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Abstract

Motivation: Gene clustering is a widely-used technique that has enabled computational prediction of
unknown gene functions within a species. However, it remains a challenge to refine gene function
prediction by leveraging evolutionarily conserved genes in another species. This challenge calls for a
new computational algorithm to identify gene co-clusters in two species, so that genes in each co-cluster
exhibit similar expression levels in each species and strong conservation between the species.

Results: Here we develop the bipartite tight spectral clustering (BiTSC) algorithm, which identifies gene
co-clusters in two species based on gene orthology information and gene expression data. BiTSC novelly
implements a formulation that encodes gene orthology as a bipartite network and gene expression
data as node covariates. This formulation allows BiTSC to adopt and combine the advantages of
multiple unsupervised learning techniques: kernel enhancement, bipartite spectral clustering, consensus
clustering, tight clustering, and hierarchical clustering. As a result, BiTSC is a flexible and robust algorithm
capable of identifying informative gene co-clusters without forcing all genes into co-clusters. Another
advantage of BiTSC is that it does not rely on any distributional assumptions. Beyond cross-species
gene co-clustering, BiTSC also has wide applications as a general algorithm for identifying tight node
co-clusters in any bipartite network with node covariates. We demonstrate the accuracy and robustness
of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC to identify
conserved gene co-clusters of D. melanogaster and C. elegans, and we perform a series of downstream
analysis to both validate BiTSC and verify the biological significance of the identified co-clusters.
Availability and implementation: The Python package BiTSC is open-access and available at
https://github.com/edensunyidan/BiTSC.

Contact: jli@stat.ucla.edu

1 Introduction expression patterns across multiple conditions is a clustering problem,

In computational biology, a long-standing problem is how to predict
functions of the majority of genes that have not been well understood.
This prediction task requires borrowing functional information from other
genes with similar expression patterns in the same species or orthologous
genes in other species. Within a species, how to identify genes with similar

and researchers have successfully employed clustering methods to infer
unknown gene functions (Lee et al., 2004; Ruan et al., 2010). Specifically,
functions of less well-understood genes are inferred from known functions
of other genes in the same cluster. The rationale is that genes in one
cluster are likely to encode proteins in the same complex or participate in
a common metabolic pathway and thus share similar biological functions
(Stuart et al., 2003). In the last two decades, gene clustering for functional
prediction has been empowered by the availability of abundant microarray
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and RNA-seq data (Bergmann et al., 2003; Mortazavi et al., 2008; Wang
et al., 2009; Le et al., 2010; Sollner et al., 2017). Cross-species analysis
is another approach to infer gene functions by borrowing functional
information of orthologous genes in other species, under the assumption
that orthologous genes are likely to share similar functions (Fujibuchi
et al., 2000; Le et al., 2010; Dede and OAYul, 2013; Kristiansson et al.,
2013; Sudmant et al., 2015; Chen et al., 2016). Although computational
prediction of orthologous genes remains an ongoing challenge, gene
orthology information with increasing accuracy is readily available in
public databases such as TreeFam (Schreiber et al., 2013) and PANTHER
(Mi et al., 2018). Hence, it is reasonable to combine gene expression data
with gene orthology information to increase the accuracy of predicting
unknown gene functions.

Given two species, the computational task is to identify conserved
gene co-clusters containing genes from both species. The goal is to make
each co-cluster enriched with orthologous gene pairs and ensure that its
genes exhibit similar expression patterns in each species. Among existing
methods for this task, the earlier methods (Teichmann and Babu, 2002; van
Noort et al., 2003; Snel et al., 2004) took a two-step approach: in step 1,
genes are clustered in each species based on gene expression data; in step 2,
the gene clusters from the two species are paired into co-clusters based on
gene orthology information. This two-step approach has a major drawback:
there is no guarantee that gene clusters found in step 1 can be paired into
meaningful co-clusters in step 2. The reason is that step 1 performs separate
gene clustering in the two species without accounting for gene orthology,
and as a result, any two gene clusters from different species may share
few orthologs and should not be paired into a co-cluster. More recent
methods abandoned this two-step approach. For example, SCSC (Cai
et al., 2010) took a model-based approach, and MVBC (Sun et al., 2016)
took a joint matrix factorization approach. Both SCSC and MVBC require
that genes in two species are in one-to-one ortholog pairs. This notable
limitation prevents SCSC and MVBC from considering the majority of
genes that do not have known orthologs or have more than one orthologs
in the other species. Furthermore, SCSC assumes that each orthologous
gene pair has expression levels generated from a Gaussian mixture model
and the gene expression levels are independent between the two species.
This strong distributional assumption does not hold for gene expression
data from RNA-seq experiments. MVBC is also limited by its required
input of verified gene expression patterns, which are often unavailable
for many gene expression datasets. OrthoClust (Yan et al., 2014) is
a network-based gene co-clustering method that constructs a unipartite
gene network with nodes as genes in two species. Edges are established
based on gene co-expression relationships to connect genes of the same
species, or gene orthology relationships to connect genes from different
species. OrthoClust identifies gene clusters from this network using a
modularity maximization approach, which cannot guarantee that each
identified cluster contains genes from both species. There are also two open
questions regarding the use of OrthoClust in practice: (1) how to define
within-species edges based on gene co-expression and (2) how to balance
the relative weights of within-species edges and between-species edges
in clustering. Another class of methods is biological network alignment
(Singh et al., 2008; Neyshabur et al., 2013; Saraph and Milenkovié, 2014;
Sun et al., 2015), whose aim is to find conserved node and edge mapping
between networks of different species. These methods have been mostly
applied to protein-protein interaction networks. If applied to gene co-
clustering, they would have the same requirement as OrthoClust has for
pre-computed within-species gene networks, whose construction from
gene expression data, however, has no gold standards.

