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Abstract
Purpose – Due to the complexity of and variations in additive manufacturing (AM) processes, there is a level of uncertainty that creates critical
issues in quality assurance (QA), which must be addressed by time-consuming and cost-intensive tasks. This deteriorates the process repeatability,
reliability and part reproducibility. So far, many AM efforts have been performed in an isolated and scattered way over several decades. In this
paper, a systematically integrated holistic view is proposed to achieve QA for AM.
Design/methodology/approach – A systematically integrated view is presented to ensure the predefined part properties before/during/after the AM
process. It consists of four stages, namely, QA plan, prospective validation, concurrent validation and retrospective validation. As a foundation for QA
planning, a functional workflow and the required information flows are proposed by using functional design models: Icam DEFinition for Function Modeling.
Findings – The functional design model of the QA plan provides the systematically integrated view that can be the basis for inspection of AM
processes for the repeatability and qualification of AM parts for reproducibility.
Research limitations/implications – A powder bed fusion process was used to validate the feasibility of this QA plan. Feasibility was
demonstrated under many assumptions; real validation is not included in this study.
Social implications – This study provides an innovative and transformative methodology that can lead to greater productivity and improved quality
of AM parts across industries. Furthermore, the QA guidelines and functional design models provide the foundation for the development of a QA
architecture and management system.
Originality/value – This systematically integrated view and the corresponding QA plan can pose fundamental questions to the AM community and
initiate new research efforts in the in-situ digital inspection of AM processes and parts.

Keywords Additive manufacturing, Quality assurance, Quality control, Functional design models
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1. Introduction

Additive manufacturing (AM) is considered by many to be the
next “disruptive manufacturing technology” with enormous
potential to change the entire manufacturing landscape (Gao
et al., 2015; Debroy et al., 2018). However, several barriers
must be overcome before AM is widely adopted across different
industries. Based on analysis from roadmaps (Bourell et al.,
2009; NIST, 2013) and review papers (Frazier, 2014; Sames
et al., 2016; Rodrigues et al., 2019), these barriers can fall into

seven categories, namely, lack of knowledge, capability and/or
limitations in:
1 standards and guidelines;
2 modeling and simulation tools;
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3 AM design tools;
4 data information management;
5 number of available materials;
6 build capacity and processing time; and
7 certification and qualification.

This paper focuses on the qualification of the AMproducts, which
is essential to survive in a competitive market. Qualification can
mean that AM technologiesmust produce high-quality parts at the
same or lower cost than their traditional counterparts. The quality
and cost of AM parts vary considerably. For example, in the
aerospace industry, complete qualification of new AM materials
and processes often requires thousands of individual tests, costs
millions of dollars and takes 5 to 15 years to complete (Brice,
2011; Najmon et al., 2019; Russell et al., 2019). In the orthopedic-
implant industry, on the other hand, AM technologies can
fabricate low-cost, high-quality knee and hip joints routinely in a
fewmonths (Nakano and Ishimoto, 2015).
Our approach to qualification begins with quality assurance

(QA). In ISO 9000, QA is defined as “part of quality
management focused on providing confidence that quality
requirements will be fulfilled” (ISO 9000, 2005). In this paper,
we redefine QA for AM, as “all planned and systematic
activities necessary to consistently and reliably assure the
predefined qualities both during and at the end of the AM
process.” This new definition is necessary because QA in AM
has to deal with two issues not usually found in traditional
manufacturing processes:
1 Increased uncertainty, complexity and variability during

the AM processes.
2 Information flows across the various stages of product

realization.

Both of these issues can deteriorate the repeatability, reliability
and reproducibility in AM (Kim et al., 2017).
To better illustrate these issues and their impacts, AMprocesses

are compared with turning processes. First, input material in the
turning process is solid, but the input material of AM is typically a
powder or a wire. Accordingly, properties of the final turned-part
are almost the same as those of the input work-piece. The
properties of the final AM part, on the other hand, are different
from those of the input materials. Second, the layer-by-layer
stacking mechanisms in AM have inherently more uncertainty
than turning processes. Third, AM process parameters are more
complex and critical than those of the turning process (e.g. depth
of cut, spindle speed and feed rate). For example, a powder bed
fusion (PBF) system can includemore than 200 parameters (Mani
et al., 2015). Fourth, the correlation between parameter settings
and final part properties is well-understood in turning, but this is
not the case in AM. To address these issues, many research and
development (R&D) efforts are underway.While each R&D effort
is making progress, focus on integration and interoperability in a
systematically integrated view is lacking. With the possible
exception ofMazumder (2015) andHuang et al. (2015), who have
coined the phrase “certify-as-you-build,” only a few R&D efforts
are underway to develop a comprehensive framework and
methodology ofQA forAM.
In this paper, a systematically integrated view is presented to

ensure the predefined part properties before, during and after the
AM process. Then, we discuss four topics, namely, QA plan,
prospective validation, concurrent validation and retrospective

validation. The foundation for this discussion includes a
functional model developed with Icam DEFinition for Function
Modeling (IDEF0), a workflow and a collection of information
models. This paper reflects on the need for systematic
integration, management and analysis of the data/information
generated during the different phases of AM design-to-product
transformations in terms of QA plans. It investigates the AM
digital spectrum, from design to final part/product, for general
adoption in the manufacturing industry from the perspective of
QA. The outline in this paper is as follows: Section 2 explains
related work and its gaps and needs, Section 3 presents a holistic
view for QA, Section 4 presents the workflow and the
information models and Section 5 demonstrates the feasibility of
the proposed holistic view using an operational scenario.
Directions for research to address the current bottlenecks are
discussed in Section 6 and a conclusion is presented in Section 7.

