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Observation of a marginal Fermi glass
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A long-standing open problem in condensed-matter physics is whether or not a strongly disordered interacting insulator can
be mapped to a system of effectively non-interacting localized excitations. Using terahertz two-dimensional coherent spec-
troscopy, we investigate this issue in phosphorus-doped silicon, a classic example of a correlated disordered electron system
in three dimensions. Despite the intrinsically disordered nature of these materials, we observe coherent excitations and strong
photon echoes that provide us with a powerful method for the study of their decay processes. We extract the energy relaxation
and decoherence rates close to the metal-insulator transition. We observe that both rates are linear in excitation frequency
with a slope close to unity. The energy relaxation timescale counterintuitively increases with increasing temperature, and the
coherence relaxation timescale has little temperature dependence below 25K, but increases as the material is doped towards
the metal-insulator transition. Here we argue that these features imply that the system behaves as a well-isolated electronic
system on the timescales of interest, and relaxation is controlled by electron-electron interactions. Our observations constitute
a distinct phenomenology, driven by the interplay of strong disorder and strong electron-electron interactions, which we dub

the marginal Fermi glass.

actions is a central problem in condensed-matter physics. It

is a remarkable fact that many metals can be understood in
terms of weakly interacting fermionic quasiparticles near the Fermi
energy (Eg), despite the fact that the bare Coulomb interaction is
not particularly small or short-ranged. This has been canonized in
terms of Landau Fermi liquid theory’, where the effects of interac-
tions renormalize quasiparticle parameters like the effective mass,
but do not change the underlying effective structure of the theory
from that of free electrons. The scattering rates of quasiparticles in
a Landau Fermi liquid go like (E — Eg)?, so quasiparticles are arbi-
trarily well-defined near E;. These effects arise as a consequence of
both the Pauli exclusion principle, which reduces the phase space
for scattering, and screening, which renders the bare Coulomb
interaction effectively short-range.

The tendency of strong disorder is to localize particles. Anderson
showed that, in the absence of interactions, sufficiently strong disor-
der could localize wavefunctions with a sharp boundary in energy
between localized and extended states. This is a generic wave phe-
nomenon that applies equally to acoustic, electromagnetic or neutral
matter waves’. Although such ‘Anderson localization’ is frequently
invoked in the study of disordered electronic insulators, it is unclear
to what extent this phenomenon actually applies to real materials.

In this regard, in 1970 Anderson proposed the notion—in anal-
ogy with the Fermi liquid—of a ‘Fermi glass’ as a localized disor-
dered state of matter adiabatically connected to the non-interacting
Anderson insulator, whose universal properties arose through
Pauli exclusion alone’. Anderson conjectured that, via the protec-
tion afforded by the Fermi energy, such a state of matter would also
have well-defined single-particle-like excitations at low energy.
It was later understood that the localized nature of such systems
and lack of metallic screening made these considerations more
subtle”. Recently, it was realized that insulators might feature

l | nderstanding systems with strong disorder and strong inter-

an even stronger notion of adiabatic continuity than metals. It is
argued in refs. ® that a disordered system with short-range interac-
tions could be ‘many-body-localized” and thus have infinitely sharp
excitations, even at non-zero temperatures and far from E;. This has
been a large area of current investigation (see refs. '*'" for reviews).
However the effects of long-range Coulomb interactions are still
not fully understood. It has been shown'*-"* that long-range interac-
tions invalidate perturbative arguments for localization. Although
non-perturbative methods have been applied in certain settings's,
it remains unknown whether a ‘Fermi glass’ exists, that is, whether
a frequency or temperature window exists where the excitations
of an interacting insulator are renormalized, weakly interacting,
electron-like quasiparticles.

