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We describe the crossover from generalized to conventional hydrodynamics in nearly integrable systems.
Integrable systems have infinitely many conserved quantities, which spread ballistically, in general. When
integrability is broken, only a few of these conserved quantities survive. The remaining conserved quantities
are generically transported diffusively; we derive a compact and general diffusion equation for these. The
diffusion constant depends on the matrix elements of the integrability-breaking perturbation; for a certain class of
integrability-breaking perturbations, including long-range interactions, the diffusion constant can be expressed

entirely in terms of generalized hydrodynamic data.
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Hydrodynamics describes how many-body systems evolve
from local to global equilibrium [1]. It can be regarded as an
effective field theory for the transport of conserved quantities
or other slow modes, assuming that all other modes relax
parametrically faster. Hydrodynamics applies in a variety of
contexts [2] from traditional classical fluid dynamics to quark-
gluon plasmas [3,4], black hole physics [5,6], and electron
fluids in graphene and PdCoO, [7-9].

In one dimension, many paradigmatic models of quan-
tum many-body physics—such as the Hubbard, Heisenberg,
and Lieb-Liniger models—are integrable [10-22]. These
models approximately describe experiments in quasi-one-
dimensional materials and ultracold atomic gases [23-32].
Thus, approximate integrability is of wide experimental rel-
evance. In nearly integrable systems, the short-time dynam-
ics are integrable, feature infinitely many conservation laws,
and are described by the recently developed framework of
generalized hydrodynamics (GHD) [33-51]; at sufficiently
long times, however, the dynamics are chaotic, feature finitely
many conservation laws, and are typically described by con-
ventional hydrodynamics. In integrable systems, transport is
generically ballistic [36], although there are various limits
that exhibit more exotic behavior [52-63]; in conventional
hydrodynamics, one expects diffusion, unless the system pos-
sesses Galilean or Lorentz invariance [64—70]. The timescales
governing the crossover between these two regimes have
recently been explored both experimentally and numerically
[28,71] and have been shown to match a Fermi golden-rule
prediction with matrix elements evaluated via exact numer-
ical diagonalization on small systems. However, except in
noninteracting and weakly interacting models [72-77], the
nature of relaxation and the transport coefficients govern-
ing the long-time hydrodynamics have not been investigated
(see, e.g., Refs. [54,78-81] for recent numerical studies).
The existing perturbative results do not apply to many of
the experimentally relevant settings, such as the Heisenberg
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and Fermi-Hubbard models, which are, in general, strongly
interacting. Moreover, recent results suggest that anomalous
transport might survive integrability breaking up to long times
[59,82-84] and it is crucial to construct a framework that
captures how anomalous transport features due to integrability
cross over to ordinary diffusion at long times.

In this Rapid Communication, we develop a framework
for computing relaxation and diffusion in nearly integrable
systems, building on GHD. A central result of this Rapid
Communication is a compact formula for the diffusion con-
stant in nearly integrable systems with one (or a few) residual
conservation laws. The specifics of the integrability-breaking
mechanism enter this formula through a set of microscopic
rates that govern the decay of the approximately conserved
quantities. In general, these rates depend on the micro-
scopic mechanism of integrability breaking. However, for
integrability-breaking perturbations that are spatially slowly
varying (e.g., smooth potentials and long-range interactions),
these rates can themselves be expressed in terms of GHD
data—in these cases, the diffusion constant can be fully ex-
pressed in terms of GHD data see the Supplemental Material
[85]). Having introduced these general results using both the
Kubo formula and a gradient expansion of the hydrodynamic
equations, we apply them to some specific systems in which
the physics is particularly transparent.

GHD Boltzmann equation. Integrable systems have ex-
tensively many conserved quantities and stable ballistically
propagating quasiparticles unlike quantum chaotic systems.
Within GHD [33,34], dynamics can be captured by a “Bethe-
Boltzmann” equation for the density of quasiparticles p; (x, )
with a given quantum number (rapidity) A,

9,01 + 3x(v§ff[,0]/?x) =Z,lpl, M

where the effective group-velocity vS[p] of quasiparticle-
type A is a functional of the densities of all quasiparticle
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types. The effective velocity can be computed from the ther-
modynamic Bethe ansatz (TBA) solution for the local state
of the model p, (x, 1) [33,34,86,87]. Note that the quantum
numbers A may be either discrete or continuous. Intuitively,
Eq. (1) with a vanishing right-hand side Z,[p] =0 is a ki-
netic equation that describes the ballistic propagation of the
quasiparticles (solitons), which scatter elastically and delay
one another through Wigner time delays [38,41], leading to
a state-dependent velocity veff[ ]. Since scattering processes
in integrable systems factorize, this kinetic equation remains
valid even if the quasiparticle gas is not dilute.

