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Finite-temperature spin transport in the quantum Heisenberg spin chain is known to be superdiffusive,
and has been conjectured to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Using a kinetic theory
of transport, we compute the KPZ coupling strength for the Heisenberg chain as a function of temperature,
directly from microscopics; the results agree well with density-matrix renormalization group simulations.
We establish a rigorous quantum-classical correspondence between the “giant quasiparticles” that govern
superdiffusion and solitons in the classical continuous Landau-Lifshitz ferromagnet. We conclude that KPZ
universality has the same origin in classical and quantum integrable isotropic magnets: a finite-temperature

gas of low-energy classical solitons.
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Introduction.—The dynamics of isolated many-body
systems exhibits a remarkable diversity, which we have
only begun to understand in the past decade [1-3].
Dynamics in one dimension is particularly rich, as exper-
imental and theoretical studies have shown. Although
experiments often deal with systems far from equilibrium
[4-13], from a theoretical perspective it is most natural to
characterize dynamics in the linear regime about equilib-
rium states. Linear response can be probed via transport
experiments [14,15] or by measuring dynamical correla-
tions [16]. Generically, the densities of conserved quantities
in lattice models undergo diffusion, as predicted by
linearized hydrodynamics [17]. Integrable and many-body
localized systems, however, have infinitely many local
conserved charges, so simple hydrodynamic arguments
fail. Transport is absent in localized systems [18-21] and in
general ballistic in integrable systems [3], though anoma-
lous transport, including both subdiffusion [22-24] and
superdiffusion [3,25,26], has also been observed. The
mechanisms underlying anomalous diffusion occurs remain
an active open question.

The phenomenon of spin superdiffusion in the quantum
Heisenberg spin chain, discovered in [25], has recently
been confirmed in a number of numerical studies with
tensor network simulations [27-29], and then addressed
[30-35] using the framework of generalized hydrodynam-
ics (GHD) [31,33,36-61], which extends hydrodynamics to
integrable systems. The observed anomalous diffusion was
initially attributed to particular properties of interacting
quasiparticle excitations in the Heisenberg chain [30-32].
More recent studies, however, uncovered the presence of
universal Kardar-Parisi-Zhang (KPZ) dynamics in a wide
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class of quantum [29] and classical [62-64] Hamiltonian
systems, together with other types of superdiffusion
[65,66]. These include, among others, models which are
directly relevant for cold atoms experiments such as the
Fermi-Hubbard chain [67,68]. At the same time, even if the
KPZ equation was originally introduced to describe
classical stochastic growth phenomena [69], its large
dynamical universality class has recently incorporated also
noisy quantum systems, as random unitary models [70] and
spin chains with noise [71,72].

Stimulated by previous observations, Refs. [34,35] sug-
gested that absence of normal diffusion originates from the
long-wavelength fluctuations of local conserved charges
associated with the non-Abelian continuous symmetry of
the model. A common theme that emerges from all of these
studies is that the excitations responsible for the observed
anomalous spin diffusion in the Heisenberg chain are
interacting long-wavelength spin fluctuations: either a
thermal gas of “giant quasiparticles” [31,32] described
by GHD equations or, alternatively, “soft gauge modes”
that conventional GHD cannot capture [34,35]. These
pictures have complementary advantages: the GHD
approach is microscopic, but has not so far been able to
reproduce the emergence of the KPZ scaling function,
whereas the latter is a field-theoretical phenomenological
approach which offers a plausible derivation of the KPZ
equation.

In the present Letter, we elucidate the microscopic nature
of spin superdiffusion by identifying the “giant quasipar-
ticles” of the Heisenberg model with classical soliton
solutions of the Landau-Lifshitz equation [73]. We achieve
this systematically through an explicit semiclassical scaling
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FIG. 1. Upper panel: given an external small magnetic field

h < 1, the quantum-classical mapping identifies quantum eigen-
states with large quantum numbers s o 1/h of magnons with
soliton waves in a classical Landau-Lifshitz magnet. Lower
panel: temperature (7')-dependent coefficient of the KPZ non-
linearity predicted by the self-consistent theoretical approach,
compared with numerical results from t-DMRG (see also caption
of Fig. 2). At finite times, the spin profile is not precisely of the
KPZ functional form as in Eq. (2); thus the value of the inferred
coefficient largely depends on which quantity one uses to extract
to the KPZ prediction, either the spin autocorrelation or its
variance.

limit of the thermodynamic Bethe ansatz equations, thereby
providing the missing link between the GHD approach and
the proposal of Ref. [34]. This allows us to predict not only
the correct exponent for superdiffusion but also the
numerical value of the temperature-dependent coupling
constant of the emergent KPZ dynamics (Fig. 1). We thus
show how for integrable classical or quantum isotropic
ferromagnets, the data entering the coarse-grained KPZ
equation can be derived microscopically.

Model.—We consider the spin-% Heisenberg Hamiltonian
for a chain of size L + 1

L)2 .