Here we propose bipartite tight spectral clustering (BiTSC), a novel
cross-species gene co-clustering algorithm, to overcome the above-
mentioned disadvantages of the existing methods. BiTSC for the first time
implements a bipartite-network formulation to tackle the computational

task: it encodes gene orthology as a bipartite network and gene expression
data as node covariates. This formulation was first mentioned in Razaee
et al. (2019) but not implemented. BiTSC implements this formulation
to simultaneously leverage gene orthology and gene expression data
to identify tight gene co-clusters, each of which contains similar gene
expression patterns in each species and rich gene ortholog pairs between
species. Existing bipartite network clustering methods, which were
developed for general bipartite networks, are not well suited for this task.
Some of them cannot account for node covariate information (Dhillon,
2001; Larremore et al., 2014; Nie et al., 2017), while others have
strong distributional assumptions that do not hold for gene orthology
networks and gene expression data measured by RNA-seq (Whang et al.,
2013; Razaee et al., 2019). In contrast, BiTSC adopts and combines the
advantages of multiple unsupervised learning techniques, including kernel
enhancement (Razaee, 2017), bipartite spectral clustering (Dhillon, 2001),
consensus clustering (Monti et al., 2003), tight clustering (Tseng and
Wong, 2005), and hierarchical clustering (Johnson, 1967). As a result,
BiTSC has three main advantages. First, BiTSC is the first gene co-
clustering method that does not force every gene into a co-cluster; in other
words, it only identifies tight gene co-clusters and allows for unclustered
genes. This is advantageous because some genes have individualized
functions (Ohno, 1970; Tatusov et al., 1997; Koonin, 2005) and thus should
not be assigned into any co-cluster. BiITSC is also flexible in allowing users
to adjust the tightness of its identified gene co-clusters. Second, BiTSC is
able to consider all the genes in two species, including those genes that do
not have orthologs in the other species. Third, BiTSC takes an algorithmic
approach that does not rely on any distributional assumptions, making it a
robust method. Moreover, we want to emphasize that BiTSC is not only a
bioinformatics method but also a general algorithm for network analysis.
It can be used to identify tight node co-clusters in a bipartite network with
node covariates.

2 Methods
2.1 Bipartite network formulation of gene co-clustering

BiTSC formulates the cross-species gene co-clustering problem as a
community detection problem in a bipartite network with node covariates.
A bipartite network contains two sides of nodes, and edges only exist
between nodes on different sides, not between nodes on the same side. Each
node is associated with a covariate vector, also known as node attributes.
In bipartite network analysis, the community detection task is to divide
nodes into co-clusters based on edges and node covariates, so that nodes
in one co-cluster have dense edge connections and similar node covariates
on each side (Razaee et al., 2019). In its formulation, BiTSC encodes
genes of two species as nodes of two sides in a bipartite network, where
an edge indicates that the two genes it connects are orthologous; BiTSC
encodes each gene’s expression levels as its node covariates, with the
requirement that all genes in one species have expression measurements
in the same set of biological samples. For the rest of the Methods section,
the terms “nodes” and “genes” are used interchangeably, so are “sides”
and “species”, as well as “node covariates” and “gene expression levels.”

In mathematical notations, there are m and n nodes on side 1 and
2, respectively. Edges are represented by a binary bi-adjacency matrix
A = (aij)mxn, where a;; = 1 indicates that there is an edge between
node ¢ on side 1 and node j on side 2, i.e., gene ¢ from species 1
and gene j from species 2 are orthologous. Note that A is allowed to
be a weighted bi-adjacency matrix with a;; € [0,1] when weighted
orthologous relationships are considered. Node covariates are encoded
in two matrices, X1 and X2, which have dimensions m X p; and n X p2
respectively, i.e., species 1 and 2 have gene expression levels measured in
p1 and p2 biological samples respectively. The i-th row of X is denoted
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Input: bipartite network
with node covariates

Output: identified co-clusters
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Fig. 1. Diagram illustrating the input and output of BiTSC. The identified tight node co-clusters satisfy that, within any co-cluster, nodes on the same side share similar covariates, and

nodes from different sides are densely connected. In the context of gene co-clustering, within any co-cluster, genes from the same species share similar gene expression levels across multiple

conditions, and genes from different species are rich in orthologs.

as xﬂ, and similarly for X. Note that all vectors are column vectors
unless otherwise stated.

2.2 The BiTSC algorithm

BiTSC is a general algorithm that identifies tight node clusters from a
bipartite network with node covariates. Table 1 summarizes the input data,
input parameters, and output of BiTSC. Figure 1 illustrates the idea of
BiTSC, and Figure S4 shows the detailed workflow. In the context of
cross-species gene co-clustering, BiTSC inputs A, which contains gene
orthology information, and X; and X2, which denote gene expression
data in species 1 and 2. BiTSC outputs tight gene co-clusters such that
genes within each co-cluster are rich in orthologs and share similar gene
expression levels across multiple biological samples in each species. A
unique advantage of BiTSC is that it does not force all genes into co-
clusters and allows certain genes with few orthologs or outlying gene
expression levels to stay unclustered.

