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We use tools from integrability and generalized hydrodynamics to study finite-temperature dynamics in the
one-dimensional Hubbard model. First, we examine charge, spin, and energy transport away from half-filling and
zero magnetization, focusing on the strong coupling regime where we identify a rich interplay of temperature
and energy scales, with crossovers between distinct dynamical regimes. We identify an intermediate-temperature
regime analogous to the spin-incoherent Luttinger liquid, where spin degrees of freedom are hot but charge
degrees of freedom are at low temperature. We demonstrate that the spin Drude weight exhibits sharp features
at the crossover between this regime and the low-temperature Luttinger liquid regime, which are absent in the
charge and energy response, and rationalize this behavior in terms of the properties of Bethe ansatz quasiparticles.
We then turn to the dynamics along special lines in the phase diagram corresponding to half-filling and/or zero
magnetization where on general grounds we anticipate that the transport is subballistic but superdiffusive. We
provide analytical and numerical evidence for Kardar-Parisi-Zhang (KPZ) dynamical scaling (with length and
time scales related via x ∼ t2/3) along both lines and at the SO(4)-symmetric point where they intersect. Our
results suggest that both spin-coherence crossovers and KPZ scaling may be accessed in near-term experiments
with optical lattice Hubbard emulators.
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I. INTRODUCTION

The Hubbard model has a storied history in the study of
strong correlations in many-body quantum systems. Origi-
nally formulated to model interacting electrons in narrow
energy bands [1], it came to renewed prominence following
the discovery of the copper-oxide high-temperature (high-Tc)
superconductors. The ability of the Hubbard model to capture
what are believed to be key features of the high-Tc phase dia-
gram [2]—for example, the existence of an antiferromagnetic
Mott insulator at half filling that could yield unconventional
superconducting states upon doping—have made it an endur-
ing subject of theoretical studies [3], and a favored testbed for
new techniques. Numerical approaches [4,5] such as dynam-
ical mean-field theory [6] and density-matrix renormalization
group [7], as well as theoretical frameworks such as quantum
spin liquids [8,9] and quantum criticality [10], were either de-
vised for, or greatly stimulated by, application to the Hubbard
model.

An influential line of inquiry pertains specifically to the
Hubbard model in one spatial dimension, which admits an
exact solution via the technique of the Bethe ansatz [11].
This integrability has meant that many subtle features of
the model, including nonperturbative effects, can be explored
with analytical control—including those, such as the existence
of hidden symmetries [12], that extend also to its higher-
dimensional counterparts. The one dimensional model can
also be experimentally relevant in its own right: for instance,

one-dimensional (extended) Hubbard models have been used
to describe correlations in carbon nanotubes [13], and as a
starting point for the description of materials, such as organic
charge-transfer salts [14], that can be approximated as quasi-
one-dimensional [15].

More recently, the Hubbard model has also received much
attention in a setting quite distinct from its solid-state origins:
namely, that of ultracold atomic gases [16–18]. Over the past
two decades, it has been the subject of a concerted experi-
mental effort to build “optical lattice emulators”: systems of
cold trapped neutral gases moving in lattice potentials and
subject to strong contact interactions. The overarching goal is
to engineer artificial systems whose microscopic Hamiltonian
is exactly that of the Hubbard model, so as to experimentally
address and potentially settle the many questions that remain
the subject of spirited theoretical debate. This program has
had striking successes, such as experimental realization of the
bosonic Hubbard model [19] and its Mott insulator-superfluid
transition [20–29] and the detection of anomalous trans-
port in 2D quantum Heisenberg magnets [30]—but has also
faced unexpected obstacles in accessing the low-temperature
regime of the model in its original, fermionic, avatar. An-
other challenge is that much of the theoretical lore on the
Hubbard model focuses on observables—such as conductiv-
ities and spectral properties—that are naturally accessed in
solid-state experiments but are often less tractable from an
atomic-physics perspective. Despite these hurdles, over the
past few years different groups have been able to access a
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range of temperature scales in Fermi-Hubbard optical lattices
[31,32], and perfected new techniques, such as quantum gas
microscopy [33–38], that offer direct lattice-scale probes of
these systems [39–46].

In parallel, recent progress in the study of integrability
applied to nonequilibrium systems has led to the formula-
tion of ‘generalized hydrodynamics’ (GHD) [47–66]. This
is a systematic framework for treating the effective long-
wavelength fluctuations of integrable models, which is a
convenient route to access their far-from-equilibrium trans-
port and response properties [67,68]. As these are notoriously
challenging to compute from first principles using Bethe
ansatz techniques, GHD has dramatically simplified the ap-
plication of tools from integrability to the computation of
many experimentally-relevant observables. It has been ap-
plied, with notable success, to a variety of integrable systems
such as the Lieb-Liniger gas [53,54,69] or the XXZ spin- 12
chain [48,52,70–74]. By building a Boltzmann-like kinetic
theory for stable quasiparticles, GHD has provided insights
into the nature of transport and hydrodynamics in these sys-
tems. Intuitively, this kinetic approach remains valid even if
the quasiparticle gas is not dilute, since scattering processes
in integrable systems factorize. Recent developments include
explaining how diffusive corrections to ballistic quasiparti-
cle motion arise microscopically [75–78], and identifying the
physical origin of the universal superdiffusive dynamics ob-
served numerically in systems with non-Abelian symmetries
[71,79–90].

Spurred by these developments, here we apply the tech-
niques of GHD to the one-dimensional Hubbard model. We
focus on two characteristic features of the one-dimensional
model: (i) temperature-tuned spin-dynamics crossovers in
the regime of ballistic transport at strong coupling; and
(ii) superdiffusive dynamics at half filling and/or zero mag-
netization. In the former case, we identify an integrable
analog of the crossover between spin-incoherent [91–97] and
spin-coherent dynamics identified within the framework of
Luttinger liquid theory [98]. We give a precise character-
ization of this crossover in the language of integrability,
and identify its signature in the spin Drude weight (that
characterizes the ballistic transport of spin). We also com-
pute the Drude weights for charge and energy transport, in
which the crossover is only manifest in subleading correc-
tions in 1/U . At half-filling and zero magnetization, some
subset of conserved charges are transported sub-ballistically
but superdiffusively, with dynamical properties governed by
Kardar-Parisi-Zhang (KPZ) scaling [99], while the energy
transport remains ballistic. We present analytical, semiclas-
sical, and numerical arguments for KPZ scaling at the special
SO(4) symmetric point, and complement this with a computa-
tion of the nonzero energy Drude weight. [Note that a previous
study [55], whose results we build on, has considered ballistic
energy transport at half-filling and zero magnetization but did
not discuss superdiffusion]. We thus give a comprehensive
picture of temperature-dependent transport and response in
the one-dimensional Hubbard model. The present discussion
thus complements existing studies that have addressed trans-
port in the one-dimensional Hubbard model using rigorous
bounds on transport coefficients, [100–104] and via numer-
ical simulations [100,105–113]. It also substantially extends

previous GHD results [55,81] by studying superdiffusion,
crossovers in spin dynamics, and the associated experimental
signatures.

We emphasize that many of the distinctive experimental
signatures of spin transport in the Hubbard model should be
detectable in near-term experiments on ultracold atoms using
optical gas microscopes [42].

The remainder of this paper is organized as follows. Two
introductory sections provide background on the Hubbard
model, its symmetries, and its exact solution in one dimension
(Sec. II) and a summary of techniques and results from GHD
(Sec. III). We have attempted to present a physically motivated
introduction to these techniques; readers familiar with GHD
and the Hubbard model can skip these sections. Having laid
the necessary groundwork, we then turn to an analysis of
finite-temperature transport in the strong-coupling regime in
Sec. IV before turning to superdiffusive transport at half-
filling/zero magnetization in Sec. V. Finally, we close with
a summary of results and outlook for future work in Sec. VI.
We also include four technical appendices: Appendix A pro-
vides more details on the TBA and is largely pedagogical,
Appendix B summarizes technical details of the solutions
of the TBA equations, and Appendices C and D summarize
various asymptotic expansions used in the main text.

II. ONE-DIMENSIONAL HUBBARD MODEL: OVERVIEW
AND EXACT SOLUTION

A. Model and symmetries

Our focus throughout this paper will be the electronic Hub-
bard model, described by the Hamiltonian

H = T̂ + V̂ − μQ̂ − hŜz, (1)

where

T̂ = −t
∑

j,σ=↑,↓
(c†j+1,σ c j,σ + H.c.) (2)

is a nearest-neighbor hopping term (we set t = 1 henceforth),

V̂ = U
∑
j

(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)
(3)

is the usual on-site Hubbard interaction (with nj,σ ≡ c†j,σ c j,σ ),
and the chemical potential μ and magnetization h couple to
the two U(1) conserved quantities, namely, the total electric
charge

Q̂ =
∑
j

(n j,↑ + n j,↓), (4)

and total magnetization along the z axis

Ŝz = 1

2

∑
j

(n j,↑ − n j,↓), (5)

whose transport, along with that of the energy, will be our
primary concern below. We have chosen a convention such
that for μ = 0 the system is at half-filling, which for a chain
of L sites is defined as 〈Q̂〉

L = 1
L

∑
j,σ 〈nj,σ 〉 = 1.

Besides its evident translational invariance, the Hubbard
Hamiltonian H (1) enjoys several global symmetries; for a
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complete treatment we refer the reader to Ref. [11] and only
summarize those most pertinent to our discussion. First, ob-
serve that H commutes with Q̂ and Ŝz for all values of h and
μ, and so these are always symmetries: below, we will dis-
cuss the transport of the conserved charge and magnetization
corresponding to these two U(1) symmetries. However, the
global symmetry is enhanced when either μ = 0 or h = 0 (or
both). For h = 0, the U(1)s spin symmetry of rotations about
the z axis extends to a full non-Abelian SU(2)s symmetry of
rotations about an arbitrary axis in spin space. This SU(2)s
symmetry can can be made manifest [114] by rewriting the
interaction term as V̂ = − 2U

3 (S j · S j ), where we have defined
S j = ∑

α,β c
†
jα

σαβ

2 c jβ , where σ = (σx, σy, σz ) is a triplet of

Pauli matrices. Evidently, Ŝz coincides with our definition in
Eq. (5), and the other components of S are chosen so as to
satisfy the usual SU(2)s Lie algebra [Ŝα, Ŝβ ] = iεαβγ Ŝγ of
spin rotations. As a consequence of this SU(2)s symmetry,
thermal states for h = 0 are not magnetized in any direction.
On the other hand, for μ = 0, the nearest-neighbor model
has a distinct SU(2) invariance discovered by Yang [12] and
dubbed the ‘η-pairing’ symmetry.1 The three generators η̂ =
(η̂x, η̂y, η̂z) of the SU(2)η symmetry take the form

η̂x = η̂++η̂−

2
, η̂y = η̂+−η̂−

2i
, η̂z =

∑
j

n j↑+nj↓− 1

2
,

(6)
where η̂+ = −∑

j (−1) jc†j↑c
†
j↓ = (η̂−)†. It is straightforward

to show that this generates an SU(2)η algebra [η̂α, η̂β] =
iεαβγ η̂γ that is distinct from that of spin rotations, since
[Ŝα, η̂β ] = 0. From the relation Q̂ = 2η̂z + 1, it is clear that
for μ �= 0, the Hamiltonian only has the U(1) symmetry gen-
erated by η̂z, which coincides with that of charge conservation.
However, when μ = 0, the system enjoys the full SU(2)η
symmetry generated by the above operators. Therefore as in
the case when h = 0, the extra SU(2)η symmetry has impli-
cations for the thermal states, as 〈ηz〉 = 0, thermal states for
μ = 0 are at half-filling.

Finally, at the special point μ = h = 0 which lies at the
intersection of the lines of SU(2)s and SU(2)η symmetry, the
Hubbard Hamiltonian enjoys an extended SO(4) 	 SU(2)s ×
SU(2)η/Z2 symmetry.2

Note that the symmetries discussed up to this point are not
necessarily specific to the nearest-neighbor Hubbard model

1The η-pairing symmetry is most conveniently understood by per-
forming a particle-hole (or ‘Shiba’) transformation on a single spin
species. This interchanges charge and spin, and maps the Hamilto-
nian H (upto unimportant constants) to another Hamiltonian H ′ of
the same form as (1) but withU ′ = −U , h′ = −μ, and μ′ = −h. The
interchange of SU(2)η and SU(2)s generators reveals that SU(2)η
invariance of H is equivalent to an SU(2)s invariance of its single-
spin-Shiba-transform H ′.