2. Background

Based on roadmaps (Bourell et al., 2009; NIST, 2013) and
review papers (Frazier, 2014; Sames et al., 2016; Kok et al.,
2018; Rodrigues et al., 2019), we discovered the following
relevant R&D efforts necessary for QA planning:
� Modeling/simulation for fundamental understanding.
� Process planning and optimization.
� Correlations among process, structure and property.
� In-situ monitoring and control.
� Non-destructive evaluation (NDE).

Each of these are discussed in this section with a discussion on
the gaps and needs in the end.

2.1 Related work
2.1.1Modeling and simulation for fundamental understanding
Modeling/simulation techniques have been extensively used
to better predict part behavior, properties and process performance
(Keller et al., 2017). For example, Loh et al. (2015) used a finite
element analysis (FEA) to predict volume shrinkage and material
evaporation in a selective-laser-melting (SLM) process. They
established relationships between process parameters and various
thermal phenomena, melting and evaporation of powder and
cooling rate. Beuth et al. (2013) presented a process-mapping
approach for qualification that identified five primary process
variables, namely, heat source power, travel speed, feed rate,
existing temperature of the part and feature geometry. Using
actual process parameters taken from the literature, Thomas et al.
(2016) presented a method for the construction of a process map
for metal AM application. They investigated the correlation
between process parameters, microstructure and defects.
Ganeriwala et al. (2019) estimated residual stress of Ti-6Al-4V
samples from a PBF process and validated the elastic strain in the
parts with the synchrotronX-ray diffractionmeasurements.
For a fundamental understanding of the AM processes, multi-

scale modeling/simulation techniques have been used to create a
part with optimal geometry, composition and functionality
(Bandyopadhyay and Traxel, 2018). However, due to the high
computation costs of multi-scale simulations, AM design
capability is still limited to a particular scale in length. Also,
controlling complex physical phenomena remains a challenge
due to a lack of understanding of process-microstructure-
property correlations. Although current modeling tools and
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techniques have not been fully integrated at different scales, AM
models coupled with multi-scales enable solutions to issues
associated with melt pool, thermal cycle and part geometry. For
example, three-dimensional mesoscopicmodels (e.g. particle and
melt pool scale) have been developed to simulate the PBF
process (Körner et al., 2011; Khairallah and Anderson, 2014;
Khairallah et al., 2016; Lee and Zhang, 2015, 2016). As those
simulations are able to trackmelt-pool-free-surface, they are used
for predicting and correlating the formation of undesired
defects, such as balling, with various manufacturing conditions.
Additionally, the melt-pool-scale model has been combined with
microstructure to provide insight into part solidification
pattern (Wei et al., 2015). The solidification microstructure is
determined by the competition between maximum heat flow
direction and preferred crystallographic growth direction. Using
numericalmodeling, the heat flow direction in anAMpart can be
calculated based on the thermal gradient (G) and solidification
rate (R). At the scale of the liquid-solid interface, phase-field
modeling has been used to predict solidification morphology and
size and quantify microstructure evolution (Sahoo and Chou,
2016).

2.1.2 Process planning and optimization
Process planning activities provide the key link between design
and fabrication (Majeed et al., 2019). These activities are
crucial because they affect the part properties, which are
directly related to quality. Optimization of parameters is an
example of a process planning activity. Sun et al. (2013) and
Kim et al. (2015) used several statistical methods, such as the
design of experiments (DOE), Taguchi methods and analysis
of variance (ANOVA), to determine the near-optimal
parameters. In addition to laser power and scan speed, they also
determined values for layer thickness, hatching distance and
scanning strategy. Casalino et al. (2015) used DOE and
ANOVA to determine laser power and scan speed to optimize
the part density of 18Ni300 maraging steel in SLM. Raghavan
et al. (2016) also used ANOVA to quantify the effect of input
parameters on the solidification microstructure. They found
that preheat is the most influential input parameter to control
the volume of equiaxed grains in electron-beam melting
(EBM). Recently, Kim (2019) presented a systematic approach
using data from disparate analytical, experimental and
informational sources to compose predictive models that can
managemulti-criteria decision-making in PBF.

2.1.3 Correlations among process, structure and property
Understanding relationships between process, structure and
property can provide the foundation for developing predictive
models and generating new knowledge (Smith et al., 2016). In
the case of SLMusing Ti-6Al-4V, Song et al. (2012) found that
the process parameters were closely correlated to the
microstructures and material properties. Bauereiß et al. (2014)
sought to understand the correlation between defect formation
and the speed of an EBM process. They found that increasing
the speed of the melting process caused wetting and capillary
forces, which lead to defects. Dehoff et al. (2015) demonstrated
the capability of site-specifically controlling microstructure in
EBM by changing the melting pattern from raster to point heat
source melting. Kirka et al. (2017) also proposed a point heat
source melting strategy to control microstructure. They
demonstrated the ability to transition from columnar to

equiaxed grain structures in Inconel 718. The equiaxed
structure was formed using the point heat source melting
strategy and yielded an isotropic tensile property that fell
between the horizontal and vertical tensile strength of columnar
grained material. Chauvet et al. (2018) demonstrated the
possibility of creating a single crystal structure in Ni-based
superalloy and pointed out that the fabrication of a single
crystal requires tight control of the melting process parameters.
Lee et al. (2018) showed that scan patterns and part geometry
affect cracking behavior. Controlling the tilting angle and scan
pattern can mitigate the inhomogeneity in a temperature
distribution so that the cracking in an AM part is potentially
reduced. Recently, Zhang et al. (2019) have used a machine
learning-based predictive modeling method to predict material
properties.