In this Article, we use the technique of terahertz two-
dimensional coherent spectroscopy (THz 2DCS)""-* to shed light
on this fundamental problem. We investigate the canonical dis-
ordered material phosphorus-doped silicon (Si:P) on the insulat-
ing side of the metal-insulator transition (MIT)***!. Among other
aspects, THz 2DCS allows us to measure both the T, and T, times
(the longitudinal and transverse relaxation times, respectively)
of inhomogeneously broadened spectra in the terahertz range.
At low temperature we find a temperature-independent regime
governed by electron-electron interactions. We find that relax-
ation rates of the optical excitations are linear in frequency with
a proportionality constant of order one. This establishes that,
in our frequency range, the low energy excitations are not well
defined. This is consistent with a picture in which localized elec-
tronic systems are not adiabatically connected to the Anderson
insulator. We call this state of matter the ‘marginal Fermi glass’.
This electronic relaxation is consistent with the existence of an
electronic continuum that arises through long-range Coulomb
interactions, which could destabilize the localized state at
non-zero temperatures.
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Fig. 1| Linear and nonlinear optical response of phosphorus-doped silicon. a, Linear-response optical conductivity for the 39% sample at 5K. Regimes
of linear and quadratic power-law behaviour can be distinguished (dashed lines). b, Time traces of two collinear terahertz pulses that are separated by a
time 7. In the experiment, the sum of these electric fields, E,g, is measured. c-f, Time traces of E, (¢), E; (d), Eg (@) and Ey =E,s—E5— E; () as a function

of tand z.

Figure la presents the real part of the linear-response,
terahertz-range conductivity of a representative 39% doped sam-
it was shown that the optical response of
Si:P near the MIT was in accord with the theory of Mott-Efros—
Shklovskii***. The excited states of the system are modelled as an
ensemble of resonant pairs that can be mapped to a random ensem-
ble of two-level systems (that is, the ‘pair approximation’), which
gives a conductivity o) (o) = ae?N2E w[In(21, /hw)]* [ho + U(r,)];
for example, an almost linear conductivity is found at low frequen-
cies and a quadratic one at higher frequencies. These power laws
come from phase space considerations (Supplementary Section IV).
They cross over at an energy scale of U(r,)=e%/¢,r,, which repre-
sents the attraction between an electron and hole in a dipolar excita-
tion at a distance r,,=£[In(2],/hw)]. Here, N is the density of states,
£ is the localization length, ¢, is the full dielectric constant, a is a
constant close to one and I is the pre-factor of the overlap integral
(commonly taken to be the Bohr energy of the dopant). One aspect
not considered in the usual treatment is that each of the excitations
that contributes to o(w) has a finite lifetime. The functional form
of o(w) is insensitive to moderate level broadening, so it is unin-
formative about excitation lifetimes. Quantifying homogeneous
broadening due to quasiparticle decay in the face of overtly inho-
mogeneously broadened spectra is the principal difficulty in char-
acterizing interactions in these systems.

Two-dimensional coherent spectroscopy is a nonlinear four-wave
mixing technique that can, among other aspects, directly reveal
couplings between excitations and separate homogeneous from
inhomogeneous broadening®. It has been incredibly powerful in
its radio and infrared frequency incarnations for the study of chemi-
cal systems. It has been extended recently to the terahertz range to
study graphene and quantum wells'”*, molecular rotations’ and
spin waves in conventional magnets'®. It has also been proposed to
give unique information about fractionalized spin phases'**.

As discussed in the Methods, two terahertz pulses (A and B) are
incident on a sample. The transmitted electric field is recorded as
a function of the separation between them (7) and the time from
pulse B (#). The nonlinear signal is defined as Ey,(z,f) =E,4(z,t) —
E,(7,t) — E4(t), where E,j is the transmitted signal when both tera-
hertz pulses are present, and E, and E; are the transmitted signals
with each pulse A and B present individually. Figure 1c—f shows E,,
E;, E, and Ey; as a function of ¢ and 7 for the 39% sample. Figure 2
shows the resulting 2D terahertz spectra Ey, (v,, ;) from the Fourier
transforms with respect to 7 and ¢t for each doping, studied at a

temperature of 5 K. We note that typical P-P spacings in these sam-
ples are of order 8 nm (ref. %), so the associated Coulomb energy is
of order 15meV, which corresponds to a timescale of ~0.3 ps. The
experimental timescales of these measurements of a few picosec-
onds are thus easily long enough for the effect of interactions to
be important. The key results were verified to be insensitive to the
incident fluence, thus establishing that heating effects are minimal
(Supplementary Section II).