2The Z2 quotient reflects the fact that although [Ŝα, η̂β ] = 0, the
allowed irreducible representations of SU(2)s and SU(2)η are not in-
dependent: either both are integer or both are half-odd-integer. Note
that this distinction is only important in considering the global Lie
group structure rather than the Lie algebra, and is hence unimportant
to our semiclassical analysis in Sec. VB.

or to its one-dimensional setting. Absent an explicit break-
ing of spin rotation [e.g., by the introduction of spin-orbit
coupling), even extended Hubbard models continue to enjoy
U(1)s (SU(2)s] symmetry for h �= 0 (h = 0). Similarly, the
global U(1)c symmetry is generically a feature of Hubbard-
like models, unless an explicit superconducting pairing term
is introduced, for instance in order to capture the effects of ex-
ternally induced superconductivity. Finally, for any bipartite 3

hopping T̂ , we expect the full SU(2)η symmetry.
However, as noted in the Introduction, the one-dimensional

nearest-neighbor Hubbard model—unlike its generalizations
and higher-dimensional counterparts—is an integrable model
that hosts an extensive set of conserved quantities. Conse-
quently we may determine its full spectrum of eigenstates
exactly for any fixed system size L, particle number N , and
magnetization M via the (nested) Bethe ansatz. By taking
the thermodynamic limit of the resulting Bethe equations and
using the framework of generalized hydrodynamics, we can
extract transport coefficients such as Drude weights and dc
conductivities. Henceforth, we focus on the one-dimensional
model; in the remainder of this section we briefly summarize
the nested Bethe ansatz and its thermodynamic limit.

B. Thermodynamic Bethe ansatz

The key idea of the Bethe ansatz is to construct eigen-
states in the occupation-number representation of one or more
species of quasiparticle excitations above a reference vacuum
state (for example, the state with all spins down in a Heisen-
berg spin chain). Each quasiparticle excitation can be ascribed
a pair of labels that respectively describe its species and its
quasimomentum, both of which are preserved in collisions.4

The latter is not precisely the physical momentum of the
excitation (the distinction is explained below), but plays a
role similar to the momentum in organizing the spectrum. It
is frequently useful to reparametrize the quasimomentum in
terms of a complex-valued quantity known as the rapidity.

The essence of integrability is that all multi-particle scat-
tering processes can be factorized into combinations of
two-particle scattering events; this in turn is a consequence of
the existence of an infinite number of local conserved charges.
Translation invariance, the phase shifts due to quasiparticle
scattering, and the boundary conditions combine to constrain
the allowed rapidities. The relevant constraints are encoded by
set of algebraic “Bethe equations” satisfied by the admissible
rapidities, termed “Bethe roots.” Rapidities (or equivalently,
quasimomenta) play a role similar to momenta in free-particle
systems; however, a crucial difference is that the allowed
values of rapidity (quasimomenta) of any given quasiparticle
is influenced by the presence of all the other particles in the

3By bipartite hopping we mean that the lattice may be divided into
two disjoint sets of sites A,B such that T̂ has no matrix elements
between the two sets, which automatically forces μ = 0.
4Heuristically, when a pair of quasiparticles collide, they “pass

through” each other picking up a scattering phase shift that depends
on the species indices of both quasiparticles and on their rapidity
difference.
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system. It is this nontrivial feedback that is captured by the
Bethe equations.

Except for the simplest Bethe-ansatz solvable models (such
as the Lieb-Liniger gas with repulsive interactions), the Bethe
roots are generically complex. However, a simplification is
afforded by the so-called string hypothesis: namely, that in
rapidity space the Bethe roots cluster into “strings” that share
the same real part, and correspond in real space to a set of
bound states of quasiparticles. This hypothesis is approximate
for finite systems but is believed to become exact in the ther-
modynamic limit (N,L → ∞ with N/L fixed). In this limit,
the structure of roots admits the following simple interpre-
tation: strings are bound states of elementary quasiparticles,
and propagate as stable composite entities with a well-defined
dispersion relation. In this section, in order to orient the dis-
cussion in the rest of the paper, we briefly summarize the key
physical features of the thermodynamic Bethe ansatz solution
of the one-dimensional Hubbard model. A more extensive
discussion is in Appendix A.

First, since U(1) charge and spin conservation are valid
symmetries for any μ, h, we can work in sectors with fixed
particle numberN = N↑ + N↓ and magnetizationM = N↑−N↓

2 ,
where N↑, N↓ are the number of up and down spin elec-
trons respectively. Then, exploiting particle-hole symmetry
P : c j,σ 
→ (−1) jc†j,σ (under whichμ 
→ −μ), we can restrict
ourselves to sectors with the total number of particles N
satisfying N < L. Similarly, exploiting the discrete symmetry
Sz 
→ −Sz (under which h 
→ −h), we can limit our study
to sectors for which the magnetization M > 0, Under these
assumptions, we can build a basis of Bethe ansatz states by
starting with states of N spin-up electrons, whose rapidity we
denote by u j (where 1 � j � N), and adding N↓ magnon-
like excitations, with rapidities w j (where 1 � j � N↓). We
can also associate each root with a definite charge under the
two U(1) symmetries: each uj root has charge q = 1 and z
magnetization m = 1/2, while each w j root has charge q = 0
and z magnetization m = −1. Note that there is formally a
slight subtlety with the Bethe ansatz states constructed in this
manner: they correspond to only the ‘highest weight’ states
in each SU(2)s, SU(2)η sector (as defined in the h = μ = 0
limit). In each sector the remaining states in the spectrum
must be generated by acting on the Bethe-ansatz states with
Ŝ− = Ŝx − iŜy and η̂−. However, as we explain in Appendix A
this is unimportant in the thermodynamic limit as the “missed”
states only contribute a logarithmically vanishing correction
to the free energy density.

Assuming the string hypothesis, the Bethe ansatz spec-
trum of the Hubbard model is built of an infinite number of
quasiparticles/strings species that can be broadly classified
into one of three types.

(1) y-particles. Spin-up electrons not bound into larger
objects. qy = 1 and my = 1/2; these come in two branches,5

labeled ±.

5Note that the fact that there are two branches is because we have
chosen to label particles by rapidities; quasimomenta are multivalued
functions of rapidity, and so we need an extra label to keep track of
the relevant quasimomentum branch when working with rapidities.

(2) M|w-strings with M ∈ N, M � 1. Strings of M w-
roots, corresponding to a magnon of lengthM. qM|uw = 0 and
mM|uw = −M.

(3) M|uw-strings with M ∈ N, M � 1. Strings of 2M u-
roots and M w-roots, forming a spin-singlet object. qM|uw =
2M and mM|uw = 0.

We will refer to these three objects in the TBA spectrum
as “y-particles,” “magnons,” and “singlets,” respectively. Note
that there is an infinite number of magnon and singlet species,
indexed by positive integers.

As noted above, each quasiparticle/string is labeled by its
species and by a rapidity that describes the position of the cor-
responding Bethe root. The advantage of working with strings
rather than individual Bethe roots is that string centres (which
we denote by u) are real, and hence easier to handle than the
full set of complex Bethe roots. (We will use “quasiparticle”
and “string” interchangeably, but the meaning will be clear
from the context.)

For a large number of particles, the Bethe equations rapidly
become intractable. Fortunately, in the thermodynamic limit
(taken in the sense of N,L → ∞ with N/L held fixed), it is
unnecessary to keep track of the position of individual Bethe
roots. Instead, it is convenient to switch to a description in
terms of their densities in rapidity space. These are conve-
niently captured by appropriate rapidity-space quasiparticle
distribution functions. This description, that combines the
simplifications afforded by statistical mechanics with the ex-
act results of the Bethe ansatz is known as the thermodynamic
Bethe ansatz [11,55,115] (TBA). The basic idea behind the
TBA is to construct a thermal “generalized” Gibbs state for an
integrable model by applying the maximum entropy principle,
but constrained on holding fixed the values of an extensive set
of conserved quantities. The latter explains why this Gibbs
ensemble is “generalized”—it involves an extensive set of
Lagrange multipliers, one for each conserved quantity.

A generalized equilibrium state can be consistently defined
in terms of a vector of generalized “filling factors” for quasi-
particles of different species and rapidities n = {na(u)}, where

na(u) = 1

1 + Ya(u)
. (7)

The set of functions {Ya(u)} completely characterize the state,
with 1/Ya(u) analogous to a Boltzmann factor for the quasi-
particles. A state of a given species at an allowed rapidity
can either be occupied by a quasiparticle or empty (“occupied
by a hole”), explaining the formal resemblance of the filling
factor to a fermionic occupation probability. We introduce
the total density of quasiparticle state ρt

a(u), in terms of
which the density of occupied quasiparticle states (usually
termed the particle density) is given by ρa(u) = na(u)ρt

a(u).
Frequently, a complementary quantity termed the hole density
ρ̄a = ρt

a − ρa is also defined, as well as a corresponding hole
filling factor, n̄a(u) = ρ̄a(u)/ρt

a(u) = 1 − na(u).

III. GENERALIZED HYDRODYNAMICS

The TBA framework outlined above allows one to char-
acterize equilibrium states of integrable systems, but does
not offer direct access to correlation functions, transport, or
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other dynamical properties. To treat such questions exactly,
one is forced to use form-factor expansions that are generally
intractable. However, the framework of GHD offers a way
to leverage the relatively simple TBA solutions to predict
the coarse-grained dynamics of integrable systems. We now
quickly sketch this framework; for a more detailed account
see Ref. [116].

GHD is built on the assumption that the system can be
partitioned into mesoscale regions of size l , each of which is
approximately in a local equilibrium state (i.e., one described
by TBA); globally, the system is away from equilibrium be-
cause the chemical potentials vary from cell to cell. Under
this hydrodynamic assumption, the coarse-grained dynamics
of the system reduces to the dynamics of the parameters that
specify a local TBA state, for example its quasiparticle densi-
ties. The quasiparticle densities evolve according to two sets
of generalized hydrodynamic equations: (i) a continuity equa-
tion for quasiparticle densities of each species and rapidity,
∂tρ(λ, x, t ) + ∂x j(λ, x, t ) = 0; and (ii) a constitutive relation,
which posits that each quasiparticle moves ballistically with
its effective group velocity veff [ρ]. This constitutive relation
reads: j(λ, x, t ) ≡ ρ(λ, x, t )veff [ρ](λ, x, t ). After some alge-
bra, these hydrodynamic equations can be rewritten in the
following advective form, in terms of the filling factors n(λ)
[47,48]:

∂t na(u) + veff
a [n(x, t )](u)∂xna(u) = 0. (8)

The GHD equation (8) captures the evolution of quasipar-
ticle densities as one goes from local to global equilibrium
states. In general, this evolution is nonlinear, as veff for each
quasiparticle depends on the occupation numbers of all the
others. More precisely, we have veff

a ≡ (e′
a)

dr/(k′
a)

dr, where
ea and ka are the bare energy and momentum of the string
a, respectively; and (. . . )dr refers to a dressing operation of
these quantities in a given (generalized) equilibrium state n,
described more quantitatively in Appendix A. In this paper,
we restrict ourselves to linear response, for which it suffices
to consider small fluctuations about a spatially homogeneous
generalized Gibbs state.

Equation (8) gives a prescription for computing the dy-
namics of the local occupation factors; the remaining step
is to relate these back to physical observables. To do so
we must reconstruct the local TBA state, given all the
occupation numbers. As a simple example, consider the
equilibrium correlation functions of local charge densities,
〈qi(x, t )qj (0, 0)〉 − 〈qi〉〈q j〉 where i, j index the infinitely
many conserved charges. This correlation function is propor-
tional (via the fluctuation-dissipation theorem) to the charge
response at (x, t ) due to a slight change in the chemical
potential μ j for charge j in the hydrodynamic cell at (0,0).
Quasiparticle a with rapidity u carries a dressed charge
(qia)

dr (u) for the ith conserved quantity, which is dressed by
interactions in a given background GGE.

The physical picture that emerges from these equations is
simple: each quasiparticle carries dressed charge (q j )dr and
propagates at velocity veff . Thus the connected component of
dynamical correlation functions for charge obey the equation

[53,55]

〈qi(x, t )qj (0, 0)〉c =
∑
a

∫
duρa(u)(1 − na(u))

× (
qia

)dr
(u)

(
q j
a

)dr
(u)δ

[
x−veff

a (u)t
]
.

(9)

The correlation functions for a generic operator can be in-
ferred from this result by the following reasoning: in the
hydrodynamic limit, all correlation functions other than those
of conserved charge densities decay rapidly. Therefore, to find
the correlation functions of the operator, one simply needs
to compute its overlap with each conserved charge, and then
apply the previous result.

A quantity of particular importance is the Drude weight,
defined as the long-time limit of the current-current correla-
tion function, 〈Ji(t )Jk (0)〉. The current operator can be written
as Ji = Ai jQj + · · · , where . . . represents the projection of the
current onto fast operators, and the matrix Ai j can be related
to the dressing transformation and the effective velocity in hy-
drodynamics. The Drude weight, then, is D = Ai j〈QiQj〉Ajk .
Once again, by expressing these matrix products in the basis
of n(λ), one arrives at the result [53,55]:

Di j = β
∑
a

∫
du ρan̄a

(
qia

)dr(
q j
a

)dr[
veff
a

]2
, (10)

providing a closed-form expression for the Drude weight
solely from TBA data. Once again this expression has a rather
simple physical interpretation: a quasiparticle of type (a, u)
carries charge (q j )dr while moving ballistically at a speed veff .
Since the quasiparticle never scatters, this current does not
relax. The Drude weight is the sum of these persistent currents
due to each quasiparticle.

