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We study the decay mechanism of the gapped lowest-lying axial excitation of a quasipure atomic Bose-
Einstein condensate confined in a cylindrical box trap. Owing to the absence of accessible lower-energy
modes, or direct coupling to an external bath, this excitation is protected against one-body (linear) decay,
and the damping mechanism is exclusively nonlinear. We develop a universal theoretical model that
explains this fundamentally nonlinear damping as a process whereby two quanta of the gapped lowest
excitation mode couple to a higher-energy mode, which subsequently decays into a continuum. We find
quantitative agreement between our experiments and the predictions of this model. Finally, by strongly
driving the system below its (lowest) resonant frequency, we observe third-harmonic generation, a hallmark
of nonlinear behavior.
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Much of our understanding of interacting quantum many-
body systems is rooted in the existence of long-lived
elementary excitations. The nature of these excitations
reflects the form of order in the underlying state of matter.
Moreover, the excitation energy spectrum gives access to the
low-temperature thermodynamics [1,2]. To lowest order, it is
typically calculated by assuming that the excitations are
noninteracting and, thus, have an infinite lifetime.
In the continuum limit, taking into account the inter-

actions between quasiparticles generically leads to finite
lifetimes, even at zero temperature [3]. Such lifetimes play
a crucial role in understanding transport properties of
quantum fluids, such as their thermal and electrical con-
ductivity, viscosity, or the attenuation of sound. The case of
gapped excitations is profoundly different, owing to addi-
tional constraints on decay channels. Gaps in the energy
spectra naturally arise in systems with discrete translational
symmetry [4], or as a result of many-body [5–7] and finite-
size effects [8,9]. The problem of the lifetime of gapped
excitations has been considered in myriad contexts,
including optical phonons in crystals [10], quasiparticles
in quantum dots [11], magnons in spin systems [12,13], and
rotons in superfluid helium [14–16]. However, the decay
considered in these studies typically originated from the
coupling to lower-lying modes (e.g., acoustic branches), or
scattering due to thermally populated excitations.

In this Letter, we study the fundamental many-body
problem of the lifetime of a gapped lowest-lying excitation
at zero temperature. This situation is particularly intriguing
since the excitation is energetically immune to any one-
body (i.e., linear) decay. The finite lifetime exclusively
arises from nonlinear effects and provides a window into
the interactions between quasiparticles. We experimentally
and theoretically study this problem in the textbook setting
of a homogeneous box-trapped atomic Bose-Einstein
condensate (BEC).
The weakly interacting bulk Bose gas has been a

remarkable test bed for exploring the physics of excitations
and their interactions [17–44]. At low temperature, the
excitations of an infinite uniform BEC have an energy
given by the Bogoliubov spectrum; in the long-wavelength
limit, these excitations are phonons [47]. The leading decay
channel for the phonons is a linear process, in which they
spontaneously break up into pairs of longer-wavelength
phonons [Fig. 1(a)], a damping mechanism first predicted
by Beliaev [48].
By contrast, in our case, the finite system size leads to

experimentally resolvable gaps in the excitation spectrum,
and recent works suggested that the damping of the lowest
mode is fully nonlinear (within experimental precision)
[41,49]. Here, we experimentally and theoretically eluci-
date the excitation lifetime of this mode by investigating the
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steady-state response of the system to a continuous drive.
We show that the underlying damping mechanism can be
explained by a generic microscopic model based on an
inverse Beliaev-like process, whereby two elementary
excitations merge into a higher-energy one [Fig. 1(b)].
Our experiment starts with a quasiuniform BEC of 87Rb

atoms [50], prepared in a cylindrical optical box trap of
radius R ¼ 16ð1Þ μm and length L ¼ 26ð1Þ μm [see
Fig. 2(a)]. Our condensates consist of N ¼ 1.2ð1Þ × 105

atoms, their chemical potential is μ ≈ kB × 2.0ð3Þ nK, their
healing length ξ ≈ 1.2ð1Þ μm, and the excitation
frequency of the lowest-lying axial mode [Fig. 2(b)] is
ωd ¼ 2π × 9.0ð1Þ Hz (see [41] for details). We excite this
mode by applying a spatially uniform oscillating force
Fsðr; tÞ ¼ ðUs=LÞ sinðωtÞez, where ez is the unit vector
along the symmetry axis of the cylinder and Us is the
maximal potential-energy drop across the box. The force is
produced by a pair of coils, which create a magnetic field
gradient that couples to the magnetic moment of the atoms.
Following a variable shaking time ts, the BEC is released