As an overview, BiTSC is an ensemble algorithm that takes multiple
parallel runs. In each run, BiTSC first identifies initial node co-clusters
in a randomly subsampled bipartite sub-network; next, it assigns the
unsampled nodes to these initial co-clusters based on node covariates.
Then BiTSC aggregates the sets of node co-clusters resulted from these
multiple runs into a consensus matrix, from which it identifies tight node
co-clusters by hierarchical clustering. This subsampling-and-aggregation
idea was inspired by consensus clustering (Monti et al., 2003) and tight
clustering (Tseng and Wong, 2005).

BiTSC has four input parameters (Table 1): H, the number of runs; p €
(0, 1), the proportion of nodes to subsample in each run; Ko, the number
of node co-clusters in each run; @ € (0, 1), the tightness parameter used to
find tight node co-clusters in the last step. In the A-thrun, h = 1,..., H,
BiTSC has the following four steps.

1. Subsampling. BiTSC randomly samples without replacement m =
pm | nodes on side 1 and 7 = |pn] nodes on side 2, where the
floor function | x| gives the largest integer less than or equal to z. We
denote the subsampled bi-adjacency matrix as A, whose dimensions
are m X n, and the two subsampled covariate matrices as 5(1 and
5(2, whose dimensions are 7 X p1 and i X pa respectively.

2. Kernel enhancement. To find initial node co-clusters from this
bipartite sub-network A with node covariates 5(1 and 5(2, a technical
issue is that this sub-network may have sparse edges and disconnected

Table 1 Input and output of BiTSC

Input data: bipartite network with node covariates
e A:m X n bi-adjacency matrix
e X;i:m X pi covariate matrix for side 1
e Xo:n X po covariate matrix for side 2
Input parameters:
e H:number of subsampling runs
e p € (0,1): proportion of nodes to subsample in each run
e T: tuning parameter for constructing the enhanced bi-adjacency
matrix
e Ko: number of node co-clusters to identify in each run
e o € (0,1): tightness parameter
Output:
e Tight node co-clusters that are mutually exclusive and collectively
a subset of the (m + n) nodes

nodes. To address this issue, BITSC employs the kernel enhancement
technique proposed by Razaee (2017) to complement network edges
by integrating node covariates. This kernel enhancement step will
essentially reweight edges by incorporating pairwise node similarities
on both sides. Technically, BiTSC defines two kernel matrices f{l
and Ko, which are symmetric and have dimensions m X m and
n X 7, for nodes on side 1 and 2 respectively. In I~(r, r=1,2,
the (i, )-th entry is ky(Xri, %) = exp(—|%ri — %rj||?/pPr),
where ||X,; — X,;|| is the Euclidean distance between nodes ¢ and
j on side r in this sub-network. Then BiTSC constructs an enhanced
bi-adjacency matrix B = (f{l + nIm)A(f{g + 721I5), whose
dimensions are m X n, where I and I; are the m- and n-
dimensional identity matrices, and 7 = (71,72) € [0,00)? is a
tuning parameter that balances the information from the subsampled
bi-adjacency matrix and the two kernel matrices. Since B can be
rewritten as Kl Af{g +71 Af{z + 72K1 A+ 1 TQA, when 71 and
T are large, T TQA dominates and covariate information has little
to no impact on B; when 71 and 72 are both close to 0, KlAKz
dominates and covariate information contributes more to the enhanced
bi-adjacency matrix.
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3. Bipartite spectral clustering. BiTSC identifies initial node co-clusters
from B, the enhanced bi-adjacency matrix of the bipartite sub-
network, by borrowing the idea from Dhillon (2001). Technically,
BiTSC first constructs

W = (i5) (g7) x (7)) = [

which may be viewed as the adjacency matrix of a unipartite network
with (M + 7) nodes. Then BiTSC identifies Ko mutually exclusive
and collectively exhaustive clusters from W via normalized spectral
clustering (Ng et al., 2001) as follows:

a. BiTSC computes a degree matrix D, an (77 + 71)-dimensional
diagonal matrix whose diagonal entries are the row sums of W.

b. BiTSC computes the normalized Laplacian of WasL = Lsyn—
D~ 2 WD~ 3. Note that L is a positive semi-definite (m + ) x
(T +7) matrix with (72+72) non-negative real-valued eigenvalues:
0=Xx < < Amgae

c. BiTSC finds the first Ko eigenvectors of L that correspond to
A1, , Ak, - Bach eigenvector has length (772 + 7). Then BiTSC
collects these K eigenvectors column-wise into a matrix I:T, whose
dimensions are (m + 1) X Ko.

d. BiTSC normalizes each row of U to have a unit £2 norm and denotes
the normalized matrix as V. Specifically, V also has dimensions

(M + 7) x Ko, and its 4-th row v = a7 /||aT ||, where a7 is
the i-th row of U and || - || denotes the £2 norm.

e. BiTSC applies K-means clustering to divide the (7 + 7) rows of
V into K clusters. In detail, Euclidean distance is used to measure
the distance between each row and each cluster center.

The resulting K clusters of (7 4 72) nodes are regarded as the initial
Ko node co-clusters.