We will be interested here in the Drude weights and cor-
relation functions of energy, charge, and spin in the Hubbard
model. We adopt the standard terminology where the diagonal
terms i = j are referred to as the conductivity/Drude weight
of conserved charge O (and use a single label), whereas for
i �= j they are called the cross-conductivity/crossed Drude
weight. We focus primarily on the former, although we briefly
discuss crossed Drude weights in the spin-incoherent Lut-
tinger liquid regime.

We note that there is a choice of convention in computing
the energy Drude weight. We can either compute the Drude
weight corresponding to the full Hamiltonian H (bare energy
= ea(u)), or to the “reduced” Hamiltonian without chemi-
cal potential/magnetization terms H̃ = T̂ + V̂ [bare energy
ẽa(u)], where the choice of bare charge then carries over to
the dressed charges. Since the relation between ẽa and ea is
comprised of conserved charges, this means that the Drude
weight computed for ea will involve contributions from the
spin, charge, and all the crossed weights due to the [edra (u)]

2

term in Eq. (10). Therefore to simplify matters we compute
the “reduced” energy Drude weight corresponding to H̃ . (In
order to convert this to the full energy Drude weight of H
we must also compute the crossed Drude weights using the
methods presented here.)

To avoid confusion, henceforth we denote by Oa the con-
served charge carried by quasiparticles of species a, and focus
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FIG. 1. Regimes of transport for the Hubbard model. At strong
couplingU � t, we can distinguish four temperature regimes delin-
eated by sharp crossovers (indicated by the solid lines) in dynamics.
In descending order of temperature T these are (i) the ‘high tem-
perature Hubbard’ regime, where T is the biggest energy scale;
(ii) the high-temperature t-J regime, where we can effectively ig-
nore double-occupancies since U � t , but T still exceeds both
the charge scale t (i.e., the holon bandwidth) and the effective spin-
exchange scale T � J ∼ t 2/U ; (iii) the “spin-incoherent” regime,
where the charge fluctuations of the t − J model are cold (T � t)
but the spins remain hot (T � J); and finally, the low-temperature
regime where the system is described as spin-charge separated Lut-
tinger liquid of coherent charge and spin degrees of freedom, where
T is the lowest energy scale. At weak coupling, regimes (i) and (iv)
are broadly similar and we expect a crossover at T ∼ t . However, the
weak-coupling crossovers for t ∼ J and t ∼ U are less significant
and hence we do not discuss them further in this work.

on the electric charge, the magnetization, and the (reduced)
energy, viz. O = q, m, ẽ.

IV. BALLISTIC TRANSPORT, DRUDE WEIGHTS, AND
SPIN-COHERENCE CROSSOVERS AT STRONG

COUPLING

We are now ready to address one of our two main ob-
jectives: to analyze the structure of transport processes in
the Hubbard model in the strong coupling regime U/t � 1.
As noted in the Introduction, the lines h = 0, μ = 0 require
special consideration due to the presence of non-Abelian sym-
metries, which lead to a transport regime that is intermediate
between ballistic transport with nonzero Drude weight, and
simple diffusion. Accordingly, we discuss this regime in the
next section and for now focus on the case when μ �= 0 and
h �= 0.

In the strong coupling limit, a hierarchy of well-separated
energy scales can be identified, allowing us to distinguish four
different regimes (Fig. 1) depending on the temperature T .
(Note that since we have fixed μ, h �= 0, within each regime
we must be careful to compare the temperature scale with
those set by the chemical potential and the field; we provide
further details on this below.)

Starting from high temperature, the first transport regime
we encounter is (i) T � U � t: this corresponds to “generic”

high temperature transport, to which all string types con-
tribute. Systems at weak- and strong-coupling show qualita-
tively similar behavior in this limit.

We access the remaining regimes by lowering the tem-
perature so that U � T . Transport in these regimes can be
approximately understood by projecting out double occu-
pancies to obtain an effective t − J model [11] with J ∼
t2/U � t , which we can subdivide further into three regimes:
(ii) U � T � t � J: in this case, away from half filling we
have μ = −O(U ), so that uw-strings are not thermally occu-
pied and drop out of transport; therefore, we expect transport
properties to be comparable to that of the t-J model at T = ∞.

(ii) U � t � T � J. This ordering of scales leads to an
unusual situation in which charge degrees of freedom are in
the low-temperature phase (effectively at T 	 0), whereas the
spin degrees of freedom remain high temperature (i.e., ap-
proximately at T = ∞.) A similar regime has been identified
in the context of generic Luttinger liquid theory (i.e., without
any assumption of integrability) where it has been dubbed the
spin-incoherent Luttinger liquid (SILL) [91].

(iii) U � t � J � T : when T is the lowest scale in the
problem, we expect to recover normal Luttinger liquid-like be-
havior including the identification of two distinct speeds that
control ballistic propagation of spin and charge, as in simpler
integrable models [117] (see also Refs. [118,119]). As in the
case of regime (i), we do not expect a qualitative distinction
between weak and strong coupling in this low-temperature
regime.

For completeness, we briefly comment on the physics at
weak coupling, t � U . First, as noted above behavior in the
regimes (i) (which now emerges when T � t and is again
the largest energy scale) and (iv) (where T is the smallest
scale in the problem) are broadly similar to that seen strong-
coupling limit. There is no analog of the “high-temperature
t − J model” regime (ii), and the spin-incoherent regime (iii)
is also absent in the sense discussed above.6 We do not address
this regime further in the present work (but see Ref. [11]).

A. Spin transport and spin-coherence crossovers

Away from the lines μ = 0, h = 0, the density is fixed
away from half-filling 〈Q̂〉/L �= 1 and the magnetization is
fixed and nonzero 〈Ŝz〉/L �= 0. Charge and energy transport
are completely unaffected by the crossover from (iii) to (iv),
in agreement with a general conjecture [94], and confirmed
by explicit calculation below. However, spin transport is
sensitive to the crossover, as we now show. In a noninte-
grable model, the crossover would be very clear-cut, as in
regime (iii) spin transport would not be ballistic, while in
the Luttinger liquid regime (iv) we expect a non-zero spin
Drude weight. What happens at the crossover in the integrable
Hubbard model is less obvious, since we expect the spin trans-
port to have a ballistic (Drude) response at all temperatures.

6However, there is an intermediate regime in whichU � T � t . In
this regime, spin excitations are effectively at high temperature, since
their characteristic energy scale at weak coupling is the exchange
scale U . We expect this regime to have some thermodynamic and
transport features in common with the SILL.
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(a) (b) (c)

FIG. 2. Spin Drude weight Dm at the thermal crossover between spin-incoherent and spin-coherent regimes [(iii) and (iv) respectively in
Fig. 1]. We fix 〈Q̂〉/L = 0.3 and h/t = 0.04. (a) Dm as a function of U for various β. Dashed line indicates the asymptotic value D∞

m for
U → ∞ in regime (iii). (b) The same data as in (a). We observe that for βh � 1, Dm/D∞

m departs from 1 when J ∼ T . Instead, if βh � 1,
Dm/D∞

m departs from 1 when J ∼ h (inset). (c) We highlight that the crossover in the Drude weight is a consequence of a change of the dressed
magnetization of the y particles at the Fermi points.

Surprisingly, the spin-incoherent to spin-coherent crossover
has a sharp signature in the spin Drude response itself, as we
now demonstrate.

In the spin-incoherent regime (iii), the leading contribu-
tion in t/U to the spin Drude weight comes from the y
particles and is given by the expression (14) with OF re-
placed by the dressed magnetization at the Fermi points
mdr

F = tanh (βh/2)/2. Regime (iv) is difficult to understand
analytically due to the presence of a nonzero field, especially
if βh � 1. Thus we first analyze which parameters can af-
fect the crossover and then rely on numerical solution of
the TBA equation in cases where there can be a nontrivial
crossover.

The parameters relevant to the characterization of spin
transport are βh and h/J , with the crossover (iii)-(iv) taking
place at βJ ∼ 1. A first consequence of this observation is that
the crossover (iii)-(iv) is more naturally observed by varying
U at a fixed β, since otherwise spin transport will already
have a nontrivial dependence due to the variation of βh. We
first analyze the case where βh � 1. In this situation, regime
(iii) is practically spin-coherent since the external field h
dominates the exchange scale J . As a consequence, we do not
expect to see a sharp signature in spin transport at the (iii)-(iv)
crossover, since the exchange scale is no longer relevant to the
spin physics. Instead, we expect a crossover when, as U de-
creases, J becomes comparable with h—which occurs inside
regime (iv) [see inset of Fig. 2(b)]. However, we do expect
nontrivial behavior at the (iii)-(iv) crossover when βh � 1. In
Fig. 2, we demonstrate that around this parameter regime a
crossover is indeed observable in the spin-Drude weight, as
determined by numerically solving the TBA equations (see
Appendix B).

In order to shed further light on this crossover, it is useful
to examine its qualitative features in the dynamical spin-spin
correlators Sm(x, t ), shown in Fig. 3. In both regimes, as noted
above, the current response is dominated by fast y-particles,
which produce a peak at x/t 	 vF (see insets). However, the
spin-spin correlators also present a rich structure at smaller
x/t , which is produced by the slow magnons. First, in the

spin-incoherent regime (iii) a hierarchy of magnons (truncated
at a length M ∼ T/h) produces a structure which is overall
peaked at small x/t [see Fig. 3(b)]: in other words, the longest
and slowest magnons (withM ∼ T/h) give the dominant con-
tributions to Sm. In this regime we expect to observe similar
phenomenology to that discussed in Ref. [72] for the Heisen-
berg XXX chain. In contrast, in the spin coherent regime (iv),
the amplitudes of the peaks due toM|w-magnons withM > 1
tend to 0 as T decreases. This happens irrespective of the field
h: if h/T � 1, nM|w 	 0 for M > 2, otherwise, if h/T � 1,
ρt
M|w → 0 as T is lowered [11,120]. Thus, deep in regime (iv),

Sm is dominated by y-particles and 1|w-magnons alone, as can
already be seen for the parameters in Fig. 3(a). However, as
these results are most clearly manifest in the long-time limit
(recall that the magnons are slow!) they might not be easy
to observe in real-time dynamics on shorter timescales. Note
that the change in the magnon properties across the crossover
is not directly visible in the spin Drude weight, which is
dominated by y-particles in both regimes (iii) and (iv). Instead,
they affect the spin Drude weight indirectly, via the change
in the nature of the dressing of the y particles as they scatter
off the magnons [see Fig. 2(c)]. There is possibly a more
direct signature of this crossover in single-particle spectral
functions that can be measured, e.g. by tunneling experiments.
In the Luttinger liquid setting, this allows the extraction of
the charge Luttinger parameter, which is effectively doubled
in the spin-incoherent regime relative to its low-temperature,
spin-coherent value. However these quantities are extremely
difficult to compute via the TBA, as they involve form fac-
tors that do not admit the manifold simplifications of GHD.
Furthermore, while natural in solid-state systems, they are
less well-suited to the cold-atom setting. However, in op-
tical lattice emulators of the Hubbard model, quantum-gas
microscopy techniques may allow the measurement of corre-
lation functions and Drude weights [121]. Our work therefore
leverages integrability to provide a complementary set of di-
agnostics for the crossover to those previously known. We
expect that the basic structure is likely to survive, with minor
modifications, in systems with weak integrability breaking
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(a) (b)

FIG. 3. Dynamical spin-spin correlation function in (a) the spin-coherent regime (U = 10) and (b) the spin-incoherent regime (U = 160).
In each panel, the main figure displays the rich structure due to slow magnon modes, while the insets show the fast-moving leading front due to
y particles. The peaks corresponding to 1|w and 2|w magnons are marked in the figure. In both figures, h = 0.04, β = 35.9, and 〈Q̂〉/L = 0.3.

[61,63]—for instance, the δ-function peak in the Drude re-
sponse is broadened into a narrow Lorentzian with a decay
time set by the scale of integrability breaking. Further inves-
tigations of the crossover regime in experimentally-relevant
systems and observables seem warranted.

B. Charge and energy transport

To complete the discussion, we now briefly summarize
results for charge and energy transport away from half filling.
Both can be understood analytically in most of the regimes
identified above by using appropriate expansions of the TBA
and dressing equations; details are provided in Appendices
B–D, but we summarize the intuition behind the expansions
for clarity. Formally, the TBA and dressing equations for the
strings (i.e., the magnons, and the singlets) as presented them
in Sec. II B are highly nonlocal in the species index, as they
couple every species of string to every other species. This
makes their solution computationally challenging even from
a numerical perspective. However, they simplify in both the
high-temperature and low-temperature regimes, as we now
discuss. At high temperatures, long strings have appreciable
filling, so that nM|s decays slowly for M → ∞ (where w or
s = uw). In this limit, it is useful to recast the TBA and
dressing equations into an alternative “quasilocal” form dis-
cussed in Appendix B. At low temperatures, only short strings
contribute and so it is safe to truncate the TBA equations even
in their nonlocal form. In certain cases—notably, in the spin-
incoherent regime (iii)—it is convenient to use a “hybrid”
form of the TBA that invokes the nonlocal form for some
species and the quasilocal form for others. (Heuristically, this
can be understood by thinking of the magnons as being at high
temperature and tractable in the quasilocal form, and the sin-
glets and y-particles being amenable to the low-temperature
nonlocal description.)