and the center of mass of the atomic density distribution is
recorded after a time of flight tTOF ¼ 140 ms, which
reflects the in situ center-of-mass velocity vðtsÞ along ez.
In Fig. 2(c), we show examples of vðtsÞ for three drive

frequencies (below, on, and above resonance), and for two
drive amplitudes (Us=kB ¼ 0.2 and 1.6 nK). While tran-
sient dynamics are visible at early times, a monochromatic
steady state is established at later times. We fit the data for
ts > 0.6 s with vðtsÞ ¼ vm sinðωts þ θÞ (solid lines) and
extract the amplitude vm and phase θ of the velocity
response. For the weaker drive (Us=μ ≈ 0.1), we observe
significant response only on resonance. However, for the
stronger drive (Us=μ ≈ 0.8), we observe comparable
response amplitudes at all three frequencies, indicating
significant broadening of the response spectrum, a clear
signature of nonlinear behavior. Specifically, such broad-
ening corresponds to the shortening of the lifetime of
excitations due to their mutual interactions.
To characterize this nonlinear behavior, we plot vm as a

function of Us on log-log scale for various drive frequen-
cies in Fig. 2(d). For linear response, with amplitude-
independent damping, one would get vm ∝ Us, for all ω.
Instead, on resonance (ω ¼ ωd), we observe power-law
behavior vm ∝ U0.32ð1Þ

s , reminiscent of classical models
with a cubic nonlinear damping (which generically predict
vm ∝ U1=3

s on resonance; see Sec. I in [51]). Away from
resonance, vm is smaller than on resonance (for the same
Us), but for stronger drives, a progressively broader range
of frequencies becomes effectively resonant.
In the following, we introduce a theoretical model

for this nonlinear behavior, and compare it to the full
experimental response curves vmðωÞ and θðωÞ (see Fig. 3).
Within quantum theory, in the spirit of Fig. 1(b), we asso-
ciate the cube-root scaling vm ∝ U1=3

s with the decay of the
mode toward higher energies via a two-body process [52],
resulting in a decay rate proportional to the number of

FIG. 2. Nonlinear dynamics of a driven box-trapped Bose-Einstein condensate. (a) Sketch of the optical box trap, highlighting the axis
along which the drive FsðtÞ is applied. (b) Sketch of the fundamental mode density δnðzÞ and velocity δvðzÞ profiles along the box axis.
(c) Center-of-mass velocity response vðtsÞ for three different drive frequencies ω, close to the resonant ωd=ð2πÞ ¼ 9.0ð1Þ Hz, and two
different drive strengths Us (see legend). (d) Steady-state response amplitude vm versus Us on log-log scale, for various drive
frequencies (see legend). The on-resonance vm exhibits power-law behavior, and a fit to the data (solid line) gives vm ∝ U0.32ð1Þ

s . For
progressively larger Us, a wider range of ω becomes effectively resonant. The dotted lines are guides to the eye, and the error bars
represent fitting uncertainties.
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FIG. 1. Decay mechanisms of elementary excitations in a
quantum many-body system. (a) Beliaev-like linear damping
of an excitation in the continuum to two (or more) lower-lying
excitations. (b) Nonlinear decay of the lowest-energy, gapped
excitation (blue) to a higher-lying mode (red). The continuum is
represented as a gray shade, while the horizontal lines indicate
relevant energy levels.
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phonons. Once excited, this “secondary” mode couples to
other modes, which act as a quasicontinuum of states to
which the excitation can decay. We formalize this picture
by developing a simple model in which the fundamental
excitation of energy ℏωd is created by an external forcing
and is coupled to an auxiliary mode of energy ℏωb (see
Secs. II–VI in [51]). The Hamiltonian describing the
system is

