each fitted term is updated successively as

f̂
∗

j = Aj

(
f̂ j + ε̂

)
(25)

where f̂ j is the fitted term from the previous iteration, ε̂ is the current model residual, Aj is the
GWR hat matrix of the model GWR {f̂ j + ε̂ ∼ X j}. From Yu et al. (2018), the covariate-specific hat
matrix Rj can be updated by

R∗

j = Aj − AjS + AjRj (26)

where S is the model hat matrix from MGWR. After obtaining an updated R∗

j , the new hat matrix
S∗ can be updated accordingly by

S∗
= S − Rj + R∗

j (27)

and the updated fitted term f̂
∗

j can be expressed by

f̂
∗

j = R∗

j y =
(
Aj − AjS + AjRj

)
y (28)

Then its expectation can be obtained from

E
(
f̂

∗

j

⏐⏐bj) = E
((
Aj − AjS + AjRj

)
y
⏐⏐bj)

= E
(
Ajy

⏐⏐bj)− E
(
AjSy

⏐⏐bj)+ E
(
AjRjy

⏐⏐bj)
= Ajy − AjE

(
Sy
⏐⏐bj)+ AjE

(
Rjy

⏐⏐bj) (29)

where

E
(
Rjy

⏐⏐bj) = E
(
f̂ j
⏐⏐bj) = f j − τ j (30)

and

E
(
Sy
⏐⏐bj) = E

(
ŷ
⏐⏐bj) = E

(
m∑
1

f̂ j
⏐⏐bj) = y −

m∑
1

τ j (31)

Substituting Eqs. (30) and (31) into (29), we get

E
(
f̂

∗

j

⏐⏐bj) = Ajy − Aj

(
y −

m∑
τk

)
+ Aj

(
f j − τ j

)
= Aj f j + Aj

m∑
τk − Ajτ j (32)
1 1
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and the updated smoothing bias τ∗

j of f j is then

τ∗

j = f j − E
(
f̂

∗

j

⏐⏐bj) = f j −

(
Aj f j + Aj

m∑
1

τk − Ajτ j

)

=
(
I − Aj

)
f j + Aj(τ j −

m∑
1

τk)
(33)

Once the back-fitting calibration converges, Eq. (24) can be used to obtain γ j by

γ j =
[
diag(X j)

]−1
τ j =

⎛⎜⎜⎝
γ1j
γ2j
...

γnj

⎞⎟⎟⎠
nx1

(34)

here
[
diag(X j)

]−1 is an inverse of a diagonal matrix with the jth covariate X j filling the diagonal
nd γ j is a column vector of the bias in each of the local parameter estimates associated with
ovariate j so that

β̂j = βj − γ j (35)

.3. Decomposing MGWR parameter bias into covariate-specific contributions

In a similar manner to decomposing the data-borrowing bias in local parameter estimates from
WR into covariate-specific contributions, we can decompose τ j into m components, so that

τ j =

m∑
k=1

αjk (36)

here αjk is the contribution to the bias τ j from term f̂ k and is expressed as

αjk =

⎛⎜⎜⎝
x1j θ1jk
x2j θ2jk
...

...

xnj θnjk

⎞⎟⎟⎠
nx1

(37)

n the back-fitting procedure, instead of updating τ j as shown in Eq. (33), we update αjk by

α∗

jk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Aj(αjk −

m∑
l=1

αjl) j ̸= k

(
I − Aj

)
f j + Aj(αjk −

m∑
l=1

αjl) j = k
(38)

nd use Eq. (36) to obtain τ j . In this way, we can decompose the bias in each term f̂ j into covariate
pecific contributions. Once we obtain α∗

jk , we can use Eq. (37) to get θjk so that

θjk =
[
diag(X j)

]−1
αjk =

⎛⎜⎜⎝
θ1jk
θ2jk
...

θnjk

⎞⎟⎟⎠
nx1

(39)

here θjk is a column vector of covariate-specific contributions from the kth term β̂k to the bias
n the jth term β̂ , and the total bias in β̂ can be expressed by the sum of each covariate-specific
j j
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Fig. 10. MGWR parameter estimates from the model in Eq. (21).

Fig. 11. Analytically-derived MGWR bias surfaces computed from Eq. (40).

contribution as

γ j = βj − β̂j =

m∑
k=1

θjk (40)

6. An example of data-borrowing bias in MGWR parameter estimates

In the following section, the same simulated dataset described above in the GWR discussion is
used to examine the data borrowing-bias in MGWR and to compare the degree of parameter bias
in GWR and MGWR. Using the same model as in Eq. (21) and the same data as described above
for GWR, the parameter estimate surfaces from the MGWR calibration are shown in Fig. 10. Rather
than obtaining a single bandwidth for all three sets of local parameters as in GWR, MGWR allows
a covariate-specific bandwidth to be optimized. The surface β0 which is constant over space has
an optimal bandwidth of 625; effectively suggesting this relationship is global. The surfaces for β1
and β2 have optimal bandwidths as 47 and 26, respectively, representing medium to high spatial
heterogeneity.