I:I:J Z Sn'gn+l7 (1)
n=-L/2

with 8, = (5%, S}, 52), and §7 denoting spin-§ operators at
site n. In what follows, we set J = 1. We focus on the spin
dynamical structure factor (S (7)85(0)) in the thermody-
namic limit L — oo, at thermal equilibrium with finite
temperature 7 > 0 and zero magnetic field. There is now
ample numerical evidence that the structure factor at late
times ¢ > 1 follows the KPZ scaling form

Q7 (4) <z ~ X n
(85(1)85(0)) = ra) fxpz ((/IKPZI)ZH) . (2
L2

where y = > "7, /2<Sﬁ (0)85(0)) is the static spin suscep-
tibility, fxpz is the KPZ scaling function [74,75], and Agpy
is the KPZ constant: a temperature and model-dependent
coupling parameter of the emergent KPZ equation describ-
ing the hydrodynamics of the spin field. The exponent 2/3
can be extracted from GHD via a self-consistent argument
[31-33], but the scaling function and Agpy cannot.
Moreover, the framework of nonlinear fluctuating hydro-
dynamics [76,77], which has been used to derive KPZ
equations in other contexts, does not apply straightfor-
wardly in this situation.

Recent numerical results [62], supplemented by theo-
retical arguments of Refs. [34,35], have presented evidence
that the same universal KPZ scaling also occurs at finite
temperatures in classical integrable spin chains invariant
under SO(3) rotations, whose continuum long-wavelength
theory is governed by the Landau-Lifshitz (LL) equation

0,8 = JS x 25, (3)

where § = §(x t) is a classical spin field of unit length

IS| =1 on the continuum line x € R. In this light, it is
reasonable to expect that such emergent behavior is a
manifestation of a quantum-classical correspondence
where certain degrees of freedom in the quantum chain
are intrinsically classical in nature and behave according to
(3), as proposed, e.g., in Ref. [34].

Here, we isolate the excitations relevant for KPZ
dynamics. Since these turn out to be bound states of
elementary magnonic excitations whose size and quantum
numbers diverge as the local magnetization vanishes, we
dub them “giant quasiparticles.” Our picture, combined
with simple kinetic arguments, yields quantitative predic-
tions for the Agpy, and elucidates how a finite thermal
density of giant quasiparticles in the spectrum of the
quantum chain leads to a thermal gas of classical solitons
of the Landau-Lifshitz field theory (3).

Computing the KPZ constant.—The KPZ coupling con-
stant of the quantum Heisenberg model can be computed
from the following procedure. First, we consider a thermal
Gibbs state with the addition of a small magnetic field 2h,
which introduces the additional term —2AT 3, 8% to H.
Given that the model (1) is integrable, spin dynamics splits
into two channels; a ballistic piece with spectral (Drude)
weight vanishing at zero field, and a diffusive part with spin
diffusion constant diverging as D(h) = Dy/h inthe h — 0
limit [32,33]. Both transport coefficients admit closed-form
expressions as sums over quasiparticles, labeled by a discrete
label s > 1 (pertaining to the quantized magnetization of
magnon excitations) and a continuous rapidity label 6 €
(—o0, 00) which parametrizes their quasimomenta p(0).
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The spin diffusion constant assumes a spectral decomposi-
tion [32,52,78,79]

p=%" /_: 46D, (0), (4)

s>1

which we will use below to determine D,,.

The second step of our procedure consists of regularizing
the divergence of D(h) by accounting that the net mag-
netization observed by a quasiparticle that has traveled a
distance 7 is not precisely zero, but instead has a residual
value h(¢) set by thermal magnetization fluctuations over
the scale Z. As noted previously in Ref. [31], the motion of
the giant quasiparticles that dominate spin transport is
primarily diffusive, so £ is itself self-consistently set by
h(¢). These equations relating # and h(#) now permit for a
quantitative analysis of superdiffusion in terms of
Dy = lim;,_y+hD. For h <« 1, this can be though of as
the effective field originating from thermal fluctuations,
namely h> = m?/(4y)?, with m? the local spin susceptibil-
ity in a interval of size #, m> = 4y/¢. We then infer
h =1/\/4yf, and the lengthscale # can be fixed self-
consistently at small, finite & by #? = 2Dt = 2D+\/4y?t.
This yields # = (2Dy\/4yt)*3, and combining gives
finally

D(t) = 23D 31 3+, ... (5)

This simple argument already suffices to predict anomalous
diffusion with dynamical exponent z = 3 /2. Remarkably, it
also predicts the value of the prefactor. Even though such an
approach is arguably heuristic, we wish to emphasize that a
similar argument correctly predicts the exact form [31] of
the diffusion constant (4) for the easy-axis XXZ spin chain,
which has been computed by other means [32,52,78,79], so
it should be taken seriously. To extract Agp; defined in
Eq. (2), we compare the variance of the spin profile ¢° to
the variance computed from the KPZ prediction (2). At any
finite ¢ there is a finite (diverging) diffusion constant
D(t) ~ '3, which we can define in terms of the spin
variance as 6> = y2D(t)t. This readily implies that the full
temperature-dependent KPZ constant Agp; = Agpz(T) is
given by

Ixez(T) = 4Do(T)V2(T) /0. (6)
Here o%p, is the variance of the KPZ function

oxpy = [ duu® fypz(u) ~0.510523. Let us stress again
that the above argument does not predict the KPZ scaling
function, but it does fix Agxpy as a function of temperature.