4. Assignment of unsampled nodes. BiTSC assigns the unsampled
nodes, which are not subsampled in step 1, into the initial K¢ node co-
clusters. Specifically, there are (m—mm) and (n—7) unsampled nodes
on side 1 and 2, respectively. For each initial node co-cluster, BITSC
first calculates a mean covariate vector on each side. For example,
if a co-cluster contains nodes 7 and j on side 1 of the bipartite sub-
network, its mean covariate vector on side 1 would be computed as
(%15 + X1;)/2. BiTSC next assigns each unsampled node to the
co-cluster whose mean covariate vector (on the same side as the
unsampled node) has the smallest Euclidean distance to the node’s
covariate vector.

With the above four steps, in the A-th run, h = 1,..., H, BiTSC
obtains K node co-clusters, which are mutually exclusive and collectively
containing all the m nodes on side 1 and n nodes on side 2. To
aggregate the H sets of Ko node co-clusters, BiTSC first constructs
a node co-membership matrix for each run. Specifically, M%) =
(mg?))<m+n)x(m+n> denotes a node co-membership matrix resulted
from the h-th run. M(") is a binary and symmetric matrix indicating
the pairwise cluster co-membership of the (m + n) nodes. That is, an
entry in M) is 1 if the two nodes corresponding to its row and column
are assigned to the same co-cluster; otherwise, it is 0. Then BiTSC
constructs a consensus matrix M = (mij)(ern) X (m-+n) DY averaging
MO MU e, my = SH mE?)/H € [0,1]. An entry of
M indicates the frequency that the two nodes corresponding to its row and
column are assigned to the same co-cluster, among the H runs.

Lastly, BiTSC identifies tight node co-clusters from M such that within
every co-cluster, all pairs of nodes have been previously clustered together
at a frequency of at least «, the input tightness parameter. Specifically,
BiTSC considers (1 — M) as a pairwise distance matrix of (m + n)

nodes. Then BiTSC applies hierarchical clustering with complete linkage
to (1 — M), and it subsequently cuts the resulting dendrogram at the
distance threshold (1 — «). This guarantees that all the nodes within each
resulting co-cluster have pairwise distances no greater than (1 — ), which
is equivalent to being previously clustered together at a frequency of at least
a. A larger o value will lead to finer co-clusters, i.e., a greater number of
smaller clusters and unclustered nodes. BiTSC provides a visualization-
based approach to help users choose «: for each candidate « value, BiTSC
collects the nodes in the resulting tight co-clusters and plots a heatmap of
the submatrix of M that corresponds to these nodes; users are encouraged
to pick an « value whose resulting number of tight co-clusters is close
to the number of visible diagonal blocks in the heatmap. (Please see
Supplementary Materials for a demonstration in the real data example
in Section 3.2.) Regarding the choice of Kj, i.e., the input number of
co-clusters in each run, the entries of M provide a good guidance. A
reasonable K¢ should lead to many entries equal to O or 1 and few having
fractional values in between (Monti et al., 2003). Following this reasoning,
BiTSC implements a computationally efficient algorithm to automatically
choose K (Algorithm S1 in Section S6) while also giving users the option
to input their preferred K value. In Section S6, we demonstrate the use
of Algorithm S1 for the real data application (Section 3.2).

To summarize, BiTSC leverages joint information from bipartite
network edges and node covariates to identify tight node co-clusters that
are robust to data perturbation, i.e., subsampling. In its application to
gene co-clustering, BiTSC integrates gene orthology information with
gene expression data to identify tight gene co-clusters, which are enriched
with orthologs and contain genes of similar expression patterns in both
species. In particular, within each subsampling run, the bipartite spectral
clustering step identifies co-clusters enriched with orthologs; another two
steps, the kernel enhancement and the assignment of unsampled nodes,
ensure that genes with similar expression patterns in each species tend to be
clustered together. Moreover, the subsampling-and-aggregation approach
makes the output tight gene co-clusters robust to the existence of outlier
genes, which may have few orthologs or outlying gene expression patterns.
The pseudocode of BiTSC is in Algorithm 1.

Algorithm 1 Pseudocode of BiTSC

e Forh=1to H:

1. Subsample 0 = | pm] nodes from side 1 and 2 = | pn | nodes
from side 2 to obtain a subsampled bi-adjacency matrix A and
two subsampled node covariate matrices X1 and Xo

2. Use kernel enhancement to construct an enhanced bi-adjacency
matrix B from A, 5(1, and 5(2

3. Find K initial node co-clusters from B by bipartite spectral
clustering

4. Obtain Ko node co-clusters by assigning the unsampled nodes
into the K initial node co-clusters; encode the Ky node co-
clusters as a co-membership matrix M (%)

e Calculate the consensus matrix M as the average of M@ ey MEH)
o Identify tight node co-clusters from M with tightness parameter o

3 Results

3.1 Simulation validates the design, performance, and
robustness of BiTSC

We designed multiple simulation studies to justify the algorithm design of
BiTSC by comparing it with the six possible variants listed in Section S1:
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spectral-kernel, spectral, BITSC-1, BiTSC-1-nokernel, BiTSC-1-NC, and
BiTSC-1-NC-nokernel.

We use the weighted Rand index (Thalamuthu et al., 2006), defined
in Section S3, as the evaluation measure of co-clustering results. The
weighted Rand index compares two sets of node co-clusters: the co-clusters
found by an algorithm and the true co-clusters used to generate data, and
outputs a value between O and 1, with a value of 1 indicating perfect
agreement between the two sets. The weighted Rand index is a proper
measure for evaluating BiTSC and its variants because it accounts for
noise nodes that do not belong to any co-clusters.