2.1.4 In-situ monitoring and control
Inmetal AM, robust in-situ monitoring and control systems are
desired to detect part imperfections and reduce the uncertainty
of part performance. Recent advances in AM offer the ability to
minimize undesired defects such as balling, porosity, cracking
and other anomalies (Kim and Moylan, 2018). Mireles et al.
(2013) proposed an automatic, feedback-control system for
EBM equippedwith an infrared (IR) camera to:
� achieve parameter modification for controlling grain size;
� attempt temperature stabilization by imaging process and

automatic decision-making; and
� detect porosity to stop the process or to be used in post-

build analysis.

Phillips et al. (2018) developed a feed-forward control system
that can manage the temperature fluctuation for selective laser
sintering by controlling laser influence, based on IR
measurements. Raplee et al. (2017) developed a method for
proper calibration of temperature and surface emittance between
the metal powder and solidified part using thermographic data
obtained from amid-wave IR camera. Babu et al. (2018) showed
that near-infrared image data obtained from an EBMprocess can
be used to detect the location of porosities, cracks and surface
abnormalities. This methodology can be coupled with deep
neural nets to correlate the mechanical performance of the part
with the region that has high porosity intensity (Yoder et al.,
2018). For more details, review papers are available (Tapia and
Elwany, 2014; Everton et al., 2016;Kim et al., 2018).

2.1.5 Non-destructive evaluation
Metallic AM components are often used at high temperatures,
stress and other harsh environmental conditions. Extensive part
inspections are one of the compulsory activities done to ensure
quality (Babu et al., 2018). Waller et al. (2014) summarized the
current state of the art in NDEmethods and concluded that the
NDE should be identified as a universal method for part
qualification. Slotwinski et al. (2014) measured the porosity of
Co-Cr AM samples using two NDE methods, namely,
Archimedes and X-ray computed tomography (CT). Kroll
et al. (2013) used a combination of CT and a three-dimensional
scanningmethod for inspecting:
� the internal and external accuracy of geometry;
� the deformation during the cooling process;
� defects; and
� surface roughness.
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Todorov et al. (2014) reviewed various NDE techniques to
determine the most applicable techniques for AM. In the
report, X-ray CT was selected as the most promising technique
for a reliable inspection. However, 100% detection of defects in
the part is not practical due to issues of scaling this technique in
a production environment. Moreover, the limited number of
studies on the utilization of NDE techniques for complex AM
components can lead to unreliable detection of geometric and
non-geometric anomalies.

2.2 Industrial gaps and future needs
As discussed in Sections 1 and 2.1, many different R&D efforts
exist to verify/validate predictive models, part properties and
process performances during AM process stages for ultimately
achieving QA. However, many of them are researched and
developed in a stand-alone way. Based on the current state of
the art, major gaps forQA are summarized as follows:
� Even though many R&D efforts focus in-depth on each

research area, a holistic view considering the whole AM
process stages and experimental or numerical verification/
validation for QA is lacking.

� Modeling and simulation techniques enable us to provide
quality improvements and the possibility for manufacturers
to move away from physical inspection. However, due to a
lack of knowledge, it is achieved only with limited models
under certain environments.

� Still, commercially available systems are mainly based on
hand-tuned process parameters determined by experienced
operator’s trial and error for a limited set of metal powders,
which is neither efficient nor optimal. Thus, the uncertainty
in the AMprocess is significantly large.

� Destructive tests with coupons are not appropriate for
inspecting AM parts. Even though the specimen (test coupon)
satisfies stringent mechanical properties, the properties of the
additively manufactured part may not satisfy the requirements
due to the uncertainty fromAMprocess variations.

The following are the future needs in terms ofQA formetal AM.
� Traditional QA approaches are time-consuming and cost-

intensive, thus a new paradigm to ensure QA with the
industry-acceptable cost is needed.

� Because of the heterogeneity in data and protocols from AM
processes, interoperability and integration issues are magnified.
Thus, a generalized, integratedQA framework is required.

� Comprehensive predictive models are required at multi-
scale and multi-stage, which can characterize the
relationships among process, material, thermal analysis,
microstructure, property and performance in the
perspective of QA. The relationships provide the
fundamental basis for QA achievement.

� QA is a critical point for mass customization, as the
competitiveness of a company can be improved by making
decisions with satisfying the different stakeholders’ desires
simultaneously.

Systematic integration of the previous R&D efforts into a
federated QA view should provide the following synergistic
effects, namely, it can reduce cost and lead-time for new
product development, detect and prevent defects and satisfy
stakeholders’ desires. In the next sections, we introduce a

functional model using IDEF0, which can lay the foundation
for R&D efforts to address these gaps and needs.