In an inversion symmetric system like Si:P, the leading nonlinear
response is y® electric dipole reradiation. With two pulses, there
are thus contributions to Ey; in which pulse A interacts twice and
pulse B once with the sample, and other contributions where pulse
A interacts once and pulse B twice. Moreover, the y*® response can
be separated into non-rephasing (NR) and rephasing (R) contribu-
tions'”'*. The R signal arises due to a reverse phase accumulation
during time ¢ compared with 7 and thus occurs at negative frequen-
cies of either v, or v, when compared with the NR signal. The dif-
ferent nonlinear signals in each quadrant in the 2D frequency plan
can be understood in terms of ‘frequency vectors, as outlined in
refs. ' and Supplementary Section III. For the case where pulse A
precedes B and pulse B has two sample interactions (AB scheme),
the Ey; signal in the fourth quadrant is the ‘photon echo’ R con-
tribution. Within a picture where excitations are resonant pairs,
its anti-diagonal widths are a measure of the decoherence rates
(I',=1/T,)**>*. The strong signal along the diagonal in the first
quadrant is a pump-probe (PP) contribution from pulse B inter-
acting twice from the sample and arriving before A (BA scheme).
It is sensitive to decay of the excited-state populations and its
anti-diagonal width is, within the pair approximation, a measure of
the energy relaxation rate (I",=1/T)) at the excitation frequency of
the projection onto either axis. See Supplementary Section III for a
detailed description of the full 2DCS response of a generic two-level
system subject to finite longitudinal and transverse relaxation rates
1/T, and 1/T,.

As can be seen in Fig. 2, the signals shift towards lower frequen-
cies on approaching the MIT. The echo signal is most apparent for
the least-doped (39%) sample (Fig. 2a). Similarly, the PP streak
along the first quadrant diagonal narrows (decreasing I';) with
increasing doping. To quantify the relaxation rates I',,, we take
cuts along the anti-diagonal in both quadrants. In so doing, we can
obtain the relaxation rates as a function of energy. Figure 3a shows
representative cuts of the 39% sample taken along the green and
purple dashed lines in Fig. 2a. The cuts in each case can be well fit
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Fig. 2 | Two-dimensional terahertz spectra at different phosphorus concentrations. a-f, Two-dimensional terahertz spectra |Ey (v, v,)| at T=5K for a
series of Si:P samples with different dopings (x/x.): 39% (a), 50% (b), 55% (c), 62% (d), 70% (e) and 85% (f). The doping for each sample is expressed
as a percent of the critical doping (x.) at which the MIT occurs. The spectra are obtained by taking the absolute value of the 2D Fourier transform of the
time-domain signal E (t, 7). The spectrum at each doping is normalized to its maximum and plotted according to the colour map shown in f. The intensity
in the fourth quadrant (red dashed area) from which we get I', is magnified by x2.5.
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Fig. 3 | Frequency and doping dependence of the pump-probe and rephasing relaxation rates. a, |E,,| as a function of excitation frequency along the
anti-diagonal cuts indicated by the dashed green and purple lines in Fig. 2a for the 39% sample at 5K. Green dots are cut through the first-quadrant PP
signal, while purple dots represent a cut through the fourth-quadrant R signal. The solid lines show a Lorentzian best fit to the data. b, As discussed in
Supplementary Section Ill, the widths of these two features can be interpreted as I';=1/T, (green dots) and I, =1/T, (purple dots) within a model of two-level
systems. I'; and I', are shown as a function of excitation frequency for the 39% sample. Solid lines extrapolate through the origin and are a linear best fit
guide to the eye. ¢, |Ey, | as a function of excitation frequency along the anti-diagonal direction at v,=0.67 THz for different dopings. The top panel shows
cuts through the fourth-quadrant R signal, and the bottom panel shows cuts through the first-quadrant PP signal. d, I'; as a function of frequency at different
dopings at 5K. Error bars in b and d represent the 95% confidence interval in the Lorentzian best fit.

to a single Lorentzian to extract the full-width at half-maximum as
a measure of the relaxation rates. We plot the frequency dependen-
cies of the relaxation rates in Fig. 3b and the doping dependencies
in Fig. 3c. The relative widths of I, easily satisfy the fundamental
relation for ‘magnetic’ resonance with 2/T,>1/T,. The frequency
dependence of I'| is shown in Fig. 3d at different doping levels.
Note that the x axes in Fig. 3b,d show the frequency v, at which the
anti-diagonal cuts peak in Fig. 2. Because of the low signal, it was
challenging to extract I', over the full doping range for all samples.
One can see in Fig. 3b,d that the relaxation rates are roughly lin-
ear in excitation frequency in the sub-terahertz regime and are con-
sistent with an extrapolation to zero in the limit of zero frequency.
Qualitatively, this frequency dependence is reminiscent of the
behaviour of the relaxation rate as a function of energy for a metal,
in the sense that they go to zero as @ — 0 (for example, as E— Ej)
as the phase space for electronic relaxation collapses. However, the
quantitative dependence is different as the relaxation rates are linear
in frequency with a slope close to unity. We also find that the dop-
ing dependence (Fig. 3c) is such that the relaxation rates decrease
as we approach the transition to the metallic phase. Figure 4 shows
the temperature dependence of the relaxation rates. Over a range of
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temperatures from 5K to 25K, 1/T, does not change at all to within
experimental uncertainty, while the 1/T) relaxation rate actually
decreases with increasing temperature.