We compared BiTSC with its six possible variants in identifying node
co-clusters from simulated networks with varying levels of noise nodes
(i.e., 0 in Section S2) and varying average degrees of nodes. It is expected
that the identification would become more difficult as the level of noise
nodes increases or as the average degree decreases. Our results in Figure 2
(a) are consistent with this expectation. Figure 2 (a) also shows that
BiTSC consistently outperforms its six variant algorithms at all noise
node levels and average degrees greater than five. This phenomenon is
reasonable because BiTSC performs subsampling on the network, and
the subsampled network, if too sparse, would make the bipartite spectral
clustering algorithm fail. In fact, the three algorithms that outperform
BiTSC for sparse networks, i.e., spectral-kernel, BiTSC-1, and BiTSC-
1-NC, only perform bipartite spectral clustering on the entire network,
so they are more robust to network sparsity. Additionally, we observe
that the three variants that do not use kernel enhancement consistently
have the worst performance. In summary, BiTSC has a clear advantage
over its possible variants in the existence of noise nodes and when the
network is not overly sparse. These results confirm the effectiveness of the
subsampling-and-aggregation approach and the kernel enhancement step,
and they also show that subsampling in the first step is beneficial if the
network is not too sparse, thus justifying the design of BiTSC.

In addition to validating the design of BiTSC, we also performed
simulation studies to compare BiTSC with OrthoClust (Yan et al., 2014),
a gene clustering method that also simultaneously uses gene expression
and orthology information. We chose OrthoClust as the baseline method to
compare BiTSC against because OrthoClust is the only recent method that
does not (1) exclude genes not in one-to-one orthologs like SCSC (Cai et al.,
2010) and MVBC (Sun et al., 2016) do or (2) have strong distributional
assumptions as SCSC does. Moreover, OrthoClust has a unipartite network
formulation, so its comparison with BiTSC would inform the effectiveness
of our bipartite network formulation. The OrthoClust software takes three
input files: two within-species gene co-expression networks constructed
by users and one between-species ortholog network. Following the
recommendation in OrthoClust, we constructed the within-species gene
co-expression networks by connecting each gene to its closest gene(s),
whose number is specified by a tuning parameter rank, in terms of
Euclidean distance. OrthoClust allows users to specify a « value (in the
between-species ortholog network input file), which balances the weights
of within-species edges and between-species edges in the cost function.
Our results in Figure 2b show that BiTSC consistently outperforms
OrthoClust under various simulation settings.

Furthermore, we performed simulation studies to show the robustness
of BiTSC to its input parameters: K¢ (the number of co-clusters to identify
in each subsampling run), p (the proportion of nodes to subsample in each
run), and 7 = (71, 72) (the tuning parameters in the kernel enhancement
step) (Section S4). We find that BiTSC performs well when Ky is set to
be equal to or larger than K, the number of true co-clusters (Figure S6a).
For p, we recommend a default value of 0.8 (Figure S6b). For 7, we
recommend a default value of (1, 1) based on Figures S6c and S7, which
show that small 7 values lead to better clustering results when the network
is sparse, and that BiTSC becomes more robust to 7 values when the
network becomes denser. In general, small 7 values put large weights on

node covariates, while large 7 values make BiTSC use more of the edge
information to find node clusters. Users have the flexibility to set 7 values
based on their confidence or preference on node covariates and edges. For
instance, if a user would like to find co-clusters such that between-species
edges are dense but within-species gene expression might be dissimilar,
he or she may opt for larger 7 values provided that the kernel enhancement
compensates the edge sparsity enough so that BiTSC can successfully run.
Overall, BiTSC is robust to the specification of these tuning parameters.

3.2 BiTSC identifies gene co-clusters from D.
melanogaster and C. elegans timecourse gene
expression data and predicts unknown gene functions

In this section, we demonstrate how BiTSC is capable of identifying
conserved gene co-clusters of D. melanogaster (fly) and C. elegans
(worm). We compared BiTSC with OrthoClust (Yan et al., 2014) and
performed a series of downstream bioinformatics analysis to both validate
BiTSC and verify the biological significance of its identified co-clusters.
We compared BiTSC with OrthoClust and not SCSC or MVBC for the
same reasons as described in Section 3.1.

3.2.1 BiTSC outperforms OrthoClust in identifying gene co-clusters
with enriched ortholog pairs and similar expression levels