Breaking integrability endows this equation with a right-
hand side Z, [p], which accounts for the scrambling of the
quasiparticle quantum numbers (see also Ref. [77]). For sim-
plicity, we restrict our consideration to fluctuations above ho-
mogeneous background states p(x,t) = p* 4+ §p(x,t). Since
the dynamics of interest are not strictly integrable, the steady-
state p* will, in general, describe a standard thermal Gibbs
ensemble. By definition, the right-hand side of the Boltzmann
equation vanishes for p = p*, so one can write Z,[p] =
— fd@ [ 08p00(x, t), where T g = —87,/8pg| p—p+- The lin-
earized version of Eq. (1) then reads

9,80, + 9,(A8p); = —(Tép);, @)

where A and I are operators acting in rapidity space, e.g.,
as (F8p)y = [dOT; 08pg(x,t). The matrix A is position
independent: Its expression in terms of the background state
p* is known exactly in GHD [39], and its eigenvalues are the
effective velocities viff[p*]; the corresponding eigenvectors
are the normal modes of GHD.

The densities of conserved quantities are given in terms of
the quasiparticles by

q,(x, 1) = /d)»hm()»)pk(x,t), 3)

where £ is the charge carried by a quasiparticle with rapidity
L. The expectation value of the conserved charge Q,, in
the generalized Gibbs ensemble (GGE) [21] corresponding
to the background state p* is then given by Q,, = (0,,) =
[ dx qu(x). In the charge basis, the deviation of the con-
served charges from their background values follows from
Eq. (2): 0,69, + A,,,0x8¢m = —I'wndq,. Henceforth, repeated
indices are implicitly summed over, and A and I are now
written in the (complete) charge basis [88]. One has A, =
f drdO h, (M)A phy,(0) (and similarly for I',, ). Integrating
this equation over position x, one finds, for I' # 0, that the
charges decay as

8Qm = _ansQn : 4

The eigenvalues of T give the decay rates of the quantities
{O,,} that are conserved when I' = 0; for I # 0, the (decay-
ing) eigenmodes of I' are linear combinations of these {Q,,}’s
[89]. Any residual conserved quantities in the nonintegrable
system, e.g., energy or particle number, correspond to zero
modes of I'. In what follows, greek characters denote residual
conserved charges, and roman characters denote charges that
decay when integrability is broken.

Kubo formula. We now compute the linear-response dc
conductivity tensor o,g of the residual conserved charges

using the Kubo formula,

1 [ . .
o =7 | a3 0) )
0

evaluated in the GGE corresponding to the background state
p*, where L is the system size and J, = [dx j, is the
global current associated with the conserved charge Q. In
the integrable limit (I' = 0), one can write J, = JEuler 4 jfast,
When I' = 0, the first term never decays because it can be
decomposed onto conserved charges JEUT = A,,,Q,, where
Ay = 0J,/00,, are the components of A evaluated in the
steady-state p*. The remaining fast components of the cur-
rent generically relax on some characteristic timescale and
give rise to diffusive and higher-order corrections to ballistic
transport [46-48,56].

On timescales at which the fast components have re-
laxed, one can take J, >~ A,,Q, in Eq. (5) [90]. This yields
(fa(t)fﬁ(O))/L = AunAguCpn + - - - at long times where the
matrix elements C,,, = (80,80, /L encode the equilibrium
fluctuations of the conserved charges [91] and are known ex-
actly from TBA [92]. Thus, when I' = 0, integrable dynamics
generically lead to a nonzero value of the Kubo correlator and
a Drude weight Dy = lim,_, o0 (J, (£)J5(0)) /L = (ACAT )5
[39]. This ballistic contribution to transport follows naturally
from the overlap between currents and conserved charges,
which prevents the currents from decaying at long times.