3. A holistic view for quality assurance plan

National Institute of Standards and Technology (NIST)
researchers (Kim et al., 2015) decomposed the PBF process into
eight phases and presented a digital thread (DT) concept to link
these phases. The DT refers to the generation, storage and flow
of the information needed to implement the eight phases in an
AM process. In recent work (Kim et al., 2017), they condensed
the eight phases into six ones, as seen in Figure 1. The main
functional activities of each phase are briefly explained as follows:
1 (A1) Generate AM design. This activity generates details

from a conceptual design. This phase represents the “form”

of the part and available design rationale. Geometry may
exist as a computer-aided design (CAD) file from a three-
dimensional scan. The output is a watertight model.

2 (A2) Plan independent of process-machine. This activity
determines the process-machine independent process
plans (e.g. part orientation and support structure).

3 (A3) Plan depending on process-machine. This activity
determines the process-machine dependent process plans
(e.g. slicing, process parameters and scan path strategy).

4 (A4) Build part. In this activity, a part is manufactured
with respect to the determined plans.

5 (A5) Post-process part. This activity is needed to finish a
part, depending on the requirements.

6 (A6) Qualify part. This activity includes mechanical
testing or NDE on the AM part and the results. Results
can be added to part pedigree, establishing a reference for
future part quality inquiries.

In this context, the following higher-level activities for QA are
integrated into the AMprocess (Figure 2):
� QA plan: determine key performance indicators (KPIs),

objectives and any corresponding constraints based on the
plans for the three consecutive validation activities and
requirements dictated by stakeholders.

� Prospective validation: validate the generated three-
dimensional model, the process plans and the generated
machine codes before the actual manufacturing.

� Concurrent validation: inspect manufacturing status and
thermal characteristics on the heat-affected zone (HAZ),
minimize the occurrence of defects by adjusting variations,
and validate performance during the AMprocess.

� Retrospective validation: analyze the signature measurements
of the process, obtained from the concurrent validation stage,
and digitally validate the results after manufacturing. It is also
necessary to physically validate the properties of the part.

3.1 IDEF0 activities for quality assurance plan
Developing a QA plan begins with analyzing requirements from
stakeholders. This analysis can provide the objectives,
constraints and KPIs. The objectives and constraints help
determine the materials, resources, machines, software,
operator and budget cost. Meanwhile, the KPIs help determine
various performance measures, including asset utilization,
agility and sustainability (Roy et al., 2014). Asset utilization is
related to planning and maintenance activities. Agility is related
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to the ability to adapt dynamically to changing manufacturing
and market conditions. Sustainability is related to triple bottom
lines: environmental, economic and societal factors. The QA
plan provides the basic inputs into the following activities.

3.2 IDEF0 activities for prospective validation
Prospective validation is concerned with validating the
“correctness” in the four pre-fabrication activities. The
activities include the generated CAD design, the process-
machine-independent plan, the process-machine-dependent
plan and themachine code, as seen in Figure 3.

3.3 IDEF0 activities for concurrent validation
The goals of concurrent validation are to control the
fabrication process and to validate each layer in real-time, as
seen in Figure 4. Achieving these goals requires a complete
understanding of the AM process, thermal analysis,
microstructures and their relationships. Thermal analysis is
especially critical for in-situ control, as it closely relates to
microstructure and defect formation (King et al., 2015;
Schoinochoritis et al., 2015). For example, microstructure
characteristics (e.g. grain size and direction) can be
controlled by the process mapping (Gockel and Beuth, 2013)
between the scan speed and power.

Figure 2 A holistic view of QA with the AM process activities

Figure 1 IDEF0 diagram of NIST digital thread for AM in a report (Kim et al., 2017)
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3.4 IDEF0 activities for retrospective validation
The retrospective validation consists of three activities, namely,
“inspect a part with process signature,” “validate a post-
process” and “validate tests and a part,” as seen in Figure 5.
To “inspect a part with the process signature,” it is necessary

to validate the part by analyzing historically monitored data.
The analysis produces process signatures of prior fabrications.
Then, by investigating the quality of the AM parts, we can
establish correlations between process signatures and part
quality. As noted above, thermal conditions have the highest
correlation with part quality. Rapid solidification, cooling
direction and phase transformations induced by repeated non-
equilibrium thermal cycles have a profound influence on the
microstructures of the AM parts. Rapid solidification reduces
elemental partitioning, extends solid solubility and can result in
metastable phase formations. Directional heat extraction
results in preferred directionality in grain growth.
In many cases, AM parts need post-processes to reduce the

residual stress and satisfy certain design specifications such as
surface roughness. Under the “validate a post-process” activity,
post-processes are specified and completed. Post-processes can
include support-material removal, surface-texture improvements
(e.g. shot peening), accuracy improvements (e.g. machining) and
heat treatments.
In the “validate tests and a part” activity, part properties and

test methods are validated. AM processes are difficult to

control, which causes part properties to vary from one build to
the next. This means that each AM part will have slightly
different properties, even though the parts are manufactured in
the same conditions. In addition, inspection tests should be
validated, due to the amount of uncertainty and current
limitations inherent in AM.

4. Workflow and information models for quality
assurance in additive manufacturing

The functional designmodels of the top and second levels are shown
inSection4.1.The third levelmodels are shown inSection4.2.