Giant quasiparticles as classical soft solitons.—Our
central result is the explicit form (6) for Agpz in terms of
parameter Dy(7). Now we explain how to explicitly
compute it. The following calculation also demystifies

the nature of the ‘“giant quasiparticles” responsible for
superdiffusion: following previous work [31-33] we antici-
pate that these are semiclassical quasiparticles carrying
large amount of spin s ~ 1/h, i.e., macroscopically large
bound states of magnons that belong to the low-energy
spectrum of the Heisenberg chain. Such states, first
described in Refs. [80,81], have received a great deal of
attention in the study of gauge-string dualities [§2-86]. As
explicitly shown in [87,88], semiclassical eigenstates
manifest themselves (at the classical level) as solutions
to the continuum Landau-Lifshitz model [89].

Our objective here is however not to describe individual
classical spin-field configurations but rather find a classical
interpretation for the giant quasiparticles immersed in a
thermal background. To this end, we identify an appropriate
semi-classical limit directly at the level of the thermody-
namic Bethe ansatz (TBA) equations. We shall see that this
will lead us directly to the classical counterpart of the GHD
equations where, remarkably, the small magnetic field A
will play the role of an effective Planck constant. With this
in mind, we introduce a rescaled rapidity u = 6h and
rescaled quasiparticle magnetization £ = sh. In the limit
h — 0%, we can convert the sum over s in Eq. (4) into an
integral, in this way obtaining a fully classical expression
for Dy = D!, with

DY = /) e /_ " quD (& ), (7)

and where D(&,u) = lim;,_o+(1/h)Dg/,(u/h) is a finite
quantity: Dy, is thus fully determined by quasiparticles with
s — oo in the limit &7 — 01, with £ = sh kept fixed.
Next, we consider the scattering phase shifts between
two quasiparticles with spin indices s and 5" with relative
rapidity 0. Here we quote the result of [90,91], T ¢(0) =
(1 - 5ss')a\s—s’|(e> + 2a\s—s’lJrZ(H) +t 2as+s’—2(6)+
a0 (0), with a,(6) = 1/(2m)9yp,(0) = 1/(2x)(4s/s>+
46%). Upon rescaling of parameters € — u/h and
s — &/ h, the net phase shift of all the constituent magnons

can be resummed into an integral T ¢ = |, }Z(SS_J;,S‘/) (d¢/2m)x

(4¢/(& +4u?)), up to O(h) corrections. This readily
provides an effective scattering kernel for the giant qua-

siparticles T?fg,m(u) = lim,_+ Te/pe/n(u/h), reading
explicitly
: 1 4w+ (E+¢&)?
TE () = —log —5—————ts. 8
& (M) T Og 4142 + (5_ g/)z ( )

In this expression one can recognize the scattering kernel—
the differential scattering phase of the two-body S matrix—
ascribed to an elastic collision of two Landau-Lifshitz
solitons [89,92] characterized by pairs of action variables
(uy,€) and (uy, &) with u = uy — u,. All the remaining
thermodynamic state functions pertaining to the giant
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quasiparticles can be obtained in a similar manner by
rescaling the analogous quantities in the Heisenberg chain.
We will need the following standard TBA concepts: an
equilibrium state is uniquely characterized by a density
p,(0) of quasiparticles with quantum numbers (s, 8), the
available density of states p®'(6) and the associated Fermi
filling fractions n,(0) = p,(6)/p'*'(0). Finally, interactions
“dress” the group velocity and magnetization (along with
other local charges) carried by quasiparticles; we denote
these as v (0) and md(6), respectively.

Writing the Fermii filling functions of the quasiparticles as
n(0) = [+ n,(0)), we have neys(u/h) — n(&.u)/h?.
implying vanishing occupations n, ~ h?;~' (&, u) and emer-
gent classical statistics for these modes. The rescaled ratio
n(&, u) is interpreted as a Boltzmann weight which obeys a
two-dimensional Fredholm-type integral equation [93]

logf’](f,u):210gh—|—2§_;egiant(§’u)
+/O+oo[d§/]h‘/_:odvT?zf"(u—v)[n(fl’v)]q,
©)

where we have introduced a regularized integral

o ldng() = Ji" dg(&) — (h/2)lime_o: g(¢) for any
function g¢(£) and bare energy e#*™(& u) =2&/
(&2 + 4u?). Equation (9) can be interpreted as a semiclassical
TBA equation for a finite-density soliton gas. Analogous
integral equations, albeit without a regulator, have previously
appeared in the context of classical thermodynamic soliton
gases [98—106]. We note however that Eq. (9) only governs a
particular scaling regime of classical “soft solitons” with low
energy and large width.

Before we proceed with solving Eq. (9), we owe to
clarify an important subtlety. Even though we are even-
tually only interested in the solution at & = 0, the limit
h — 0" can be taken only after solving (9), as h acts as a
cutoff in the integral over the solitons’ charge £. Similar
integral equations can be also written for the densities of
quasiparticles pg}‘h(u /h) = h?p°Y(&, u), the dressed rapid-
ity derivative of energy of the quasiparticle excitations
e (u/h) = I¢'(,u), and the dressed magnetization
mg), (u/h) = h~"'m% (&, u) [93]. The dressed magnetization

diverges as h~! in the h — 0" limit, while the velocity
v (u/h) = €, (u/h)/ 2zp's), (u/h)] vanishes as ~h. Tt is
also straightforward to check that these expressions are
consistent with D(&, u) = limy,_+(1/h)Dg/,(u/h) con-
verging to a finite function.