Conductivity tensor. When I' #£ 0, all but a few charges
decay according to Eq. (4), and one expects the currents
to relax fully, giving rise to diffusive hydrodynamics. We
assume that the currents are not modified by the integrability-
breaking perturbation, which is justified perturbatively. The
autocorrelator in Eq. (5) then relaxes in two stages: The fast
component relaxes on a timescale of order unity, and the
Euler-scale component decays on a much longer timescale
set by I (rather than persist indefinitely). At long times, one
can ignore the contributions from the fast part (as before),
which is subleading in T, and expand the currents in terms
of the slowly relaxing charges §Q,,(¢) = [exp(—T)]m60.,(0)
to recover (J, (1)J5(0)) /L = AgnApmle 14 Cipm + - - - where
neglected terms include nonhydrodynamic modes that relax
at a rate much faster than I'. Using the Kubo formula Eq. (5)
gives the dc conductivity tensor,

Oup = = (aI” IA)W v (©)

where unlabeled matrix products may be evaluated in either
the charge or the quasiparticle basis but are restricted to the
decaying modes—this projection onto nonconserved charges
ensures that the inverse T~! is well defined. Thus, Oup 1S
nonsingular, and the dc limit is well defined unless a current
J, of aresidual conserved charge Q, itself has some overlap
with residual conserved charges in which case g, will spread
ballistically even when integrability is broken. We also used
AC = CAT [93] and that C,, = 0 between quantities that
are residually conserved for I' # 0 and those that are not
as the latter decay to zero. This means that the decaying
and conserved charges belong to orthogonal subspaces under
the hydrodynamic inner product defined by the matrix C. (If
they did not, one could use this nonzero overlap to prove a
Mazur bound, contradicting the assumption that these charges,
indeed, decay [94].)
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Equation (6) is a central result of this Rapid Communica-
tion: It expresses the conductivity tensor entirely in terms of
GHD data and the rate matrix I, governing the decay of {Q,,}.
Intuitively, this describes a generalized Drude formula: In the
presence of integrability-breaking perturbations, the Drude
weight for I' = 0 is broadened into Lorentzians of width
~||T|| in the ac conductivity. Importantly, A and C are known
exactly for integrable systems, and we will discuss below how
I’ can be obtained in some cases from GHD data (see the
Supplemental Material [85]). Note that I' can be efficiently
inverted numerically—such kernel operator inversions are
routinely performed in the solution of TBA equations.

We remark that diffusive corrections to ballistic transport in
the integrable limit (I' = 0) are negligible compared to Eq. (6)
in the limit where the integrability-breaking perturbation is
small, unless the integrable model itself exhibits superdif-
fusion or diffusion if the Drude weight happens to vanish
[36]. We will briefly return to this case below. Finally, if the
spectrum of T is gapless (i.e., if it has eigenvalues arbitrarily
close to zero), then ballistic transport may result in anomalous
diffusion upon breaking integrability.

Diffusive hydrodynamics. As the matrix C is also a suscep-
tibility matrix, one can use a generalized Einstein relation to
extract the diffusion matrix from Eq. (6),

D,s = (AT'A),,. @)

which will depend on the Lagrange multipliers {8,} of
the GGE corresponding to the charges preserved by the
integrability-breaking perturbation. Although Eq. (7) derives
from linear response, Dyp can be used as a transport coeffi-
cient to formulate a fully nonlinear hydrodynamic equation
describing the dynamics at late times ¢ > t ~ ||[T~!|],

9,8q, = 0,(D,pl{q, }10,89p), ®)

where the Lagrange multipliers {8, } have been replaced by
the expectation values of the conserved charges. [In principle,
Eqg. (8) also includes a noise term, not shown, whose strength
is fixed by the fluctuation-dissipation theorem.]