4.1 Functional designmodels (IDEF0) of the topmost
and second level
Figure 6 shows the top-level model (A0) for QA, which shows
the function, inputs, outputs, controls and mechanisms. The
inputs are transformed by a QA function to produce an AM
part. The controls are the specifications (e.g. guidelines,
standards, constraints, policies, knowledge, design rule and
methods). The mechanisms are the supporting tools (e.g.
hardware, software, operator and monitoring system). After
performing a QA function, the outputs are the QA-related
pedigreed information and the validated results given to NIST-

Figure 3 IDEF0 model of prospective validation

Figure 4 IDEF0 model of concurrent validation Figure 5 IDEF0 model of retrospective validation
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DT activities (A1–A6) for modifying the design/process plan/
manufacturing/test or further processing.
The top function of QA (A0) can be achieved by nine

functions, shown in Figure 7 and briefly described as follows:
� (QA: A1) Plan QA: identify objective/KPIs/constraints

and creates a comprehensive description of the QA plan
for the following activities. Each sub-activity is planned,
based on requirements analysis, resource availability and
QA level. The outputs are the QA plans for each activity
(QA: A2–A9), as seen in Figure 8.

� (QA: A2) Validate a three-dimensional design: validate the
integrity of the three-dimensional design generated from
the NIST-DT: A1 phase. This includes robustness (e.g.
duplicate nodes in triangle meshes) and completeness
(e.g. check for the existence of holes) of the design. It
also validates the compatibility (e.g. data format
interoperability between CAD design, software for a
process plan and machine) and manufacturability (e.g.
manufacturable minimum feature size).

� (QA: A3) Validate process-machine independent plan:
validate an independent process plan generated from the
NIST-DT: A2 phase. For example, this includes
validations of part orientation and support structure. The
output is the validated independent process plan, given to
NIST-DT: A3 phase for further processing.

� (QA: A4) Validate process-machine dependent plan: validate
a dependent process plan generated from the NIST-DT:
A3 phase. For example, this includes validations of slice,
scan path and process parameters. The output is the near-
optimal process plan, given to NIST-DT: A4 phase for
further processing.

� (QA: A5) Validate a machine code: predict and validate the
part quality and process performance before AM
fabrication by using a simulation tool. In this step, the
near-optimal process plan needs to be translated into
machine code (e.g. STEP-NC).

� (QA: A6) Validate process stability: validate the status of the
process, as well as the thermal characteristics of the melt
pools and the layers. For quality control, unwanted

Figure 6 Topmost IDEF0 diagram of QA in AM

Figure 7 Second level of functional activities diagram for QA
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phenomena (e.g. balling effect) can be minimized by using
a closed-loop control, as seen in Figure 10.

� (QA: A7) Validate a part with process signature: digitally
validate the part properties by analyzing part properties
and process performances. The input is the monitored
data during the AM processing or validated data from the
previous activity A6, as seen in Figure 11.

� (QA: A8) Validate a post-process: validate a post-process (e.
g. support removal and heat treatment). The input is the
data related to post-processes in NIST-DT: A5. The
results are given to NIST-DT: A5 for further processing.

� (QA: A9) Validate tests and a part: validate whether
inspection tests are performed correctly and whether the
final part meets the stakeholders’ requirements. The input
is the data related to inspection tests and a part in NIST-
DT: A5. The validated results are given to NIST-DT: A6.

4.2 Functional design (IDEF0) of the third level in A1/
A5/A6/A7
Among nine functional models (QA: A1–A9), the important
activities are A1, A5–A7. The details will be explained in the
next sub-sections.

4.2.1 Third level of plan quality assurance (QA: A1)
The second-level function of “Plan QA (A1)” can be achieved
by nine major activities, which are planned based on identified
guidelines, standards and regulations. The output of each
activity will be given to QA: A2–A9 as controls and
mechanisms, as seen in Figure 8. Each activity is briefly
explained as follows:
� (A11) Determine objectives/KPIs/constraints, based on

requirements analysis, standards, guidelines, powder/
machine specifications and regulations. Outputs will be
the controls to the following sub-activities (A12–A19).

� (A12) Plan for validating a three-dimensional design for the
manufacturability, robustness and completeness, based on
machine/powder specification and determined objectives/
KPIs/constraints. This also includes the software and
methodologies that will be used in the validation.

� (A13) Plan for validating independent process plan, based
on determined objective/KPIs/constraints, methods and
software are specified for checking model orientation and
support structure.

� (A14) Plan for validating dependent process plan, such as
slicing, scan path and control parameters.

Figure 8 Third level functional activities for plan QA (QA: A1)
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� (A15) Plan for validating a machine code, including which a
simulator will be used for the checking.

� (A16) Plan for validating process stability with respect to the
identified objective/KPIs/constraints and machine/powder
specifications. A different set of sensors/analysis/control can be
determined, based on the resource availability andQA level.

� (A17) Plan for validating a part with process signature, based
on determined objective/KPIs/constraints, and it must be
planned, which simulator (e.g. FEA) will be used for the
validation.

� (A18) Plan for validating a post-process. For example, heat
treatment is planned for resolving any residual stresses
together with all the required parameter settings. In
addition, an inspection plan should be determined on how
to validate whether the post-processing was done
correctly.

� (A19) Plan for validating tests and a part. For example, Eddy
current test is planned for inspecting cracks in a part.