Ĥ ¼ ℏωdd̂
†d̂þ ℏωbb̂

†b̂þ ℏλðb̂†d̂ d̂þH:c:Þ
þ ℏΩ sin ðωtÞðd̂† þ d̂Þ; ð1Þ

where d̂† (d̂) and b̂† (b̂) are, respectively, the creation
(annihilation) operators for the fundamental and the

auxiliary mode, λ is the coupling strength, and Ω is the
strength of the drive. We incorporate the decay of the
auxiliary mode into the quasicontinuum via a master
equation approach. By tracing out the auxiliary mode,
we derive, within a mean-field approximation, an equation
of motion for the mean dipole dðtÞ≡ hd̂ðtÞi:

i∂td − ðωd þ κ2jdj2Þd ¼ Ω sinðωtÞ: ð2Þ

The generally complex κ2 captures the nonlinear effects to
leading order. Specifically, Re½κ2� and Im½κ2� correspond,
respectively, to a frequency shift (due to the self-
interaction) and a nonlinear damping (due to the mediated
coupling to the continuum); expressions for κ2 in terms of
the microscopic model parameters are provided in Sec. III
in [51]. In practice, κ2 is sensitive to the details of the
trapping potential, and it is more convenient to extract it
directly from the experimental data. However, the form of
Eq. (2) is universal in that it does not depend on the exact
loss mechanism of the auxiliary mode, nor the number of
auxiliary excitations involved in the elementary interaction
process [see Eq. (1)].
To compare our experimental data to the theory,

we relate dðtÞ to the main experimental observable
vðtÞ ¼ ð2α=NÞ∂tRe½dðtÞ�, where α is the matrix element
of the position operator ẑ between the ground state and the
lowest-lying excitation (see Sec. IV in [51]). In terms of the
experimental parameters, the drive amplitude in Eq. (1)
is Ω ¼ αUs=ðℏLÞ.
We determine the parameters of the model by fitting the

vmðωÞ response curves to the steady-state numerical sol-
utions of Eq. (2) for each Us. The resulting fits are shown in
Fig. 3(a) as solid lines, where, for simplicity, we first neglect
the real part of the nonlinear coefficient κ2, so that the
adjustable parameters are κ̄2 ≡ iκ2 and α. We see that for
Us ≲ kB × 2 nK, the fitted model captures the experimental
data well. Only for Us ≳ kB × 2 nK do deviations between
the model and the data become apparent. In the inset of
Fig. 3(a), we plot the extracted full width at half maximum of
the spectral lines, Γ, which is inversely proportional to the
excitation lifetime, as a function of Us. The plot reveals that
the deviation between the model and the data occurs only
once Γ≳ ωd. For Us=kB ¼ 1.6 nK, we estimate that
κ̄2jdj2 ≈ 0.5ωd, and higher-order nonlinearities could
become important.
The parameters extracted from each vmðωÞ curve

are shown in Figs. 3(b) and 3(c). Crucially, both α and
κ̄2 do not depend on Us within experimental errors,
demonstrating that the model [Eq. (2)] captures the non-
linear Us-dependent response. Averaging the fitted para-
meters within the range of validity of the model
(Us=kB < 1 nK), we obtain α=ðL ffiffiffiffi

N
p Þ ¼ 0.098ð4Þ and

κ̄2=ωd ¼ 6.9ð7Þ × 10−6 per phonon (solid horizontal
lines). A calculation assuming a cylindrical-box-trapped
BEC in the Thomas-Fermi regime (Sec. III in [51]) yields

FIG. 3. Nonlinear response functions and comparison with
theory. (a) Steady-state velocity response amplitude vm as a
function of ω, for six different drive strengths Us (see legend),
alongside the corresponding fits to our model (see text for
details). The inset shows Γ, the extracted full width at half
maximum of vmðωÞ, as a function of Us on log-log scale, while
the horizontal dotted line indicates ωd. The solid line is a fit to the
data, Γ ∝ U0.67ð2Þ

s . For reference, our experimental upper bound
on the linear damping rate is 2π × 0.3 s−1 [41]. (b),(c) Extracted
model fit parameters for the response curves vmðωÞ in (a). The
dashed line in (b) shows a theoretical estimate (see text), while the
solid lines in (b) and (c) depict the average for Us=kB < 1 nK.
(d) Phase response as a function of Us. The solid lines show the
prediction of the model with the extracted average parameters
[solid lines in (b) and (c)] for Re½κ2� ¼ 0. The dotted lines,
instead, show corresponding predictions which include a small
nonzero Re½κ2� (see text). Where not visible, the fitting error bars
are smaller than the point size.
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α=ðL ffiffiffiffi
N