In the limit of infinite temperature, T = oo, dependence
on parameter u drops out of equation (9), which enables us
to solve it exactly [101]. We find n(&, u) = sinh?(& + h), in
agreement with rescaling the exact analytical solution of
the TBA equations at infinite temperature for the quantum

chain [91]. Using this result, all other thermodynamic
functions can also be obtained in a closed form, yielding
Do(T — o) = 57/27 [93]. From Eq. (6) we thus deduce

that Apz (T = 00) = 107/ (2767/5,) ~ 1.9265, ...
Numerical results.—Solving the semiclassical TBA
Eq. (9) at finite temperature 7 is numerically challenging;
in practice it is more convenient to solve the original
quantum TBA equations and afterwards take the limit D, =
limy,_,o+ AD(h) numerically. We compared our predictions
to time-dependent density matrix renormalization group (t-
DMRG) calculations, see Fig. 1 and [93] for additional
numerical data, by evolving a finite-temperature state
[107], with fixed maximal bond dimension equal to 800
and system size L = 140 and computing the dynamical
structure factor (DSF) C,, () = (8%(7)85(0)); at finite tem-
perature 7. Despite entanglement entropy growing linearly in
time, we carry out computation up to times # ~ 50J and
estimate the maximal error by comparing values of different
observables. In particular we extract the value of Agpy at finite
time by considering [given Eq. (2)]: the autocorrelation,
via ABMRG (1) = {12/3Cy(1)/ [x fxpz(0)]} /%, the variance
(1) = T,2, W Cu(r), via HGIRO() = [P0 1)/
(xo%p,))/* and the mean of the absolute value u(f) =

Zﬁi ’, /2 [n|C, (1) via similar relation. In the limit # — oo,
all these values are expected to be equal and identify to Agpy.
At the finite times accessible by the numerical simulation, we
find an expected slow convergence towards the theoretically
predicted value of Agpy, with corrections of order ¢~'/3,
consistently with other dynamical systems in the KPZ
universality class [108,109] (Fig. 2).

We find good agreement with our prediction (6), espe-
cially at high temperature (Fig. 1). At lower temperatures,
however, various numerical estimators for Agp; show some
discrepancy, indicating that on the accessible timescale the

(S5 (£)S5(0)t*2 /x

IMPEE () = Axpz(T=c0)

0.8

T=00-=T=2

0.50 —T=1=T=05

0.10 \ 7 e ssuesessscnsessennssscasascase. - -]

00SF | o (S5(1)S5(0)) = u(t) 02 1

- o¥(t) /\f\/—-—

001 5 10 20 00— 10 15 20
t t

FIG. 2. Left: log-log plot of the Agpy computed from
t-DMRG numerical simulations in a Heisenberg chain at infinite
temperature 7 = oo, minus our theoretically predicted value
Axpz(T = o0) = 1.9265, ..., as function of the numerical simu-
lation times ¢ (in unit of spin coupling J). Dashed gray line
represents ¢~'/3. Right: spin autocorrelation as function of time
multiplied by 72/3. Convergence to KPZ scaling is reached at
t ~ O(10) for all considered temperatures 7.
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dynamical correlations have not yet relaxed sufficiently close
to the asymptotic KPZ scaling form (2). We moreover
observe that Axpy; — oo with decreasing temperature, sug-
gesting that the classical KPZ dynamics only becomes valid
on increasingly large spatiotemporal scales, whereas on
shorter scales one can expect Luttinger liquid ballistic
dynamics [110,111] and spinon physics [112].

Conclusion.—We have traced the microscopic origin of
anomalous spin transport in the quantum Heisenberg spin-
1/2 chain to the presence of giant quasiparticle eigenstates
in its spectrum. These states admit a purely classical
interpretation as a thermal gas of soft classical solitons
of the isotropic Landau-Lifshitz equation. We established
an explicit correspondence through the semiclassical scal-
ing limit of the thermodynamic Bethe ansatz equations. The
Fermi factors of such giant quasiparticles are vanishingly
small so they become effectively classical.

Our analysis unifies the complementary pictures of KPZ
superdiffusion: the generalized hydrodynamics approach of
Refs. [31,32], and the effective theory of Ref. [34], which
seemingly evades the conventional GHD description. In the
language of GHD, one divides a system up into hydro-
dynamic cells of some fixed size, and constructs a thermal
state within each cell. To construct such a state, one must
specify both a “pseudovacuum” (i.e., a unit vector on the
sphere that sets the direction of the net magnetization) and a
quasiparticle distribution above this pseudovacuum.
Reference [34] postulated a Landau-Lifshitz dynamics for
long-wavelength spatial fluctuations of this pseudovacuum,
arguing that it cannot be captured by GHD modes.
However, in light of our analysis, the distinction between
such “pseudovacuum fluctuations” and quasiparticles is
only superficial as is depends on the cutoff: pseudovacuum
fluctuations are nothing but giant quasiparticles that extend
beyond the scale of a hydrodynamic cell, and can indeed be
described within GHD. With that, we confirm the previous
suggestion [34] that superdiffusion in the Heisenberg spin
chain is due to low-energy degrees of freedom that obey an
emergent Landau-Lifshitz equation; the quantum and
classical systems share the same hydrodynamic description
in terms of a stochastic Burgers (or equivalently KPZ)
equation. Our explicit derivation provides the microscopic
input for the KPZ equation, permitting to determine the
temperature dependence of its coupling constant (in good
agreement with numerical results); moreover, it establishes
the universal nature of the low-energy solitons that cause
superdiffusion. We expect the explicit mapping to a classical
model to enable efficient numerical simulations that should
quantitatively address important questions such as the fate
of superdiffusion away from strict integrability, see [35].