What can be inferred from these results? The temperature
dependence in Fig. 4 and the frequency dependence in Fig. 3 rule
out phonons as a dominant relaxation channel. Relaxation from
phonons is known’ to lead to relaxation rates that are increas-
ing functions of temperature and with frequency dependence
(Supplementary Section IV) that goes as @’ at low @. The elec-
tronic system can thus be considered well isolated on the times-
cales of interest, with coupling to phonons unimportant for this
relaxation. One can also rule out relaxation through coupling to
magnetic excitations. At the energy scales of interest, magnetic
excitations are tightly localized and do not form a heat bath®
(Supplementary Section IV).

We further note that the temperature dependence of the energy
relaxation rate 1/T, (Fig. 4a) has the opposite sign from what one
might naively expect—the relaxation rate decreases as we increase
the temperature. This also rules out explanations based on spectral
diffusion, but can be naturally explained if we postulate that T, comes
from the interaction-mediated coherent tunnelling of electron-hole
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Fig. 4 | Temperature dependence of the pump-probe and rephasing
anti-diagonal spectra. a, |Ey | as a function of frequency along the
anti-diagonal cut of the PP signal in the first quadrant at T=5K and
T=25K for the 39% sample. b, |Ey,| as a function of frequency along
the anti-diagonal cut of the R signal in the fourth quadrant at T=5K and
T=25K for the 39% sample.

excitations (Supplementary Section IV). Raising the temperature
increases screening and suppresses coherent tunnelling?.

The doping dependence of the relaxation rate (Fig. 3c) pro-
vides further insight. This behaviour is counterintuitive: relaxation
slows as we approach the metallic phase. We argue that, in fact, it
is evidence that electron-electron interactions dominate relax-
ation. This follows from essentially dimensional considerations.
Microscopically, the system consists of randomly placed phos-
phorus atoms. Electrons hop between these atoms, and repel each
other via the Coulomb interaction. The system is doped toward
the MIT by increasing the density of phosphorus atoms. Because
the hopping is exponentially suppressed in the P-P distance and the
Coulomb interactions are only algebraically suppressed, increasing
the density decreases the ratio of interactions to hopping, and thus
makes the system effectively more weakly interacting, causing the
quasiparticle lifetimes to increase.

The linear-in-frequency relaxation rate with a slope close to
unity is a dependence reminiscent of strongly correlated metals
that exhibit the marginal Fermi liquid phenomenology””*. Here it
demonstrates something similar, with particle-hole excitations only
marginally well defined in the relevant frequency range. By analogy
with the ‘marginal Fermi liquid, we dub the phase characterized by
our experiments a ‘marginal Fermi glass. That the relaxation rates
appear to extrapolate to zero in the zero frequency limit of the pres-
ent case, despite the fact that the system is at finite temperature,
probably reflects the fact that we are probing energy scales larger
than the thermal scale. The smallest frequency probed (~0.5 THz)
corresponds to a temperature of ~24K, and the data in Fig. 3a
are taken at 5K. It is likely that the relaxation rates saturate to a
non-zero value at a frequency lower than we can probe due to the
finite temperature of the experiment.