In regime (i), we can can first perform a high-temperature
expansion of the TBA equations and retain the first few terms
to determine na(u), and then expand in t/U to solve for
the density, the effective velocity and the dressed charges.
Regimes (ii) and (iii) can be accessed instead by expanding
directly in t/U . (Note however that since the T → ∞ and

U → ∞ limits commute, regimes (i-iii) can be treated in
a unified way.7 The t/U expansion breaks down in regime
(iv), where we can, however, exploit the T → 0 limit in the
presence of a finite magnetic field.

In all regimes, we find that the dominant contribution to the
charge and energy Drude weights in the strong coupling limit
is from the y-particles

DO 	 β

2π

∑
a=y±

∫
du na(u)n̄a(u)

[
Odr

a (u)
]2 [e′

a(u)]
2

|k′
a(u)|

, (11)

whereO = q, ẽ (note that by the latter choice, we are focusing
on the “reduced” energy Drude weight as discussed at the
end of Sec. III and in Appendix B). To obtain this strong-
coupling expression for the Drude weight we used the fact
that in the large-U limit, and for y-particles, all quantities apart
from some dressed charges Odr

a (u) are not dressed to leading
order in t/U , and applied the identity |k′

a(u)| = 2πρt
a(u) (see

Appendix D). Furthermore, it is understood that in Eq. (11)
the filling factor n±(u) is controlled by the bare energies. For
energy transport, ẽdr± (u) is always dominated by its bare value
ẽ±(u) (Table I). To discuss the dressed electric charge, we
need to distinguish regime (i), where

qdr± = tanh (βμ) < 1 (12)

with βμ implicitly determined by the filling, and regimes (ii),
(iii), and (iv) where

qdr± = 1. (13)

Finally, the expression for the Drude weights can be further
simplified in regimes (iii) and (iv), using the fact that t � T .
In this situation, the Fermi factors n±(u) are steplike func-
tions, jumping from 0 to 1 at two Fermi points uF . Calling vF

7Indeed, in the TBA, the energy bandwidth of both w and uw-
strings is of order J , and the expansion is valid as long as J/T � 1.
The crossover between regimes (i) and (ii), is instead due to the
chemical potential. Working at a fixed charge density and away from
half filling requires μ = O(U ), and therefore the crossover takes
place when μ/T ∼ 1.
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TABLE I. TBA Spectrum for the Hubbard model. As is customary, we employ units in which the hopping strength, t = 1. Here, ẽa(u) is
the dressed energy without the contribution from the chemical potential and magnetization terms in the Hamiltonian (i.e., for H̃ = T̂ + V̂ ).
The full dressed energy for H is ea(u) = ẽa(u) − μqa − hma.

Species a ua domain σa qa ma k′(u) ẽa(u)

y (±-branch) [−1, 1] ∓1 1 1
2 ∓ 1√

1−u2
±2

√
1 − u2 − U

2

M|uw R −1 2M 0 − 1√
1−(u+MiU/4)2

− 1√
1−(u−MiU/4)2

2
∑

α=±1

√
1 − (u + αMiU/4)2 − MU

M|w R +1 0 −M 0 0

the bare (group) velocity at those points, we find

DO = vF

π
O2

F , (14)

where OF is the operator evaluated at the Fermi points.
Expanding the TBA equations in regime (iv), we note that

charge and energy transport do not change to leading order
in t/U during the crossover from the spin-incoherent regime
(iii) to the spin-coherent regime (iv). This was postulated in
the context of Luttinger liquid theory Ref. [94] and was used
to infer an effective theory of transport in the SILL. Using
GHD, we have now verified that this statement is correct up to
t/U corrections (see Appendix D). Going beyond the leading
terms, we also compute the exact charge and energy Drude
weights by numerically solving the GHD equations; these are
reported in Fig. 4, which clearly shows that these sublead-
ing corrections are sensitive to the crossover. An analytical
estimate of the corrections in regime (iii) can be found in
Appendix D.

FIG. 4. The crossover between the spin-incoherent regime (iii)
and spin-coherent regime (iv) is also visible in subleading corrections
to the charge and energy Dude weights. The plots show the magni-
tude of the relative correction to the Drude weight compared to the
leading order expressions in t/U (D∞

q and D∞
ẽ ) given by Eq. (11).

Apart from a tail at large T , which is due to the crossover to regime
(ii), we see that the corrections indeed scale like t/U and depend on
the ratio T/J , signaling that their change is really a consequence of
the (iii)-(iv) crossover. Numerical parameters: h = 0 and 〈n〉 = 0.3.

V. TRANSPORT AT h = 0 OR μ = 0: KPZ UNIVERSALITY
AND SUPERDIFFUSION

We now turn to a generic feature of transport expected for
all t/U , along special high-symmetry lines of the model. As
noted above, the Hubbard model hosts an SU(2)s symmetry
whenever h = 0 and an SU(2)η symmetry whenμ = 0. Along
these high-symmetry lines, reasoning in analogy with the
case of the isotropic Heisenberg (XXX) spin chain [71,80–
82,84–86], we expect spin and/or charge transport respec-
tively to be transported super-diffusively with length-time
scaling governed by the Kardar-Parisi-Zhang (KPZ) dynam-
ical universality class [99], meaning that

〈Sμ(x, t )Sμ(0, 0)〉 = χh[
λ
(S)
KPZt

]2/3 fKPZ
(

x[
λ
(S)
KPZt

]2/3
)

, (15)

〈n(x, t )n(0, 0)〉 = χμ[
λ
(η)
KPZt

]2/3 fKPZ
(

x[
λ
(η)
KPZt

]2/3
)

, (16)

where χh and χμ are respectively the spin and charge suscep-
tibilities, fKPZ is a universal scaling function, and λ

(S)
KPZ, λ

(η)
KPZ

are characteristic energy scales for the KPZ dynamics. The
possibility of superdiffusion in the Hubbard model was first
identified in Ref. [81], that used bounding arguments to show
that the diffusion constant diverged in the h → 0 limit. How-
ever, a detailed analysis of superdiffusive transport has not
been previously attempted; also, the SO(4) invariant point
h = μ = 0 has not been directly studied. Therefore here we
address these lacunae by providing arguments for KPZ scaling
both along the high-symmetry lines and at the SO(4) point,
deploying both kinetic-theory approaches, [71] and a classical
analysis of soft gauge modes [82,85], before confirming our
predictions using state-of-the-art numerical simulations using
time-evolving matrix product operators (MPOs).

A. Kinetic theory of superdiffusion

We begin our discussion of superdiffusion of charge and
spin by incorporating diffusive corrections to the linearized
GHD framework to demonstrate the divergence of the relevant
diffusion constant, focusing for definiteness on spin transport
at h = 0. Following Refs. [71,86], we estimate the effective
spin diffusion constant at time t as DS (t ) = ∑

a Da(t ) where

Da(t ) = t

4χh

∫
du ρa(u)[1 − na(u)]

[
veff
a (u)

]2
×

∑
j,k

1

j!k!
∂
j
μ̃∂k

h̃ [m
dr(μ̃, h̃)]2〈μ̃ j h̃k〉t , (17)
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where 〈·〉t denotes the average up to time t along the trajectory
of the quasiparticle under consideration, and μ̃ and h̃ are
fluctuations in the effective chemical potential and effective
magnetic field perceived by a propagating quasiparticle about
their mean values (respectively, μ/2 and 0). [The expression
(17) for the diffusion constant can be obtained using the GHD
by performing a gradient expansion, or by estimating the
linear growth in time of the mean-square “dipole moment”
〈(mx)2〉 of a spin excess initially localized at the origin (or
equivalently, the spatial variance of the spin structure factor).
The expression on the second line computes the additional
dressed charge picked up by the quasiparticle as it propagates
through a thermally fluctuating medium of other quasiparti-
cles, order-by-order in fluctuations.]

At long times, (17) only receives contributions from ( j, k)
for which 〈μ̃ j h̃k〉t ∝ 1/t , i.e. when 〈μ̃ j h̃k〉t is proportional to
the inverse of the distance l = |vefft | traveled by the particle.
Assuming Gaussian fluctuations of quasiparticle occupations
(central limiting behavior), we find that

〈h̃2〉 = 1

4χhl
, 〈μ̃2〉 = 1

4χμl
, (18)

where χh and χl are the magnetic and charge susceptibilities,
with all higher moments scaling as higher inverse powers of t ,
and all cross terms vanishing due to the Sz → −Sz symmetry
present for h = 0.

Hence, the diffusion constant is asymptotically given by
the t → ∞ limit of (17), i.e., DS = ∑

a D∞
a , with

D∞
a ≡ lim

t→∞Da(t )

= 1

4χh

∫
du ρa(u)[1 − na(u)]

∣∣veff
a (u)

∣∣
×

{
1

4χh
∂2
h

[
mdr

a (u)
]2 + 1

4χμ

∂2
μ

[
mdr

a (u)
]2}

. (19)

For h = 0, we see that the second term containing ∂2
μ[m

dr
a (u)]

2

vanishes since [mdr
a (u)]

2
is identically zero at h = 0 due to the

SU(2)s invariance, leaving us with the final result that

D∞
a =

∫
du ρa(u)[1 − na(u)]

∣∣veff
a (u)

∣∣∂2
h

[
mdr

a (u)
]2

16χ2
h

. (20)

It remains to analyze this result for h = 0.
We start by considering the case with μ < 0. As pointed

out in Ref. [81], the behavior at large M can be understood
from the asymptotic form [122] of Y at large M

YM|w(u) =
[
sinh( f (u) + M )βh/2

sinh(βh/2)

]2

− 1, (21)

YM|uw(u) =
[
sinh (g(u) + M )βμ

sinh(βμ)

]2

− 1, (22)

for some O(1) functions f and g, which will generally depend
on β, h and μ. Specifically, at h = 0 and μ �= 0 we have for
the magnons

YM|w(u) ∼ ( f (u) + M )2 − 1, (23)

while large singlet (uw) strings do not contribute to transport
as their occupation is exponentially suppressed in βμ. Then,

using the resulting that mdr
a = ∂βh logYa, it follows that

mdr
M|w(u) ∼ 1

3 ( f (u) + M )2βh. (24)

Combining this with the fact that

nM|w ∼ ( f (u) + M )−2 (25)

and ∫
du ρt

M|w(u)
∣∣veff

M|w(u)
∣∣ ∼ α/M2, (26)

for h = 0 and large M as in the XXX spin-chain (see Ap-
pendix C), we have that D∞

M|w tends to a constant asM → ∞.
This produces a divergence in the spin diffusion constant.
Since this mechanism is formally identically to the case of
the XXX chain, following the self-consistent argument in
Ref. [71], we deduce that spin transport is superdiffusive with
KPZ scaling exponent.

We now focus on the case at μ = 0 (while keeping h =
0 fixed), to examine if there is possible different structure to
the divergence of DS in this case. When μ = 0, the magnons
(M|w-strings) follow exactly the same scaling, and so would
give rise to the same divergence in the diffusion constant; but
now the singlets (M|uw-strings) are no longer exponentially
suppressed and in principle could yield an additional divergent
contribution to DS . As it happens, however, using the fact [cf.
(22)] that for large M

YM|uw(u) ∼ (g(u) + M )2 − 1, (27)

we find that mdr
M|uw ∼ (∂βhg)/(g+ M ) with ∂βhg = 0 at h = 0.

We combine this with the analogs of Eqs. (25) and (26) for
the uw-strings (which have similar scaling at largeM, see Ap-
pendix C) to conclude that DM|uw = O(M−6) and hence that∑

M DM|uw converges. This strongly suggests that z = 3/2
also for the SO(4) case when μ = h = 0. [Note that we obtain
similar results by swapping the order of limits, suggesting
that there is a well-defined (μ, h) → (0, 0) limit.] If we assert
that the scaling function is fKPZ also at μ = 0, it follows that
λ
(S)
KPZ(μ = 0) is smooth around μ = 0.
Finally, the above arguments about spin transport apply

mutatis mutandis, for charge transport, interchanging, e.g.,
the role of h/2 and μ and magnons and singlets (w- and
uw-strings).

B. Soft gauge modes and KPZ universality from classical
spin fluctuations

While the kinetic approach predicts KPZ-like exponents,
it does not readily provide access to the KPZ scaling func-
tion. Therefore we take the lead of recent work Ref. [82]
which proposed that superdiffusion emerges from the classical
hydrodynamics of soft gauge modes. The Bethe ansatz is
built on a choice of pseudovacuum, which in our case is the
fermionic vacuum, and quasiparticle excitations are charac-
terized on top of this pseudovacuum. Evidently the fermionic
vacuum preserves all microscopic symmetries. However, the
choice of the pseudo-vacuum for the spin singlets necessarily
breaks the SU(2)η symmetry, and similarly the choice of the
pseudovacuum for the magnons explicitly breaks SU(2)s sym-
metry [11], Soft gauge modes are dynamical space-dependent
fluctuations of the pseudovacuum choice. In the XXX model,
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their classical dynamics—governed by the Landau-Lifshitz
equations—was able to properly account for KPZ scaling.
They have also been identified identified as “giant” (large
M) quasiparticles in recent work involving two of the present
authors [86], providing a microscopic understanding of the
emergence of superdiffusion via the GHD formalism; how-
ever at present we focus on the classical soft gauge approach.