Our results can be straightforwardly generalized to other
integrable spin or charge models where KPZ scaling is also
expected, including the spin-S integrable chains, integrable
models of higher-rank symmetry [64] and Fermi-Hubbard
chains [30]. A separate interesting direction for future work

would be to understand the crossover from Luttinger liquid
physics to KPZ dynamics at low temperature.

We are very grateful and indebted to Benjamin Doyon,
Takato Yoshimura, Tomohiro Sasamoto for inspiring dis-
cussions on the semiclassical TBA equations and collabo-
ration on the KPZ problem in the XXX chain; to Marko
Medenjak and Brayden Ware for collaborations on closely
related topics; to Utkarsh Agrawal for early collaboration
on the numerical solutions to the TBA equations of the
Heisenberg chain; and to Vir Bulchandani for numerous
stimulating discussions. We thank the International Centre
for Theoretical Sciences (ICTS) and the program
“Thermalization, ~ Many body localization  and
Hydrodynamics” (Code: ICTS/hydrodynamics2019/11)
where this project was initiated. The MPS-based t-
DMRG simulations were performed using the ITensor
Library [113]. This work was supported by the National
Science Foundation under NSF Grant No. DMR-1653271
(S. G.), the US Department of Energy, Office of Science,
Basic Energy Sciences, under Early Career Award No. DE-
SC0019168 (R. V.), the Alfred P. Sloan Foundation through
a Sloan Research Fellowship (R.V.), the Research
Foundation Flanders (FWO, J. D.N.), and the Slovenian
Research Agency (ARRS) Program No. P1-0402 (E. L.).

[1] A.Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[2] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
Adv. Phys. 65, 239 (2016).

[3] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Znidaric, arXiv:2003.03334.

[4] T. Kinoshita, T. Wenger, and D. Weiss, Nature (London)
440, 900 (2006).

[5] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and
J. Schmiedmayer, Nature (London) 449, 324 (2007).

[6] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Science 337, 1318 (2012).

[7] S. Hild, T. Fukuhara, P. SchauB3, J. Zeiher, M. Knap, E.
Demler, I. Bloch, and C. Gross, Phys. Rev. Lett. 113,
147205 (2014).

[8] M. Schreiber, S.S. Hodgman, P. Bordia, H. P. Liischen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and 1.
Bloch, Science 349, 842 (2015).

[9] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A.
Omran, H. Pichler, S. Choi, A.S. Zibrov, M. Endres,
M. Greiner et al., Nature (London) 551, 579 (2017).

[10] S. Erne, R. Biicker, T. Gasenzer, J. Berges, and J.
Schmiedmayer, Nature (London) 563, 225 (2018).

[11] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol,
S. Gopalakrishnan, and B. L. Lev, Phys. Rev. X 8, 021030
(2018).

[12] J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, M. Rigol, and
D.S. Weiss, Science 367, 1461 (2020).

[13] W. Kao, K.-Y. Li, K.-Y. Lin, S. Gopalakrishnan, and B. L.
Lev, arXiv:2002.10475.

070601-5


https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1080/00018732.2016.1198134
https://arXiv.org/abs/2003.03334
https://doi.org/10.1038/nature04693
https://doi.org/10.1038/nature04693
https://doi.org/10.1038/nature06149
https://doi.org/10.1126/science.1224953
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41586-018-0667-0
https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1126/science.aaz0242
https://arXiv.org/abs/2002.10475

PHYSICAL REVIEW LETTERS 125, 070601 (2020)

[14] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T.
Esslinger, Nature (London) 517, 64 (2015).

[15] C. Hess, Phys. Rep. 811, 1 (2019).

[16] M. A. Nichols, L. W. Cheuk, M. Okan, T.R. Hartke, E.
Mendez, T. Senthil, E. Khatami, H. Zhang, and M. W.
Zwierlein, Science 363, 383 (2019).

[17] J. Lux, J. Miiller, A. Mitra, and A. Rosch, Phys. Rev. A 89,
053608 (2014).

[18] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys.
(Amsterdam) 321, 1126 (2006).

[19] R. Nandkishore and D. A. Huse, Annu. Rev. Condens.
Matter Phys. 6, 15 (2015).

[20] R. Vasseur and J. E. Moore, J. Stat. Mech. (2016) 064010.

[21] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev.
Mod. Phys. 91, 021001 (2019).

[22] Y. Bar Lev, G. Cohen, and D.R. Reichman, Phys. Rev.
Lett. 114, 100601 (2015).

[23] K. Agarwal, S. Gopalakrishnan, M. Knap, M. Miiller, and
E. Demler, Phys. Rev. Lett. 114, 160401 (2015).

[24] S. Gopalakrishnan and S. Parameswaran, arXiv:
1908.10435.

[25] M. Znidari¢, Phys. Rev. Lett. 106, 220601 (2011).

[26] V.B. Bulchandani, C. Karrasch, and J.E. Moore,
arXiv:1904.09287.