p Þ ¼ 25=4=π3=2
ffiffiffiffiffiffiffiffi
ξ=L

p ¼ 0.091ð4Þ [dashed line in
Fig. 3(b)], which is close to the experimental value.
Furthermore, we find that Γ ∝ U0.67ð2Þ

s , which, interest-
ingly, suggests that even though vm=Us and Γ are not
independent of Us (as they would be for a linearly damped
harmonic oscillator), one still recovers vmΓ ∝ Us. This
reflects the energy balance condition for a driven-dissipa-
tive steady state;Usvm is the driving power, and v2mΓ is akin
to the energy dissipation rate, the energy stored in the
system being ∝ v2m.
In Fig. 3(d), we show the complementary data on the

phase of the velocity response, θ, as a function of Us for
various drive frequencies. As expected, θ is π=2 (−π=2) out
of phase with the drive below (above) resonance.
Interestingly, for low drive strengths (Us=kB < 1 nK),
the on-resonance θðωdÞ is observably nonzero and nearly
independent of Us. Averaging the data for Us=kB < 1 nK
gives θ ¼ −0.12ð4Þ, which suggests that Re½κ2� ¼
0.12ð4ÞIm½κ2� within our model [see Sec. IV in [51]); this
a posteriori justifies our initial assumption that
jRe½κ2�=Im½κ2�j ≪ 1. Including this small nonzero Re½κ2�
in the model further improves agreement with the data
[dotted lines in Figs. 3(a) and 3(d)], but the difference
is small.
For a nonlinear response, one also generically expects

the possibility of harmonic generation. Experimentally, we
did not observe evidence of higher-harmonic generation for
Us=kB < 3 nK, so in the final part of this Letter, we turn to

even larger drive amplitudes (up to Us=kB ¼ 6.6 nK). For
most driving frequencies ω, we only observe a monochro-
matic response at the drive frequency, even for strong drives
(see top panels in Figs. 4(a) and 4(b) where ω=ð2πÞ ¼ 9 Hz
[53]). However, the behavior is markedly different for
ω=ð2πÞ ¼ 3.5 Hz (bottom panels), for which 3ω is close to
the resonant ωd. In this case, the Fourier spectrum of the
time-domain response [Fig. 4(b)] shows a clear peak at 3ω,
signaling third-harmonic generation, in addition to the main
peak at ω [54]. In Fig. 4(c), we plot the third-harmonic
amplitudeF 3 versusUs on log-log scale [55]. A power-law
fit (dashed line) gives F 3 ∝ U3.6ð1.2Þ

s , consistent with a
cubic scaling in Us (characteristic of third-harmonic gen-
eration) and in qualitative agreement with predictions from
Eq. (2) (Sec. V in [51]).
In conclusion, we have experimentally and theoretically

studied the nonlinear decay of the fundamental gapped
excitation of a Bose-Einstein condensate. Our experiments
reveal a cubic damping mechanism as well as third-
harmonic generation, which we have shown can be
captured by a mean-field model based on a microscopic
theory at lowest order. The decay of lowest-lying gapped
excitations is an understudied but generic problem in
quantum many-body physics, and in the future, it would
be interesting to transpose this study to other many-body
systems such as the strongly interacting Fermi gas [56,57],
dipolar gases [58–60], or topological systems [61]. We note
that for our strongest (resonant) drive the gas is turbulent in
steady state [49], and the many-body decay of the lowest-
lying mode provides a stepping stone toward the transfer of
energy to higher-lying modes. Thus, our work paves the
way for a microscopic understanding of the genesis of a
turbulent cascade [49,62], where the energy leakage from
the driven discrete lowest-lying mode is sufficiently large to
sustain a nonequilibrium steady state. Such a transition
from the discrete-state dynamics to a continuum turbulent
cascade has recently been theoretically studied in a cos-
mological context [63]. Finally, the exclusively nonlinear
decay of the lowest-lying mode opens up the prospect of
exploring quantum state preparation and the generation of
nonclassical states of this degree of freedom, analogous to
the quantum control of a single mode in optomechanics
[64–66].

Data supporting this publication are available in the
Apollo repository [67].
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