A more direct way to derive this diffusion equation in the
linear-response regime is as follows. For concreteness, we
consider the case with a single residual conserved charge go.
The Euler-scale hydrodynamic equations are

9,8qy + Ay, 0.8q, =0,

On"x

8t(SQn +A,,,0 (Sqm = _an8Qm’

nm-x

n 0. )

For leading order in the gradient expansion, we may drop
derivatives of the §g,, Vn # 0 in the second equation, yield-
ing 8¢, = —F;,,:AmOBXSqO + --- (see the Supplemental Ma-
terial [85]). Substituting this into the first equation recovers
the diffusion constant Dy, = Ao,lF,;,}Amo, consistent with the
Kubo result Eq. (7) (see the Supplemental Material [85]). We
emphasize that here diffusion arises from “integrating out”
slow but nonconserved degrees of freedom and is dramatically
different from the diffusive corrections that arise in integrable
systems (I' = 0) due to the fluctuations of ballistically propa-
gating modes [47,95,96].

Note that the preceding arguments do not rely on spatial
locality of I and, in fact, generalize to the case wherein I is a
spatially nonlocal kernel. In that case, the diffusion equation

takes the form 9,qo(x, 1) = 8,{[ dy D(x — y)dyqo(y)}, where
Dx—y)= Aon(x)Fn_ni (x —)A0(y). When D(x — y) is suf-
ficiently long ranged, the nature of the hydrodynamics might
change, although we will not consider this case in detail.

Hydrodynamic projections and general operators. In the
discussion above, we analyzed the dynamics of current au-
tocorrelators. However, the essential ingredient—namely, the
separation of an operator into fast and slow components
where the latter correspond to overlaps of the operator with
almost conserved charges—is true for any operator. Thus,
the analysis above directly generalizes to the autocorrelation
function of an arbitrary global operator O = > O, via the
formalism of hydrodynamic projections (see, e.g., Ref. [97]).
For simplicity, we assume that (O) = 0 in the GGE associated
with the background state p*. The projection of O onto a slow
(but nonconserved) charge Q,, can be expressed as

(010,,) = =8, (04 _o- (10)

When I' = 0, one can use the TBA formalism to compute
expectation values for any value of the chemical potential §,,,,
associated with the charge Q,,, and can, thus, evaluate the
projection for sufficiently simple operators. It readily follows
that:

(O100) = (010,)Cole™1,,(0,10). (1)

For current operators J,, the hydrodynamic projection
(J21Qn) = Ban = —0J, /0B, defines the matrix B = AC (by
the chain rule) [93], which recovers Eq. (6).

Transition rates. So far, we have expressed the behavior
of autocorrelation functions in terms of GHD data and the
matrix I', which describes the decay of the conserved charges
due to collisions. We now discuss how one can compute T’
perturbatively. From Fermi’s golden rule, the right-hand side
of Eq. (1) takes the general schematic form

bk 2
7, Z/Hd%‘dﬂj Hpa,Pﬁ/PUM[a,}—wﬁj,x}l
ij ij

— P 1_[ Pﬁ,ﬂgilM{x,ﬁj}_){a,; |2 ,  (12)
ij

where pl' is the density of holes with rapidity o. We also

introduce the density of states p\® = p; 4 pf and the occupa-

tion factor ny, = p; /p'™". Here, M denotes matrix elements of
the integrability-breaking perturbation between eigenstates of
the integrable system. The first term corresponds to scattering
particles into the quasiparticle state A, and the second term
corresponds to scattering them out. The scattering can happen
in various permutations, which must be summed over. In
general, the matrix elements that enter this expression must
be derived from microscopics; however, in some cases, they
can be expressed in terms of GHD data in the hydrodynamic
limit.

As a simple example, we consider an interacting one-
dimensional Bose gas (the Lieb-Liniger model with particle
mass m) subject to a weak smoothly varying time-dependent
potential coupled to one of the charges [51], i.e., V (x)n(t)p(x)
with p = gy as the quasiparticle density. (For the less trivial
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case of an interaction with a smooth kernel, see the Sup-
plemental Material [85].) A key observation [48,98—100] is
that, at long wavelengths, the dominant matrix elements of
V(x)p(x) are those that rearrange the fewest quasiparticles,
regardless of interaction strength. Thus, we can restrict to
one-particle-hole excitations for which the matrix elements
are given by (m|go|m; {A — 0}) = h§"(1) [48] with A" as the
“dressed” charge T = (1 +nK) 'hy where hy(L) =1 for
the particle number, K is the scattering kernel of the model,
and n acts diagonally in rapidity space as the occupation factor
ny.. We find that