4.2.2 Third level of validate a machine code (QA: A5)
This second-level function can be achieved by five major
activities, as seen in Figure 9. The details of each activity are
explained as follows:
1 (A51) Translate near-optimal process plan into machine

codes by inputting the NIST-DT: A3 or QA: A4 into a
translator.

2 (A52) Analyze part properties by using simulation
software (e.g. FEA) before real manufacturing. The
analyzed results of part properties are given to A54 for
predicting part properties.

3 (A53) Analyze process performance using simulation
software or performance metrics. The analyzed results are
given to A54 for predicting process performances.

4 (A54) Predict part properties and process performance,
based on the previous analysis. The predicted results are
given to A55 for validating them.

5 (A55) Validate predicted results with respect to the
defined objectives/KPIs/constraints. The validated
machine codes are given to NIST-DT: A4 for the actual
manufacturing. If the predicted results do not satisfy the
objectives/KPIs/constraints or process performance, a
request query for modifying a process plan is given to
NIST-DT: A3.

4.2.3 Third level of validate process stability (QA: A6)
This second-level function can be achieved by five major
activities, as seen in Figure 10. Each activity is briefly explained
as follows:
1 (A61) Collect data from machine (e.g. power and inert gas

flow) with respect to the machine code. The collected data
will be given to A63 for analysis. Sensors and its
interfacing protocols (e.g. MTConnect) are necessary to
communicate between a machine and a computer
(Vijayaraghavan and Dornfeld, 2010).

2 (A62) Collect data from HAZ. Monitoring systems (e.g. IR
imaging system) and interfacing protocols are necessary to
communicate between a machine and a computer. The
collected data will be used to analyze the process stability
in A63.

Figure 9 Third level functional activities for validate a machine code (QA: A5)
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3 (A63) Analyze data (e.g. melt pool characteristics) from
A61 and A62 by using a simulator (e.g. FEA).

4 (A64) Compare and validate analyzed data with reference
data/model and validates the melt pool and the layers. The
outputs are the monitored and validated data (e.g. image
stacks of HAZ), which are given to QA: A7 activity.

5 (A65) Determine near-optimal parameters, which control
defects. The outputs are the modified process parameters
(e.g. power and scan speed), given to NIST-DT: A4 for
real-time control.

4.2.4 Third level of validate a part with process signatures (QA: A7)
This second-level function can be achieved by the five major
functions, as seen inFigure 11.The details are explained as follows:
1 (A71) Estimate residual stress of a part by analyzing the

historically monitored or validated data. Images stacks of
HAZ have important information for thermal analysis.
From the thermal analysis, the residual stress can be
estimated by simulation software (e.g. FEA). The results
are given to A75 for the validation.

2 (A72) Estimate the microstructure by analyzing the historically
monitored data. For example, critical information (e.g.
cooling rate and direction and solidification rate) can be
extracted from the images stacks to estimate the
microstructures by simulation software (e.g. FEA). The
results are given to A75 for the validation.

3 (A73) Estimate geometric distortion from the residual stress
analysis in A71 by using simulation software. The results
are given to A75 for the validation.

4 (A74) Estimate other properties by analyzing the monitored
and validated data from NIST-DT: A4 or QA: A7 and

results from the residual stress (A71) and microstructure
(A72). Other properties can be estimated by simulation
software. The results are given to A75 for the validation.

5 (A75) Compare and validate the properties and
performances with the objectives/KPIs/constraints. The
results are given to NIST-DT: A4 for further processing.

5. Operational scenario

In this section, we describe how the functional models can be
applied to an operational scenario in a PBF process. First, it is
assumed that there are established databases, knowledge,
predictive models and data that illustrate the relationships
between the PBF process, materials, thermal analysis and
resulting part microstructure, properties and performance.
Second, it is assumed the QA management system has used this
knowledge. The machine has the following properties: building
capacity of 250mm3 � 250 mm3 � 215mm3, power ranging up to
200W, speed ranging up to 7m/s and layer thickness between
(20 mm–100 mm). The powder is Ti-6Al-4V. The part is a
NIST test artifact with dimensions (100mm � 100mm � 17mm)
and volume (101,000 mm3) (Moylan et al., 2014), as seen in
Figure 12. The operational scenario is performed via the nine
functional activities described in Section 4. Each activity is
explained in the following paragraphs.

5.1 (Qa: A1) plan quality assurance
American society for testing andmaterials (ASTM) F42 and ISO/
TC 261 standards generally provide the guidelines for how to
achieve QA of the part properties and process performances. The
inputs for the A1 activity are a three-dimensional model with an

Figure 10 Third level functional activities for “validate process stability (QA: A6)”
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additive manufacturing format in ISO/ASTM 52915: 2016 and
the requirements from stakeholders.
� (A11) Determine objectives/KPIs/constraints. Based on an

analysis of requirements, the flatness and surface
roughness are selected as KPIs in terms of geometric
dimensioning and tolerancing (GD&T). The design
requirement for the flatness is 50 mm (Za, average
deviation) with 102 mm (Zt, maximum deviation).
The requirement of the surface roughness is 50 mm
(Ra, average) with 100 mm (Rt, maximum).

� (A12) Plan for validating a three-dimensional design. This
plan involves validating the defects (i.e. duplicate nodes in
triangle meshes) and the manufacturability of the CAD
design. The details of the plan are given to A2.

� (A13) Plan for validating process-machine independent plan.
This plan involves validating orientation and support
structure. The details of the plan are given to A3.