The analytically-derived data-borrowing bias calculated from Eq. (40) is shown in Fig. 11 and the
empirically derived bias is shown in Fig. 12. Both figures clearly demonstrate that the bias in the
local estimates of β0 has been reduced because in MGWR the covariate-specific bandwidth of 625
more accurately reflects the homogeneity of the parameter surface than does the single optimal
bandwidth of 50 found in GWR.

Further evidence of the accuracy of the analytical expression for the bias in MGWR parameter
estimates given in Eq. (40) is provided in Fig. 13 where the computed analytical bias is compared to
the mean bias derived from 10,000 simulations of the set of yi values described above for MGWR.
For all three sets of local parameter estimates, the results are virtually identical implying that the
analytical equation can be used with confidence to derive the bias in MGWR-derived local parameter
estimates.
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Fig. 12. Empirically-derived bias in MGWR parameter estimates.

Fig. 13. Comparison of analytically-derived MGWR bias from Eq. (34) and the Monte Carlo simulated MGWR bias based
on average of 10,000 realizations.

7. A comparison of bias in GWR and MGWR parameter estimates

Given we now have explicit analytical functions with which to calculate the bias of local
parameter estimates obtained from both GWR and MGWR, it is of interest to compare the degree
of bias in the local parameter estimates from the two methods, as shown in Fig. 14. For the local
estimates of the intercept, β0, shown in Fig. 14a, 90% of the estimates from GWR contain more bias
than the equivalent estimates from MGWR and even when the GWR bias is less than the MGWR
equivalent, the values are extremely close to zero for both models and the difference is just random
noise. Indeed all the estimates from MGWR contain virtually no bias at all as the covariate-specific
bandwidth is 625 and the relationship being modeled in MGWR is a spatially stationary one so
borrowing data from other locations introduces no bias — the process being modeled is the same
everywhere. Conversely, the GWR estimates of the local intercept contain bias because the single
optimized bandwidth in GWR is 50, so that the set of predicted local estimates contains some degree
of spatial heterogeneity whereas in reality the estimates are the same everywhere.

For the estimates of β1, depicted in Fig. 14b, the bias in the MGWR estimates again tends to be
less than in the GWR estimates — 72% of the points lie in the two triangles to the left and right of
the figure forming a ‘bow-tie’ shaped region in which the GWR bias is greater than the equivalent
MGWR bias. In this case, the superiority of the MGWR estimates in terms of bias is not as great as
that in the local intercepts because the covariate-specific bandwidth in MGWR for β1 is very similar
to the single bandwidth obtained in GWR (47 vs. 50). The bias is still generally lower in the MGWR
estimates because the bias contribution from the estimates of β0 and β2 will be less.

For β2 the situation is described in Fig. 14c and extends the trend described above for β1.
The MGWR estimates contain less bias for 74% of the parameter estimates compared to their
GWR counterparts but the bias is greater on average than that for the estimates of β1 which in
turn is greater than that for the estimates of β0. The trend in bias magnitude across the three

sets of parameters reflects the degree of spatial heterogeneity in the true parameters. When the
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Fig. 14. Comparison of bias in MGWR and GWR parameter estimates. Points falling into the bow-tie shaped area are
where the bias in the MGWR estimates is smaller than the bias in the GWR estimates.

parameters exhibit strong spatial heterogeneity, borrowing data will lead to greater bias than when
the parameters exhibit relatively weak spatial heterogeneity.

The results shown in Fig. 14 can be decomposed to show the contributions to the results of bias
n each of the three sets of local parameter estimates. This decomposition is shown in Fig. 15 where
the sum across each of the three rows equates to the three graphs in Fig. 14. The bulk of each bias
plot shown in Fig. 14 is a function of bias related to that parameter for each location (the diagonals
of Fig. 15) but in some instances, there is a cross-bias from other parameters. This is most noticeable
in the bias in the GWR-derived local estimates for β1 which contain a bias from the biased estimates
of β2.