If either μ or h are non-zero, the discussion proceeds
identically as in Refs. [82,85]. We thus focus on the case
h = 0 and μ = 0, where we have two soft gauge modes,
associated to the breaking of SU(2)η and SU(2)s by our choice
of pseudovacuum. We can parametrize this choice in terms of
a pair of vector fields η(x, t ) and S(x, t ), that indicate respec-
tively the expectation value of the operators η and S in the
pseudovacuum. Working directly in the continuum limit, the
dynamics of S(x, t ) and η(x, t ) will be described by a classical
HamiltonianH, that produces Landau-Lifshitz dynamics, viz.

∂tS(x, t ) = S × δH[S, η]

δS(x)
, (28)

∂tη(x, t ) = η × δH[S, η]

δη(x)
. (29)

On symmetry grounds, we consider the most generalH that is
invariant under all the relevant symmetries, and particularly
under the transformations generated by the su(2)s ⊕ su(2)η
algebra. This is the symmetry class of two independent spin
chains, invariant under independent rotations of the spin in
each chain. This means that the only terms that can appear in
the Hamiltonian are rotational scalar intrachain couplings, and
inter-chain scalar-scalar couplings.

Focusing first on the intra-chain coupling, the most relevant
terms (i.e., those with the lowest number of derivatives) in the
equations of motion are then given by

∂tS(x, t ) = JSS × ∂2
x S, (30)

∂tη(x, t ) = Jηη × ∂2
x η. (31)

These equation becomes particularly simple once expressed
using Frenet-Serret variables [123]

κS =
√
(∂xS)2, (32)

τS = 1

κ2
S

S · (
∂xS × ∂2

x S
)
, (33)

and similarly for η. In term of these, we have

∂tκ
2
a = −Ja∂x

(
κ2
a τa

)
, (34)

∂tτa = −Ja∂x
(
τ 2
a − κ2

a/2 − ∂2
x (κa)/κa

)
(35)

with a = η, S. Upon coarse-graining over a length scale l ,
κ2
a ∼ 1/l2 and is transported ballistically; the latter follows
from the fact that κ2

a is proportional to the energy density and
is hence ballistic because of integrability. Meanwhile, as we
argue self-consistently below τ will be transported superdif-
fusively. Therefore the two equations effectively dynamically
decouple [82,85]. Focusing on the second equation, we insert
a phenomenological diffusion coefficients Da and white noise
terms ξa, and thereby obtain a pair of uncoupled noisy Burger

equations for the τa,

∂tτa = Ja∂x
(− τ 2

a + Da∂xτa + ξa
)
. (36)

The solutions of these independent equations each obey KPZ
scaling. From the perspective of the Burgers equations, the
only relevant terms we can write that couple the two equations
are of the form ∂x(τSτη ). Although this term could under
special cases produce different scaling exponents (see, e.g.,
Ref. [124]) and could more generally produce a renormal-
ization of the KPZ scaling function [125], it is not a priori
obvious if such a coupling can arise under the restriction of
the SU(2)η × SU(2)s symmetry and from local lattice Hamil-
tonian dynamics. Indeed, we will argue below that regular
scalar-scalar couplings cannot give rise to a term of this form.
This then leads us to conclude that the scaling of spin-spin
and charge-charge correlators is strictly KPZ also at the SO(4)
point (though there may be significant finite-size effects rela-
tive to the single-KPZ case since there are additional irrelevant
“interchain” couplings that must flow to zero before the two
Burgers equations decouple).

The terms in the continuum that admit an obvious regular-
ization on the lattice are polynomials of S, η, ∂n

x S, and ∂n
x η.

Rotational scalars can then be constructed either by taking
the scalar product of two derivatives of the vector field (e.g.,
∂n
x S · ∂m

x S), or as triple products [e.g., ∂
n
x S · (∂m

x S × ∂ l
xS)].

In order to show that such terms cannot produce a τSτη

coupling, we recapitulate the Frenet-Serret formalism. Focus-
ing for specificity on the spin dynamics, the key idea is fix a
space and time dependent frame (Frenet-Serret frame) charac-
terized by the three unit vectors eS,1 = S, eS,2 = (∂xS)/κS , and
eS,3. Since the frame is space-dependent, its spatial variation
can be described via the pseudovector �S (x, t ), i.e. ∂xeS, j =
�S × eS, j . Similarly the time-variation of the frame can be
described in terms of its angular velocity ωS (x, t ). From these
two pseudovectors, we can describe any derivative of a vector
v as

∂xv = ∂ (FS)
x v + �S × v, (37)

∂tv = ∂
(FS)
t v + ωS × v, (38)

with ∂ (FS) denoting the partial derivative in the Frenet-Serret
frame. To determine the dynamics of τS , we exploit that [123]
in the Frenet-Serret frame �S = (τS, 0, κS ) and that [85,123]
∂xτS = ∂ωS,1 − κSωS,2. Finally, ωS is determined by the clas-
sical Hamiltonian dynamics of the system as

ωS,i = −
(

δH[S, η]

δS(x)

)
i

i = 2, 3, (39)

ωS,1 = ∂ (FS)
x ωS,2 + τSωS,3

κS
. (40)

Therefore, even if the Hamiltonian H includes terms of the
form F (S, ∂xS, · · · )G(η, ∂xη, · · · ), the final equation of mo-
tion for spin torsion will be of the form

∂tτS = ∂x(J1[κS, τS]G(η, ∂xη, · · · ))
+ ∂x(J2[κS, τS]G(η, ∂xη, · · · )) (41)

for some functionals J1 and J2 which can be computed from
F . Crucially, the function G is left unaltered in computing
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FIG. 5. TEBD data for the Hubbard model at h = μ = 0 and
U/t = 1, 2, 4 and for various maximum-bond-dimensions χmax =
256, 512, and 1024. From the return probability (top) and from the
profile width (bottom), we have fit the dynamical exponent z (insets)
as described in the main text.

the equation of motion for τS . To obtain ∂tτS = · · · + ∂x(τSτη )
then we would need G = τη, which is not possible to achieve
using only polynomials of the derivatives of η, but would
require a continuum Hamiltonian which would not admit a
trivial lattice regularization.

Thus we conclude that no lattice-regularizable classical
Hamiltonian can produce a coupling between the Burgers
equations for τS and τη that is relevant under KPZ scaling. As
a consequence, the scaling of spin-spin and charge-charge cor-
relators is of the “(KPZ)2” form given in Eqs. (15) and (16).

C. Numerical simulations

We confirm the double-KPZ scaling scenario presented
above by means of state-of-the-art time-evolving block-
decimation (TEBD) numerical simulations using the matrix
product operator (MPO) formalism. We focus on spin dy-
namics at h = μ = 0 and T = ∞, and compute the dynamic
correlator 〈Sz(x j, t )Sz(0, 0)〉, where j indexes the sites. To
do this, we represent Sz(0, 0) as a bond-dimension-1 MPO,
which we subsequently evolve in the Heisenberg picture using
TEBD techniques. All evolutions are done with a fourth-order
Trotter step of size δt = 0.2. Truncations are done initially
with a fixed discarded weight ε = 10−8 and a growing bond
dimension—however, once the bond dimension surpasses a
threshold, subsequent truncations keep at most χmax states,

FIG. 6. Signatures of superdiffusion in small Hubbard chains di-
rectly accessible in current quantum microscope experiments. TEBD
data for the Hubbard model at U/t = 4 for finite chains of size
L = 12, 16, and 20. The return probability saturates due to the finite
size effects, cutting off the t−2/3 scaling.

with χmax ranging from 256 to 1024. Our conclusions are
quantitatively consistent across bond dimensions.

Once we have Sz(0, t ), we exploit translational invariance
to access Sz(x j, t ), at which point the correlator can be easily
computed. To reduce the error coming from the trotterization
and the SVD truncation, we exploit the sum rule∑

j

〈Sz(x j, t )S
z(0, 0)〉 = χh, (42)

to correctly normalize 〈Sz(x j, t )Sz(0, 0)〉 at each time t .
We consider two different methods to extract the dynamical

exponent z and λ
(S)
KPZ. First, we analyze the return probability

〈Sz(0, t )Sz(0, 0)〉 as a function of time; second, we analyze the
growth of the profile width√∑

j

x2j 〈Sz(x j, t )Sz(0, 0)〉 (43)

with j indexing the sites and x j measured in units of lattice
spacings. At each time t , we take a window of size� log t = 1
centered around t and fit the outcome of the TEBD simula-
tions within that time window to the predicted KPZ scaling
form. The results we obtain are presented in Fig. 5 forU/t =
1, 2, and 4. Our analysis suggests that z and λ

(S)
KPZ converge

more quickly in time when the return probability is analysed.
Both approaches, however, seem to be compatible with z =
3/2 at sufficiently late times.

Note that, especially atU/t = 4, the fit for z seems to con-
verge rather quickly, suggesting that the exponent z could be
accessed in the timescale of a typical cold-atom experiment.
To further highlight the accessibility to quantum microscope
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FIG. 7. Superdiffusion at finite temperature. TEBD data for the
Hubbard model atU/t = 4 for βt = 0.1, 0.2, and 0.5.

experiments, we used TEBD to analyze finite size effects,
finite temperature effects, and the effects of small SU(2)s
symmetry breaking field h and SU(2)η symmetry breaking
chemical potential μ around theU/t = 4 point.

For short chains, the clearest signature of z = 3/2 scaling
is in the autocorrelator for a spin near the middle of the chain,
which shows t−2/3 scaling before eventually saturating to
0.5/L in a time that scales like L3/2 (Fig. 6). Upon decreasing
the temperature from T = ∞ to T = 2t , the z = 3/2 scaling
remains (Fig. 7).

Moving away from the SU(2)s symmetric line by adding a
small field h, the spin structure factor 〈Sz(x j, t )Sz(0, 0)〉c im-
mediately develops ballistically moving peaks corresponding
to light magnons (Fig. 8), which coexist with a superdiffusive
peak at x = 0, which we expect [72] will cross over to a bal-
listic scaling at times � h−3. Indeed, as h → 0 the spin Drude
weight Dm scales as h2| ln h|, since the contributions of M|w-
strings to Dm scale like h2/M up to M ∼ 1/h, beyond which
the nM|w is exponentially suppressed (see Ref. [81] for a more
detailed discussion). Thus, in the ballistic regime, the spatial
variance of the spin profile is proportional to Dt2 ∼ h2| ln h|t2
at long times. At short times, instead, h is effectively 0 and
the variance of the spatial profile is given by the KPZ scaling
form, i.e., it is proportional to t4/3. Therefore the crossover
from anomalous diffusion to ballistic transport takes place
when these two lengthscales becomes comparable, i.e. on a
timescale t∗ ∼ h−3 (up to logarithmic corrections).

In the parameter regime of these numerics, adding a small
chemical potential μ also has no effect on the z = 3/2 scaling

FIG. 8. TEBD data for the Hubbard model at h = 0.1, μ = 0,
and U/t = 4. Ballistically moving peaks coexist with a superdiffu-
sive central peak that lasts for a timescale ∼h−3.

of 〈Sz(x j, t )Sz(0, 0)〉c; this is consistent with our analysis in
Sec. VA above, since as we have discussed μ breaks the
SU(2)η symmetry but preserves SU(2)s. Thus we expect that
the z = 3/2 scaling should be accessible to currently available
experimental platforms (see, e.g., Ref. [39]), with the biggest
limitation being imposed by the finite length of the chains.

Finally, we analyze the full profile of 〈Sz(x j, t )Sz(0, 0)〉 at
different times (Fig. 9), assuming z = 3/2, with the goal of
determining if the scaling function is of the KPZ form fKPZ,
as indicated by our soft gauge mode treatment.

At the latest times for which our TEBD truncation errors
are controlled, the profiles are not converged in the tails; these
tails seem to fall off faster than fKPZ. Therefore we cannot
definitively conclude that the scaling function is of KPZ form.
Note that coupled noisy Burgers equations can give rise to
non-KPZ scaling functions consistent with the exponent z =
3/2 [124]. Our numerical results do not rule out this possibil-
ity. We emphasize, however, that we see strong similarities
between our numerical data for the scaling function in the
Hubbard model at U/t = 4 and our data for the Heisenberg
spin chain, shown in Fig. 10, computed using the same TEBD
approach. Whether convergence to the KPZ scaling function
appears on larger time scales is an interesting question for
future work.