We applied BiTSC and OrthoClust to the D. melanogaster and C. elegans
developmental-stage RNA-seq data generated by the modENCODE
consortium (Gerstein et al., 2014) and the gene orthology annotation
from the TreeFam database (Li et al., 2006). For data processing,
please see Section S5. We ran BiTSC with input parameters H =
100, p = 08, 7 = (1,1), Ko = 30, and @ = 0.9. For
the choices of Ko and «, please see Section S6 and Supplementary
Materials. We ran OrthoClust by following the instruction on its GitHub
page (https://github.com/gersteinlab/OrthoClust accessed on Nov 12,
2019). Specifically, we constructed the within-species gene co-expression
networks by connecting each gene with its closest five genes in terms
of Pearson correlation and used k = 1 (the default value). For details
regarding the computational time of BiTSC and OrthoClust, please see
Section S8. To compare BiTSC and OrthoClust, we picked a similar
number of large gene co-clusters identified by either method: 16 BiTSC co-
clusters with at least 10 genes in each species (Table 1) vs. 14 OrthoClust
co-clusters with at least 2 genes in each species (Table S1). Compared with
OrthoClust, the co-clusters identified by BiTSC are more balanced in sizes
between fly and worm. In contrast, OrthoClust co-clusters typically have
many genes in one species but few genes in the other species; in particular,
if we restricted the OrthoClust co-clusters to have at least 10 genes in each
species, only two co-clusters would be left. We also ran OrthoClust again
with k = 3 (the value used in OrthoClust paper) instead of £ = 1, and the
result is very similar (Table S2). We evaluated both methods’ identified
co-clusters in two aspects (using £ = 1 for OrthoClust): the enrichment
of orthologous genes and the similarity of gene expression levels in each
co-cluster. Figure 3 shows that the BiTSC co-clusters exhibit both stronger
enrichment of orthologs and higher similarity of gene expression than the
OrthoClust co-clusters do. Note that in general, the co-clusters identified
by OrthoClust (Table S1), with cluster size ranging between 184 and 1002,
are larger than those identified by BiTSC (Table 1). Although the difference
in cluster size does not invalidate our analysis, for further investigation, we
adjusted the input parameters of BiTSC to obtain co-clusters that are closer
to those identified by OrthoClust in size. With the new input parameter
choices for BiTSC, we are able to further confirm the advantages of BiTSC
in Figure S11. Therefore, the gene co-clusters identified by BiTSC have
better biological interpretations than their OrthoClust counterparts because
of their more balanced gene numbers in two species, greater enrichment
of orthologs, and better grouping of genes with similar expressions.
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Fig. 2. Performance of BiTSC vs. (a) its six variant algorithms (Section S1) and (b) OrthoClust. The weighted Rand index is plotted as a function of noise node level (first column) or
average degree (second column). The data sets are simulated using the approach described in Section S2. For both columns, we set K = 15, n; = 50, no = 70, p1 = pa = 2,
o1 = o2 = 10,and w; = wg = 0.1. For the first column, we vary the noise node level 6 from 0.05 to 2.05 and set p = 0.15 and g = 0.03. For the second column, we set 6 = 0.5,
vary p from 0.005 to 0.175, set ¢ = p/5, and as a result vary the average degree from 1 to 51 (see Section S2.1 for details about the average degree). For the input parameters of BITSC
and its variants, we choose H = 50, p = 0.8, 7 = (1,1), Ko = K = 15 and a = 0.7 whenever applicable. We set Ky = K following the convention that when the ground truth is
known in simulation studies, one can select input parameters based on the truth (Karrer and Newman, 2011; Zhao et al., 2012; Larremore et al., 2014; Razaee et al., 2019). For OrthoClust,
rank = 3 means that in the construction of within-species gene co-expression networks, we connect each gene with its three closest genes in terms of Euclidean distance; similarly for rank
= 1 and rank = 5. In this figure, genes in identified co-clusters that only contain genes from one species are treated as noise genes, just like unclustered genes, in the calculation of the
weighted Rand index. This is why in the second column of (b) we cannot see the curves for OrthoClust (rank = 5) — no co-clusters with genes from both species were identified. We show
that BiTSC also outperforms OrthoClust when we only consider unclustered genes as noise genes in Figure S1.
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Fig. 3. Comparison of BiTSC and OrthoClust in terms of their identified fly-worm gene co-clusters (Section 3.2.1). (a) Distributions of within-cluster enrichment of ortholog pairs. For
BiTSC and OrthoClust, a boxplot is shown for the — log; P3 values calculated by the ortholog pair enrichment test (Section S7.3) on the identified gene co-clusters. Larger — logqq P3
values indicate stronger enrichment. (b): Distributions of within-cluster gene expression similarity. For BiITSC and OrthoClust, a boxplot is shown for the average pairwise Pearson correlation
(PPC) between genes of the same species within each identified co-cluster. (c): Within-cluster gene expression similarity vs. ortholog enrichment. Each point corresponds to one co-cluster
identified by BiTSC or OrthoClust. The — log o P3 and average PPC values are the same as those shown in (a) and (b).
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Table 1. Fly-worm gene co-clusters identified by BiTSC (Section 3.2)

Co-cluster # of fly genes!

(without GO?) (without GO)

# of worm genes Examples BP GO terms highly enriched in both species? Po* P3>

1 106 (19) 83 (15) Chemical synaptic transmission; synaptic signaling 1.35e-07 2.77e-53
2 46 (8) 119 (28) Muscle cell development 1.70e-09 1.50e-17
3 75 (3) 83 (6) Peptide and amide biosynthetic process 1.17e-08 6.23e-180
4 73 (4) 50 (13) ATP metabolic process 2.72e-12 1.61e-58
5 57 (4) 62 (8) Protein catabolic process; proteolysis 3.15e-09 3.15e-56
6 83 (4) 36 (8) Mitochondrial translation; mitochondrial gene expression 2.60e-03 2.04e-32
7 89 (13) 25 (8) Protein localization to endoplasmic reticulum 2.69¢-10 7.72e-22
8 80 (16) 26 (11) Ribosome biogenesis; RNA metabolic processing 2.05e-16 7.50e-37
9 29 (3) 76 (19) Cilium and cell projection organization 2.03e-09 3.81e-05
10 32 (2) 24 (6) DNA replication and metabolic process 2.98e-06 6.53e-02
11 25 (4) 19 (4) DNA replication 2.46e-06 1.00e-00
12 28 (4) 15(4) G protein-coupled glutamate receptor signaling pathway 4.17e-14 1.81e-10
13 16 (7) 25 (12) Glycoside catabolic process; transmembrane transport 1.52e-02 5.29e¢-46
14 15 (1) 24 (4) DNA metabolic process; cell cycle process 1.83e-05 3.11e-02
15 24 (2) 11 (1) Oxidation-reduction process 1.41e-03 2.36e-31
16 14 (0) 15 (1) Cilium organization; cell projection assembly 1.20e-07 1.83e-02

! Number of fly genes in the co-cluster

2 Number of fly genes without BP GO term annotations in the co-cluster
3 Examples of BP GO terms that are highly enriched in both species in the co-cluster (Section S7.1). These example BP GO terms are

used as labels of the co-clusters in Figure 4.