� (A14) Plan for validating process-machine dependent plan.
This plan involves validating slicing and process
parameters (i.e. power, laser and scan pattern). The
details of the plan are given to A4.

� (A15) Plan for validating a machine code.This plan involves
validating the machine codes and KPIs. The details of the
plan are given to A5. It is assumed that the translator and
its virtual AM machine are developed, based on the
guidelines from STEP-numerical control.

� (A16) Plan for validating process stability. This plan
involves monitoring parameters (e.g. power, scan speed),
based on the approach described by Mireles et al. (2013).
The details of the plan are given to A6.

� (A17) Plan for validating a part with process signature.
MTConnect (Vijayaraghavan and Dornfeld, 2010),
which establishes a communication protocol between a
machine and a computer, is planned to be used to
measure the process signatures. One of the analysis
tools, ABAQUS, is planned to be used to simulate the
surface roughness and flatness by analyzing the
measured historical image stack of the HAZ. The details
of this plan are given to A7.

� (A18) Plan for validating a post-process. Based on the
guidelines from ASTM F2924-14, electron discharge
machining (EDM) and hot isostatic pressing (HIP) are
planned to be used for removing any unwanted structures
(e.g. support structures) and for reducing the level of
porosity, respectively. The details of this plan are given
to A8.

� (A19) Plan for validating tests and a part. Based on the
American Society of Mechanical Engineers Y14.5, a
coordinate-measuring machine (CMM) and stylus
profilometer are chosen to measure the flatness and
surface roughness. In total, 12 points of the top surface are
planned to be measured: 8 points near the outer edges and
four points near the center hole. The surface roughness is
planned to be measured along a 25 mm line at the top

Figure 11 Third level functional activities for validate a part with process signatures (QA: A7)

Figure 12 A solid model of a NIST test artifact
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surface next to the ramp feature, collecting a point every
0.25 mm. The details of this plan are given to A9.

5.2 (Qa: A2) validate a three-dimensional design
The three-dimensional geometric model is inspected for water
tightness. The radius of curvature of the NIST artifact is
inspected to determine whether it is manufacturable with the
given conditions.

5.3 (Qa: A3) validate process-machine independent
plan
The manufacturability of the determined orientation and
support structure is validated.

5.4 (Qa: A4) validate process-machine dependent plan
The predictive models for GD&T are developed as a second-
order polynomial model, based on the DOE and response
surface methodology (RSM), similar to Sun et al. (2013).
Consequently, the near-optimal process parameters are
determined with respect to four exposure types, namely, pre-
contour, core, skin and post-contour. For the pre-contour and
post-contour, the laser power and scan speed are 60W
and 700mm/s. For the core, the laser power, scan speed and
hatching distance are 195W, 1,000mm/s and 100 mm. For the
skin, there are three process parameters, namely, 195W,
1,000mm/s and 100 mmare determined for a side-skin, 195W,
3,000mm/s, 40 mm and 20 mm are determined for a down-
skin and 160W, 500mm/s, 100 mmand 20 mmare determined
for an up-skin.

5.5 (Qa: A5) validate amachine code
The near-optimal process plan is translated into STEP-NC
(ISO, 10303 AP-238) format. As the machine codes have
ultimately determined the values of the selected KPIs, we build
a simulation model to predict those values. First, the translated
machine codes are validated via error detections (e.g. scan path
integrity) and the identified KPIs are estimated and validated
by using a simulation tool. The flatness and surface roughness
are estimated as Za: 50 mm with Zt: 102 mm and Ra: 8.8 mm
with Rt: 45.6 mm.

5.6 (Qa: A6) validate process stability
Based on the plan, monitoring systems are used to detect
defects and provide the thermal characteristics for the analysis.
It then reduces and fixes defects using an in-situ control
approach.

5.7 (Qa: A7) validate a part with process signature
Based on the validation plan, the GD&T are estimated,
analyzed and validated based on the analysis of process
signatures. The acquired images have the necessary
information to analyze the flatness and surface roughness. It is
estimated that the flatness and surface roughness are Za: 48 mm
with Zt: 98 mmandRa: 6.9 mmwith Rt: 52.4 mm, respectively.

5.8 (Qa: A8) validate a post-process
EDM is used to remove the support structure and HIP is
performed to reduce the porosity with a setting of 100MPa

pressure at 900°C for 2 h from the guidelines in ASTM
F2924-14.

5.9 (Qa: A9) validate tests and a part
A CMM and stylus profilometer are used to measure the
flatness and surface roughness. It is estimated that the flatness
and the surface roughness are measured as Za: 50 mm with Zt:
100 mm and Ra: 5.56 mm with Rt: 43.89 mm. Thus, all KPIs
are satisfied.