We now sketch a mechanism that can give the linear-in-w depen-
dence (details are provided in Supplementary Section IV). The
low-frequency excitations above the localized state are resonant
particle-hole excitations, in which a particle is moved between two
nearby localized orbitals. These excitations are local electric dipoles,
and thus naturally interact via 1/R® dipole-dipole interactions'>*.
As discussed by Levitov*, dipolar interactions are known to cause
delocalization in three dimensions. Coulomb interactions paramet-
rically enhance the density of dipoles at low frequencies”, through a
blockade effect; even if two nearby sites have on-site energies below
E,, occupying one of them may push the other site above E;. These
local anticorrelations among occupation numbers give a phase space
of particle-hole excitations that is w-independent at low frequen-
cies (cf. Fermi liquids, where this phase space scales as w). A dipolar
excitation can coherently hop on this network, at a rate one can cal-
culate (Supplementary Section IV) to be ~@. This mechanism also

has temperature and doping dependence consistent with the earlier
dimensional analysis. It is important to point out that our experi-
ment is not in the regime far from the MIT where the Shklovskii—
Efros-Levitov calculation is well controlled. Nevertheless, it remains
possible that the experimental results are quantitatively explicable
via some non-trivial extension of its central ideas to systems near
the MIT. Regardless of the precise mechanism, the relaxation comes
from the interplay of strong electron-electron interactions with
strong disorder, in a regime where controlled analytic calculation
does not appear feasible. It should be noted that, in the absence
of the Efros-Shklovskii ground-state reconstruction®, the Levitov
argument’® would predict relaxation rates that scale as ~@? imply-
ing sharply defined low-energy excitations (Supplementary Section
IV). One needs both it and the long-range dipolar interaction to get
the linear-in-w relaxation.

Finally, we note that, although discussions of Fermi liquid the-
ory are usually couched in terms of the lifetime of single electrons
‘injected’ above a filled Fermi sea, the lifetimes we are measuring
here are those of elementary ‘dipoles’ (particle-hole excitations). In
a Fermi liquid, these relaxation rates scale the same way; in disor-
dered systems, they generally do not (Supplementary Section IV).
Nevertheless, in the microcanonical ensemble (relevant for optical
experiments, where we do not inject particles), particle-hole excita-
tions are the low-energy excitations of the system, and the marginal-
ity of their lifetime is the key diagnostic of the marginal Fermi glass.
Note that, although an anomalous particle-hole lifetime is sufficient
to establish a ‘non-Fermi glass, it is not necessary. We note that
some proposed non-Fermi glasses'' can have conventional particle-
hole properties and only reveal their non-quasiparticle properties
in their single-particle response, for example, via particle injection.
Irrespective of these issues, the ‘marginal Fermi glass’ constitutes a
distinct phenomenology and shows that interactions must be mani-
festly taken into account to describe these systems.
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Methods

Experiments were performed on nominally uncompensated phosphorous-doped
silicon (Si:P) samples, which were cut from a Czochralski-grown boule to a
specification of 5cm in diameter with a phosphorus-dopant gradient along

the axis. This boule was subsequently sliced and then polished down to

100-pm wafers. Samples from this boule were previously used for studies

of terahertz-range conductivity in the phononless regime®>* and optical
pump-terahertz probe measurements*. We measured samples from 39

to 85% of the critical concentration of the 3D MIT in a regime where the
localization length was of order or longer than the inter-dopant spacing.

Note that these concentrations are far higher than those used in terahertz

free electron laser (FEL) studies demonstrating photon echo at the 1s — 2p,
transition (~8.29 THz)***'. The phosphorus concentrations were calibrated with
room-temperature resistivity using the Thurber scale*.

To perform 2D nonlinear terahertz spectroscopy, two intense terahertz
pulses (A and B) generated by the tilted pulse front technique and separated by
a time-delay 7 (Fig. 1b) were focused onto each sample in a collinear geometry
(see Supplementary Section I for details of the experimental set-up)'”'®. The
transmitted terahertz fields were detected by standard electro-optic (EO)
sampling using a 30-fs, 800-nm pulse delayed by time ¢ relative to pulse B.

The displayed data were taken with a maximum electric field of 50kV cm™! for
each pulse. A differential chopping scheme was used to extract the nonlinear
signal (Ey, (7, t) = E5(7, t) — EA(7, 1) — Ey(t)) resulting from the interaction of
the two terahertz pulses with the sample. Here, E,j is the transmitted signal
when both terahertz pulses are present, while E, and Ej are the transmitted
signals with each pulse A and B present individually. A 2D Fourier transform
of Ey, with respect to 7 and ¢ gives the complex 2D spectra as a function of the
frequency variables v, and v,. Fits to Lorentzians were restricted to the central
part of peaks due to the phase twisting present in these spectra, as discussed in
Supplementary Section III.

Data availability
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available from the corresponding author upon reasonable request.
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