[27] M. Ljubotina, M. Znidarié, and T. Prosen, Nat. Commun.
8, 16117 (2017).

[28] M. Ljubotina, M. Znidari¢, and T. Prosen, Phys. Rev. Lett.
122, 210602 (2019).

[29] M. Dupont and J. E. Moore, Phys. Rev. B 101, 121106(R)
(2020).

[30] E. Hlievski, J. De Nardis, M. Medenjak, and T. Prosen,
Phys. Rev. Lett. 121, 230602 (2018).

[31] S. Gopalakrishnan and R. Vasseur, Phys. Rev. Lett. 122,
127202 (2019).

[32] J. De Nardis, M. Medenjak, C. Karrasch, and E. Ilievski,
Phys. Rev. Lett. 123, 186601 (2019).

[33] S. Gopalakrishnan, R. Vasseur, and B. Ware, Proc. Natl.
Acad. Sci. U.S.A. 116, 16250 (2019).

[34] V.B. Bulchandani, Phys. Rev. B 101, 041411(R) (2020).

[35] J. De Nardis, M. Medenjak, C. Karrasch, and E. Ilievski,
arXiv:2001.06432.

[36] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura,
Phys. Rev. X 6, 041065 (2016).

[37] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Phys.
Rev. Lett. 117, 207201 (2016).

[38] B. Doyon and T. Yoshimura, SciPost Phys. 2, 014
(2017).

[39] E. llievski and J. De Nardis, Phys. Rev. Lett. 119, 020602
(2017).

[40] V.B. Bulchandani, R. Vasseur, C. Karrasch, and J.E.
Moore, Phys. Rev. Lett. 119, 220604 (2017).

[41] V.B. Bulchandani, R. Vasseur, C. Karrasch, and J.E.
Moore, Phys. Rev. B 97, 045407 (2018).

[42] B. Doyon and H. Spohn, SciPost Phys. 3, 039 (2017).

[43] B. Doyon and H. Spohn, J. Stat. Mech. (2017) 073210.

[44] B. Doyon, T. Yoshimura, and J.-S. Caux, Phys. Rev. Lett.
120, 045301 (2018).

[45] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura, Phys.
Rev. Lett. 119, 195301 (2017).

[46] X. Zotos, J. Stat. Mech. (2017) 103101.

[47] E. Tlievski and J. De Nardis, Phys. Rev. B 96, 081118(R)
2017).

[48] M. Collura, A. De Luca, and J. Viti, Phys. Rev. B 97,
081111(R) (2018).

[49] X. Cao, V.B. Bulchandani, and J. E. Moore, Phys. Rev.
Lett. 120, 164101 (2018).

[50] J. De Nardis, D. Bernard, and B. Doyon, Phys. Rev. Lett.
121, 160603 (2018).

[51] S. Gopalakrishnan, D. A. Huse, V. Khemani, and R.
Vasseur, Phys. Rev. B 98, 220303(R) (2018).

[52] J.D. Nardis, D. Bernard, and B. Doyon, SciPost Phys. 6,
49 (2019).

[53] U. Agrawal, S. Gopalakrishnan, and R. Vasseur, Phys. Rev.
B 99, 174203 (2019).

[54] M. Borsi, B. Pozsgay, and L. Pristydk, Phys. Rev. X 10,
011054 (2020).

[55] D. X. Horvath, J. High Energy Phys. 10 (2019) 020.

[56] B. Bertini, L. Piroli, and M. Kormos, Phys. Rev. B 100,
035108 (2019).

[57] A. Bastianello, V. Alba, and J.-S. Caux, Phys. Rev. Lett.
123, 130602 (2019).

[58] E.S. Mgller and J. Schmiedmayer, SciPost Phys. 8, 41
(2020).

[59] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail, Phys.
Rev. Lett. 124, 140603 (2020).

[60] A.J. Friedman, S. Gopalakrishnan, and R. Vasseur, Phys.
Rev. B 101, 180302 (2020).

[61] A. Bastianello, J. D. Nardis, and A. D. Luca, arXiv:2003
.01702.

[62] A. Das, M. Kulkarni, H. Spohn, and A. Dhar, Phys. Rev. E
100, 042116 (2019).

[63] Z. Krajnik and T. Prosen, arXiv:1909.03799.

[64] 7Z. Krajnik, E. Ilievski, and T. Prosen,arXiv:2003.05957.

[65] O. Gamayun, Y. Miao, and E. Ilievski, Phys. Rev. B 99,
140301(R) (2019).

[66] G. Misguich, N. Pavloff, and V. Pasquier, SciPost Phys. 7,
https://doi.org/10.21468/SciPostPhys.7.2.025 (2019).

[67] U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will,
S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch,
and A. Rosch, Nat. Phys. 8, 213 (2012).

[68] S. Scherg, T. Kohlert, J. Herbrych, J. Stolpp, P. Bordia,
U. Schneider, F. Heidrich-Meisner, 1. Bloch, and M.
Aidelsburger, Phys. Rev. Lett. 121, 130402 (2018).

[69] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,
889 (1986).

[70] A.Nahum, J. Ruhman, S. Vijay, and J. Haah, Phys. Rev. X
7, 031016 (2017).

[71] D. Bernard and P. L. Doussal, arXiv:1912.08458.

[72] T. Jin, A. Krajenbrink, and D. Bernard, arXiv:2001.04278
[Phys. Rev. Lett. (to be published)].