6. Discussions and implementation challenges

We proposed an IDEF0 functional model as the foundation for
developing QA plans. We also showed how this plan could be
implemented using a simple operational scenario. However,
these functional models should be further specified in terms of
QA plans. For example, detail QA plans for powdery materials
should be specified, as it can significantly affect the final AM
part. In addition, implementing QA for metal AM processes
and parts is challenging for several reasons. The following are
the discussions about these.
The characteristics of powder materials, such as powder size,

distribution, morphology (e.g. dimensional, spherical,
roundness and perimeter), chemical composition, density (e.g.
apparent density, tap density and skeletal density), thermal
properties (e.g. conductivity and diffusivity) of powder, are the
key elements for the powder quality (Slotwinski et al., 2014;
Vock et al., 2019). In addition, the powder material is recycled,
thus the number of recycling time is another key element for the
powder quality (Sutton et al., 2020). Accurate characteristics of
a powder material can give the corresponding modeling and
analysis of part properties or melt pool characteristics and
ensure the part quality. Thus, functional design models of
powdery materials in prospective and concurrent validation
stages are necessary in terms of QA plans.
Due to the complexities that arise from the multi-physics,

multi-scale and multi-criteria aspects of AM (Yan et al., 2018),
it is not easy to understand the relationships between the AM
process, material, thermal analysis and the resulting part’s
microstructure, properties and performance. One possible
solution is to use a semantic ontology mapping method. NIST
researchers have developed methods for understanding the
relationships between porosity, process variables and powder
specifications, which include semantic relationships (Mani
et al., 2015; Roh et al., 2016). Based on the semantic maps, the
need for various predictive models becomes clear. For example,
empirical models can be generated by combining of DOE with
RSM or machine learning methods. Although these models
require numerous physical experiments, they have advantages
in customization and practicality. The time-consuming and
cost-intensive physical experiments can potentially be reduced
by using high fidelitymodelingmethods.
High-fidelity models can be generated from the fundamental

understandings of the AM processes. Examples include a set of
highly complex physics models, high-order empirical models or
hybrids of both models. They are frequently used in welding
and the AM community. Nevertheless, the application of the
models is limited to controlled scales and conditions.
Developing and implementing these models often requires high
performing computing, which enables high accuracy but
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significantly increases computational cost. To address this
burden, surrogate (low-fidelity) models are being created by
reducing high-order models into lower-order approximations
(Meckesheimer et al., 2002; Lee et al., 2017; Plotkowski et al.,
2017). These models can make use of existing knowledge and
can produce more powerful predictive models with robust
decision-making support and stronger predictive capability.
Because of the considerably higher computational efficiency
compared to high-fidelity models, these surrogate models can
be used for in-situ control. In addition, real-time data collection
and analytics can be combined with the surrogate models to
improve model accuracy. One common approach in data
analytics is to use the thermal characteristics (e.g. melt pool
shape and size) to train a set of process parameters in a neural
network model, which then produces a solution that reduces
and/or fixes any unwanted defects (Scime and Beuth, 2019).
By taking advantage of simulation techniques, training data
sets can be also generated without running numerous real
experiments.
To assure quality, a large amount of data is generated,

especially in retrospective validation. In Berumen et al. (2010),
the total size of the acquired data is 1.08 PB. This large number
is based on an 8-bit grayscale image taken with a resolution of
2,200 � 2,200 pixels and 16,666 fps over a building time of 4 h.
For another example, Slotwinski et al. (2014) used X-ray CT
with a resolution of 1,000 � 1,000 � 1,000 and two-byte integer
to generate approximately 2 GB of data. To manage the huge
amount of data, innovative techniques, such as big data and
datamining, are needed (Majeed et al., 2019).
The architecture and management system will be developed

in the near future. However, it requires several different types of
techniques/methods/tools/systems. This results in integration
and interoperability issues. For the integration issues, the
system will be developed by considering the tightly and loosely
coupled integration for the development efficiency. For the
interoperability issues, a neutral and standardized format for
design/build/test should be established. In addition, the
workflow and information models should be seamlessly
integrated to those of NIST-AM DT architecture (Kim et al.,
2015; Kim et al., 2017).

7. Conclusion

This paper summarized previous related work and the gaps and
needs in QA planning literature. Based on these, it is concluded
each research issue in AM can be integrated to ultimately
achieve QA. For the initial step, a systematically integrated view
is proposed, consisting of four stages, namely, QA plan,
prospective validation, concurrent validation and retrospective
validation. Then, a workflow and information models were
developed by using the IDEF0 models. This work provides the
foundations for capturing the background and requirements of
QA architecture and framework development, logically relating
them to the NIST-DT. An operational scenario was included
to demonstrate how these functional models could be applied.
Through the operational scenario, we showed how the
performances can be assured via nine functional design models.
After that, challenging research issues were discussed in
terms of semantic ontology mapping, predictive model and
knowledge, design rule, surrogate model, real-time control and

big data management. Through this research work, the authors
can conclude with several findings and highlights:
� The systematically integrated functional modeling

approach can ensure the predefined part properties
before/during/after AM processes.

� The functional design model of the federated QA view
provides the systematically integrated view that can be the
basis for inspection of AM processes for the repeatability
and qualification of AM parts for reproducibility.

� The functional modeling approach can provide the
following synergistic effects, namely, it can reduce cost
and lead-time for new product development, detect and
prevent defects and satisfy stakeholders’ desires.

� This work provides an innovative and transformative
methodology that can lead to greater productivity
and improved quality of AM parts across industries.
Furthermore.

� The functional design models provide the foundation for
the development of a QA architecture and management
system.

In the near future, the research team will establish an in-situ
inspection method for process repeatability and a digital twin-
driven qualification framework for part reproducibility of a wire1
arc additively manufactured part, based on the proposed QA plan
scheme and the NIST-DT concept (Tanvir et al., 2019;
Mukherjee andDebroy, 2019; Ahsan et al., 2020).
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