4 p-value of the co-cluster based on the GO term overlap test (Section S7.2)

3 p-value of the co-cluster based on the ortholog enrichment test (Section S7.3)

3.2.2 Functional analysis verifies the biological significance of BiTSC
gene co-clusters
‘We next analyzed the 16 gene co-clusters identified by BiTSC. First, we
verified that genes in each co-cluster exhibit similar functions within fly
and worm. We performed the GO term enrichment test (Section S7.1) for
each co-cluster in each species. The results are summarized in Figure S2
and Supplementary Materials, which show that every co-cluster has
strongly enriched GO terms with extremely small p-values, i.e., P1 values.
Hence, genes in every co-cluster indeed share similar biological functions
within fly and worm. We also calculated the pairwise Pearson correlation
coefficients between genes of the same species within each co-cluster
(Figure S3). The overall high correlation values also confirm the within-
cluster functional similarity in each species. Second, we show that within
each co-cluster, genes share similar biological functions between fly and
worm. We performed the GO term overlap test (Section S7.2), which
output small p-values, i.e., P2 values, suggesting that fly and worm genes
in each co-cluster have a significant overlap in their GO terms. Figure S2
also illustrates this functional similarity between fly and worm genes in
the same co-cluster. In summary, the 16 gene co-clusters exhibit clear
biological functions, some of which are conserved between fly and worm.
The above analysis results are summarized in Table 1. Specifically,
for each co-cluster, Table 1 lists the numbers of fly and worm genes,
the numbers of genes lacking BP GO term annotations, example GO
terms enriched in both species by the GO term enrichment test, and p-
values from the GO term overlap test and the ortholog enrichment test
(Section S7). Interestingly, we observe that when BiTSC identifies co-
clusters, it simultaneously leverages gene expression similarity and gene
orthology to complement each other. For example, co-clusters 10 and 11
do not have strong enrichment of orthologs but exhibit extremely high
similarity of gene expression in both fly and worm; on the other hand, co-
cluster 13 have relatively weak gene expression similarity but particularly
strong enrichment of orthologs. This advantage of BiTSC would enable it
to identify conserved gene co-clusters even based on incomplete orthology
information.

We further visualized the 16 gene co-clusters using the concensus
matrix M. Figure 4 plots the fly and worm genes in these co-clusters,
as well as 1,000 randomly sampled unclustered genes as a background.
Figure S9 shows that the pattern of the 16 co-clusters is robust to the
random sampling of unclustered genes. We observe that many co-clusters
are well separated, suggesting that genes in these different co-clusters are
rarely clustered together. We also see that some co-clusters are close to each
other, including co-clusters 1 and 12, co-clusters 9 and 16, and co-clusters
10, 11 and 14. To investigate the reason behind this phenomenon, we
inspected Table 1 and Figure S2 to find that overlapping co-clusters share
similar biological functions. This result again confirms that the identified
gene co-clusters are biologically meaningful.

Moreover, we computationally validated BiTSC’s capacity of
predicting unknown gene functions. Many co-clusters contain genes that
do not have BP GO terms. For each of these genes, we predicted its BP GO
terms as its co-cluster’s top enriched BP GO terms. Then we compared
the predicted BP GO terms with the gene’s other functional annotation,
in particular, molecular function (MF) or cellular component (CC) GO
terms. Our comparison results in Figure S10 show that the predicted BP
GO terms are highly compatible with the known MF or CC GO terms,
suggesting the validity of our functional prediction based on the BiTSC
co-clusters.

4 Discussion

BiTSC is a general bipartite network clustering algorithm. It is unique
in identifying tight node co-clusters such that nodes in a co-cluster share
similar covariates and are densely connected. In addition to cross-species
gene co-clustering, BiTSC has a wide application potential in biomedical
research. In general, BiTSC is applicable to computational tasks that can
be formulated as a bipartite network clustering problem, where edges and
node covariates jointly indicate a co-clustering structure. Here we list
three examples. The first example is the study of transcription factor (TF)
co-regulation. In a TF-gene bipartite network, TFs and genes constitute
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Fly Worm
1 M Chemical synaptic transmission; synaptic signaling
2 @ O Muscle cell development
3 @ QO Peptide and amide biosynthetic process
4 @ O ATP metabolic process
5 M QO Protein catabolic process; proteolysis
6 M @ Mitochondrial translation; mitochondrial gene expression
7 B @ Protein localization to endoplasmic reticulum
8 M @ Ribosome biogenesis; RNA metabolic processing
9 l @ Cilium and cell projection organization
10 0 O DNA replication and metabolic process
11 O O DNAreplication
12l @ G protein-coupled glutamate receptor signaling pathway
13l @ Glycoside catabolic process; transmembrane transport
14 @ O DNA metabolic process; cell cycle process
15l @ Oxidation-reduction process
16 @ @ Cilium organization; cell projection assembly
O O uUnclustered genes