D. Energy transport at the SO(4) point

Finally, for completeness we briefly discuss the ballistic
transport of energy at half filling and in zero field. This was
previously studied in Refs. [55,100,105], where the energy
Drude weight for the Hubbard model at half-filling and zero
magnetization were computed, uncovering a rich structure.
We once again focus on the strong coupling limit, where
the energy Drude weight dependence on temperature is the
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(a) (b)

(c) (d)

FIG. 9. (a) Collapsed profile of 〈Sz(x j, t )Sz(0, 0)〉 for U/t = 1 assuming z = 3/2. We can observe that the tails of the correlators did not
converge yet up to the maximum time we were able to reach in our simulations. (b) Same as (a), but forU/t = 4. The drift of the profile with
time is less pronounced than in (a), making it harder to understand if the profile is converged in t . If convergence has been reached, this would
indicate that the profile are described by fKPZ, in contrast with our previous analysis. (c) and (d) report the same data of (a) and (b) respectively,
but in a linear scale.

richest, and discuss transport in its various regimes. While
the expression (11) still gives the leading contribution to the
energy Drude weight in regime (i) [via (11)], in regimes
(ii)-(iv) n̄±(u) is exponentially suppressed in U/T for half
filling and hence the y-particles do not contribute significantly
to the energy Drude response. Similarly, the total density of
singlets ρt

M|uw at half filling is suppressed by the same factor
of U/T . Therefore, the dominant contribution to the thermal
(energy) Drude weight comes from magnons (w-strings) in
regime (ii), (iii), and (iv). Accordingly, we have [by similar
manipulations as those that led to (11)] that the energy Drude
weight in regimes (ii), (iii), and (iv) is given by

De 	 β

2π

∑
a=M|w

∫
du na(u)n̄a(u)

[
edra (u)

]2 [(e′
a)

dr(u)]2

|(k′
a)dr(u)|

. (44)

In regimes (ii) and (iii), the energy Drude weight can be
explicitly computed as (see Appendix D), leading to

De 	 20.05
βt9

U 4
(45)

which monotonically increases as T decreases towards regime
(iv). Finally, deep in regime (iv) as T → 0, the energy Drude
weight is dominated by a Fermi point of the 1|w-strings
(“elementary” magnons) at infinite rapidity. As shown in
Appendix D, this contribution is

De 	 π2t3T 2

3U
, (46)

i.e. De monotonically decreases with the temperature.
Combining the above results, we can qualitatively under-

stand the behavior of De presented in Refs. [55,105]. De

starts of order βt5 at large T in regime (i). Decreasing T ,
when U/T � 1 De rapidly deceases to become suppressed as
βt9/U 4 in regimes (ii)-(iii). As T decreases again, approach-
ing regime (iv), De slowly increases monotonically. As we
know that De is decreasing towards 0 in regime (iv), it must
attain a maximum at the (iii)-(iv) crossover. Away from half-
filling, we linked similar features in spin transport at this scale
with the crossover between spin-coherent and spin-incoherent
behavior. In the half-filled case, this can be identified as a
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FIG. 10. Collapsed profile of 〈Sz(x j, t )Sz(0, 0)〉 for the Heisen-
berg XXX chain assuming z = 3/2, computed using TEBD with
bond dimension χ = 512. Significant deviations in the tails from
fKPZ persist to accessible timescales.

“Hubbard to Heisenberg crossover” linked to the freeze-out of
charge fluctuations (see Refs. [55,100,105] for a discussion).

VI. CONCLUDING REMARKS

In this work, we revisited transport in the paradigmatic
Hubbard model, in one dimension, in light of recent develop-
ments in understanding transport in integrable systems using
generalized hydrodynamics. The GHD framework allowed us
to capture the crossover between the low temperature Lut-
tinger liquid, the intermediate-temperature spin-incoherent
Luttinger liquid, and the high temperature regime. Away from
half filling (zero magnetic field), charge (spin) transport is pri-
marily ballistic. We explored the crossovers between various
ballistic regimes, focusing on the Drude weight and the dy-
namic structure factor as diagnostics. The sharpest crossovers
away from the SO(4) point are in spin transport, as one
might expect. In all regimes, when μ �= 0, spin transport
is dominated by the fast-moving y-particles, whose dressed
magnetization is sensitive to the crossover. The long time
spin structure factor Sm(x, t ) reflects the spin-incoherent to
spin-coherent crossover more directly. In the former case,
Sm(x, t ) displays a hierarchy of peaks of increasing height
as x/t decreases. Instead, in the latter, Sm(x, t ) is dominated
by 1|w-magnons. Less pronounced signatures are seen in
energy and charge transport away from half filling. Finally,
we turned to the case of half filling and/or zero magnetic
field: in this limit, ballistic transport vanishes, and instead one
has superdiffusive charge and spin transport, which we argued
belongs to the KPZ universality class. We presented extensive
numerical evidence for z = 3/2 dynamical scaling.

We close with two remarks. First, the most striking quali-
tative phenomena we have found (such as charge and spin su-
perdiffusion) are observable in quite small systems of L � 22
at times t � 20. These can easily be realized in experiments
using quantum gas microscopes, as well as other existing or
near-term experiments. The GHD framework—built on phys-
ically reasonable but unrigorous assumptions—makes exact,
zero-parameter predictions for such experiments, which it is
important to test. Second, one can regard the quasiparticle pic-
ture presented here as the starting point for a broader analysis
of high-temperature transport in the Hubbard model, per-
turbed slightly away from integrability. Integrability-breaking
creates decay channels for all the quasiparticle types we have
considered; however, owing to their very different kinematics,
we expect a family of well-separated quasiparticle lifetimes,
and consequently a sequence of dynamical crossovers that
persist in the nonintegrable limit as well.
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APPENDIX A: REVIEW OF THERMODYNAMIC BETHE
ANSATZ FOR THE HUBBARD MODEL

Here we give a brief summary of the salient features of the
TBA for the one-dimensional Hubbard model, providing more
details of the results quoted in the main text. Much of this ma-
terial may be found in classic monographs (Refs. [11,115]);
to our knowledge its first application in conjunction with the
GHD formalism is in Ref. [55].

First, for each quasiparticle/string species a we define a
“particle” density that describes the distribution of occupied
Bethe roots,

ρa(u) 	 1

L

(# of strings of species a in [u, u + du])

du
. (A1)

We must also define distribution functions for holes. These
can be understood as follows. Recall that for interacting in-
tegrable models, the allowed states for a string depends on
all the other strings in the system. Therefore adding a string
can generically displace the rapidities of some of the other
strings by an O(1) amount. For a given string species a,
there is however a discrete set of rapidities {ū j} to which a
string of species a can be added, at the cost of displacing
the other strings in rapidity space by only O(1/L) (see e.g.
Refs. [11,115]). Again, in the thermodynamic limit, it is con-
venient to introduce hole densities that capture the distribution
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TABLE II. TBA Scattering kernels for the Hubbard model. Func-
tions KM ,KMN are defined in Eq. (A5).

Kab y± N |w N |uw
y± 0 KN KN

M|w KM −KMN 0
M|uw KN 0 KMN

of the {ū j}, viz.

ρ̄a(u) 	 1

L

(# of holes of species a in [u, u + du])

du
(A2)

and hence the total densities,

ρt
a(u) = ρa(u) + ρ̄a(u). (A3)

Note that each species has a specific set of rapidities that deter-
mine the domain of the corresponding distribution functions
ρa(u), ρ̄a, and ρt

a. The relevant spectral data are summarized
in Table I.

To complete the TBA description, we also require the
scattering kernels Kab for every pair of string species, which
are determined by the Hamiltonian of the model. If we con-
sider the scattering of two strings of species a, b and initial
rapidities ua, ub, after their collision they will continue to
propagate in their initial direction with the same rapidities and
species label, but they acquire a scattering phase shift: string
a acquires a phase shift φab(ua − ub), and similarly, string b
acquires a phase shift φba(ub − ua). The scattering kernels are
then defined via

Kab(u) = d

du
φab(u) ≡ φ′

ab(u) (A4)

where in the second equation we have introduced a notational
convention whereby derivatives with respect to the rapidity are
denoted with a prime, that we adopt henceforth. The scattering
kernels are summarized in Table II, and depend on the pair of
functions,

KM (u) = 1

2π

UM

2(u2 + M2U 2/16)
,

KMN (u) = KM+N (u) + KN−M (u) + 2
M−1∑
j=1

KN−M+2 j (u). (A5)

The quasiparticle densities and the scattering matrix to-
gether determine the admissible states, which are constrained
to satisfy

ρt
a(u) =

∣∣∣∣∣ 1

2π
k′
a(u) +

∑
b

(Kab � ρb)(u)

∣∣∣∣∣, (A6)

where ka(u) denotes the quasimomentum of strings of species
a with rapidity uand � denotes the convolution as defined
in the main text. For future convenience, we introduce σa =
sign(k′

a(u)), so that we may rewrite (A6) as

σaρ
t
a(u) = 1

2π
k′
a(u) +

∑
b

(Kab � ρb)(u). (A7)

The set of constraint equations (A7) are a transcription of
the Bethe ansatz equations to the thermodynamic limit, and

rewritten in terms of the appropriate distribution functions.
This constraint, together with the maximum entropy principle,
uniquely determine the distribution of energies of the thermal
generalized Gibbs state [11,55,115]. (Note that there is a
subtlety in systems with non-Abelian symmetries: the ther-
modynamic state obtained by applying the maximum entropy
principle to the TBA spectrum only counts highest weight
states in each multiplet. To see that this error is negligible,
let us consider a generic L-site system with an even number
N of SU(2) degrees of freedom each in the spin-1/2 repre-
sentation, and assume that N/L is held fixed as N,L → ∞.
The eigenspectrum can be decomposed into SU(2) multiplets,
with each representation r ∈ {0, 1, 2, . . . ,N/2} appearing nr
times, with energies εr, j , where j = 1, 2, . . . , nr . Then the
exact free energy per site at inverse temperature β = 1/kBT is
given by β fex = − 1

L ln [
∑N/2

r=0(2r + 1)
∑nr

j=0 e
−βεr, j ], whereas

the TBA result β fTBA = − 1
L ln [

∑N/2
r=0

∑nr
j=0 e

−βεr, j ] neglects
the degeneracy factors. However, the free energy difference
per site, βδ f ≡ |β fex − β fTBA| � ln(N+1)

L , which vanishes in
the thermodynamic limit since N is O(L).)

Defining Ya(u) = ρ̄a(u)/ρa(u), the generalized Gibbs state
can be shown to satisfy the TBA equations

lnYa(u) = βea(u)−
∑
b

[Kab � σb ln(1 + 1/Yb)](u), (A8)

where β is the inverse temperature and ea(u) is the
(quasi)energy of of strings of species a with rapidity u, which
is again determined by a microscopic energy-momentum re-
lation derived from the underlying Hamiltonian. The set of
functions {Ya(u)} completely characterize the state, and (as
we will see below) are analogous to Boltzmann factors for the
quasiparticles/strings. An equivalent set of functions is the set
of filling factors,

na(u) = ρa(u)/ρ
t
a(u) = 1/[1 + Ya(u)]. (A9)

and the complementary hole filling factor n̄a(u) =
ρ̄a(u)/ρt

a(u) = 1 − na(u). The filling factors provide
a convenient parametrization of a TBA state, via the
(generically infinite-dimensional) vector n = {na(u)}. These
play a central role in constructing a generalized hydrodynamic
picture of integrable systems, where they are allowed to vary
on long length and time scales.

1. Dressing transformation

The bare momentum ka(u) and bare energy ea(u) defined
above are necessary inputs for (A6) and (A8). However they
do not correspond to the physical momentum kph (energy eph)
of the string, measured as the momentum (energy) difference
between the initial state, and the state with one added string
of species a and rapidity u. This is because, as mentioned
already, adding a single extra string to an unoccupied “hole”
causes a shift in the rapidities of all the other quasiparticles.
Although each rapidity only shifts by O(1/L), since a typical
thermal state has O(L) such shifted quasiparticles, this “dress-
ing” gives an additional O(1) contribution to the physical
momentum and energy of the resulting state. Computing the
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“dressing” correction, the rapidity-derivatives of the physical
quantities can be shown to satisfy the integral equations(

kpha
)′
(u) = (k′

a)
dr(u) = [�ab � k′

a](u), (A10)(
epha

)′
(u) = (e′

a)
dr(u) = [�ab � e′

a](u), (u), (A11)

where we defined the dressing transformation

f dra = [�ab � fb](u) (A12)

and dressing kernel �ab as the unique inverse of the 1̂ − K̂σ n̂
kernel, viz.∑

b

∫
dw �ab(u − w)[δbcδ(w) − Kbc(w)nc(w)] = δacδ(u).

(A13)

By relating the two different expressions for k′
a(u) in

Eqs. (A7) and (A10), we find that

ρt
a(u) = 1

2π
σa

(
kdra

)′
(u), (A14)

while applying a similar procedure to (A8) and (A11) and
using (A9) yields

Ya(u) = exp
[
βepha (u)

]
. (A15)

The identities (A9) and (A15) have appealing physical inter-
pretations: the first indicates that the total density of states is
obtained by an appropriate derivative of the physical (dressed)
momentum, and the second is consistent with the interpreta-
tion of Ya as a generalized Boltzmann weight.