[73] M. Lakshmanan, T.W. Ruijgrok, and C. Thompson,
Physica (Amsterdam) 84A, 577 (1976).

[74] M. Prihofer and H. Spohn, J. Stat. Phys. 115, 255 (2004).

[75] J. Quastel and H. Spohn, J. Stat. Phys. 160, 965 (2015).

[76] A.Das, K. Damle, A. Dhar, D. A. Huse, M. Kulkarni, C. B.
Mendl, and H. Spohn, J. Stat. Phys. (2019), https://doi.org/
10.1007/s10955-019-02397-y.

[77] H. Spohn, J. Stat. Phys. 154, 1191 (2014).

[78] M. Medenjak, J.D. Nardis, and T. Yoshimura, arXiv:
1911.01995.

070601-6


https://doi.org/10.1038/nature14049
https://doi.org/10.1016/j.physrep.2019.02.004
https://doi.org/10.1126/science.aat4387
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1088/1742-5468/2016/06/064010
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.160401
https://arXiv.org/abs/1908.10435
https://arXiv.org/abs/1908.10435
https://doi.org/10.1103/PhysRevLett.106.220601
https://arXiv.org/abs/1904.09287
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1103/PhysRevLett.122.210602
https://doi.org/10.1103/PhysRevLett.122.210602
https://doi.org/10.1103/PhysRevB.101.121106
https://doi.org/10.1103/PhysRevB.101.121106
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1103/PhysRevLett.123.186601
https://doi.org/10.1073/pnas.1906914116
https://doi.org/10.1073/pnas.1906914116
https://doi.org/10.1103/PhysRevB.101.041411
https://arXiv.org/abs/2001.06432
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1088/1742-5468/aa8c13
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevLett.120.164101
https://doi.org/10.1103/PhysRevLett.120.164101
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevB.98.220303
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.1103/PhysRevB.99.174203
https://doi.org/10.1103/PhysRevB.99.174203
https://doi.org/10.1103/PhysRevX.10.011054
https://doi.org/10.1103/PhysRevX.10.011054
https://doi.org/10.1007/JHEP10(2019)020
https://doi.org/10.1103/PhysRevB.100.035108
https://doi.org/10.1103/PhysRevB.100.035108
https://doi.org/10.1103/PhysRevLett.123.130602
https://doi.org/10.1103/PhysRevLett.123.130602
https://doi.org/10.21468/SciPostPhys.8.3.041
https://doi.org/10.21468/SciPostPhys.8.3.041
https://doi.org/10.1103/PhysRevLett.124.140603
https://doi.org/10.1103/PhysRevLett.124.140603
https://doi.org/10.1103/PhysRevB.101.180302
https://doi.org/10.1103/PhysRevB.101.180302
https://arXiv.org/abs/2003.01702
https://arXiv.org/abs/2003.01702
https://doi.org/10.1103/PhysRevE.100.042116
https://doi.org/10.1103/PhysRevE.100.042116
https://arXiv.org/abs/1909.03799
https://arXiv.org/abs/2003.05957
https://doi.org/10.1103/PhysRevB.99.140301
https://doi.org/10.1103/PhysRevB.99.140301
https://doi.org/10.21468/SciPostPhys.7.2.025
https://doi.org/10.1038/nphys2205
https://doi.org/10.1103/PhysRevLett.121.130402
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://arXiv.org/abs/1912.08458
https://arXiv.org/abs/2001.04278
https://doi.org/10.1016/0378-4371(76)90106-0
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1007/s10955-015-1250-9
https://doi.org/10.1007/s10955-019-02397-y
https://doi.org/10.1007/s10955-019-02397-y
https://doi.org/10.1007/s10955-014-0933-y
https://arXiv.org/abs/1911.01995
https://arXiv.org/abs/1911.01995

PHYSICAL REVIEW LETTERS 125, 070601 (2020)

[79] B. Doyon, arXiv:1912.01551.

[80] B. Sutherland, Phys. Rev. Lett. 74, 816 (1995).

[81] A. Dhar and B.S. Shastry, Phys. Rev. Lett. 85, 2813
(2000).

[82] J. A. Minahan and K. Zarembo, J. High Energy Phys. 03
(2003) 013.

[83] G. Arutyunov, S. Frolov, and M. Zamaklar, Nucl. Phys.
B778, 1 (2007).

[84] R. Roiban, J. High Energy Phys. 07 (2007) 048.

[85] J. Minahan and O. O. Sax, Nucl. Phys. B801, 97 (2008).

[86] N. Beisert, C. Ahn, L.F. Alday, Z. Bajnok, J.M.
Drummond, L. Freyhult, N. Gromov, R. A. Janik, V.
Kazakov, T. Klose et al., Lett. Math. Phys. 99, 3 (2012).

[87] V. A. Kazakov, A. Marshakov, J. A. Minahan, and K.
Zarembo, J. High Energy Phys. 04 (2004) 024.

[88] T. Bargheer, N. Beisert, and N. Gromov, New J. Phys. 10,
103023 (2008).

[89] L. Takhtajan, Phys. Lett. 64A, 235 (1977).

[90] M. Takahashi, Prog. Theor. Phys. 46, 401 (1971).

[91] M. Takahashi, Thermodynamics of One-Dimensional
Solvable Models (Cambridge University Press, Cam-
bridge, 1999).