Fig. 4. Visualization of the 16 gene co-clusters found by BiTSC from the fly-worm gene network (Section 3.2). The visualization is based on the consensus matrix M using the R package

igraph Csardi and Nepusz (2006) (https://igraph.org, the Fruchterman-Reingold layout algorithm). Genes in the 16 co-clusters are marked by distinct colors, with squares and circles

representing fly and worm genes respectively. For each co-cluster, representative BP GO terms are labeled (Table 1). 1,000 randomly-chosen unclustered genes are also displayed and marked

in white. In this visualization, both the gene positions and the edges represent values in M. The higher the consensus value between two genes, the closer they are positioned, and the darker

the edge is between them. If the consensus value is zero, then there is no edge.

nodes of two sides, an edge indicates that a TF regulates a gene, and node
covariates are expression levels of TFs and genes. BiTSC can identify
TF-gene co-clusters so that every co-cluster indicates a group of TFs
co-regulating a set of genes. The second example is cross-species cell
clustering. One may construct a biparite cell network, in which cells of
one species form nodes of one side, by drawing an edge between cells of
different species if the two cells are similar in some way, e.g., co-expression
of orthologous genes. Node covariates may be gene expression levels
and other cell characteristics. Then BiTSC can identify cell co-clusters as
conserved cell types in two species. The third example is drug repurposing.
One may construct a drug-target bipartite network by connecting drugs to
their known targets (usually proteins) and including biochemical properties
of drugs and targets as node covariates (Mei et al., 2013). BiTSC can then
identify drug-target co-clusters to reveal new potential targets of drugs.
A natural generalization of BiTSC is to identify node co-clusters
in a multipartite network, which has more than two types of nodes.
An important application of multipartite network clustering is the
identification of conserved gene co-clusters across multiple species. Here
we describe a possible way of generalizing BiTSC in this application
context. Suppose that we want to identify conserved gene co-clusters
across three species: Homo sapiens (human), Mus musculus (mouse),
and Pan troglodytes (chimpanzee). We can encode the three-way gene
orthology information in a tripartite network and include gene expression
levels as node covariates. To generalize BiTSC, we may represent
the tripartite network as three bi-adjacency matrices (one for human
and mouse, one for human and chimpanzee, and one for mouse and
chimpanzee) and three covariate matrices, one per species. A key step
in this generalization is to stack three (subsampled and kernel-enhanced)
bi-adjacency matrices into a unipartite adjacency matrix and apply spectral
clustering. Other parts of BiTSC, such as the subsampling-and-aggregation

approach, the assignment of unsampled nodes, and the hierarchical
clustering in the last step to identify tight co-clusters, will stay the same.
We have implemented this functionality in the BiTSC software package.
Compared to the existing method OrthoClust (Yan et al., 2014) that can also
perform multi-species gene co-clustering, BiTSC is more transparent in
its combination of gene orthology and expression information (because
guidance is provided for the selection of each tuning parameter in
BiTSC) and is more focused on identifying gene co-clusters rather than
within-species gene clusters.

BiTSC is also generalizable to find tight node co-clusters in a bipartite
network with node covariates on only one side or completely missing. In
the former case, we will perform a one-sided kernel enhancement on the bi-
ajdancecy matrix by using available node covariates on one side. We also
need to perform bipartite spectral clustering on the whole network to obtain
an Euclidean embedding, i.e., the matrix V in BiTSC-1 (Section S1), for
the nodes without covariates. Then we can apply the same subsampling-
and-aggregation approach as in BiTSC, except that in each subsampling
run we will assign the unsampled nodes without covariates into initial
co-clusters based on Euclidean embedding instead of node covariates. In
the latter case where all nodes have no covariates, we will skip the kernel
enhancement step, and BiTSC-1-NC, a variant of BiTSC described in
Section S1, will be applicable.

Another extension of BiTSC is to output soft co-clusters instead of hard
co-clusters. In soft clustering, a node may belong to multiple clusters in a
probabilistic way, allowing users to detect nodes whose cluster assignment
is ambiguous. Here we describe two ideas of implementing soft clustering
in BiTSC. The first idea is that after we obtain the consensus matrix (M),
we replace the current hierarchical clustering by spectral clustering to
find the final co-clusters; inside spectral clustering, we use fuzzy c-means
clustering (Dunn, 1973; Bezdek, 1981) instead of the regular K -means to
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find soft co-clusters. The second idea is that after we obtain the distance
matrix (1—M), we use multidimensional scaling to find a two-dimensional
embedding of the nodes and then perform fuzzy c-means clustering to find
soft co-clusters.

Lastly, we comment that the relationship between community detection
and link prediction is an open question in network research. We
preliminarily explored the performance of BiTSC and OrthoClust in terms
of link prediction in the fly-worm network (Section 3.2) and found that
BiTSC achieves a reasonable and better performance than OrthoClust in
this task (Figure S12). We leave further investigation regarding the relative
advantages and disadvantages of using community detection methods vs.
existing supervised learning methods for link prediction to future research.

To summarize, BiTSC is a flexible algorithm that is generalizable
for multipartite networks, bipartite networks with partial node covariates,
and soft node co-clustering. This flexibility will make BiTSC a widely-
applicable clustering method in network analysis.
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