In computing linear response, we also use the dressed
charge Odr corresponding to a conserved quantity O.
While dressed and physical quantities are formally simi-
lar, it is important to stress that they are different as the
rapidity-derivative and the dressing transformation do not
commute, e.g.,

(eph)′ = (e′)dr �= (edr)′ (A16)

Also conceptually, there is an important distinction between
the two for globally conserved operators such as the electric
charge and the magnetization. For the physical energy and the
physical momentum, the rapidity shifts of the other quasipar-
ticles alter the energy and momentum of the state with one
added quasiparticle relative to the state when it is absent; this
leads to a physical shift in the energy and momentum of the
TBA eigenstate. In contrast, since Q̂, Ŝz commute with H ,
such rapidity shifts cannot affect the physical global U(1)
charge of the TBA eigenstate, which simply changes by the
bare (microscopic) value of the added quasiparticle. How-
ever, they can redistribute the local U(1) charge between the
quasiparticles and the background, which is captured by the
“dressed” charge. This is important when computing transport
quantities or susceptibilities. An alternative way to compute
the dressed charge that explains its physical meaning is as
follows: Consider perturbing the Hamiltonian by an infinites-
imal amount of a conserved charge O, H 
→ H + λOO, and
solving the TBA equations for the perturbed Hamiltonian; we
then find that Odr

a = ∂
∂ (βλO ) lnYa. Recalling that lnYa = βepha

we see that this measures the gradient in the energy of just that

quasiparticle state with respect to chemical potential conju-
gate toO, which intuitively corresponds to the dressed charge
of O carried by the quasiparticle. However, the global charge
in a given TBA eigenstate is simply 〈O〉, as it should be. Note
that when computing the energy response, the physical and
dressed energies are distinct, with the dressed energy being
the quantity relevant to GHD response functions.

APPENDIX B: SOLVING THE TBA EQUATIONS

We now describe how to solve the TBA and dressing equa-
tions numerically in various regimes.The generic form of the
TBA equations (A8) and the various dressing equations (A10)
and (A11) involve the kernels reported in Table II. Given
that KMN is non-zero for every pair (M,N ), the equations in
this form contain a direct coupling among all magnon/singlet
strings, making their interpretation and solution difficult. We
refer to this as the “nonlocal” formulation of the TBA, in
contrast with the one we are about to introduce. It is well
known [11,81,115] that there is an equivalent “quasilocal”
formulation where each string species is coupled to at most
other three string species. We now sketch the derivation of
this quasilocal formulation of the TBA and the GHD dressing
equations for the Hubbard model. Our notation closely paral-
lels that of Ref. [55], who first derived the quasilocal form for
the dressing equations.

We begin by defining the kernel (1 + K )−1
MN as the inverse

under convolution of (1 + K )MN , i.e.,

(1 + K )−1
MN ′ � (1 + K )N ′M = 1MN , (B1)

with 1MN (u) = δMNδ(u). Exploiting the explicit expression
for KMN , it can be shown that [11,115]

(1 + K )−1
MN (u) = δMNδ(u) − IMNs(u), (B2)

where we define

s(u) = [(δ + K2)
−1 � K1](u) = 1

U cosh(2πu/U )
, (B3)

IMN = δM,N+1 + δM,N−1. (B4)

From this, it is also easy to show that

(1 + K )−1
MN � KN = (1 + Is)−1

MN � KN = δM1s. (B5)

Another property which will be useful in deriving the fol-
lowing equations is that for fM ∈ {eM|uw, k′

M|uw}, we have
(1 + K )−1

MN � fM = δM1s � ( f+ − f−), (B6)

while for gM = αM for any α, we have

(1 + K )−1
MN � gM = 0. (B7)

We now act from the left with (1 + K )−1
MN on all terms in

the set of equations

lnYM|w = βeM|w + KMN ln(1 + 1/YN |w )

− KM � ln

(
1 + 1/Y−
1 + 1/Y+

)
, (B8)

lnYM|uw = βeM|uw + KMN ln(1 + 1/YN |uw )

− KM � ln

(
1 + 1/Y−
1 + 1/Y+

)
(B9)
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TABLE III. Quasilocal form of the TBA equations for different functions fa(u) corresponding to TBA variables labeled by species and
rapidity. Here, Oa(u) corresponds to the projection of one of the two U(1) conserved charges (the electric charge or the z magnetization) onto
quasiparticle species a at rapidity u. ga(u) is meant to be either ea(u) or k′

a(u).

fa TBA/Dressing equations for fa limM→∞
fa
M

lnY± lnY± = β(ẽ± − s � ẽ1|uw ) − s � ln
( 1+Y1|w
1+Y1|uw

)
–

lnYM|w lnYM|w = s � IMN ln(1 + YN |w ) − δM1s � ln
( 1+1/Y−
1+1/Y+

)
βh

lnYM|uw lnYM|uw = s � IMN ln(1 + YN |uw ) − δM1s � ln
( 1+Y−
1+Y+

) −2βμ

Odr
± Odr

± = −s �
[
n̄1|uwOdr

1|uw − n̄1|wqdr
]

–

Odr
M|w Odr

M|w = s � IMN n̄N |uwOdr
N |uw − δM1s � [n−Odr

− − n+Odr
+ ] limM→∞

OM|w
M

Odr
M|uw Odr

M|uw = s � IMN n̄N |uwOdr − δM1s � [n−Odr
− − n+Odr

+ ] limM→∞
OM|uw

M

gdr± gdr± = g± − s � g1|uw − s �
[
n̄1|uwgdr1|uw − n̄1|wgdr1|w

]
–

gdrM|w gdrM|w = s � IMN n̄N |wgdrN |w − δM1s � [n−gdr− − n+gdr+] limM→∞
gM|w
M

gdrM|uw gdrM|uw = s � IMN n̄N |uwgdrN |uw + δM1s � [n̄−gdr− − n̄+gdr+] limM→∞
gM|uw
M

and use the above identities to obtain quasilocal TBA equa-
tions for the singlets and the magnons strings, listed in
Table III.

The case of the y-particles must be treated more carefully.
Here, we first define ẽ as the bare energy for h = μ = 0, and
write the TBA equation explicitly as

lnY± = β(ẽ± + μ − h/2) + KM � ln

(
1 + 1/YM|uw
1 + 1/YM|w

)
.

(B10)

We now first manipulate KM � ln(1 + 1/YM|w ) in order to re-
move the coupling to all M|w-strings in favor of just the first,
i.e., 1|w. To do so, we fix a cutoff M̃, and for M < M̃ we
rewrite

ln(1 + 1/YM|w ) = ln(1 + YM|w ) − lnYM|w
= ln(1 + YM|w ) − IMNs � ln(1 + YN |w )

− δM1s � ln

(
1 + 1/Y−
1 + 1/Y+

)
, (B11)

where we have used the quasilocal expression for lnYM|w from
Table III. We now substitute (B11) into KM � ln(1 + 1/YM|w )
in Eq. (B10). We then manipulate the part coming from the
first term in Eq. (B11) as8

KM � ln(1 + YM|w ) = IMNs � KN � ln(1 + YM|w )

+ δM1s � ln(1 + YM|w ). (B12)

In this way, most of the terms cancel out and (after remember-
ing to include the terms above the cutoff) we are left with∑

M

KM � ln(1 + 1/YM|w )

=
∑
M>M̃

KM � ln(1 + 1/YM|w ) − K1 � s � ln

(
1 + 1/Y−
1 + 1/Y+

)

+ s � ln(1 + Y1|w ) − KM̃ � s � ln(1 + YM̃+1|w )

+ KM̃+1 � s � ln(1 + YM̃|w ). (B13)

8Note that the convolution product is associative.

Finally, using that ln(1 + 1/YM|w ) = o(1/M2) and that the last
line in the previous expression converges to9

1

2
lim

M̃→∞
K1 � ln(YM̃|w ) − ln(YM̃+1|w ) = −βh

2
, (B14)

we arrive at

lnY± = β(ẽ± + μ) + KM � ln(1 + 1/YM|uw )

− s � ln(1 + Y1|w ) + K1 � s � ln

(
1 + 1/Y−
1 + 1/Y+

)
.

(B15)

Finally, repeating the same procedure, but acting on uw-
strings, we arrive at the quasilocal TBA equation for
y-particles in Table III. The derivation for the quasilocal form
the dressing equations closely follows those for the TBA
equations. [55]

To numerically solve the TBA equations, we truncate the
hierarchy of w-strings (uw-strings) at some maximum length
M̃w (M̃uw). We introduce a rapidity cutoff for the w and uw-
strings, requiring u ∈ [−umax, umax], and approximate Ya(u)
with |u| > umax as Ya(sign(u)umax). We then discretize rapid-
ity space into a regularly spaced grid containing m̃rap points
per string. Finally, we solve the TBA and dressing equations
iteratively. For example, focusing on the TBA equations, we
take an initial guess Y (0) for Y . We plug it in the right-hand
side of the TBA equations to compute the next approximation
Y (1). We proceed in this way until ‖Y ( j) − Y ( j−1)‖L1 is less
than the desired accuracy εacc. We solve the equations for
dressed and dressed quantities in a similar fashion (see also
Ref. [64]).

While truncating the hierarchy of strings, in the non-local
formulation we can just approximate all terms with the cut-
off by 0. However this truncation requires more care in the
quasilocal formulation, where the asymptotic condition (the
final column of Table III) is crucial to identify a unique
solution. For the solution of the TBA equation, the issue is
discussed in detail in Ref. [122]. For the dressed quantities, we

9See, for example, the discussion in Ref. [115] concerning the XXX
chain.
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employ the following scheme. In order to compute the dress-
ing of (for example) fM|w(u) with the asymptotic condition
limM→∞ f drM|w/M = αw, we approximate

f drM̃w+1|w(u) 	 K1 � f drM̃w |w(u) + αw. (B16)

Finally, we mention that in the spin-incoherent regime
when βμ � −1 and βh � 1, both formulations of the TBA
equation presented above seem to be poorly suited to numer-
ics. Instead, we find that the option that works best in this case
is to employ a “hybrid” combination of Eq. (B9), (B15), and
the quasilocal form for w-strings reported in Table II.

APPENDIX C: ASYMPTOTIC RESULTS AT LARGEM

In this section, building on Ref. [122] and standard TBA
results [11,115], we expand the TBA equations at large string
length M, with the goal of showing that∫

du ρt
M|w(u)

∣∣veff
M|w(u)

∣∣ ∼ α/M2 at h = 0, (C1)∫
du ρt

M|uw(u)
∣∣veff

M|uw(u)
∣∣ ∼ α̃/M2 at μ = 0, (C2)

for two real numbers α and α̃. For definiteness, we focus on
(C1), but the argument proceeds identically for (C2).

First of all, using the definition of veff, we have∫
du ρt

M|w(u)
∣∣veff

M|w(u)
∣∣ =

∫
du

2π
|(e′

M|w )
dr|. (C3)

Now, using the fact that ephM|w(u) is even under u 
→ −u to
halve the domain of integration, and the observation (see be-
low) that eM|w(u) is monotonically increasing from 0 to +∞,
we can finally re-express (C3)

1

πβ
(lnYM|w(+∞) − lnYM|w(0)). (C4)

Therefore we analyze the TBA equation for large (M � 1)
magnons in quasilocal form

lnYM|w = s � [ln(1 + YM−1|w ) + ln(1 + YM+1|w )]. (C5)

The solution of these equations at large M and h = 0 can be
approximated by [81,122]

YM|w 	 ( fM (u) + M )2 − 1, (C6)

with fM|w = o(M ) and limu→∞ fM|w(u) = 0. Plugging this
form back into the TBA equation, we find that fM satisfies

fM = s � ( fM−1 + fM+1) (C7)

lim
M→∞

fM/M = 0, (C8)

where we have neglected terms of o( fM ) and O(1/M4). One
can verify that the recurrence relation can be rewritten as

fM = K1 � fM−1. (C9)

Thus fM ∼ KM � f̃ for some function f̃ with limu→∞ f̃ (u) =
0. As M → ∞, we can neglect the width of f̃ relative to that
of KM . Therefore the overall shape of fM is approximately
given by a Lorentzian with width proportional toM and max-
imum height proportional to 1/M.

Finally, plugging this estimate into Eq. (C6) and expand-
ing to leading order in 1/M, we obtain the final result that
lnYM|w(+∞) − lnYM|w(0) scales as 1/M2.

APPENDIX D: LARGE-U EXPANSIONS OF THE TBA

At large U , the TBA and dressing equations are consid-
erably simplified, as was pointed out in Ref. [115]. In this
section we provide the complete solutions at leading order in
1/U in the strong-coupling regimes (i), (ii), and (iii), and a
partial solution in regime (iv). The crucial observation which
allows for exact solutions is that the kernels s and KM have
a width of order U and an height of order 1/U , and that
y-particle rapidities are bounded in the [−1, 1] interval. We
observe that for a function f with domain [−1, 1], we can
expand

(s � f )(u) =
(∫ +1

−1
dw f (w)

)
s(u)

−
(∫ +1

−1
dw w f (w)

)
s′(u) + O(1/U 3). (D1)

On the other hand, for a function gwith domain in R, we can
expand

(s � f )|[−1,1](u) =
∫

dwK (−w)g(w)

+ u
∫

dwK ′(−w)g(w) + O(|g|/U 2).

(D2)

Note that the same expansion holds also if s is replaced
by KM .