T, = o [ dolV sy — k)Pl s, — o0 AL, HEG)
X hY" O+ @it (1 —m) —m (1 —mpp)l,  (13)

where V, 77 denote Fourier transforms and e, and k, are,
respectively, the dressed energy and momentum of the ex-
citation, satisfying &' = (E")¥ and k' = (P")¥ with E(A) =
mA?/2 and P(L) = mA as the single-particle energy and mo-
mentum [entering Eq. (3)]. If we fix the background state,
this is similar to the scattering of free fermions with charge
hg‘ . This dependence on the dressed charge is also seen in the
more complicated case of slowly varying interactions (see the
Supplemental Material [85]). However, our assumptions fail
for many important types of scatterings within an integrable
system, such as the decay of one quasiparticle type into
another or umklapp scattering of quasiparticles; incorporating
these is an interesting topic for future work.

Examples. We now comment on the physical significance
of our results by considering several specific cases. First, con-
sider an interacting Bose gas in one dimension with particle
mass m. By Galilean invariance, the current corresponding
to the boson density ¢go is the momentum jy = g;. Suppose
that the momentum distribution relaxes to a Gaussian on
a timescale t (e.g., due to point scatterers). Then, Eq. (6)
predicts a conductivity o = t xAg1Ajp for the boson density.
We have Ag; = 1 by Galilean invariance and Ay = x ~'n/m
(see, e.g., Ref. [101]). We, thus, recover the Drude formula
o = tn/m (momentum relaxation time times Drude weight).
A similar result would apply to energy transport in the spin-
1/2 XXZ chain with pointlike scatterers.

Next, we turn to cases in which corrections to the Euler
scale are large and potentially even divergent. An example is
the spin-1/2 XXZ chain with easy-plane anisotropy. For con-
creteness, we consider subjecting this system to slowly vary-
ing noise as before. In this model, the Drude weight varies dis-
continuously with the anisotropy parameter [36,44,102—-106],
and, concomitantly, the low-frequency response is anomalous
so that, in the integrable limit, for generic anisotropy, one has

o(w) = D§(w) + cw™'/? [62]. Only the largest quasiparticles
(“strings”) in this model are charged under the magnetization,
so only these strings couple to the integrability-breaking
perturbation. In the integrable limit, these strings undergo
a Lévy flight; when integrability is broken, the Lévy flight
is cut off and crosses over to diffusion with a mean free
time 7. The dc conductivity then goes as o = Dt + /T,
i.e., it corresponds to convolving the integrable result with a
Lorentzian of width T~'. Note that this result is nonanalytic
in t: Anomalous transport in the integrable limit can result
in signatures in the nonanalytic dependence of the diffusion
constant on the integrability-breaking parameter. One can
try to extend this analysis to the easy-axis regime of the
XXZ model where spin transport is diffusive in the integrable
limit; in this regime, none of the quasiparticles carry any
dressed magnetization, thus, at the present level of analysis,
their relaxation rates vanish. However, spin transport remains
diffusive upon breaking integrability: The spin Drude weight
is zero since the quasiparticles are neutral, but the factors of
dressed magnetization cancel out in Eq. (7), so we predict a
finite diffusion constant which can be computed by adding a
small magnetic-field & (which makes the Drude weight and
relaxation rates nonzero) and taking 27 — 0 in (7).

Conclusion. This Rapid Communication has shown how
the crossover from generalized to conventional hydrodynam-
ics can be captured within the framework of GHD by intro-
ducing a collision integral into the Bethe-Boltzmann equation.
GHD allows one to write compact formulas for the diffusion
constants of the residual conserved quantities as well as for
more general autocorrelation functions; it also gives access
to the full, potentially nonlinear, and spatially nonlocal dif-
fusion equations for the residual conserved quantities. These
formulas involve hydrodynamic data as well as a matrix of
quasiparticle decay rates, which (in the most general case)
lies beyond the scope of GHD. Nevertheless, in certain limits
where the collisions involve small momentum transfer, the
rates can themselves be expressed in terms of GHD data,
thus, allowing for a fully GHD description of nearly inte-
grable systems. Applying this technology to extract specific
quantitative predictions for experiments by incorporating the
collision integral into the flea-gas algorithm [41] for integrable
dynamics is a natural avenue for future work [107].
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