We can examine the spatial distribution of the bias for all three sets of local parameter estimates
derived from both GWR and MGWR as shown in Fig. 16 in terms of a percentage bias for each local
estimate which is simply the percentage error in estimating each local parameter. The difference
in the two models is clearly seen in the spatial pattern of bias in the local intercepts: the MGWR
estimates have virtually zero bias whereas the GWR estimates display quite large bias. The biases
for the other two sets of local parameter estimates are somewhat similar with MGWR tending to
produce lower bias. For b1 the bias tends to be positive in the south-east and negative in the north-
west which reflects the spatial pattern of the true values as shown in Fig. 10 where the south-west
has lower-than-average values and the north-east has higher-than-average values. The effect of local
data borrowing in the estimation of the parameters produces estimates which are less extreme
and therefore the pattern of the bias reflects the pattern of the actual parameters. Similarly for
the local estimates of b2 the spatial pattern of the bias is circular with positive bias towards the
periphery where the true parameters are relatively low and an inner ring of negative bias where
the true parameters are relatively high. However, it is interesting that the bias tends to zero for
the parameters having the highest values in the center of the area where there is presumably less
mixing of disparate values in the data borrowed to estimate the local parameters.

Finally, we can compare the standard errors of the local estimates of β0, β1, and β2derived from
GWR and MGWR, as shown in Fig. 17 for all 625 locations. Where points lie to the right of the
diagonal, the GWR estimates have greater uncertainty than their MGWR counterparts and where
points lie to the left of the line, the uncertainty of the MGWR estimates is greater. It is immediately
evident that whereas the uncertainty associated with all 625 local estimates of both β0 and β1 is
greater when the estimates are obtained via GWR, the reverse is the case for the estimates of β2. In
the case of β0, the covariate-specific bandwidth obtained in MGWR is 625 compared to the single
bandwidth in GWR of 50. This means that in the local regressions for β0 under MGWR there are
more data points used than in the GWR model and so the uncertainty about each estimate is lower.
In the case of β2, the reverse is the case: the covariate-specific bandwidth in MGWR is 26 compared
to the single bandwidth of 50 in GWR so that more data points are used in the GWR local regressions
and hence the uncertainty in the resulting parameter estimates is lower in GWR than in MGWR.

Note that although the precision of the estimates of β2 might be greater in GWR, the estimates
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Fig. 15. Comparison of decomposed covariate-specific bias in MGWR (y-axis) and GWR (x-axis).

hemselves contain more bias. For β1 the situation is more complex. The single bandwidth obtained
n GWR (50) is very close to that of the covariate-specific bandwidth for β1 obtained in MGWR yet
the standard errors for the GWR local estimates of β1 are all larger than the corresponding values
obtained through MGWR. The extra uncertainty in GWR estimates of the local β1 parameters must
therefore result from the extra uncertainty in the estimates of the local intercept in GWR.

8. Conclusions

GWR and its recent successor, MGWR, allow the estimation of local parameters by borrowing
data from nearby locations and weighting these data according to how proximal they are to the
location for which the local parameters are estimated. If the processes being estimated vary over
spatial, borrowing data from nearby locations will introduce bias into the local parameter estimates.
This is well-known and indeed the general method of finding an optimal bandwidth (degree of
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Fig. 16. Percentage of bias in each local estimate from (a) GWR and (b) MGWR.

Fig. 17. Comparison of standard errors in MGWR parameter estimates with standard errors in GWR parameter estimates.

distance-decay in the weighting function) in both GWR and MGWR is to minimize a statistic that is
generally held to be a trade-off between bias and variance. Choosing too small a bandwidth leads
to a small bias but large variance; choosing too large a bandwidth leads to a low variance but large
bias. Until now, however, it has not been possible to compute bias directly. This paper provides
the analytical expressions for bias in local parameter estimates in both a GWR and an MGWR
framework. The expressions are supported by an analysis of a simulated dataset with known local
parameter surfaces so that an experimental bias can be calculated for each local parameter estimate
and compared to the equivalent values derived from the analytical expressions. This simulated
example demonstrates the viability of the analytical expressions.

The ability to be able to compute the data-borrowing bias in each local parameter estimate
is important for several reasons. Firstly, it is useful to be able to measure the extent of the bias
contained within each parameter estimate and here it is shown that this bias is relatively small.
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Secondly, it is useful to quantify the degree to which bias in GWR local parameter estimates is
mitigated by MGWR which allows covariate-specific bandwidths to be optimized. We demonstrate
that generally the bias in MGWR-derived local parameter estimates is lower than that of the GWR
counterparts. Thirdly, it is useful to be able to examine how sensitive the bias in local parameter
estimates is to the optimized bandwidth and then to examine the classic bias–variance trade-off
in the derivation of the optimal bandwidth. It would appear from the limited evidence presented
here that the corrected AIC statistic is a reasonable criterion to minimize in order to find an optimal
bandwidth that produces a good trade-off between bias and variance in local parameter estimates.
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