1. Regimes (i), (ii), and (iii):U � 1 � β

In this case, it is convenient to work with the quasilocal for-
mulation of the TBA and dressing equations. From Eq. (D1),
we see that

lnY±(u) = βe±(u) + αY + O(1/U 3), (D3)

where αY is u-independent. Furthermore the strings satisfy the
equations

lnYM|w = s � IMN ln(1 + YN |w ) + δM1γY s, (D4)

lnYM|uw = s � IMN ln(1 + YN |uw ) + δM1γ̃Y s (D5)

γY = −
∫ +1

−1
ln

(
1 + 1/Y−
1 + 1/Y+

)
(D6)

γ̃Y = −
∫ +1

−1
ln

(
1 + Y−
1 + Y+

)
. (D7)

The key observation is that ‖s‖∞ = O(1/U ), so that at leading
order we can just neglect the terms γY s and γ̃Y s, in which case
(D4) and (D5) are simply the T = ∞ TBA equations for the

115121-19



MICHELE FAVA et al. PHYSICAL REVIEW B 102, 115121 (2020)

strings. Their solution is known to be given by [115]

YM|w = χ2
M − 1, χM = sinh[(M + 1)βh/2]

sinh(βh/2)
, (D8)

YM|uw = χ̃2
M − 1, χ̃M = sinh[(M + 1)βμ]

sinh(βμ)
. (D9)

Plugging Y1|w and Y1|uw into the equation for lnY±, we can
now determine

αY = ln χ̃1 − ln χ1, (D10)

thus completing the solution of the TBA equation.
Nonetheless, it will be convenient compute dressed charges

using

m̃dr = 1

β

∂ lnY

∂h
, (D11)

q̃dr = 1

β

∂ lnY

∂μ
, (D12)

ẽdr = ∂ lnY

∂β

∣∣∣∣
βμ,βh

, (D13)

from Y -functions and (e′)dr = (eph)
′

from Ya(u) =
exp[βepha (u)] and. Then to obtain a non-zero result we
need to expand to next order and take into account the
source term γY s and γ̃Y s. We then expand lnY = βeph =
lnY (0) + βε(1) + O(1/U 2) with ε(1) = O(1/U ). Plugging
this ansatz into the Eqs. (D4) and (D5), we obtain

ε
(1)
M|w = s � IMN (1 − nN |w )ε

(1)
N |w + δM1

γY

β
s, (D14)

ε
(1)
M|uw = s � IMN (1 − nN |uw )ε

(1)
N |uw + δM1

γ̃Y

β
s, (D15)

where we can substitute na with its approximate form to
leading order in 1/U ,

na = 1

1 + exp
(
lnY (0)

a
) . (D16)

This set of equations has been solved exactly [81] and yields

ε
(1)
M|w = γY

χM

χ1

(
KM

χM−1
− KM+1

χM+1

)
, (D17)

ε
(1)
M|uw = γ̃Y

χ̃M

χ̃1

(
KM

χ̃M−1
− KM+1

χ̃M+1

)
. (D18)

This directly allows for the computation of dressed charges by
taking derivatives.

The last quantity left to compute is (kdr)′, which also yields
ρt . This can be solved in a similar fashion to the TBA equa-
tions, yielding

(k′
±)

dr = k′
±, (D19)

(k′
M|w )

dr = γk
χM

χ1

(
KM

χM−1
− KM+1

χM+1

)
, (D20)

(k′
M|uw )

dr = γ̃k
χ̃M

χ̃1

(
KM

χ̃M−1
− KM+1

χ̃M+1

)
, (D21)

γk =
∫ +1

−1
du (n−k′

− − n+k′
+), (D22)

γ̃k =
∫ +1

−1
du [(1 − n−)k′

− − (1 − n+)k′
+]. (D23)

Note that in practice this expansion is valid across regimes
(i-iii), although conceptually regimes (ii-iii) can be accessed
more easily using a hybrid form (see Appendix B), where
uw-strings explicitly drop out of the problem. While this does
not affect the analytical solution, it is extremely convenient
numerically, as it allows use to retain a very low cutoff on the
length of uw-strings and hence improves the convergence of
the iterative solution.

From the data above we can explicitly compute Drude
weights and correlators. The Drude weights are always domi-
nated by y-particles since∫

du ρt
M|w(u)

(
veff
M|w(u)

)2 = O(1/U 2) (D24)

and similarly for uw-strings. Furthermore, the contribution of
w-strings energy and charge correlators is again suppressed
since

(
qdrM|w(u)

)2 = O(1/U 2), (D25)

and similarly for the component of the dressed energy from
ẽ (Table I). Finally, as shown above the dressed quantities for
y-particles are unaffected by the dressing to leading order in
1/U .

As mentioned in the main text, the expression Eq. (11)
for the Drude weight can be further simplified in regime
(iii), where βn±(1 − n±) is significantly non-zero only over
an interval of width T around the fermi points uF where
e±(uF ) = 0. Linearising e±(uF ) = 0 around the Fermi points,
and explicitly performing the integral over rapidity we obtain
the low-temperature form of the Drude weight in Eq. (14).

We now proceed to estimate the order of the corrections to
the Drude weights in regime (iii). The main source of these
corrections is given by the feedback of ε(1) and (k′)dr of w-
strings [and uw-strings in regime (i)] in the TBA equation and
dressing equations. For definiteness we focus on (k′)dr, but the
reasoning is the same for ε(1) in the TBA equations. Looking
at Eq. (D2), and noticing that (k′

M|uw )
dr(u) is even under u 
→

−u, we conclude that the leading correction is constant in u
and is of order O(1/U ). A similar consideration applies to
eph± . The corrections we obtain at order 1/U can be obtained
by making the following replacements in Eq. (14)

e± → e± + γY

∫
du

(
K1(u)

χ0
− K2(u)

χ2

)
s(u)

− γ̃Y

∫
du s(u)K1(−u), (D26)

k′
± → k′

± + γk

∫
du

(
K1(u)

χ0
− K2(u)

χ2

)
s(u)

− γ̃k

∫
du s(u)K1(−u), (D27)
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and modifying the Fermi velocity and the dressed charges
accordingly. As anticipated, the corrections are O(1/U ),
due to ∫

duKM (u)s(u) = O(1/U ) (D28)

Finally, we focus on regimes (ii) and (iii) at μ = h = 0. In
this case, the contribution of y-particles to the Drude weight

is exponentially suppressed by βU . Therefore we focus on the
string contributions to the energy Drude weight and find that

DM|w = γ 2
Y (∂βγY )2

βγk
T (M )nM|w(1 − nM|w ), (D29)

DM|uw = γ̃ 2
Y (∂βγ̃Y )2

βγ̃k
T (M )nM|uw(1 − nM|uw ), (D30)

with

T (M ) = 40 + 540M + 3198M2 + 10901M3 + 23472M4 + 32562M5 + 28274M6 + 14016M7 + 3040M8

256M7(1 + M )(2 + M )3(1 + 2M )4π2(U/4)4
. (D31)

It then remains to evaluate the factor multiplying T (M ). To do
this, note that lnY± = −βU/2 + O(1), meaning that n± = 1,
with 1 − n± exponentially suppressed in βU/2. From this,
we can notice that DM|uw is exponentially suppressed, further-
more γY /β 	 γk 	 2π , obtaining Eq. (45).

2. Regime (iv): β � U � 1

In this regime, we deploy the standard technology of T →
0 TBA expansions [11,115,117,119,120]. The fundamental
idea behind the simplification of the TBA equations in this
limit is to express them in terms of dressed energy eph =
lnY/β which remain finite as β → ∞. In nonlocal form, the
equations for the dressed energies then become (at leading
order in β−1)

epha = ea − Kab �
[
ephb

]−
, (D32)

with [ f ]− = f θH (− f ), denoting the Heaviside-θ function
with θH . Furthermore na = θH (−epha ).

The first consequence is that singlets (uw-strings) always
have [11,115] nM|uw = 0. Specifically in the high-U limit,
from Eq. (D2) it follows again that energy, momentum and
charge of y-particles are dominated by bare quantities. On
the other hand, Eq. (D1) implies that ephM|w(u) are functions
with height O(1/U ) and rapidity-width O(U ) and similar
considerations hold for (k′

M|w )
dr(u). Thus the velocities of

w-strings are again suppressed by factors of 1/U , implying
that in regime (iv) as well the Drude weight is dominated by y
particles. These same considerations lead us also to conclude
that the dressed charge and energy of y particles are domi-
nated by their bare value. Therefore the crossover between
regimes (iii) and (iv) cannot be observed in the (reduced)
energy or charge Drude weights. However, the magnetization
of y-particles is significantly corrected relative to its bare value
due to scattering off the magnons, and the spin Drude weight
picks up the crossover due to the change in magnon properties.

Although a full analytical solution in this regime is gener-
ally hard [11], we focus on the h � t regime to show that the
leading corrections to the charge and energy Dude weight in
Eq. (14) are different than those in regime (iii). When h � t ,
the dressed energy of the “elementary” magnon (i.e. the 1|w
string) is negative in a large rapidity interval centered around
0. Approximating this interval by the whole real axis, the TBA
equation becomes linear in eph1|w, and furthermore all higher
magnons (M|w-strings with M > 1) strings drop out of the

problem. The TBA equation can then be readily solved (to
leading order in 1/U )

edr± = e±, (D33)

edr1|w = γY s(u) < 0. (D34)

The dressing equation for (kdr)
′
yields a similar result

(k′
±)

dr = e±, (D35)

(k′
1|w )

dr = γks(u) < 0. (D36)

The correction to the Drude weight can then be computed
similarly to that in case (iii), by the following substitutions
in Eq. (14):

e± → e± + γY

∫
duK1(u)s(u), (D37)

k′
± → k′

± + γk

∫
duK1(u)s(u), (D38)

where, again, ∫
duK1(u)s(u) = O(1/U ). (D39)

Finally, we discuss energy transport in regime (iv) at μ =
h = 0. In particular, we will show that De ∼ αeT 2 as T → 0
and we will compute αe to leading order in 1/U . We use the
fact that at μ = h = 0, in the limit T → 0, the solution of
the zero-temperature TBA equations (D32), is known [11,120]
and in particular

eph± < 0, (D40)

eph1|w = s � (eph− − eph+ )− < 0, (D41)

ephM|w = 0 forM > 1, (D42)

ephM|uw = eM|uw − KM � (edr− − edr+ )− > 0, (D43)

lim
u→±∞eph1|w(u) = 0, (D44)

lim
u→±∞ephM|uw(u) = 0. (D45)
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Finally, the dressed momenta will satisfy

(k′
1|w )

dr = s � [n−(kdr− )′ − n+(kdr+ )′]− < 0, (D46)

(k′
M|w )

dr = 0 for M > 1, (D47)

(k′
M|uw )

dr = k′
M|uw (D48)

− KM � [n−(k′
−)

dr − n+(k′
+)

dr]− > 0, (D49)

with the limiting behavior

lim
u→±∞ (k′

1|w )
dr(u) = 0, (D50)

lim
u→±∞ (k′

M|uw )
dr(u) = 0. (D51)

As pointed out in the previous section,transport in the T →
0 limit is dominated by the Fermi points. The contribution to
the energy Drude weight from a species a will be

De,a=β

∫
du

(
epha (u)

)2(
veff
a (u)

)2
ρt
a(u)(1 − na(u))na(u),

(D52)

where we used the fact eph = edr + O(T 2), which follows
from the low-T expansion in Ref. [117]. The contribution of
each Fermi point can be computed by linearising eph near the
Fermi point. If the Fermi point is at rapidity uF for the species
a, its contribution is

veff
a (uF )T 2

2π

∫ +∞

−∞
dy y2

ey

(1 + ey)2
= veff

a (uF )T 2π

6
. (D53)

In the present case, however, M|uw and 1|w-strings lack
Fermi points at finite rapidities, but their physical energies
eph(u) → 0 as u → ∞; we may therefore think of these
strings as having Fermi points shifted to infinite rapidity. A
similar calculation then shows that

De,a = veff
a (∞)T 2π

6
, (D54)

where we assumed that limu→±∞ veff
a (u) = veff

a (∞) is finite.
Before computing veff(∞), we discuss the contribution of

M|w-strings for M > 2. Both their dressed energy and their
total density will be [117] O(T 2). From the behavior of the
physical energy, we have that the dressed energy is O(T 3).
Therefore the contribution to the thermal Drude weight from
M|w-strings will be O(T 6), which is negligible in comparison
to the Fermi point contributions.

We are now left with computing veff(∞) to leading order
in 1/U . We start by focusing on, veff

1|w(u) and exploit the
expansion (D1) to obtain

veff
1|w(∞) = γY

γk
lim
u→∞

s′(u)
s(u)

= γY

γk

2π

U
. (D55)

On the other hand, for uw-strings both ephM|uw(u) and

(k′
M|uw )

dr(u) decay as 1/u2 at large rapidity u. Thus
veff
M|uw(∞) = 0 and uw-strings again do not contribute to
transport.

Combining the above results, we see that

De = π2T 2

3U
+ O(T 4) + O(T 2/U 2), (D56)

or, reintroducing the t-dependence through dimensional anal-
ysis, De 	 π2t3T 2

3U .
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