[92] L. Faddeev, Hamiltonian Methods in the Theory of
Solitons (Classics in Mathematics) (Springer-Verlag Berlin

Heidelberg, 2007), https://www.springer.com/gp/book/
9783540698432.
[93] See  Supplemental Material at http:/link.aps.org/

supplemental/10.1103/PhysRevLett.125.070601 for extra
numerical data and extra details on the thermodymamics of
the solitons gas, which includes Refs. [94-97].

[94] E. Ilievski and O. Gamayun (to be published).

[95] R. Jackiw and G. Woo, Phys. Rev. D 12, 1643 (1975).

[96] A.B. Zamolodchikov and A.B. Zamolodchikov, Ann.
Phys. (N.Y.) 120, 253 (1979).

[97] C.N. Yang and C. P. Yang, J. Math. Phys. (N.Y.) 10, 1115
(1969).

[98] F. Mertens and H. Biittner, Phys. Lett. 84A, 335 (1981).

[99] H. Bolterauer and M. Opper, Z. Phys. B 42, 155
(1981).

[100] J. Timonen, R. K. Bullough, and D. J. Pilling, Phys. Rev. B
34, 6525 (1986).

[101] K. Sasaki, Phys. Rev. B 33, 2214 (1986).

[102] R. Bullough, Y.z. Chen, J. Timonen, V. Tognetti, and R.
Vaia, Phys. Lett. 145A, 154 (1990).

[103] N. Theodorakopoulos and N. C. Bacalis, Phys. Rev. Lett.
67, 3018 (1991).

[104] N. Theodorakopoulos, Phys. Rev. B 52, 9507 (1995).

[105] A. De Luca and G. Mussardo, J. Stat. Mech. (2016)
064011.

[106] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura,
SciPost Phys. 4, https://doi.org/10.21468/SciPostPhys
.4.6.045 (2018).

[107] C. Karrasch, J. H. Bardarson, and J. E. Moore, Phys. Rev.
Lett. 108, 227206 (2012).

[108] K. A. Takeuchi, M. Sano, T. Sasamoto, and H. Spohn, Sci.
Rep. 1, https://doi.org/10.1038/srep00034 (2011).

[109] P. L. Ferrari and R. Frings, J. Stat. Phys. 144, 1123 (2011).

[110] C. Karrasch, R. G. Pereira, and J. Sirker, New J. Phys. 17,
103003 (2015).

[111] R.M. Konik and P. Fendley, Phys. Rev. B 66, 144416
(2002).

[112] M. Mourigal, M. Enderle, A. Klopperpieper, J.-S. Caux, A.
Stunault, and H. M. Rgnnow, Nat. Phys. 9, 435 (2013).

[113] ITensor Library (version 2.1), http://itensor.org.

070601-7


https://arXiv.org/abs/1912.01551
https://doi.org/10.1103/PhysRevLett.74.816
https://doi.org/10.1103/PhysRevLett.85.2813
https://doi.org/10.1103/PhysRevLett.85.2813
https://doi.org/10.1088/1126-6708/2003/03/013
https://doi.org/10.1088/1126-6708/2003/03/013
https://doi.org/10.1016/j.nuclphysb.2006.12.026
https://doi.org/10.1016/j.nuclphysb.2006.12.026
https://doi.org/10.1088/1126-6708/2007/04/048
https://doi.org/10.1016/j.nuclphysb.2008.04.018
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1088/1126-6708/2004/05/024
https://doi.org/10.1088/1367-2630/10/10/103023
https://doi.org/10.1088/1367-2630/10/10/103023
https://doi.org/10.1016/0375-9601(77)90727-7
https://doi.org/10.1143/PTP.46.401
https://www.springer.com/gp/book/9783540698432
https://www.springer.com/gp/book/9783540698432
https://www.springer.com/gp/book/9783540698432
https://www.springer.com/gp/book/9783540698432
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.070601
https://doi.org/10.1103/PhysRevD.12.1643
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1063/1.1664947
https://doi.org/10.1063/1.1664947
https://doi.org/10.1016/0375-9601(81)90776-3
https://doi.org/10.1007/BF01319550
https://doi.org/10.1007/BF01319550
https://doi.org/10.1103/PhysRevB.34.6525
https://doi.org/10.1103/PhysRevB.34.6525
https://doi.org/10.1103/PhysRevB.33.2214
https://doi.org/10.1016/0375-9601(90)90671-A
https://doi.org/10.1103/PhysRevLett.67.3018
https://doi.org/10.1103/PhysRevLett.67.3018
https://doi.org/10.1103/PhysRevB.52.9507
https://doi.org/10.1088/1742-5468/2016/06/064011
https://doi.org/10.1088/1742-5468/2016/06/064011
https://doi.org/10.21468/SciPostPhys.4.6.045
https://doi.org/10.21468/SciPostPhys.4.6.045
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1038/srep00034
https://doi.org/10.1007/s10955-011-0318-4
https://doi.org/10.1088/1367-2630/17/10/103003
https://doi.org/10.1088/1367-2630/17/10/103003
https://doi.org/10.1103/PhysRevB.66.144416
https://doi.org/10.1103/PhysRevB.66.144416
https://doi.org/10.1038/nphys2652
http://itensor.org
http://itensor.org

